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A b s t r a c t - T h e  original MPC(Model Predictive Control) algorithm cannot be applied to open loop 
unstable systems, because the step responses of the open loop unstable system never reach steady 
states. So when we apply MPC to the open loop unstable systems, first we have to stabilize them 
by state feedback or output feedback. Then the stabilized systems can be controlled by MPC. But 
problems such as valve saturation may occur because the manipulate,] input is the summation of 
the state feedback output and the MPC output. Therefore. we propose Quadratic Dynamic Matrix 
Control(QDMC) combined with state feedback as a new method to handle the constraints on manipu- 
lated variables for multivariable unstable processes. We applied this control method to a single-input- 
single-output unstable nonlinear syslem and a multi-input-multi-output unstable system. The results 
show that this method is robust and can handle the input constraints explicitly and also its control 
performance is better than that of others such as well tuned PI control, Linear Quadratic Regulator 
(LQR) with integral action. 

INTRODUCTION 

The universal drive for more efficient use of energy 

in the chemical and allied industries has resulted in 

the imposition of stricter demands on control systems. 

For effective control, the control system must cope 

with the problems caused by time delays, interactions 

among system variables, and inherent system nonlin- 

earities. In addition, it must be capable of handling 

constraints in the input variables as well as in the 

output variables while remaining robust in the face 
of modeling errors, measurement noise, and unmod- 

eled disturbances. 

The steps taken by the Shell Oil Company (U.S.A.) 
towards solving the above problems led to the develop- 

ment of the Dynamic Matrix Control (DMCI technique 

which first appeared in the open literature in Cutler 

and Ramaker (1979) after having been applied with 

notable success on industrial processes since 1973. 

In 1986, an extended method for the solution of 

the DMC problem was introduced. The method de- 
noted as QDMC (Quadratic Dynamic Matrix Control) 

consists of the on-line solution of a quadratic program- 

ming (QP) problem which minimizes the sum of squar- 
ed deviations of controlled variable projections from 
their setpoints subject to maintaining projections of 

constrained variables within bounds (Morshedi, et al., 
1986). 

For open loop unstable systems, the discrete repre- 

sentation of the dynamics is impossible because open 

loop unstable systems can never reach steady state. 

Therefore, the original DMC algorithm cannot handle 

the open loop unstable systems. In 1990, model predic- 

tive control combined with coordinate control strate- 

gies was proposed to accomplish the control of a non- 

linear, open-loop unstable process (P. M. Hidalgo and 

C. B. Brosilow [9]). This algorithm computes tl~e ma- 

nipulated variables so that the model output exactly 
tracks the desired model output at the next time hori- 

zon by solving a Newton's algorithm. But this method 
cannot prevent the saturation of manipulated wniables 

explicitly and would be unstable in the case of severe 

plant/model mismatch though large filter time con- 

stant of the reference trajectory- equation can he used 

to stabilize the system. 

In this study, we propose QDMC combined with 
state feedback as a new method to handle constraints 

of controlled variables and manipulated variables for 
open loop unstable systems. This method has a similar 

structure to original QDMC except for constraint equa- 
tions that include state feedback information. We com- 
pare the performance of the proposed method with 
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thai: of Linear Quadratic Regulator (LQR) with inr.e- 
gral action. 

T H E O R E T I C A L  B A C K G R O U N D  

1. QDMC Combined  w i t h  State  F e e d b a c k  
The philosophy of Quadratic Dynamic Matrix Con- 

trol (QDMC) is well described by Garcia and Mnrshedi 
~7~. Here, we express a simple quadratic solution of 
DMC and aext derive the QDMC constraint equation 
combined with state feedback. One can express the 
least-squares solution of the DMC equations as the 
following quadratic minimization problem: 

min S = 1EAu(k) e(k-+ t ) ] JUrEAu(k) - -e (k+  t)~ 
u(k) 2 

+ lu(k)rAfAu(-k)  (1) 

where A : dynamic matrix 
u(k): manipulated input vector at present 

time. E~M(k)...AI(k+l)~, l: control ho- 

rizon 
e(k+ 1) : predicted error vector 

F : weighting matrix of controlled variables 
A :we igh t i ng  matrix of manipulated varia- 

bles 

Here, dynamic matrix A is comprised of the step re- 
sponse coefficients for the inner closed loop system. 
The above quadratic problem can be simplified as fol- 

lowing: 

lu(k)~Hu(k)  g (k+  1)~u(k) 1:2) rain S 

s.t. Cu(k)>c(k+ 1) 

where 

I-[ A~FTA--A~A (the QP Hessian matrix) 

g (k+ 1 ) - A T T e ( k +  1) (the QP gradient vector) 

