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F E A T U R E D  REVIEW 

Applications of Artificial Neural Networks in Chemical Engineering 

David M. Himm elblau* 

Department of Chemical Engineering, The University of Texas Austin, Texas 78731, U.S.A. 

Abs~ract-A growing literature within the field of chemical engineering describing the use of artificial neural networks 
(ANN) has evolved for a diverse range of engineering applications such as fault detection, signal processing, process 
modeling, and control. Because ANN are nets of basis functions, they can provide good empirical models of com- 
plex nonlinear processes useful for a wide variety of purposes. This article describes certain types of neural networks 
that have proved to be effective in practical applications, mentions the advantages and disadvantages of using them, 
and presents four detailed chemical engineering applications. Inthe competitive field of modeling, ANN have secured a 
niche that now, after one decade, seems secure. 
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INTRODUCTION 

Traditional approaches of solving chemical engineering prob- 
lems frequently have their limitations, as for example in the mod- 
eling of highly complex and nonlinear systems. Artificial neural 
networks (ANN) have proved to be able to solve complex tasks 
in a number of practical applications that should be of interest to 
you as a chemical engineer. This paper is not a review of the ex- 
tensive literature that has been published in the last decade on ar- 
tificial neural networks nor is it a general review of artificial neural 
networks. Instead, it focuses solely on certain kinds of  ANN that 
have proven fiaxitfial in solving real problems, and gives four de- 

tailed examples of applications: 

1. fault detection 
2. prediction of polymer quality 
3. data rectification 
4. modeling and control 

For those who want more intbrmation, Appendix A is a partial list 

of the many applications of ANN to chemical engineering prob- 
lems, but space prohibits a review of these and the many other ar- 
ticles that have been published in the last 10 years. A good start to 
review ANN in general would be the Handbook o f  Neural Com- 
putation [Fiesler, 1996] and Statis~cs and Neural Net Users [Kay 
and Titteringtol-l, 2000]. 

What are the advazltages people see in using artificial neural net- 
works in constmst with first principles models or other empirical 
models? First, ANN can be highly nonlinear, second the s~ucture 
can be more complex, and hence more representative, than most 
other empirical models, third the stmc~]re does not have to be pre- 
specified, and fourth, they are quite flexible models. We will men- 
tion some of  the disadvantages later on! 

An ANN forms a mapping F between and input space X and an 
output space Y We can distinguish three different kinds of map- 
pings: 
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1. Both the input and output spaces are comprised of cc~ltmuous 
variables, a typical case of  process modeling; 

2. The input space is comprised of continuous variables whereas 
the output space is comprised of a finite set of  discrete variables 
as in classification and fault detection; 

3. Both the input space and the output space are comprised of  
discrete variables that are mapped in so called associative nets (that 
will be ignored in this article). 

In what follows we first discuss the concept of artificial neural 
networks, and explain how their pammeteis are identified. Then 
we specif ic@ describe feedkbl-ward nets, recursive nets, and radial 
basis fimction nets, the nets that comprise the major types of nets 
reported in the literature and used in practice. Finally, we give some 
detailed examples of  the application of ANN to common chemi- 
cal erlgineering problems. 

ARTIFICIAL NEURAL NETWORKS (ANN) 

As the term a r~c ia l  neural networks implies, early work in the 
field of neural networks centered on modeling the behavior of neu- 
rons found in the hmnan brain. Engineering systems are consider- 
ably less complex than the brain, hence from an engineering view- 
point ANN can be viewed as nonlinear empirical models that are 
especially useful in representing input-output data, making predic- 
tions in time, classifying data, and recognizing patterns. Appendix 
A lists numerous articles I selected fi-om the literature describing 
applications of interest to chemical engineers. 

To read the literature on the theory and application of artificial 
neural networks, you have to become familiar with the prevalent 
jargon, a jargon that is somewhat foreign to engineering. 

