
Korean J. Chem. Eng., 15(2), 192-198 (1998) 

CONVECTIVE INSTABILITIES AND TRANSPORT 
PROPERTIES IN HORIZONTAL FLUID LAYERS 

Chang Kyun Choi*, Kyoung Hoon Kang, Min Chan Kim* and In Gook Hwang** 

Department of Chemical Engineering, Seoul National University, Seoul 151-742, Korea 
*Department of Chemical Engineering, Cheju National University, Cheju 690-756, Korea 

**Department of Chemical Engineering, The University of Suwon, Kyungki-Do 445-743, Korea 
(Received 21 October 1997. accepted 16 February 1998) 

Abstract - This paper concerns the analysis of convective instabilities and fully developed transport properties in 
BEnard convection. The onset of convective instabilities driven by surface-tension variations and buoyancy forces 
is analyzed theoretically by using the propagation theory we have developed. Based on these stability criteria, the 
subsequent transport correlations of fully developed buoyancy-driven convection in horizontal fluid layers are sug- 
gested. It is found that the present predictions are compared favorably with existing experimental results. 
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I N T R O D U C T I O N  

It is well known that Brnard convection sets in due to the 
combined effects of surface tension and buoyancy forces. Ray- 
leigh-Brnard convection is driven by buoyancy forces, while 
Brmard-Marangoni convection is driven by surface-tension vari- 
ations. Its instability mechanism was first analyzed in favor of 
buoyancy forces by Lord Rayleigh [1916], but Pearson [1958] 
proved that surface-tension variations with temperature along 
a free surface can incur convective motions. In a fully devel- 
oped conduction state the Rayleigh-Pearson analysis indeed 
describes the onset of convection very well, but the stability 
criteria in unstable, time-dependent nonlinear temperature fields 
still remain cloudy. This interesting behavior of natural con- 
vection often occurs in a variety of important engineering sys- 
tems such as solvent extraction, gas absorption, distillation and 
crystal growth. 

The stability problem with a time-dependent base tempera- 
ture profile has been analyzed theoretically by several models: 
(a) the frozen-time model, (19) the amplification theory, (c) the 
energy method, (d) the stochastic model, and (e) the propaga- 
tion theory. Of these, the amplification theory has been quite 
popular, but it requires the initial conditions and the amplifi- 
cation ratio. The propagation theory we have developed de- 
cides deterministicaUy the stability criteria to mark the onset 
time by using the thermal penetration depth as a length-scal- 
ing factor and transforming the linearized perturbation equa- 
tions similarly. With this theory the predicted values of the 
critical conditions have been consistent with most of the ex- 
perimental results [Yoon et al., 1996; Kim et al., 1996; Hwang 
and Choi, 1996; Kang and Choi, 1997]. 

In this study the onset of convection in an initially quie- 
scent, horizontal fluid layer cooled from above with a uniform, 
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constant heat flux is analyzed by using the propagation theo- 
ry. The effects of coupling between buoyancy forces and sur- 
face-tension variations are considered. A new heat transfer cor- 
relation on the fully developed buoyancy-driven convection 
is produced by incorporating the resulting stability criteria into 
both the boundary-layer instability model of Howard [1964] 
and Busse [1967], and the theoretical equation of Long [1976] 
and Cheung [1980]. Also, a heat transfer phenomenon in- 
volving the effects of surface-tension variations are discussed 
with Hinkebein and Berg's [1978] experiments on silicone oil. 

G O V E R N I N G  E Q U A T I O N S  

The system considered in the present study is shown sche- 
matically in Fig. 1. A horizontally infinite fluid layer is plac- 
ed between the upper free and the lower rigid boundaries of 
depth L. The layer with a flat, nondeformable free surface is 
initially quiescent at a constant temperature Ti. At the time t= 
0 cooling starts. The governing equations are given under the 
Boussinesq approximation by 

V . U = 0  (1) 
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Fig. 1. Schematic diagram of present system. 
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E 1 p~ ~ - + U . V  U = - V P + / . t V 2 U + p g k  (2) 

[ ~O--- + U.VI  T =  a~2T  (3) 

S = S, + 7(T~ - T) (4) 

p = p~ [1 +/3(T~ - T)] (5) 

where U denotes the velocity vector, p the density, P the pres- 
sure, Iz the viscosity, k the unit vector in the downward Z- 
direction, a the thermal diffusivity, T the temperature, S the sur- 
face tension, fl the thermal expansion coefficient and Y the neg- 
ative value of dS/dT. The sub~ript i refers to the initial state. 

