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Abstract—A numerical scheme based on the enthalpy method is applied to one-dimensional Stefan problems. The
discretization equation is derived based on the finite control volumne method. To improve the convergence rate, a simmple
and cost-effective single-point predictor-comector algorithm is proposed. Usefulness of the present approach is dis-

cussed by means of vanous solidification problems.
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INTRODUCTION

Phase change problems occur in many engineenng apphcations,
e.g. solar energy storage, single crystal growth, chemical reactions,
freezmg and thawing of food, solidification of alloys, and nuclear
safety [Chot et al., 1995; Voller, 1997]. Phase change process 1s re-
lated to a moving boundary for which a heat fhix condition should
satisty the conservation of heat and release of latent heat durmg
phase change [Crank, 1984]. Although many useful analytical sol-
utions have been denved since the first publication of Stefan m a
study of the thickness of polar ice [Caislaw and Jaeger, 1959], they
are quite limited to a short range of idealized cases.

There are two main approaches to the solution of the phase
change problem. One 15 the front trackmg method, which explic-
itly tracks the position of the phase change front and the heat flux
condition mcluding latenit heat 1s imposed across the moving bound-
ary. Another approach 1s the method known as a fixed grid method.
The former 1s usually restricted to one-dunensional problems and
to the systems which have sumple topology without mushy zone
[Kruz and Fisher, 1989] while the latter implicitly accounts for the
phase change front determined a postenion from the temperature
field. In general, the fixed grid method 1s thought to be more ver-
satile, and we adopt this method due to its inherent versatility.

The fixed grnd method 15 basically relymg on the enthalpy for-
mulation, which uses the enthalpy as a dependent variable of con-
duction equation wstead of the temperature. The obvious ment of
the enthalpy fonmulation 15 to elimmnate the effort to umplement the
heat flux condition at the mterface between two phases. In this, the
heat flux condition 15 automatically satisfied across the phase change
front and the front can be tracked on the specification of a nodal
Liquid fraction There are several numerical schemes n enthalpy
formulation. The source update method, enthalpy lineanzation meth-
od (LINH), and apparent heat capacity method (AHC) are most
comimon and the general description for the methods can be found
m Voller [1997].

In this work, we apply the enthalpy formulation with a new ef-
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fective numerical scheme to one-dimensional phese change prob-
lems. The proposed numerical algorithm 15 based on the fixed grid
concept. The disaretized heat conduction equation 15 obtamned m
the context of finite control volume. Tt is regarded as a variant of
the source update method. Although the souwrce update method 1s
known to be mefficient, we adopt it due to its well-known robust-
ness and seek to improve the calculation efficiency with simple mod-
ification. In order to venfy the effectiveness of the proposed algo-
nithm, we test various phase change problems. Examples mclude a
critical circumstance: low Stefan mumber (sensible to latent heat
ratio) with small dimensionless temperature (ratio of wtial to bound-
ary temperature deviation from saturation temperature). This prob-
lem usually deteriorates the mumerical performance and sometimes
fail to converge. Even though the proposed method is applied to
one-dimensional cases, it 1s readily extendable to multidimension
and multicomponent system without serious modification.

MATHEMATICAL MODEL

1. Heat Conduction Equation
Let us consider the heat conduction equation m one-dimensional
domain

LT
5P ‘ax(k ax) S

wiitten n terms of specific enthalpy h and temperature T, p being
the density, k the thermal conductivity, and S the mternal heat source,
all of them actually depending on temperature and position. Eq. (1)
1s subjected to the wmtial condition

(0

T, t=0)=T(x)
and the boundary conditions
T=T,
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where 0, 0Q,, and 0€2, are non-overlapping portion of the bound-
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ary of problem domam. T, and g are the specified temperature and
mcoming heat fhx at 0, and 0Q,, respectively. b, is the heat
transfer coefficient and T 1s the ambient temperature.
2. Enthalpy Formulation

Specific enthalpy can be expressed as

h=h +{L+¢(T-T,) C))

where h, is the saturated enthalpy of solid, T, the saturated tem-
perature, L the latent heat, ¢ the specific heat, and f the mass frac-
tion of hquid phase. Of course, the heat capacity can be a function
of temperature, while h,, T, ,, and L are assumed to be constant. The
mass fraction f can be obtamed from the enthalpy:

