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Abstract—Quantitative correlation of critical loci and multiphase behaviors has received considerable attention be-
cause the increased industrial importance of processes operating within the high-pressure region such as supercritical
fluid extraction. However, in the critical region, classical thermodynamic models such as equations of state (EOS) fre-
quently fail to correlate phase equilibrium properties. Recently, the present authors proposed a new lattice-hole EQS
based on the multi-fluid approximation of the nonrandom lattice theory. The model requires only two molecular para-
meters reflecting size and interaction energy for a pure fluid and one additional interaction parameters for a binary mix-
ture. In this work, the reliable applicability of the EOS was demonstrated to various phase equilibria of complex mix-
tures in the critical region. Demonstration of the EOS was made to calculate multiphase behaviors such as solid-liquid-
vapor (SLV) equilibria end critical loci of binary complex mixtures at high pressure. For P-T, P-x, and T-p phase dia-

grams tested, the model agrees well with experimental data.
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INTRODUCTION

Varous formulations of thermodynamice theories of solutions cen
be developed from the frameworls of the generalized Guggenheim
combinatory of lattice statistical mechanics [1952]. The excess
function models, such as Flory-Huggins [1941, 1942], UNIQUAC
[Abrams and Prausnitz, 1975], and various extended versions of
these models are based on the rigid lattice description. However,
they can be applied only to liquid mixtures at low pressure. To
overcome this limitation, various equation-of-state theories also
have been proposed by mmbedding holes mto the nigid lattice de-
scription of fluids. One of well-known examples is the EOS after
Sanchez and Lacombe [1976].

The present authors also recently proposed en elementary EOS
based on the nonrandom lattice-hole theory [Yoo et al., 1993,
1594]. Although the formulations of the previous rigorous EOSs
are self-consistent with a sound theoretical basis, a less compli-
cated madel would be more convenient in engineering-oriented
equilibrim calculations. In this work we present our efforts of ap-
plying the new semi-thearetical EOS model [MF-NLF EOS, Yoo
et al., 1997a, b] to various phase equilibria of mixtures as well
as pure flmds with emphasis m the critical region
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Omitting derivational details [Yoo et al., 1997a, b, the final ex-
pression of the configurational Helmholtz free energy for a gen-
eral mixture is written as
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where, q,=2.X,q, T,=2x 1, P,=Nr/N,, pellx ; 18 the
mole fraction of species 1 The summation covers all molecular spe-
cies. From the Helmholtz free energy given by Eq. (1), expressions
of other thermodynamic properties can be obtained in a straight
manner. Since the volume V is represented by V=V (N, +>.,
N,1,. the EOS is obtained by
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The chemical potential of component i, 1, is
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If we set the subscripts 1=1 and j=0, the Eq. (1)-(3) reduce to
the expressions for pure fluds.

DETERMINATION OF MOLECULAR PARAMETERS

By setting the coordination number, z equals to 10 and the unit
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lattice cell volume, Vyis 9.75 em’mol™, there are two molecular
parameters in the EOS for pure fluids; V| and ¢,,. Based on ex-
perimental information, these parameters for various pure flu-
ids were regressed at each isotherm and made them functions of
temperature for converent use in practice. They are

e/ k=EA+E(T- TO+E(T In T/T+T-T,) 4
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where the reference temperature, T,=298.15 K.
For a 1-2 binary mixture, we have one additional binary inter-
action energy parameter, A,;, which is defined by

812:(811822)05(17}‘12) (6)

CRITICAL LOCTI AND MULTIPHASE BEHAVIORS

The general and quantitative applicability of the EOS to vari-
ous phase equilibria behaviors of mixtures n the suberitical region
is demonstrated elsewhere [Yoo et al., 19974, b]. In this work, at-
tention 18 limited to the application of this model to critical phase
behaviors of mixtures. To calculate the critical loci and multiphase
behaviors of binary mixtures, the critical and stability condition for
a mixture m terms of Helmholtz free energy [You et al., 1994b]
are given by

50, (), o @
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By using numerical method, the critical loci of mixtures can be
determined with the thermodynamic variables T, P and V which
simultaneously satisfy the EOS [Eq. (2)] and the critical condition
of mixture [Eq. (7) and (8)].

The explicit expressions for these equations obtained by the pre-
sent EOS are given elsewhere [Yoo et al., 1997a)]. Three phase
equilibria are determined by the relation,

wT, Px)=n(T,P,x/)=1/(T,P,x)) (10)

where 0., 3 and ¥ denote different phases. The expression for the
chemical potential of fluids 18 given by Eq. (3). For a pure solid the
chemical potential is written

W T D)= AT, P)+ Wi505(T,P) (11)

1. pure

where AL, represents the departure from solid to hypothetical liquid
at the same temperature and pressure. This term is discussed else-
where [You et al, 1993]. Various types of multiphase equilibnia mn-
cluding the binodal and spinodal stabilities can be calculated by
using these equations. They include LIVE, SLVE as well as two
phase equilibnia such as VLE, LLE end VSE mcluding TUCST and
LCST in liquid mixtures.