The basic conduction state of no convective motion is 
governed by the following equation: 

300 3200 
aT- 3z 2 (6) 

with proper conditions, 

00 = 0 at z= 0 (7a) 

300 
3z - 1  or =Bi0  o at z = 0  (Tb) 

00=0 at z = l  (7c) 

where z, z, and 8~=k(T~-T)/qL) denote the dimensionless time, 
vertical distance and temperature, respectively; k denotes the 
thermal conductivity; Bi denotes the Biot number (=hi_/k); h 
is the film heat transfer coefficient. Length has been scaled 
by the lay'er thickness L and time by L2/a. The solution of 
Eq. (6) is well known (for example, refer to Kang and Choi's 
[1997] work). 

Over a certain uniform heat flux q, i.e., 300/3z=1 at z=0, 
exceeding the critical value, convection will set in. In this 
case the important dimensionless parameters are identified as 

Rayleigh number Ra=gflqL4/(kav) (8a) 

Marangoni number Ma=~lL2/(uka) (8b) 

Prandtl number Pr=uea (8c) 

Nusselt number N u = Q o c ~ z / Q ~  (8d) 

where g denotes the gravity acceleration, v the kinematic vis- 
cosity and Q the heat transfer rate. In a fully developed state 
the temperature profile is linear and the critical condition to 
mark the onset of convection is given by 

(buoyancy forces) Ra~ ~ = 669 (9) 

(thermocapillary forces) Ma~" = 79.6 (10) 

wherewith Nu=l. With rapid cooling, natural convection will 
set in at a certain time for a given Pr, Ma and Ra. Therefore, 
when Ra > 669 or Ma > 79.6 the onset time of convection ~ 
and its subsequent heat transfer characteristics become the im- 
portant questions. 

P R O P A G A T I O N  T H E O R Y  

Under linear theory the instantaneous quantifies of tempera- 
ture, velocity and pressure fields at the onset time of motion 
are perturbed by introducing infinitesimally small disturbances. 
The dimensionless disturbance equations are obtained as usual 
in terms of the temperature component 01 and the vertical 
velocity component wl: 

/ ] - Ra V20' ( l l a )  1 3 -- V 2  V 2  Wl 
~-r 3~ Ma a 2 

301 300 V2 ( l l b )  - -3z  + Ma a 2 ~ - -  = 01 

where wl has the scale of a/L, 01 has the scale of AT/(a2Ma). 
AT(=qldk) represents the characteristic temperature difference 
in the present system. The proper boundary conditions, sub- 
ject to Eqs. ( l l a )  and ( l lb) ,  are given by 

(301 301 ~ 32wl + V201 =0 at z = 0  (12a) 
Wl= ~--~-- ~ ~ -  - Bi 0l) = ~ - a 2 

0Wl 
w 1 = ~ = 0 1 = 0  a t z = l  (12b) 

where V2=(32/3x%32/3y2). 
Based on the normal mode analysis, the amplitude functions 

w" and 0" are constructed as a function of ( (=z/z ~) only. 
By assuming periodic motion of disturbances in form of re- 
gular cells over the horizontal plane the following relationship 
is obtained: 

[wl(T, z), 01(z, z)]=l~v'(~), 0"(0] exp[ i(axx+ayy)] (13) 

where i is the imaginary number and the horizontal wave num- 
z 2 2xl/2 ber a has the relation of a=tax+ar) . The above relationship 

means that Wl=O(~) and &=3.21r t/2 for z<0.1. & denotes the 
dimensionless thermal penetration depth, with 00(z, ~r)/0o('r, 0) 
=0.01. 