0 if h<h
) h-h,

L
1 if h+L<h.

it h<h<h +L )

Substituting Eq. (4) into (1), we can obtain the equation governing
enthalpy-based model for phase change heat conduction problems

D,y (2T g 2H
a_t(pCT)’ax(kax)+S at ©
where
H=p(h, +fL. —cT,,). M

The latent heat due to phase change 1s treated as a kind of heat
source and this formulation allows us to avoid the difficulties aris-
g from moving phase change front. It is a basic idea of the source
updated method, wiich s known to be extremely robust and has
been used to solve a various phase change problems. The price of
robustness, however, 1s lack of computational efficiency.

NUMERICAL MODEL

1. Source Update Methed

Based on fully mplicit (backward Buler) time mtegration, the
discretized equation of Eq. (6) m the context of fimte control vol-
ume [Patankar, 1980] can be expressed as

[(pe)sap +2,IT, :L:anﬂ"na +H(pe)pay Tp+S, —ax(H, —H;) ®
where subscripts ‘P’ and ‘nb’ mean the value of the present and
neighboring cell, respectively. The superscript “** denotes the value
at the previous tune step. The detailed expressions of the mfluence
coeflicients a,, a,,, and a5 can be found in Patankar [1980]. This
equation isolates the non-linear behavior associated with the phase
change 1o a source term. A commonly used general iteration
scheme 1s as follows.

(1) Prediction: With the known temperature and liquid mass frac-
fion at (n—1)th tteration step, the system of equations 1s solved for
the temperature field at iteration step ‘n’:

[(pe)sap +a,0T7 =32, T, +(pc)ar To+S; —ab(H; ' —Hp). (9

nb

(2) Correction: If we can set T,,=0 and the phase change 15 oc-

curring at cell ‘P, 1t is recognized that the cell temperature will be
given by T,=T_,=0. Hence Eq. (9) will be

0 =§aan;’b +(pe)pay T; +S; —ay(H; —H;). (10
From Egs. (9) and (10), the update formula

H;=H2_l +[(pC)PE:?= +aP]T; an
ap
is obtained. The new mass fraction of liquid f; can be easily cal-
culated from Eq. (7). Steps (1) and (2) are repeated until conver-
gence.
For the computational efficiency, Voller [1990] proposed a mod-
ification of the above procedure:

(1) Prediction: Tf the phase change is occurring at cell ‘P the co-
efficient [(pc),as+as] is replaced by [(pe)ap+a.1+BIG (arbitrarily
laige value). Thus step ensures that T,=0 1s returned.

(2) Comrection: An appropriate evaluation for the liquid mass frac-
tion can then be obtamned on rearranging Eq. (10).

A comparison of CPU tunes shows that the Voller’s scheme
between 1.5 and 10 tunes faster than the previous scheme. It should
be noted that both of above schemes can be modified to deal with
cases where T,,#0. However, to avoid problems with round off, a
temperature scaling such that T,,=0 1s recommended.

2. Other Methods

Other popular methods are the enthalpy lineanzation method
(LINH) and apparent heat capacity method (AHC). There is no sig-
nificant difference m the numencal performance, ie. accuracy and
computational efficiency. As pomted out by Voller [1997], LINH
may not conserve heat at every time step. For the reduction of the
error mvoked by the failwe to completely conserve heat, the time
mterval should be small enough.

The apparent heat capacity method introduces an apparent heat
capacity, ¢'=dl/dT, to absorb the nonlinear behavior related to the
phase change. Although this method is easily applicable to usual
heat conduction programs and conceptually non-iterative, it has a
critical drawback, that is the singularity of the apparent heat capac-
ity. In arder to circumvent the singularity, a fictitious phase change
range is often introduced. But such numerical approximation 1s
prone to producing oscillations without special treatments [Davey
and Rosindale, 1999]. Also, if the ncorporated thermal properties
are dependent on temperature the non-iterative concept 1s no longer
useful.

3. Single-Point Predictor-Cervector Algerithm

The most common three algorithms for phase change problems
have been briefly reviewed. The major drawbacks are the compu-
tational ineffectiveness (source update method) or the robustness
(LINH and AHC). Now, we will propose a simple but effective
and robust algonthm.

