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Abstract-This article focuses on convective instabilities of throughflow in packed beds with internal heat 
sources. When a packed bed is heated with internal heat sources, the effects of throughflow on the onset conditions 
of convection have been examined numerically under the linear stability theory. The resulting conditions show that 
stationary instabilities occur at higher values of Darey-Rayleigh number than the critical values as the amount of 
throughflow increases. The effects of free and rigid boundaries on the onset condition are also obtained for the 
Brinkman porous media with throughflow. 
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I N T R O D U C T I O N  

As a Benard-Rayleigh problem, convection in a porous lay- 
er has a broad range of applications in connection with pack- 
ed beds, nuclear reactors, solar ponds and geothermal energy 
collectors. In the case of a fluid-saturated porous layer heated 
from below, the critical Darcy-Rayleigh number at which na- 
tural convection occurs was calculated based on the linear sta- 
bility theory by Horton and Rogers [1945] and by Lapwood 
[1948]. Unlike the case of  a stationary state, when there is 
through flow, the onset condition of natural convection is af- 
fected by fluid flow through a saturated porous medium. 

The amount of  flow can be represented by a Peclet num- 
ber, and for a large Peclet number, Wooding [1960] presented 
the critical Darcy-Rayleigh number for the onset of natural 
convection. Homsy and Sherwood [1976] examined the ef- 
fects of flow direction and of  special boundary conditions of 
constant velocity and temperature at upper and lower bound- 
aries. Recently, Jones and Persichetti [1986] solved the same 
problem by using the IMSL subprogram giving the estimat- 
ed critical Darcy-Rayleigh number for arbitrary Peclet num- 
bers, and Nield [1987] verified the validity of unusual results 
by Jones and Persichetti. In the case of porous media con- 
raining internal heat sources without througtfflow, many stu- 
dies have been performed analytically or numerically. Rud- 
raiah et al. [1982] investigated the effects of various bound- 
ary conditions by considering the Brinkman model. Gasser 
and Kazimi [1976] also calculated the stability conditions for 
the case of internal heat generation with impermeable conduct- 
ing boundaries. 

In this note, the numerical results of  various boundary con- 
ditions for a porous layer with throughflow and internal heat 
sources are examined by using the Brinkman model. It is of 
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interest that when throughflow is present in a porous layer 
with internal heat sources, the critical Darcy-Rayleigh num- 
ber with a Peclet number shows a rather unexpected trend. 

L I N E A R  S T A B I L I T Y  ANALYSIS 

Here is considered a fluid-saturated porous layer. The hor- 
izontal porous layer consisting of spherical particles with po- 
rosity e is bounded by rigid or free boundaries and z is the 
vertical coordinate with an origin at the lower boundary, as 
shown in Fig. 1. Fluid is injected through the lower bound- 
ary at a constant velocity and drawn off through the upper 
boundary at the same velocity. Therefore, there is a transverse 
throughflow within the porous layer at a uniform vertical veloc- 
ity uo. This problem is well described by Gershuni and Zhu- 
khovitskii [1976]. Linear stability theory is applied to analyze 
this system and the Boussinesq approximation proper to the 
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Fig. 1. Schematic diagram of packed beds with internal heat 
generation and throughflow. 
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linear stability theory is assumed to set the equation for den- 
sity variation as follows : 

p= po[1-fl(T-To) ] (1) 

where 13 is the volume expansivity of saturated fluid. The 
steady state temperature distribution is changed to non-uni- 
formity inducing natural convection as the Peclet number in- 
creases. The Brinkman model representing viscous drag at the 
boundaries is used as an equation of motion for flow through 
a porous layer, and the energy and continuity equation can 
be written as follows : 

p0 u .  V . u  = - V P -  K~-~-- u +] . /V2u + ~ (2) 

u-  VT = o~V2T (3) 

v.~'=o (4) 

where p, B, K*, g and (z represent fluid density, fluid viscos- 
ity, permeability of porous media, gravitational acceleration 
and effective heat diffusivity, respectively and u, P and T 
stand for velocity vector, pressure and temperature. To sim- 
plify the problem, non-dimensional variables are introduced 
by choosing L, SL2/tx and tz/L as characteristic length, tem- 
perature and velocity scales, respectively, where S is a volu- 
metric heat source. After manipulating Eqs. (1) through (4), 
the governing equations of disturbance under the linear sta- 
bility theory can be expressed as follows : 