Now, for deep pool systems of small z the following set 
of stability equations is derived from Eqs. (11)-(13): 

[(1) 2 _ a.2) 2 + 2 ~ r  (~T)3 _ a.2d~i ) + 2a,2)]w. = Ra" O" (14a) 
Ma ~ 

[D 2 + 1 0 9  - a'210" + Ma'a'2w'D0o = 0 (14b) 
Z 

with the boundary conditions, 

w" = DEw" -/9" = 0 at ( =  0 (15a) 

DO" = 0 or DO" = Bi'O" at ~'= 0 (15b) 

w" = Dw" = O" = 0 for ff -, oo (15c) 

where a ' = ~ a ,  Ma'='dVla or ~;2Ma, Ra '=~Ra or ~ R a  and D 
=d/d(. The upper boundary conditions at (=0 mean that con- 
stant heat flux is maintained and no surface deformation is 
possible. It is known that for fluids under usual conditions 
the crispation number (=/zcd(S~L)), which represents the degree 
of deformability of the free surface, is quite small, ranging 
from 10 6 to 10-2. Under special cases of thin layers with 
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low surface tension or viscoelastic fluids, the value of the cris- 
pation number approaches unity and surface deflection becomes 
significant. The lower boundary conditions indicate that the 
lower boundary is rigid and its boundary temperature is con- 
stant. We assume that the parameters a', Ma" and Ra" in- 
volving time implicitly are all eigenvalues. In buoyancy-driven 
convection Goldstein and Volino [1995] summarized this kind 
ot treatment. 

The appropriateness of Eqs. (14)-(15) is verified to a cer- 
tain degree from the following dimensional scale analysis, bas- 
ed on Eq. (3) and the last boundary condition in Eq. (12,a): 

~rl . 3To ~ T1 i)2Wn ~ Y a2 T , wl 
cqt ~ W l " ~ - ~ a V ' l t ~ t X - ~  -' p o~Z 2 L2 --l~l----~- 

at t=t~ (16) 

where t~ denotes the thermal penetration depth. For small ~, 
5r oc,f~ and for large T, & =L. According to the above bal- 
ances wvrI'~ has the order of  magnitude ~ and this is repre- 
sented by Eq. (13). From the two relationships of Eq. (16) 
the following interesting balance is obtained: 

~I'o a T, qL ap.k L 2 ~ qL (Ma.a.2)_ , (17) 
OZ W 1 ~ 8rk 75rqL a2t~ 5rk 

These balances show that nondimensionalization of OTo/OZ is 
the backbone of Eq. (15), for this term is the driving force 
to incur convective motion. Therefore, for large Ma the mag- 
nitude of Wfl '~ is very small, having the order of magni- 
tude O(~)  at t=to but the magnitude of 3"I~f0t becomes much 
larger in comparison with that of "1"1. For a given Pr and Ma', 
the minimum value of Ra" and its corresponding value a~ are 
sought numerically. In other words, the minimum value of ~, 
i.e., z~ to represent the onset time of convection is found de- 
terministically for a given Pr, Bi, Ma and Ra. The above pro- 
cedure is the essence of our propagation theory. 

In solving Eqs. (14) and (15) the outer boundary may be 
assumed to be infinity. Therefore the shooting method is used 
in the solution of the present problem [Press et al., 1992]. 
For a specified Pr, a', and B f  three initial guesses on D3w ", 
0" and Ma" at ~=0 are given. Consequently the problem is con- 
vened to an initial value problem. The method used to inte- 
grate the disturbance equations is the fifth-order Runge-Kutta 
scheme. The Newton-Raphson iteration modifies the guessed 
values at ~=0 until the integration results agree with the out- 
er boundary condition within the error tolerance of 10 -6 . 

ONSET OF C O N V E C T I V E  M O T I O N  

1. Heat Conduction Systems 
The results of the present stability criteria obtained for Pr= 

7 by using the propagation theory are featured in Fig. 2. It 
is assumed that for a given Ma" the minimum value of Ra', 
i.e., the Ra~-value for each curve represents the critical con- 
ditions to mark the convective motion. From this figure it is 
known that the Ra~-value decreases with increasing Ma" and 
this trend is also found in Nield's [1964] work. From these 
critical values we can obtain the critical time +c to mark the 
onset of convective motion. 
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Fig. 2. Marginal stability curves with Pr=-7 for various Ma'- 
values. 