If the discretized equation, Eq. (R), 1s solved properly at the n-th
iteration step, the enthalpy obtamed with presumed physical prop-
erties at each iteration step

W =h 4 2L+ ¢X(TO-T, ) 12)
satisfies the energy conservation. The superscript denotes the itera-
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tion step. Although, at this step, we do not know the exact mass frac-
tion and the physical properties, the best choice of the mass frac-
tion of liquid phase for the next iteration 1s to obtamn the value from
the above enthalpy with conserving the energy

if <k

0
Fon = h;hS if h<h""<h +L 13)

1 if h+L<h®".

This procedure enables the energy contained in the cell to re-distii-
bute so that the excessive (or deficient) energy can be stored mto (or
retrieved from) a latent heat rather than a spurnous sensible heat.
Also, the temperature can be re-estimated according to the new mass
fraction

(et}
+ —h, + L
M+l _ s _ gntl)
=T, () (14)

and it may give better estunation for the next iteration. This 1s quite
similar to previous source update methods. However, it should be
noted that we do not force the temperatures even at phase changing
cells to be saturation temperature while the previous algonthms did.
This may give us more versatility when the saturation temperature
18 not constantt. If we consider a phase change between liquid and
vapor we should take into account the variation of the saturation
temperature according to the themnodynamic state. Then, 1t is suspi-
cious whether the updated temperature, T, can satisfy the energy
conservation equation because all physical properties are changed
due to the change of mass fraction.

The most important thing n the phase change problem s to es-
timate accurately the mass fraction. From the enthalpy expression,
the temperatire can explicitly detennine the updated mass fraction.
The updated temperature distribution should satisfy the discretiza-
tion equation at the phase changmg cell. If we assume the present
cell ‘P’ 18 undergomg phase change the temperature can be given by

AL B
Tt (1s)
The expressions of the generalized influence coeflicients A, of cell
‘P’ and A, of neighborng cells and the generalized sowce B, can
be easily obtamned from Eq. (8). These are calculated with the up-
dated mass fraction f*". Although the temperatures of neighbor-
mg cells T, are obtamed at the previous iteration step and may be
comparatively less correct than the other updated values, the new
temperature T " based on the updated mass fraction will be a bet-
ter estimation We can, of course, use this temperature to update
the mass fraction with the enthalpy expression. This predictor-cor-
rector procedure can be applied iteratively only to phase changing
cells. We need not solve the whole set of the govermng equations
durmg the smgle-pomt predictor-corrector procedure, which can be
regarded as an mmer iteration. It should be noted that durmg the
nmner iteration the temperatures at neighboring cells are not changed
but the updated temperature 1s a good estimation for the next iter-
ation. The proposed smgle-pomt predictor corrector seems to be very
effective due to its simplicity and low computational cost, which
will be shown later. Furthermore, this can be readily extendable to
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multidimensional cases. Thus algorithm always ensures the eneigy
conservation at the phase changing cell.

The proposed single-pomt predictor-corrector algorithm is sum-
marized as

(1) Predictior: From the known ternperature end liquid mass frac-
tion at (-1 )th iteration step, the enthalpy and the updated mass frac-
tion at each cell 1s obtained as Egs. (12) and (13).

(2) Correction: The temperature 1s recalculated by Eq. (14) with
updated physical properties.

(3) Single-Point Correction: For a phase changing cell, ie. {f""#

¥ the temperature at the cell is updated by Eq. (15) with updated
physical properties.

(4) Outer Iteration: Repeat (1) and (2) until convergence.

(5) Inner Tteration: Only for phase changing cells, repeat (1) and
(3) durng specified times or until weak convergence durng every
outer iteration.

EXAMPLES

1. Selidification Problems with Ste=0.2, 2.0

In order to test the accuracy and the computational efficiency of
the proposed single-point predictor-corrector algorithm, let us con-
sider two solidification problem with different Stefan munbers de-
fined as

Ste =°—(T“{T°) . (16)

For the comparison with the results listed m Voller [1997], two
Stefan numbers 0.2 and 2.0 are chosen. Using a fixed giid with 50
volumes (Ax=0.1) the proposed scheme is used to predict the time
taken for the phase change front to reach the position x=1.0. A range
of time steps, starting with At=0.005 (the explcit stability hmit as-
sunng the stability in Euler forward time mntegration and defed as
At =peAx’/2k [Voller, 1997] and terminating with At=0.1 (20 times
the explicit limit), are tested. When the Euclidean norm of the re-
sidue vector of discretized equations falls below 107, convergence
m each outer iteration 15 declared.