Next thing we have to do is to make the linear inequal- 
ity constraints matrix. In the following we show how 

the inequalities are formulated for each of the con- 

strained variables for a s-input r-output system. 
1-1. Manipulated Variables 

In QDMC, the vector u(k) contains not only the pre- 
sent moves to be implemented but also predictions 
of lhe future moves. But if we want to bound the 
range of manipulated variables, we do not have to limit 
all the elements of u(k), because only A/.(k-) is imple- 
mented and u(k) is recalculated at the next time. In 

the case of QDNIC combined with state feedback, final 
control action is the summation of I,(k) and state feed- 
back, that is 1,(k)- Kix(k) where K, is the i r row vector 
of the inner loop state feedback gain and x(k) is the 
vector of the present state value. LQR can be used 

to calculate the state feedback gain matrix K. So one 
can bound the predicted level of the i 'h manipulated 
variable as follows: 

L,,,,Kl,(k)+Al,(k) K,x(k)<I, ...... (3) 

where l,(k) is the present  value of the i 'h manipulated 
variable: and I, ....... L ...... are the lower and upper limits 
respectively. In matrix form, these constraints are ex- 
pressed as: 

- k>[  1 u( ) /,(k)~+K]x(-!~),[ (4) 

_ 1~ LEL,,,,,,- L(k)~ + K~x(k) j 

1-2. Controlled Variables 

Dynamic Matrix is made of the step response coef- 
ficients of the inner closed loop system. So the con- 
straint equations of controlled variables are the same 
as before. For a single output system, with respective 
maximum and minimum limits O ........ O ....... the con- 
straint equations are formulated as: 

A ]  , , , , [ O  O,,, , , , ) l -e(k+l)  1 
/UI, K ) / /  (5) 

Pt J --L(O ...... OJI  +e (k+  1)J 

where I E1 1-.-1J 

Extension to the multiple-output case is straightfor- 
ward. 

~ 

> ~ ( 0 , , - 0  ........ )1 e , ( k+ l )  (6) 
J / ( O ,  ...... O]Jl  + e , ( k +  1) 

where O,~ is the value of the r-th controlled variable 
setpoint; 0.,..~ and O, ...... are the maximum and the 
minimum limit of the r-th controlled variable respec- 

tively. 
The simplified block diagram of QDMC combined 

with state feedback is shown in Fig. 1. In the figure, we 
include a state estimator to predict the states of the 
system and simply represent it as a state estimator 
block to avoid complexity. If Kalman filter is used as 
the state estimator, then the stability and robustness 
of the system would be improved. But here, the state 
estimator is not important. So we do not mention 
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Fig. l. The block diagram of QDMC combined with state 
~edbaek. 

abouL it further, y denotes the selected controlled var- 
iables among the measured output variables, and the 
matrix E is introduced to select the controlled varia- 
bles ,~: --Ey,,,). Since we stabilize the open loop unstable 
systems, we can get the step response coefficients of 
the closed loop system from the model equx.ion. There- 

fore, it makes QDMC control the closed loop systera 
as a master controller. The resulting contr,~l structure 
has lwo control loop; one comes from sta:e feedback 
and the other from QDMC. "1"his structure is a little 

different from cascade form. Because the output flora 
QDMC is not the setpoint of feedback controller. In 
Fig. 1, the line passing though the QDMC block deno- 
tes lhat the state feedback information is used in 
QDMC for handling input constraints. Therefore 
QDMC gives the input action so that the final manipu- 

lated action should not violate the input constraints 
consLdering the state feedback action. 
2. Linear Quadrat ic  Regula tor  {LQR) wi th  Inte-  
gral  Act ion  

Another method of controlling multivariable unsta- 
ble processes is LQR with integral action. We briefly 
discuss the basic LQR and LQR with integral action 
because, in the later simulation, we compare the per- 
formance between this method and QDMC combined 
with state feedback. 

The basic LQR problem uses the following state 
equations, cost function, and full state control law: 

x :- Ax + Bu (7) 

y C x + D u  (8) 

J : : f l l  ( x ' Q x + u ' R u ) d t ,  Q Q"->0, R : R " > 0  (9) 

u Kx (10) 

The objective is to find K which minimizes the cost 
function J. The solution is K = R tBzP, where P =  W_> 

set- 
point 

Fig. 2. The block diagram of LQR ~ith integral action. 

