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Abstract-A munerical scheme based on the enthalpy method is applied to one-dimensional Stefan problems. The 
discretizatiou equation is derived based on the finite control volume method. To improve the convergence rate, a simple 
and cost-eflbctive shrgle-point predictor-coirector algorithm is proposed. Usefulness of the present approach is dis- 
cussed by means of various solidification problems. 
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INTRODUCTION 

Phase change problems occur in many engineering applications, 
e.g. solar energy storage, single crystal growtia, chemical reactior~s, 
freezing mid thawing of food, solidification of alloys, and nuclear 
safety [Choi et al., 1995; VolM; 1997]. Phase change process is re- 
lated to a moving boundary for which a heat flux condition should 
satisfy the conservation of heat and release of latent heat during 
phase change [Crank, 1984]. Although many useful analytical sol- 
utions have been derived since the fnst publication of Stefan in a 
study of the thickness of polar ice [Carslaw mid Jaeger, 1959], they 
are quite lhnited to a short range of idealized cases. 

There are two main approaches to the solution of the phase 
change problem. One is the fi-ont tracking method, which explic- 
itly tracks the position of the phase change front and the heat flux 
condition including latent heat is imposed across the moving bound- 
ary. Another approach is the method known as a fixed grid method 
The fonner is usually restricted to one-dinrensional problems and 
to the systems which have simple topology without mushy zone 
[Kmz and Fisher, 1989] while the latter hnplicitly accounts for the 
phase cha~ge fi-ont determined a poste~iori fi-om the temperature 
field. In general, the fr~ed grid method is thought to be more ver- 
satile, and we adopt this method due to its inherent versatility. 

The fixed grid method is l:asically relying on the enthalpy for- 
mulation, which uses the enthalpy as a dependent variable of con- 
duction equation instead of the tempemt~-e. The obvious merit of 
the entkalpy fonnulation is to eliminate the effort to inlplement the 
heat flux condition at the interface between two phases. In this, the 
heat flux condition is arltomatically satisfied across the phase change 
front and the front can be tracked on the specification of a nodal 
liqtud fractiort There are several ntwnencal schemes in enthalpy 
formulation. The source update method, enthalpy linearizafion meth- 
od (LINH), and apparent heat capacity method (AHC) are most 
common and the general description for the methods can be forbad 
in Voller [1997]. 

In this work, we apply the enthalpy formulation with a new ef- 
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fective numerical scheme to one-dimensional phase change prob- 
lems. The proposed nurnerical algoriti~n is based on the fLxed grid 
concept. The discretized heat conduction equatic~l is obtained in 
the context of finite control vohmle. It is regarded as a valiant of 
the source update method Although the source utxlate method is 
known to be inefficiei~ we adopt it due to its well-known rohtst- 
ness and seek to h-nprove the calculation efficiency with simple mod- 
ificatiorz In order to verify the effectiveness of the proposed algo- 
rithm, we test various phase change problems. Examples include a 
critical circumstance: low Stefan numbe~- (sensible to latent heat 
latiO) With small dimensioifless tempelatt~-e (ratio of initial to bound- 
ary temperature deviation from saturation temperature). This prob- 
lem usuaUy detehorates die numerical peffonnance and sometimes 
fail to converge. Even lhough the proposed method is applied to 
one-&neusional cases, it is readily extendable to multidmler~sion 
and multicomponent system without serious modification. 

MATHEMATICAL MODEL 

1. Heat Conduction Equation 
Let us consider the heat con&lction e~afion in one<limensioml 

doIIlain 

~t(oh) =--~-O (k0T~ +S (1) 
Oxt. 0x) 

vaitten in tenns of specific erNlalpy h and temperature T, p being 
the density, k tile themlal conductivity, and S the internal heat sot~:ce, 
all of thegn actually depending on temperaaue and position. Eq. (1) 
is subjected to the initial condition 

T(x, t=0) =T,(x) (2) 

and the boundary conditions 

T =To at afar 

kOT -> 5-xx-n =q at a~ 
OT ~. 