The critical time obtained numerically for the uniform heat- 
flux system is correlated within the maximum error of less than 
5 %  by 

1.25 -]0.696 
z, = 2.54 1 + ~ )  Ra -'/2 for Ma=0 (18a) 

0.753 / 127 
= 11.0 1 + Pr ~ Ma -] for Ra=0 (18b) 

It is certain that Tc decreases with an increase in Ma and Ra. 
With re=0.01 the combined effect of Ma and Ra is shown in 
Fig. 3. It is interesting that the Ma effect becomes smaller 
with decreasing Pr since the value of Ma/Ra decreases. In this 
figure Mao and Rao are the values obtained with Ra=0 and 
Ma=0, respectively, for re---0.01 from Eq. (18). A similar trend 
of the Ra effect is shown in Fig. 4. It is known that for given 
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Fig. 3. Combined effect of Ma and Ra at lr,--0.01. 
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Fig. 4. Effect of Pr on Ra for given Ma at ,c=0.01. 

zc the relationship between Ra and Ma constitutes 

R._._~a + Ma --~1 (19) 
Rao Mao 

which was suggested by Nield [1964]. 
It is very difficult to conduct experiments on convective 

instabilities in case of Marangoni-Bdnard convection, for the 
layer thickness is on the order of 1 mm. For example, a 1 
mm-deep pool of water with an average temperature of 20 ~ 
and AT=0.1 ~ would have an Ra-value of 1.41 and the Ma- 
value of 111. With constant surface temperature maintained, 
no thermocapillary convection would be expected. Therefore, 
few refined experimental data exist in comparison with the 
above predictions. For propanol systems of Pr=30, Vidal and 
Acrivos [1968] conducted experiments when Ma>>Ra. They 
obtained the theoretical relation of Tc=2/Ma by employing the 
frozen-time model. Gumerman and Homsy [1975] obtained low- 
er hounds on ~:c by the energy method. All these results are 
compared in Fig. 11 of Kang and Choi's [1997] paper. From 
this figure it is known that the present predictions of Tc are 
closer to the experimental values and our 4re values are in 
good agreement with experiments. This may prove Foster's 
[1969] viewpoint that even though the correct dimensional 
relations would be obtained in terms of a time-dependent Ra- 
yleigh number using the thermal penetration depth as a scale 
factor, the times predicted for onset would be too short by a 
factor of about 4. The effect of Bi on the stability criteria can 
be found in the work of Kang and Choi [1997]. 
2. Mass Diffusion Systems 

In gas absorption, natural convection can often occur due 
to surface-tension variations on the free boundary and also 
buoyancy forces. Its mechanism of the onset is analogous to 
that of the aforementioned heat conduction system, if we de- 
fine z, Bi, Pr, Ma and Ra as 

tL 2 
dimensionless time z= ---=- (20a) 

D 

Biot number Bi = I-I~L (20b) 

Schmidt number Pr = v (20c) 
D 

r . a c t  (20d) Marangoni number Ma = pI) 

g~" ACL3 (20e) 
Raylcigh number Ra = vl) 

where H denotes Henry's law constant for solute, k~, the gas- 

phase mass transfer coefficient, D the solute dtffusivity, 7= the 
negative surface-tension gradient with solute concentration, AC 
the concentration difference between initial bulk liquid and bulk 
gas, and/~, the solutal expansion coefficient. Bi, Ma and Ra 
represent the Biot number, Marangoni number and Rayleigh 
number in mass transfer, respectively. The Schmidt number 
corresponds to the Prandtl number in heat transfer. The Ma- 
rang..oni number and Rayleigh number are the same since 
AC/D in Eq. (20) is equivalent to qL/mk. Therefore, we can 
use Eqs. (14) and (15) in predicting the critical time to mark 
the onset of  convective motion in simple diffusion systems 
experiencing solute transfer across the free boundary. 

With triethylamine Brian and Ross [1972] conducted gas 
desorption experiments induced by surface-tension variations 
only, wherein the Schmidt number is Pr=1503 and the Biot 
number Bi=6.74. With these values the critical time is pre- 
dicted, as shown in Fig. 5. It is known that the 4r~-value is 
much lower than the experimental data, of which the trend is 
different from that of propanol evaporation by Vidal and Acr- 
ivos [1968]. Brian and Ross [1972] and Imaishi et al. [1982] 
reported that a Gibbs adsorption layer would exist on the free 
boundary in mass transfer systems such as triethylamine-, meth- 
anol- and acetone-water systems and it would make them 
more stable. This interesting effect is now being investigat- 
ed theoretically in our laboratory and their above interpreta- 
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Fig. 5. Comparison of predictions with triethylamine experi- 
ment. 
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tion on the Gibbs adsorption layer has been proven in part. 
This impfies that the mechanism of natural convection in mass 
transfer is more complicated than that in heat transfer. 