V2.~" 1 32 ) 01 (5) 
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PeV01 +wl - ~ z  = V2 01 (6) 

where w ,  01 and 00 are dimensionless vertical velocity per- 
turbation, temperature perturbation and basic temperature, re- 
spectively. Da=K" / L 2, Pe=uoL / a, and Ra=gflSL 5 / a2v refer 
to the Darcy number, Peclet number and Rayleigh number, 
respectively. A basic temperature distribution is needed to an- 
alyze the onset condition of convection, and in the case of the 
internal heat generation system, the governing equation for 
basic temperature distribution in the direction of z can be ob- 
tained as follows : 

PeD00 = D 2 00+ 1 (7) 

where D represents d/dz. Eq. (7) with isothermal boundary 
condition yields a solution for 00 : 

0~ = ~ee z + 1 [ exp (Pez ) -  1 ] (8) 
Pe [ 1 - exp  (Pe) ] 

For different values of Pe, Eq. (8) is plotted in Fig. 1, where 
we can see that with increasing Pe, a temperature boundary 
layer at the upper boundary decreases the effective thickness 
of  the stratified layer of fluid and an adverse temperature 
gradient increases in the lower boundary. Infinitesimal pertur- 
bations, wl and 01, must have the z-directional forms of w and 
0 under the principle of the exchange of stabilities by utilizing a 
horizontal wave number a=(a2+a2) 1~. Using the wave num- 
ber, we can obtain the following stability equations from Eqs. 
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(5) and (6). 

(D2-  a2) I (DE- a2)-  ~ a  ] w = a2 Ra0 (9) 

[ PeD-  (DE- a2) ] 0=-wD0o (10) 

It is assumed that the upper and lower boundaries are both 
rigid, or both free, or one free and one rigid, and in all cases 
both boundaries are isothermal. In other words, four bound- 
ary conditions of rigid-rigid, free-free, free-rigid and rigid-free 
denoted as upper-lower are given as 

w = Dw = 0= 0 at rigid boundary (11) 

w = D2w = 0 = 0 at free boundary (12) 

N U M E R I C A L  M E T H O D  

An eigen group (Ra, Pe, a, Da) may exist in order for govern- 
ing Eqs. (9) and (10) to satisfy any one among the four bound- 
ary conditions. Therefore, the outward shooting method is used 
to solve the eigenvalue problem by transforming a boundary 
condition problem to an initial value problem. For example, 
in the case of rigid-free boundaries, in order to solve Eqs. 
(9) and (10), the basic temperature profile solution must be 
obtained from Eq. (8), a priori. Since boundary conditions are 
all homogeneous, D2w at z = 0 can be assigned arbitrarily. If 
the proper values of Ra, D3w(0) and D0(0) are assumed for 
a given Pe, a and Da, this can be considered an initial value 
problem. Integration is carded out from z=0 to z=l using the 
4-th order Runge-Kutta method with assumed values of Ra, 
D3w(0) and D0(0). If the guessed values do not yield a satis- 
fying result, that is w=D2w=0=0 (below an error of 10 -12) at 
z=l,  initial guesses are improved by Newton-Raphson iteration 
until convergence is achieved. Repeating this procedure, we can 
obtain a unique group (Ra, Pe,' Da, a) with various Pe, a 
and Da values. 