-k~x  x -n =h~o..(T -T~) at OO~ (3) 

where 0~r, Os and 0D~ are non-overlapping portion of the bound- 
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ary of problem domain. To and q are the specified tempe~-amre and 
incoming heat flux at 3 ~  r and Of~q, respectively. ~o~ is the heat 
transfer coefficient and T~ is the mnbient ten~peramre. 
2. Enthalpy Formulation 

Specific enthalpy can be expressed as 

h=h~+tL+c(T-T~) (4) 

where 17, is the saturated enthalpy of solid, T,,., the saturated tem- 
pePature, L the latent heat, c the specific heat, and f the mass frac- 
tion of liquid phase. Of course, the heat capacity can be a function 
of temper~re,  while 17,, T,r and L are asst~ned to be constant The 
mass fraction f can be obtained from the enthalpy: 

[~_~Lh ~ if h<h~ 
f= if lhKhKl~ +L 

1 if h~ +L<h. 

(5) 

Substituting Eq. (4) into (1), we can obtain the equation governing 
enthalpy-based m cdel for phase ct~nge heat conduction problems 

cun~lg at cell 'P ' ,  it is recognized that the cell tempei"amre will he 
given by Tp=T,~70. Hence Eq. (9) will be 

0 =2a,0T~b +(pc);a~*T; +S~, -a%(H~, -H;) .  (10) 
nb 

From Eqs. (9)and (10), the update fonnula 

o +  

H~,=H~, -~ + [(pc),a, ae]T~ " (11) a~ 

is obtained. The new mass fi'action of liquid f~ can be easily cal- 
culated fi-om Eq. (7). Steps (1) and (2) are repeated until conver- 
gence. 

For the computational efficiency, Voller [ 1990] proposed a mod- 
ification of the above procedure: 

(1) Prediction: If  the phase change is occun-ing at cell 'P '  the co- 
efficient [(pc)pa~+ap] is replaced by [(pc)~ap~ (arbitParily 
large value). This step ensures that Tp 0 is returned. 

(2) Correction: An appropriate evaluation for the liquid mass frac- 
tion can then be obtained on rearranging Eq. (10). 

O 0 aT 
~(pcT) :~x(k~xx) + S OH ~)t (6) 

where 

H p(h~ +fL -cT~,). (7) 

The latent heat due to phase change is treated as a !rind of heat 
source and this fbrmulation allows us to avoid the difficulties aris- 
ing from moving phase change front. It is a l:asic idea of the source 
updated method, wkich is known to be extremely robust and has 
been used to solve a various phase change problems. The price of 
robustness, howevel; is lack of computational efficiency. 

NUMERICAL M O D E L  

1. Source Update Method 
Based on fi~lly implicit (backward Euler) 6me integratioi1, the 

discretized equation of Eq. (6) in the context of fnfite coim-ol vol- 
ume [Patankar, 1980] can be expressed as 

[(pC)p@+ae]Te:Za~bT~b+(pc);a~*T;+S e a~(H e H;) (8) 
nb 

where subscripts 'P'  and 'nb'  mean the value of the present and 
neighboring cell, respectively. The sweescript ~ denotes the value 
at the previous time step. The detailed expressions of the influence 
coetticienls a~ a,~, and a~ can be found in Patakar  [1980]. This 
equation isolates the non-linear behavior associated with the phase 
change into a source term. A commonly used general iteration 
scheme is as follows. 