0 is the unique positive semi-definite solution to the 
algebraic Riccati equation: 

AYP+PA+Q PBR ~B~P 0 (11) 

The conditions for existence of a solution are that 
(A, B) are stabilizable and the solution lies in a stable 

closed loop system matrix (A-BK). 
But the linear quadratic formulation produces a 

proportional state feedback controller. From classical 
control theoD' one recognizes that proportional con- 
trollers lead to offset when there are setpoint changes 
or load changes in the process; thus, it would be desir- 
able to formulate the optimal feedback control prob- 
lem so as to allow integral control action which would 
eliminate these offsets. One method of incorporating 
integral action into the controller is to augment the 
state variables to include new variables z(t) where z 
- Ix are those state variables for which integral action 
is desired. Thus lhe new state and manipulated varia- 

bles are 

x Y" :[vl 
where y,, are measured output variables and x~ are 
remaining state variables except measured output var- 
iables, and process dynamics for the new state varia- 
bles is as follows: 

x = P~ + Q~ (12) 

y,,, V / c +  w f i  (13)  

where P [00 C],  Q [0B] ' V=EOC],  Vr 

When the objective function is also modified to accom- 
modate the new state variables, i.e., 

J=f i~  (xrQ:~+ u rRt l )d t  (14) 

the linear quadratic optimal control law takes the 

form 
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6 -  - K i  

= - G z -  K .y~-  K~x, 

= - K~fyd t -  K,y~ - K,x, (15) 

where IG=sta te  feedback gains for integral element 
K~ =s ta t e  feedback gains for measured output 

variables 
tG=s ta te  feedback gains for remaining state 

variables except output variables 

which naturally includes integral action. So those off- 
sets can be eliminated. Fig. 2 shows the block diagram 
of LQR with integral action. 

A P P L I C A T I O N  E X A M P L E S  

1. A SISO Nonl inear  U n s t a b l e  S y s t e m  
We consider a jacketed CSTR in series with separa- 

tor and recycle [8]. An exothermic, second-order, au- 
tocatalytic, irreversible reaction takes place in the reac- 
tor, A+B-+2B.  The system is described by three non- 
linear differential equations as following: 

�9 material balance for substance A 

V,dcA~/dt = FcAo + rFc.~3- (1 + r)FcA, -- R,V~ (16) 

�9 energy balance for the reactor 

V ~pccdT,/dt = FpcpTo + rFpccT:~ + V l( - A H)RI 

- (1 + r)Fpc~T1 U,AI(T1 -- T,I) (17) 

�9 ,energy balance for the jacket 

Vllp,.cp, dT( 1/dt = F,.lp,.%,T,,,-- F~ 1 p,c,,T, 1 

+ U~A,(T, - %3  (18) 

�9 reaction rate 

- E  
R , = k  c~,(10- c41)exp[ R77TT ] (19) 

and Table 1 shows design specifications of the system. 
By Iinearization of these equations around the steady 
state, a third-order linear model may be obtained in 
the form: 

dx/dt = Ax + bu (20) 

y,., = Cx (21) 

~7= Ey,, (22) 

where x~-[c.al T1 T, 1] 
yZ, [cal T, T, 1] 
y [ ' r J  

Table 1. Design specifications of the system 

System parameters Value 
concentration of A in the feed, cao, kmol/m :/ 10 
feed flow, F, mVmin 0.21 
feed temperature, To, K 294 
activation energy., E, kJ/kmol 92,973 
preexponentiat term, k0, 1/(min kmot) 4.25• 1012 

reaction heat, - AH, kJ/kmol 6•  104 
recycle, r(F:dF) 3 
reactor volume, V,, m ,~ 18.925 
overall heat-transfer coefficient, U1, kJ/(m ~ K min) 68 
temperature of the reactor, T1, K 320.33 
concentration of the reactor, CA1, kmol/m :~ 2.678 
temperature of the recycle, T:t, K 325.58 

concentration f the recycle, c.~:~, kmol/m 3 1.6ll 
jacket volume, Vj~, m ~ 5.0 

coolant flow of the reactor, E~(m:Tmin) 3.21 
coolant feed temperature, Ta~, K 294 
coolant exit temperature of the reactor, T+ K 298 
specific heat of reactants, cr kJ/(kg K) 3.14 
specific heat of coolant, cr kJ/(kg K) 4.18 
density of reactants, to, kg/m 3 900 
density of coolant, p,., kg/m :~ 1000 

universal gas constant, R~, kJ/(kmol K) 8.314 

u IF, , ]  

- -  0.0469 - 0.0063 
A = 0.2891 

0.0 

I~176 i B =  0.0 , 

- 0 . 8  
E [o  I o ]  

0.0 
0.0525 0.0472 
0.1209 0.7629 

 1~ C = I O 0 1  
0 

The eigenvalues of the system are -0.7698, --0.0259, 
0.0384. Therefore, the above system is an open loop 
unstable system. If QDMC combined with LQR is ap- 
plied to this system, the control configuration can be 
constructed as Fig. 3. First we get the constant 
state feedback gain vector (K E 7.8927 2.7984 

-0 .5430] )  from LQR in which the weighting matrices 
(Q and R) are all identity matrices. Next we get the 
step response coefficients for the closed loop system 
with the above state feedback gains to make the Dynam- 
ic Matrix. 