The performance of LINH and AHC tested by Voller shows that
there 15 hitle differenice between the methods although the former
1s more accurate at large time steps and small Stefan numbers. The
number of iterations 1s neatly same as the munber of tune steps and
the relative ervor of LINH to the analytic solution 1s up to more then
2% and 10%, for Ste=0.2 and Ste=2.0, respectively. At small time
steps (1-3 times the explicit limits), about 1-2% relative errors are
found. However, the present method generates only about 1% for
Ste=0.2 and about 6% for Ste=2.0 through the whole cases with
very sumilar accuracy at small time steps (Fig. 1). Figs. 2 and 3 show
the total number of iterations according to the number of single-
pomt predictor-corrector (1.e. number of umer teration) imposed
on during an outer iteration. It should be noted that the single-poit
predictor-corrector scheme does hardly affect the numerical result,
which 1s essentially same regardless of the activation of the scheme.
The number of inner iteration of zero means the conventional source
update method, which requires laige number of iterations. If we,
however, activate the smgle-pomt predictor-corrector algorithim,
the number of iterations can be significantly reduced. Even with
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Fig. 1. % Relative error (Example 1).
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Fig. 2. Number of iterations for Ste=0.2 (Example 1).

only 1 inner iteration, the calculation speed is neaily doubled. Then,
there may be an optimized number of inner iterations because dur-
mg the mmer iteration the neighboring temperatures are fixed Fur-
ther wmer iteration over a certan mumber of times can not improve
the speed and may worsen the performance. The optimized num-
bers of imer iterations for each case are obtamned after the tests con-
ducted with mcreasing the number of mner iterations and they are
listed m the Figs. 2 and 3. As can be seen m the figure, the op-
timized number tends to slightly increase as the size of tume step.
Comparing with LINH, for laiger time steps, the present algo-
rithm shows better accuracy than LINH. However, for smallest time
steps, the accuracy of the proposed algorithm is very comparable
to that of LINH and the number of iterations of LINH s less than
that of the proposed algorithm. Nevertheless, the proposed algo-
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Fig. 3. Number of iterations for Ste=2.0 (Example 1).

nithm has an obvious advantage over LINH. The proposed algo-
rithm does not require any artificial phase change range, while LINH
18 essentially based on the assumption that the phase change occurs
over an arbitrary thin temperature range, so called the temperatire
window, to allow the piecewise continuous enthalpy as a function
of temperature. It may be always possible to find smtable window
size that can ensure the accuracy of LINH, however this process is
not a straightforward and largely dependent on the problem. Some-
tunes, 1t 1s even a tedious job [Ding, 1995]. Also, the small win-
dow size numerically enforces the saturation temperature to be zero
and it may be a serious drawback m the extension of LINH to the
liquid-vapor phase change problems. However, the proposed meth-
od 1 free from any numerical artificial, wiuch may detenorate the
applicability.
2. Solidification Problem under a Critical Circumstance
In Stefan problems, there are two mportant dimensionless man-
bers. The Stefan number defined by Eq. (16) 1s one of them and
the other is the temperature ratio defined as

T,-T.,
1 52 (17)

O=
Tsd 7To

where T, 1s the imtial temperabwe and T, the wall temperature. The
Stefan number govems the temperature gradient discontimuty, while
the temperature ratio 1s related to the magmitude of this gradient next
to the wall. The solution process performance tends to deteriorate
when both mumbers decreases. For the purpose of the convergent
numerical procedure for phase change problems, recently, Fachi-
notti et al. [1999] proposed a closed analytical infegration proce-
dure in the finite element formulation and they also introduced the
well-known Newton-Raphson scheme for the numerical efficiency.
They venfied their method with a selected problem with critical
values of aforementioned dimensionless numbers, ie. the solidifi-
cation of liqud contained n a semi-mfinite slab at umform temper-
ature T,=0.0°C, just above T,,=—0.1 °C, whose surface temperature
suddenly falls to a constant vatue T,=—45.0°C. The physical prop-
erties are assumed to be constant: thermal conductivity k=1.08 W/
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(°Cm), heat capacity pe=1.0 I/’Cm®) and latent heat pL=70.26J/
m’. The corresponding Stefan number is Ste=1.6 and temperature
ratio ©=0.002. In thus work, we adopt the same problem to test the
computational ability of our proposed method. The calculation s
carried out with Ax=0.125 m (32 uniform cells) and At=0.2 s (20
tune steps).