TRANSPORT C O R R E L A T I O N  

The heat transfer rate increases with an increase in Ra or 
Ma. The possibility of connecting stability criteria to the ful- 
ly developed heat transfer in buoyancy-driven thermal con- 
vection, the above Rayleigh-B6nard convection, has been in- 
vestigated theoretically. Howard [1964] and Busse [1967] sug- 
gested that the generation of thermals would be the result of 
thermal instabilities in the conduction layers adjacent to the 
boundaries. With the fully developed, turbulent thermal con- 
vection flow the Nusselt number Nu is given by Busse as 

N . -  kaT/,  ] L (2]) 
Q~o,~o~ k A T / L -  2 

where 6 is called the conduction layer thickness illustrated 
in Fig. 6. ATn is the temperature difference over the thick- 
ness 6 and AT that over the layer thickness L. If we assume 
the relation of 6=6c, in a fully developed state the following 
correlation is derived from Eq. (6): 

Nu = Nu/4 = 0.208zd ~/z for Ra--,,,o (22) 

where 6c and Nuc denote the thermal penetration depth and 
the Nusselt number at r=-zc, respectively. The above relation- 
ship is transformed by using Eq. (18a): 

Nu = AaRa v4 for Ra ~ (23) 

where At =0.130(1+ 1.25/Pr~ 72a) - 0.~ 
Long [1976] and Cheung [1980] proposed the following the- 

oretical equation: 

Nu = AlRaVn 
for large Ra (24) 

1-A2Ra -t~2 

where A~ and A2 are empirical constants. The above equation 
converts to Eq. (22) as R a ~ .  By employing the shape as- 
sumption of Stuart [1964], the following relationship is ob- 
tained: 

1/Nu = 1 - 0.670(Ra - 669)/669 for Ra- ~669 (25) 

Therefore, we can construct a new heat transfer correlation 

free  

c o l d  
q 

/ 

. . . .  

r ig id  ~- ~ 

h o t  
Fig. 6. Illustration of boundary-layer instability model in ful- 

ly developed buoyancy-driven convection. 

by combining Eqs. (21)-(25) as 

A1(Ra V4 - 669 ~) 
Nu = 1 ~ for Ra_> 669 and Ma=0 (26) 

1 - A 2 Ra -I/12 

where A2=1.72-3.27Av The above correlation is shown for 
various Prandtl numbers in Fig. 7. It is shown that the effect 
of Pr is almost negligible for Pr_> 10. 

Hinkebein and Berg [1978] conducted experiments with sili- 
cone oil and ethylene glycol, as shown in Fig. 8. For a liq- 
uid depth larger than 5 mm buoyancy-driven convection is 
dominant. With these large-Pr fluids Eq. (26) representing heat 
transfer in buoyancy-driven convection agrees favorably well 
with the corresponding experimental data points. This kind of 
correlation is found consistent with experiments and other pre- 
dictions in a horizontal fluid layer [Choi et al., 1988; Lee and 
Choi, 1993], volumetrically heated layer [Choi et al., 1992], 
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Fig. 8. Comparison of Nu vs. Ra with Hinkebein and Berg's 

[1978] experiments for Pr=-125. 
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fluid-saturated porous media [Yoon and Choi, 1989], and plane 
Couette flow [Choi and Kim, 1994]. All these results corre- 
spond to the cases of buoyancy-driven convection. The fig- 
ure also shows that the surface-tension effects become more 
important with a decrease in Ra. It is seen that Rac decreas- 
es with decreasing the liquid depth by following Eq. (19). The 
theoretical correlation combining both buoyancy forces and 
surface-tension variations was suggested by Hinkebein and Berg, 
but it does not agree with experiments for Nu>3. For Nu>2 
their correlation shows the relative ratio of Ma to Ra plays a 
crucial role in deciding Nu. The surface-tension effects will 
become more important with an increase in the ratio Ma/Ra. 