The three phase equilibrium locus ends at a critical end pomt
where 1t 13 mtersected by a mixture critical locus. Smce the degree

of freedom for a three phase binary mixture is one, the existing
phase equilibria are expressed by a locus. When one variable 1s
fixed, one can readily calculate three phase equilibria.

While complicated (multi) phase behaviors such as critical locus
of flmd mixtires can be described by an EOS, quantitative agree-
ments are seldom reported even for simple solutions. Thus, we il-
lustrated here the caleulated cntical T-eritical P loct of carbon di-
oxide-n-heptane system. Because we use only one binary para-
meter for wide range of temperature and pressure region, the bi-
nary parameter for critical loci can be obtamned from binary vapor-
liquid ecuilibrium calculation, solid-vapor equilibrium calculation,
etc. In Fig. 1, we can find experimental VLE data of carbon diox-
ide-n-heptane system and calculated results. We obtained the para-
meter which is best fit to the experimental data. We calculated
the critical loct of carbon dioxide-n-heptane system with the same
parameter as VL.E calculation (Fig. 2). Also, we illustrated here the
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Fig. 1. Calculated high pressure VLE for the CO,/heptane sys-
tem at 310.65, 352.59, 394.26 and 477.21 K (,,=0.0932).
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Fig. 2. Calculated and experimental critical temperature and pres-
sure of carbon dioxide-n-heptane system (,,=0.0932).
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Fig. 3. Calculated and experimental VLE of ethane-decane sys-
tem and critical P-x (1,,=0.00097).
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Fig. 4. Calculated and experimental critical temperature and pres-
sure of ethane-decane system (A,,=0.00097).

calculated P-x projected loci of critical behaviors for ethane/decene
system (Fig. 3). Here we used the same value of A, without any
readjustment which was used already in VLE calculation. We used
1sothermal experimental data (310.93, 344.26, 377.59, 410.93,
444.26 K) [Reamer and Sage, 1962]. From Fig. 3, We can find the
calculated results fit well with experimental VLE and critical P=x
data with only one binary adjustable parameter. In Fig. 4 and 5,
calculated T.~P. loci and T.—V, loci by the present EOS for
ethane/decane system was shown. The present EOS quantitatively
fit the critical volume and fit reasonably well the critical T-P loci
of the mixture.

InFig. 6, the ciitical loct calculated by the present EOS for CO,/
benzene system 1s shown The binary parameter of CO,/benzene
system was obtained from experimental 1sothermal P-x-y data
(313.40-310.93 K) [Nagahama et al, 1974]. The presert EOS quen-
titatively fits the critical loci of the mixture. The P-T projection of
the three phase SLV equilibria behavior, UCEP and critical loci for
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Fig. 5. Calculated and experimental T,—V, of ethane-decane sys-
tem (A;,=0.00097).
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Fig. 6. Calculated and experimental critical loci of CO;-bhenzene
system (A,,=0.0893).

CO,/maphthalene system [Cheong et al,, 1986] 1s shown m Fig. 7.
Also in this system, we obtained the binary parameter from CQ,/
naphthalene SVE experimental data (308.15-328.15 K) [Tohnston
etal, 1581]. In this system the results of P-T locus for SLV below
UCEP by the present EOS agree well with the data, and UCEP
is decided as the point which SLV line meet critical loci. Due to
the limited space of this paper, we omit further dem onstration.
However, we can conclude that the present EOS fit such difficult
critical loci and multiphase behaviors of complex mixtures corre-
lates quantitatively well.

CONCLUSION

The EOS stemmed from the nonrandom two-fluid approxima-
tion of the lattice-hole theory has been applied to the calculation
of high-pressure phase equilibria. The MF-NLF EOS was also ap-
phied well to the calculation of multiphase behavior and cnitical loct
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Fig. 7. Calculated SLV equilibria and critical P-T locus of CO./
naphthalene system (A;;=.07534).

of mixtures whose molecules differ greatly in size. Tt is shown that
this model gives satisfactory predictions of multiphase behavior
using the binary parameter fixed already m the calculation of com-
mon VLE calculation. Thus, it is also true that if we adjust the
new binary parameter for critical loci, the accuracy of the present
EOS can be further improved. Necessary computer program used
in this work will be released to the readers upon request (e-mail:
kpyoo@ccs.aogang.ac kr).
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