Fig. 4 shows the comparison of the process output 
and input responses among well-tuned PI control (Kc 

3, c~= 9.5), LQR with integral action (K== -3.33,  
K , = - 2 7 . 9 1 ,  Kr--E-23.79 -2 .96]) ,  and QDMC com- 
bined with state feedback (move suppression factor 
-0 .01)  to the reactor temperature setpoinl change 
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:F 

1"3 

~ ~  sepa- 
rator 

F 

Fig. 3. The control configuration of QDMC combined 
with state feedback to the unstable jacketed CSTR 

system. 
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Fig. 4. The comparison of the process output and input 
responses among well-tuned PI control, LQR with 
integral action and QDMC combined with state 

feedback. 

of 1 degree. Here, coolant flow rate cannot flow con- 

versely, that is, F,. always has positive sign, which is 
a constraint of the manipulated variable. The tuning 

Table 2. Design specificafons of the second reactor 

System parameters Value 
second reactor volume, V2, m J 18.925 
overall heat-transfer coefficient, U~, kJ/(m2K min) 68 
temperature of the second reactor, T2, K 325.58 
concentration of the second reactor, ca2, kmol/m 3 1.128 
jacket volume of the second reactor, Vj~, m :~ 5.0 
coolant flow of the second reactor, E.2(m~/min) 0.9743 
coolant exit temperature of the second reactor, 306 

To2, K 

parameters of PI control, LQR with integral action 
were determined so that the manipulated variables 
are positive. But, for QDMC combined with state feed- 
hack, we made the constraint equation for Fe to be 
greater than zero. So we could use small move sup- 
pression factor to get the fast process output response. 
The performance of QDMC combined with state feed- 
back is better than that of PI control and that of LQR 
with integral action. Also we can know the fi~ct that 
QDMC combined with state feedback can handle even 
the system with mild nonlinearity. 
2. A MIMO Nonl inear  Uns t ab le  S y s t e m  

We consider two jacketed CSTR in series with sep- 
arator and recycle as a MIMO unstable system. As 
the previous example, the same reaction takes place 
in each reactor. Three nonlinear differential equations 
are added to describe the second reactor as following: 

Second Reactor: 
�9 material balance for substance A 

V~dc~z/dt (14 r)FcA1-- ( 1 -  r)Fc.~ R2V2 (23) 

�9 energy balance for the reactor 

V.2pcpdTJdt = (1 + r)FoG~T1 - (1 + r)FpcpT2 

+ V2(- AH)R2 U2A2(T~- T,.2) (24) 

�9 energy balance for the jacket 

Vj~p~%dT,,/dt- F,~p,%,T,, E~p, cp, T,~ 

- U 2&,(T~ - T~ ,) (25) 

�9 reaction rate 

- E  
R.,=l~,c~,(10--cA~)exp[~J, ~, (26) 

Table 2 shows design specifications of the above sys- 
tem. The model equations of the first reactor are same 
as the previous SISO unstable system. After we line- 
arize these equations around the steady state, we can 
get a sixth-order linear model as following. 
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F~ ~ rF 

L 

�9 IT, I I F , ~  I �9 IT, l l  F~ 

reactor 1 reactor 2 

separator 

Fig. 5. The control configuration of QDMC combined 
with state feedback to the unstable two jacketed 
CSTR system. 

dx/dt = Ax+ Bu 

Ym := C X  

~7= Eym 

where x r -  [c,u T1%1 CA2 T~ T,,~] 
y.,=Ec.41 T1 T,.~ cA2 72 T~.~] 
~;= ETx m2~ 
u-EE,  F,2] 

I - -  0.047 0.006 0 
r 0.289 0.052 0.047 

0 0.121 -0.763 
A = 0.033 0 0 

0 0.033 0 
_ 0 0 0 

325 
T3 

324 

~ 323 

322- 

o 321 

Y~ 3 2 o  

319 

F 0 

(27]) 

(281) 

(29:) 

~176 0 0 0 
0 0 

- 0.073 - 0.0135 
0.846 0.035 0.047 

0 0.121 - 0.316J 

- 0 0 1 0 0 0 0 0 - ~  
0 0 0 1 0 0 0 0  

B =  _-0 .8  0 , C 0 0 1 0 0 0 
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 0  
0 2.4 0 0 0 0 0 1 

[ 0 1 0 0 0 0 ]  
E 0 0 0 0 1 0  

Since' one of the system poles is located in the right 
half plane, the above linearized system is also open 
loop unstable. 