Since the mechanism of heat transfer driven by buoyancy 
forces is different from that of surface-tension effects, it is 
not easy to derive the correlation for the latter case. Further- 
more, in heat transfer systems decoupling two mechanisms is 
very difficult. In mass transfer systems Imaishi et al. [1982] 
conducted experiments on gas de~rption using the wetted-wall 
column. Based on their experimental results, the following 
correlation is derived: 

( Ma ~z/7 

/ 
where Mac is the critical Marangoni number corresponding to 
the onset of convective motion in their experimental systems. 
Hinkebein and Berg [1978] derived the following theoretical 
equation: 

Nu = 2.7936 (28) 
Mac ~ I + 1 . 7 9 3 6 - -  
Ma 

where Ma~=79.6 for the present system of uniform heat flux. 
With Ma=79.6 the above equation produces the same value 
of Nu=l,  but it generates an upper limit of Nu=2.7936 for 
M a  ,oo Therefore, Eq. (28) may be used near Ma=79.6. Eqs. 
(27) and (28) indicate that the Nu-correlation in surface-ten- 
sion-driven convection cannot be produced by following the 
procedure used in deriving Eq. (22). The mechanism of heat 
transfer in buoyancy-driven convection seems different from 
that in surface-tension-driven convection. Therefore, a more 
refined theory and experiments are still required. 

CONCLUSION 

For the deep pool system of z<0.1 with its free upper sur- 
face under uniform heat flux, the critical time to represent the 
onset of combined surface-tension and buoyancy-driven con- 
vection has been analyzed by using the propagation theory. 
For the limiting case of Ra<<Ma the predictions are compared 
well with the existing experimental data. It seems evident that 
the thermal penetration depth is the proper length-scaling fac- 
tor, and manifest convection is observed experimentally near 
r=-4zc. Based on the present critical time, To, a heat transfer 
correlation in fully developed buoyancy-driven convection is 
proposed. This represents the experimental data points reason- 
ably well. But in the case of surface-tension-driven convec- 
tion the theoretical Nu-correlation is not produced easily, and 
therefore it needs more refined work in the future. 
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N O M E N C L A T U R E  

/ 2 2xlf2 a : dimensionless wave number, (a~+ay) [-] 
a" : modified dimensionless number, z~a [-] 
Am, A: : constants in Eq. (26._) [-] 
Bi : Biot number, Hk~,L/D [-] 
AC : concentration difference [mol/m 3] 
D : differential operator with respect to ( [-] 
D : solute diffusivity [m2/s] 
g : gravitational acceleration [m/s 2] 
H : Henry's law constant for solute [J/mol-K] 
h : film heat transfer coefficient ]J/s-K] 
i : imaginary number [-] 
k : unit vector in downward Z-direction [-] 
k : thermal conductivity ]J/s- m- K] 
k~; : gas-phase mass transfer coefficient ]m/s] 
L : fluid layer thickness [m] 
Ma : Marangoni number, ~lL:/(,ukt~) or Ym A C L / ~  ]-] 
Ma" : modified Marangoni number, "dVla or z tr2 Ma [-] 
Nu : Nusselt number, Q .... t/Qco,~ct~ [-] 
P : pressure ]N/m z] 
Pr : Prandtl number, v/a or Schmidt number, v/D [-] 
Q : heat transfer rate [W] 
q : heat flux ]J/m:] 
Ra : Rayleigh number, gl~qL4/(kav) or gfl~ ACL3/v-D [-] 
Ra" : modified Rayleigh number, ~ Ra or ~/2Ra [-] 
S : surface tension ]N/m] 
T : temperature [K] 
Th : bulk temperature [K] 
t :time [s] 
AT : temperature difference [K] 
U : velocity vector [m/s] 
W : vertical velocity [m/s] 
w : dimensionless vertical velocity, LW/a [-] 
x, y, z : dimensionless Cartesian coordinates based on fluid depth 

[-] 
Z : vertical position in Cartesian coordinates [m] 

Greek Letters 
~x : thermal diffusivity [m2/s] 
fl : thermal expansion coefficient [K-l] 
tim : solutal expansion coefficient [%-1] 
y : negative surface-tension gradient with temperature [N/m- K] 
y,, : negative surface-tension gradient with solute concentra- 

tion [Nm2/mol] 
~5 : conduction layer thickness [m] 
8r : dimensionless thermal penetration depth [-] 
~, : thermal penetration depth Ira] 

: similarity variable, z/~ r2 
0 : dimensionless temperature [-] 
/1 : viscosity [kg/m. s] 
v : kinematic viscosity [mE/s] 
p : density [kg/m 3] 
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z : dimensionless time, m/L z or Dt/L 2 [-] 

Subscripts 
e : critical state 
i : initial state 
o : basic state 
1 : perturbed state 

Superscript 
�9 : amplitude function for perturbation quantities 
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