According to Fachinotti et al. the above-mentioned dimension-
less values lead to a critical circumstance wherem enthalpy models
fal to converge, unless a large fictiious regularization range 18 M-
troduced agamnst the 1sothermal phase change character of the pro-
blem. As shown in Figs. 4 and 5 describing the caleulated phase
front and temperature variation with the analytical values, respec-
tively, however, the proposed method does not extubit eny spuri-
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Fig. 4. Phase change front (Example 2).
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Fig. 5. Temperature at x=0.6875 m (Example 2).
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Fig. 6. Number of iterations (Example 2).

ous behavior and the agreements are faily good. In thus, of course
no regularization is infroduced. Fig. 6 shows the total number of
tterations required to obtam converged values as the munber of mner
tterations, re. the mumber of single-point prediction-correction, for
the phase changing cell increases. Applying 10 single-point predic-
tion-correction, we can dirnirsh the mumber of iterations to about
0.1 times.
3. Solidification Problem with Two Phase Change Fronts
Now, we consider a fimte slab of length 5.0 m filled with liquid
at uniform temperature T,=1.0"C. Suddenly, a cold heat reservoir
of T=—1.0°C, below T_=0.0°C, 1s contacted at x=0.0m. At the
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Fig. 7. Phase distributions (Example 3).
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same tne, the other side at x=5.0m 15 exposed to a cold flow with
T.=-10.0°C and the slab body loses its heat through convective
heat transfer (h=1.0 W/(°Cm?) is assumed). All the physical prop-
erties are set to be constant: k=1.0 WA°Cm), pe=1.0J/CCm?) and
pL=1.0J/m’. This problem subjected to two kinds of boundary con-
ditionss is related to two different fronts of phase change. Figs. 7-9
show the results from the calculation performed with Ax=0.01 m
(500 uriform cells) and At=0.005 s (400 time steps). Unfortunately,
this problem does not have a known analytical solution to compare
with. We, however, have tested with finer spatial and temporal mesh-
es to assure the corvergent solution and the above meshes are cho-
sen for this problem.

As expected, more heat 1s released through the nght side bound-
ary and the nght phase change front penetrates mto the body faster
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50 v b b v s b g by a 20

Temperature (°C)
[ &)
Qo
|
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Fig. 8. Temperature distributions (Example 3).
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Fig. 9. Total number of iterations (Example 3).

(see Fig. 7). Also, as a result, the asymmetric temperature distribu-
tion 1s obtained (see Fig. 8). Fig. 9 shows the effectiveness of the
proposed smgle-pomt predictor-corrector algorithm, especially for
the case with multiple phase change cells. The algorithm reduces
the total munber of iterations to about 1/10 n Example 2 with sin-
gle phase front (see Fig. 6), but 1t can reduce the number to about
1/25 1n this example with 2 fronts. For multidimensional problems
whuch essentially have multiple phase changing cells dung the cal-
culation, we can fanly expect the proposed algorithin to reduce the
computational effort significantly.

CONCLUSIONS

A robust and cost-effective single-pomt predictor-corrector algo-
rithm is proposed for phase change problems and tested with var-
1ous solidification problems. The proposed algonthm can be classi-
fied into the sowrce update method characterized by the robustness
but the computational inefficiency. We can observe that the pro-
posed algonthi can mcrease the calculation speed without sacri-
ficing the accuracy. Even with just one prediction-correction, the
total number of iterations 1s nearly halved. The results from the ex-
ample under a cnifical circumstance, especially, show the robust-
ness of the proposed algorithm. Also, the algorithm 1s so simple as
to apply easily to common nonlmear heat conduction programs and
it 18 reachly expandable to multidunensional cases with only a little
programming effort. It can be incorporated with other numerical
schemes designed to mmprove the computational efficiency.
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