RESULTS AND DISCUSSION 

The resulting critical Ra values for a special Da are plotted 
in Figs. 2 and 3 with Pe. The following points may be noted 
from these figures. As a limiting case of a stagnant system for 
Pe=0 and infinite Da, the critical Rayleigh numbers for different 
boundary combinations are calculated as Rac=37325.2 (rigid- 
rigid), 37949.9 (free-rigid), 16670.2 (rigid-free) and 16993.9 
(free-free), respectively. The onset condition of natural convec- 
tion in a homogeneous fluid layer without throughflow should 
have Rayleigh values larger than the critical Rayleigh value. 
It is found that Ra~ values are more dependent on upper bound- 
ary conditions and the Rac value for rigid-rigid or free-rigid 
boundaries is about twice as large as that for rigid-free or free- 
free boundaries. It is considered that the free boundary condi- 
tion induces the onset condition of natural convection more 
easily since it is less restrictive to perturbation. 

As we can see in the resulting figures, the Rac values on 
the characteristic curves are larger than that for Da=l. This 
result may be explained by the fact that the Ra~ values for a 
small Da must be increased since a larger buoyancy force is 
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the variations of Peclet number under internally heat- 
ed basic temperature profile. 

fect on the lower temperature profile when the lower boundary 
is flee than when it is rigid. In other words, the unstable effect 
of the upper boundary can be distributed more readily to the 
lower layer that is bounded by a flee boundary than to that 
bounded by a rigid boundary. As an unstable temperature effect 
is propagated to a whole layer, the instability of the upper layer 
may be alleviated. 

CONCLUSION 

The onset of convective instabilities for porous media heat- 
ed with uniform internal sources has been analyzed. For a 
Brinkman porous system with throughflow, stability criteria 
have been obtained numerically under the linear stability theo- 
ry, and the effects of flow boundary conditions on the onset 
condition have been examined quantitatively. In comparison 
with other theoretical results the present stability criteria look 
very promising. It seems apparent that the internally heated 
system becomes more stable with the increase of through- 
flows independent of flowing boundary conditions. 

necessary for the onset of convection when small permeabili- 
ty restrains fluid mobility. The linear relationship of Ra~ vs. Pe 
shows that throughflow with intemal heat sources in a porous 
medium may have stabilizing effects. In order to compare the 
results of Jones and Persichetti, the critical Ra values for rigid- 
flee boundaries are shown in Fig. 4. In this research, there ap- 
pears no minimum point such as the one Jones and Persichetti 
showed in their study of convective stability in a porous medi- 
um with throughflow. Thus, the analysis of Nield may not be 
applied to the case of throughflow with internal heat sources. It 
is interesting that Ra~ of rigid-flee boundaries is smaller than 
that of free-free boundaries and Rac of flee-rigid boundaries is 
larger than that of rigid-rigid boundaries for the entire range in 
Figs. 2 and 3. Considering the parabolic temperature profile of 
internal heat sources in Fig. 1, this result may be explained by 
the fact that the unstable upper boundary layer has a strong ef- 
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N O M E N C L A T U R E  

a 

D 
Da 
Pe 
Ra 
K* 
L 
ff 
g 

/ 2 2 x l / 2  : dimensionless horizontal wave number, La~+ay) 
: dimensionless operator, d/dz 
: Darcy number, K*/L 2 
: Peclet number, uoL/a 
: Rayleigh number, g~SLS/o2v 
: permeability of porous media [m 2] 
: depth of a system [m] 
: velocity vector [m/s] 
: gravitational acceleration [m/s 2] 
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S 
T 
x, y, z 
W 

: volumetric heat source [K/ms 2] 
: temperature [K] 
: Cartesian coordinates 
: dimensionless vertical velocity 

Greek Letters 
Ix 

kt 
V 
0 

P 

: effective thermal diffusivity [m2/s] 
: vo!ume expansivity [K -1] 
: dynamic viscosity [kg/ms] 
: kinematic viscosity [m2/s] 
: dimensionless temperature 
: density of fluid [kg/m 3] 

Subscripts 
0 : undisturbed base quantity 
1 : disturbed quantity 
c : critical condition 
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