(1) Prediction: With the k n o ~  tempecature and liquid mass fi-ac- 
tion at (n-1)th iteration step, the system of equations is solved for 
the temperature field at iteration step ~n': 

0 1 - n n _}_ * 0*  *_}_ n 0 n - I  [(pc)pa~ ap]Tp=~a,bT,b (pc)papTp Sp-ap(Hp -H~). (9) 

(2) Correction: If  we can set T,a=0 and the phase change is oc- 

A comparison of CPU times shows that the Voller's scheme is 
between 1.5 and 10 thnes faster than the previous scheme. It should 
be noted that both of above schemes can be modified to deal with 
cases where T,~,;~0. However, to avoid problems with round off, a 
tempePatta-e scaling such that T,~, 0 is recommended. 
2. Other Methods 

Other popular methods are the enthalpy linearization method 
(LINH) and apparent heat capacity method (AHC). There ks no sig- 
i~icant difference in the numerical perfomlance, i.e. accuracy and 
compt~tional efficiency. As pointed out by Voller [1997], LINH 
may not conserve heat at every time step. For the reduction of the 
error invoked by the failure to completely conserve heal, the time 
interval should be small enough. 

The apparent heat capacity method introduces an apparent heat 
capacity, cA-dh/dT, to absorb the noiilinear behavior related to the 
phase change. Although th/s method is easily applicable to usual 
heat conduction programs and conceptually non-iterative, it has a 
critical &-awlmck, that is the smgulaity of the appacent heat capac- 
ity. In order to circt~nvent the singularity, a fictitious phase change 
range is often introduced. But such numerical approximation is 
prone to producing oscillations without special treatments [Davey 
and Rosinctale, 1999]. Also, if the incorpcrated thermal properties 
are dependent on temperature the non-iterative concept is no longer 
~tseful. 
3. Single-Point Predictor-Correetor Algorithm 

The most common three algorithms for phase change problems 
have been briefly reviewed- The major drawbacks are the compu- 
tational ineffectiveness (source update method) or the robustness 
(LINH and AHC). Now, we will propose a simple but effective 
and robust algorithm. 

If  the discretazed equation, Eq. (8), is solved properly at the n-th 
iteration step, the enthalpy obtained with presumed physical prop- 
ei~ies at each iteration step 

h('+ ') =1~+ f')L+ 6")(T(") -T,~) (12) 

satisfies the energy conservation. The superscript denotes the itera- 
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don step. Although, at this step, we do not know the exact mass fiac- 
tion and the physical properties, the best choice of the mass frac- 
tion of liquid phase for the next iteration is to obtain the value from 
the above enthalpy with conserving the energy 

0 if 11~*'> <h~ 

f~.+,~= h-h~ if l~_<h~"+')_<h~+L (13) 

1 if l~+L<h ~+1~. 

L 

This procedure enables the energy contained in the cell to re-distri- 
bute so that the excessive (or deficient) energy can be stored into (or 
retrieved fi-om) a latent heat iather than a spurious sensible heat. 
Also, the temperature can be re-esCknated according to the new mass 
flaction 

~a<'+L__.) -h~ ~,+1) L T(~'+'~ =T~o' + l< )c75 (14) 

and it may give better eslknation for the next iteration. This is quite 
similar to previous source update inethc, zls. However, it should be 
noted that we do not force the temperatures even at phase changing 
cells to be saturation tempeiamre wkile the previous algofithins did 
This may give us more versatility when the saturation temperature 
is not coustant. If  we consider a phase change between liquid and 
vapor we should take into account the variation of the saturation 
temlxa-atta-e according to the themlodyi~nic state. Then, it is suspi- 
cious whether the wdated temperature, T ~+1), can satisfy the energy 
conservation equation because all physical properties are changed 
due to the change of mass fraction. 