Fig. 5 shows the control configuration of QDMC com- 
bined with state feedback which is applied to this 
system. As shown in Fig. 5, the signal into the final 
control element is the summation of the signal which 
comes from QDMC and that from state feedback. 
Here, the state feedback gain matrix is calcalated from 

, ~ _ _  LQR with integralw~OLQ R 

326 

325- 
E ~a3 

324 

323 

30 60 90 120 150 
Time(min) 

~ LQR with integral action 
combined with LQR 

0 30 60 90 120 150 
Time(min) 

Fig. 6. The comparison of the process output responses 
between QDMC combined with state feedback and 
LQR with integral action in the unstable two jack- 
eted CSTR system. 

LQR: 

K F 7.84 -2.92 -0.55 -1.43 -0.20 -0.003] 
=L 1.59 -0.31 -0.01 6.41 -1.08 0.90 J 

K is calculated by solving Riccati equation when R 
is an identity matrix. 

Fig. 6 shows the comparison of the output responses 
between LQR with integral action and DMC combined 
with state feedback when we change the setpo[nts of 
the first reactor temperature and the second one to 
322.33 and 323.58 respectively. The feedback gains 
of the LQR with integral action are as following: 

r -0.577 0"0161 K,=[-7"614 0.156] 
L 0.156-0.5773' 0.409 4.6323' 

Kr=[-8 .447 0 . 5 1 0 - 0 . 2 6 1 - 0 . 0 0 5 ]  
L 0.735 --0.014 11.831 -0.5983 

We can see that the performance of DMC combined 
with state feedback is far better than that of LQR with 
integral action. Here, we also limit E L, F,z to be greater 
than zero. So in the case of LQR with integral action, 
if negative manilmlated action is given, we treat it 
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Fig. '7. The process output and input responses of QDMC 
combined with state feedback in the case of mod- 

el/plant mismatch. 

to be zero. Fig. 7 shows the process output and input 
of QDMC combined with state feedback for the mod- 

el/plant mismatch. In this simulation, we changed 

68 to 100 for the overall heat transfer coefficient. From 

the figure, we can see that QDMC combined with state 

feedback shows robustness. 

CONCLUSIONS 

We propose a new approach combining QDMC with 

state feedback to control open loop unstable systems 
with constraints on manipulated variables. We applied 

this control method to a SISO nonlinear unstable sys- 

tem and the results show that it is better than the 

others such as well tuned PI control. LQR with inte- 

gral action. Moreover. when we expanded i1: to a MIMO 

unstable system, its performance showed far better 
than that of LQR with integral action. Also QDMC 

combined with state feedback shows robustness for 

the model/plant mismatch. Therefore, QDMC com- 
bined with state feedback is an effective method of con- 
trolling multivariable unstable systems with constraint- 

s on manipulated variables. 

NOMENCLATURE 

A : 

CT 
e (-1~+ 1) 

ei(k+ 1) 

I(k) 
A/(k) 

k 

K 
l 

O~ 

0~ 
O, 
Q 

R 

R. 

r 

s 

TT 
u(k) 

ui(k) 

x 

x~ 

y.,, 

y 

Z 

dynamic matrix of controlled variable step 

response coefficients 
composition transmitter 

controlled variable projected setpoint error 

vector 
i th controlled variable projected setpoint er- 

ror vector 
system manipulated variable at time k 

move of manipulated variable at time k 
discrete time 

present time 

gain matrix 

control horizon 
r-th controlled variable 

r-th controlled variable setpoint 

controlled variable setpoint 
weighting matrix of controlled variables 

weighting matrix of manipulated variables 

universal gas constant 

number of manipulated variables 

number of controlled variables 

temperature transmitter 
vector of present and future moves of manip- 

ulated variables, A/(k) 

i '~ manipulated variable moves 

state wmables 
uncontrolled variables 

measured output variables 

selected controlled variables 

augmented variables 

Superscr ipt  

:projection based on moves up to present 

time k 

Subscr ip t s  

m : feedback measurement 

max : maximum 

min : minimum 
r : index for uncontrolled variables 

y : index for controlled variables 

z : index for augmented variables 
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