The most important t i~g  in the phase change problem is to es- 
Imaate accurately the mass fraction. From the enthalpy expression, 
the temperatta-e can explicitly detemfine the updated mass fraction. 
The updated temperature distribution should satisfy the discretiza- 
don eqtation at the phase changing cell. If  we asstale the present 
cell ~ is undergoing phase change the tempe~-atta-e can be given by 

~ A  (n+ l)T(n) -t- 12t (n+l) 
~ b  t n b  - -  u p  

T("+~ "~ (15) P 
P 

The expressions of the generalized influence coetficients A~ of cell 
'P '  and A~ of neigffooring cells and the generalized sottcce B~ can 
be easily obtained fi-om Eq. (8). These are calculated with the up- 
dated mass fraction t ~+1>. Although the temperatures of neighbor- 
ing cells T~ are obtained at the previous iteration step and may be 
comparatively less correct titan the other updated values, the new 

(~+ 0 temperature T~ kased on the updated mass Kaction will be a bet- 
ter esmnatior, We car~ of cotrse, use this temperature to update 
the mass fraction with the enthalpy expression. TtKs predictor-cot- 
rector procedure can be applied iteratively only to phase changing 
cells. We need not solve the whole set of the governing equations 
dunng the single-point predictor-corrector procedure, which can be 
regarded as an ir~er iteratioN. It should be noted that dunng the 
~ae~ ite~ation the tempe~atues at neighboring cells are not & a g e d  
but the updated temperature is a goad eslknation for the next iter- 
atiort The proposed single-point predictor corrector seems to be very 
effective due to its simplicity and low computational cost, which 
will be shown later. Fmhennore, this can be readily extendable to 

nmltidimensional cases. This algoritiun always ensures the energy 
conservation at the phase changing cell. 

The proposed single-point predictor-coiTectc~" algoritiml is suan- 
in~-ized as 

(1) Predictiot~ Fiv>m the known temperature and liquid mass frac- 
tion at (re-1)th iteration step, the enthalpy and the utxtated mass frac- 
tion at each cell is obtained as Eqs. (12) and (13). 

(2) Con'ection: The tempeiamre is recalcnlated by Eq. (14) with 
updated physical properties. 

(3) Single-Point Con'ection: For a phase changing cell, i.e. f~+~)r 
f2 ), the temperature at the cell is updated by Eq. (15) with updated 
physical properties. 

(4) Outer Iteration: Repeat (1) and (2) until convergence. 
(5) Inner Iteration: Only for phase changing cells, repeat (1) and 

(3) during specified Iknes or until weak convergence during every 
o u t e r  i teraI ion.  

EXAMPLES 

1. Solidification Problems with Ste=0.2, 2.0 
In order to test the accuracy and tile comptaational efficiency of 

the proposed single-point predictor-corrector algorithm, let us con- 
sider two solidification problem with different Stefan numbeps de- 
fined as 

Ste _c(%o,-To). (16) 
L 

For the comparison with the results listed in Voller [1997], two 
Stefan ntmthers 0.2 and 2.0 are chosen. Using a fixed grid with 50 
volumes (Ax=0.1) tile proposed scheme is used to predict tiae time 
taken for the phase change front to reach the position x 1.0. A range 
of time steps, starting with At 0.005 (the explicit stability limit as- 
string the stability in Enler foiward time integration and daeflned as 
At~,.,~=pcAx 2/2k [Volley; 1997 ] and temfinating with At 0.1 (20 times 
the explicit limit), are tested. When the Euclidean norm of the re- 
sidue vector of discretized equatiom falls below 10 -4, convergence 
in each outer iteration is declared 

The perfomaance of LINH and AHC tested by Voller shows ti~at 
there is little difference between the methods although the former 
is more accurate at large time steps and small Stefan numbers. The 
ntalber of iterations is nearly same as the number of lime steps and 
tile relative error of LINH to the analytic solution is up to more thai 
2% and 10%, for Ste=0.2 mad Ste=2.0, respectively. At small lime 
steps (1-3 times the ~xplicit lknits), about 1-2% relative elrors are 
found. However, the present method generates only about 1% for 
Ste=0.2 and about 6% for Ste=2.0 through the whole cases with 
very similar acct~acy at small lime steps (Fig. 1). Figs. 2 and 3 show 
the total number of iterations according to tile number of single- 
point predictor-corrector (i.e. number of iamer iteration) imposed 
on during an outer iteration. It should be noted that the single-point 
predictor-con-ector scheme does ha-dly affect the nt~nerical result, 
which is essentially same regardless of the activation of the scheme. 
The number of inner iteration of zero means the conventional source 
update method, which requires large number of iterations. If we, 
however, activate the single-point predlctor-corrector algorithm, 
the nt~nbe~ of ite~ations can be significantly reduced Even with 
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Fig. 1. % Relative error (Example 1). 

Fig. 2. Number of iterations for Ste=0.2 (Example 1). 

only 1 inner iteration, the calculation speed is nearly doubled_ Then, 
there may be an optimized number of inns iterations because dur- 
ing the iamer iteration the neighboring tempera~res are fixed_ Fur- 
ther irner iteration over a certain number of times can not improve 
the speed and may worsen the performance. The optimized num- 
bei's of inner iterations for each case are obtained after the tests con- 
ducted with increasing the number of inner iterations and they are 
listed in the Figs. 2 and 3. As can be seen in the figure, the op- 
Iknized nu~nber tends to slightly increase as the size of time step. 

Comparing with LINI% for larger Ikne steps, the present algo- 
rithm shows better accuracy than LINH. However, for smallest time 
steps, the accuracy of the proposed algoritlun is very comparable 
to that of LINH and the number of iterations of LINH is less than 
that of the proposed algoritl~n. Nevertheless, tlae proposed algo- 

Fig. 3. Number of iterations for Ste=2.0 (Example 1). 

rithm has an obvious advantage over LINIt. The proposed algo- 
rithm does not require any arfficial phase ct~nge range, while LINH 
is essentially based on the assumption that the phase change occurs 
over an arbib-ary tim1 te~npe~-ature iange, so called the tempelature 
window, to allow the piecewise continuous enthalpy as a fiJslction 
of tempelature. It may be always possible to find suitable window 
size that can ensure the accuracy of LINH, however this process is 
not a sbaightfop~vard and largely dependent on the problem. Some- 
tines, it is even a tedious job [Ding, 1995]. Also, the small win- 
dow size numerically enforces the saturation temperature to be zero 
and it may be a serious drawback in the extension of LINH to the 
liquid-vapor phase chmge problems. However, the proposed meth- 
od is flee fiom any numerical arfficial, which may deteriorate the 
applicability. 
2. Solidification P l ~ b l e m  under  a Critical  Circumstance  

In Stefan problems, there are two important dimensioifless nttal- 
bers. The Stefan number defined by Eq. (16) is one of them and 
the other is the temperature ratio defined as 

| T, T~o, (17) 
T~ T o 

where T, is the initial temperature and To the wall temperature. The 
Stefan ntunber gove~rLs the tempera~lre ga-adie~lt cgscc~ltinuily, while 
the temperature ratio is related to the magnitude of this gaadient next 
to the wall. The solution process performance tends to deteriorate 
when both numbers decreases. For the purpose of the convergent 
ntwnerical procedure for phase change problems, recently, Fachi- 
notti et aL [1999] proposed a closed analytical integi-ation proce- 
dure in the finite element formulation and they also introduced the 
well-known Newton-Raphson scheme for the numerical etticiency. 
They verified tlaeir metlaod with a selected problem with critical 
values of aforementioned dimensionless numbers, ie. the solidifi- 
cation of liquid contained in a semi-infinite slab at tmifonn temper- 
attue 71",=0.0 ~ just above T,,,=-0.1 ~ whose surface temperature 
suddenly falls to a constant value To=-45.0 ~ The physical prop- 
erties are assumed to be constant: thennal conductivity k = 1.08 W/ 
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(~ heat capacity pc=1.0 J/(~ and latent heat pL=70.26 J/ 
m 3. The corresponding Stefan number is Ste=1.6 and temperature 
i"atio 0=0.002. In this work, we adopt the same problem to test the 
computational ability of our proposed method. The calculation is 
camed out with Ax=0.125 m (32 uniform cells) and At=0.2 s (20 
time steps). 

According to Fachinotti et al. the above-mentioned dirnension- 
less values lead to a critical circuanstance wherein enthalpy models 
fail to converge, twlless a large fictitious regulaiazation range is in- 
troduced against the isothermal phase change character of the pro- 
blem. As shown in Figs. 4 and 5 desciibmg the calculated phase 
fi-ont and temperature vaiiation with the analytical values, respec- 
lively, however, the proposed methcd does not extfibit any spuri- 

Fig. 6. Number of iterations (Example 2). 

ous behavior and the agreemei~ are fairly good. In this, of course 
no regularization is introduced. Fig. 6 shows the total number of 
ite~-ations reqtm-ed to obtain converged values as the number of inner 
iteiations, i.e. the number of single-point prediclion-correclion, for 
the phase changing cell increases. Applying 10 single=point predic- 
tion-correction, we can dilninish the number of iteralions to about 
0.1 times. 
3. Solidification Problem with Two Phase Change Fronts 

Now, we consider a fitfite slab of length 5.0 m filled with liquid 
at tuaifon-n temperature TT1.0~ Suddenly, a cold heat reservoir 
of To -1.0 ~ below T,,, 0.0 ~ is contacted at x 0.Om. At the 

Fig. 4. Phase change front (Example 2). 

Fig. 5. Temperature at x=0.6875 m (Example 2). 
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sane time, the other side at x=5.0m is exposed to a cold flow with 
T~=-10.0 ~ and the slab body loses its heat through convective 
heat ti-ansfer (h = 1.0 W/(~ 2) is assumed). All the physical prop- 
erties are set to be constant: k = 1.0 W/(~ pc = 1.0 J/(~ ~) and 
pL=1.0 J/m 3. This problem subjected to two kinds of boundary con- 
ditions is related to two different fronts of phase change. Figs. 7-9 
show the results fi-om the calculation performed with Ax=0.01 m 
(500 uniform cells) and At=0.005 s (400 time steps). U~ffommately, 
this problem does not have a known a~alyfical solution to compare 
with_ We, however, have tested with fmer spatial and temporal mesh- 
es to assure the coire~gent solution and the above meshes are cho- 
sen for this problem. 

As expected, more heat is released ttuough the right side bound- 
ary and the ~Jght phase change fiont penet~-ates into the body faster 
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(see Fig. 7). Also, as a result, the assnnmetric telnpelature distribu- 
tion is obtained (see Fig. 8). Fig. 9 shows the effectiveness of the 
proposed single-point predictc~'-con'ector algoritt~n, especially for 
the case with multiple phase change cells. The algoiJtl~n reduces 
the total number of iterations to about 1/10 in Example 2 with sin- 
gle phase fi'ont (see Fig. 6), but it can reduce the number to about 
1/25 in this example with 2 fi-onts. For multidimensional problems 
which esse~ltially have multiple phase changing cells during the cal- 
culation, we can faMy expect the proposed algoijtt~n to reduce the 
computational effort significantly. 

CONCLUSIONS 

A robust and cost-effective single-point predictor-correctc~ algo- 
rithm is proposed for phase change problems and tested with var- 
ious solidification problems. The proposed algoiJtt~n can be classi- 
fied into the source update method characteiized by the robustness 
but the computational inefficiency. We can observe that the pro- 
posed algoiJttnn can increase the calculation speed without sacri- 
ricing the accuracy. Even with just one prMiction-correction, the 
total number of iteiations is nearly halved. The results fi-om the a,c- 
ample under a ciJtical drctmlstance, especially, show the robust- 
ness of the proposed algorithn. Also, the algorithm is so shnple as 
to apply easily to common nonlinear heat conduction programs and 
it is readily expandable to multidimensional cases with only a little 
progranmling ettbrt. It can be incorporated with other i~umerical 
schemes designed to improve the computational efficiency. 
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