Fig. 1 shows the basic structtae of a single processing unit in an 
ANN which will be referred to as a node in this work and is anal- 
ogous to a single neuron in the human brain. A node receives one 
or more input signals, I:, which may come from other nodes or 
from some oilier source. Each input is weighted according to the 
value w,j which is called a weight. These weights are similar to the 
synaptic strength between two connected neurons in the hianazl 
brain. The weighted signals to the node are summed and the result- 
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Fig. 1. Structure of a single processing node. 

Fig. 2. Plot of the sigmoid transfer function. 

ing signal, called the activation, h, is sent to a transfer function, g, 
which Cml be any type of lnadlelnatical function, but is usually tak- 
en to be a simple bounded differentiable fimction such as the sig- 
moid (Fig. 2). I f  the ffuaction g is active over the entire input space, 
it is tenned a global tlarlsfer function in consti-ast with radial basis 
fimctions (to be described subsequently) that are local fimctious. 

The resulting output of  the node Oj, may  then be sent to one or 
more nodes as an input or taken as the output of  an A N N  model. 

A collection of nodes connected to each other forms the amfi- 
cial neural network. Cybenko [1987] and numerous subsequent ar- 
ticles have shown that various networks of such fimctions can ap- 

proximate any input-output relation to the desired degree of accu- 
lacy (in tile limit exactly). Of course, how many nodes to use can- 

Fig. 3. Structure of a layered neural ne twork  

not  be prespecified, but refer to Baum and Haussler  [1988] for 
some ideas. Fig. 3 is an example ANN.  You can find numerous 
other architectures in the litera0are; Lippmann [1987] documents 
at least 50 other network configurations. Hybrid nets, that is nets 
composed of  different or sinlilar ANN, or nets connected to other 
types of  models that are not ANN, cannot be discussed here, but 
a considerable literature exists for various types of  architectures. 

A group of  nodes called the input layer receives a signal from 
some external source. In general, this input layer does not process 
the signal unless it needs scaling. Another group of nodes, called 
the output layer, retona signals to the external environment The re- 
maining nodes in the network, are called hidden nodes because 
they do not receive signals from or send a signal to an external 
source or location. The hidden nodes may be grouped into one or 
more hidden layers'. Each of tile arcs between two nodes (the lines 
between the circles in Fig. 3) has a weight associated with it. Fig. 
3 shows a layered network in which the layers are fully connected 
fi-ora one layer to tile next (input to hidden, hidden to hiddell, hid- 
den to output). Al though this type of  connectivity is frequently 
used, other patterns of  connectivity are possible. Connections may 
be made between nodes in nonadjacent layers or within the same 
layer, or feedback connections from a node in one layer to a node 
in a previous layer can also be made. This la~er type of connec- 
tion is called a recurrent connection to be discussed below and, de- 
pending on the type of application for which the network is being 
used, such a connection may  have a ~ l l e  delay associated with it. 

Another part of the jargon associated with A N N  models relat- 
es to model  identificatioi1 Generally, there is no dh-ect analytical 
method of  calculating what the values of  the weights are if a net- 
work is to model a lmrticular behavior of  a process. Instead the net- 
work must be trained on a set of data (called die training s'et) col- 
lected from the process to be modeled. Training is just  the pro- 
cedure of estimating the values of  the weights and establishing the 
network structure, and the algorithm used to do this is called a 
"learning" algorithm. The lesming algorithm is nothing more 
some type of  optmlization algolJflml. Once a network is ti-ained, 
it provides a response with a few simple calculations, one of the 
advantages of  using an A N N  instead of  a first principles model  in 
cases for which tile nlodel equations have to be solved over and 
over again. 

A key dilgiculty with optmlizsIion for neural network problems 
is that multiple minima occur (see Fukuoka et al. [1998]). Since 
most  training procedures used for neural networks typically fmd 
local minima starting fi-oln ralldolnly selected starting guesses for 
the parameters, it should be expected that local minima of vary- 
ing quality will  be found. While  use of a global optimization pro- 
cedure, such as genetic algorithms, branch and bound, or simulated 
annealing, might thus appear to be called for, the ~ time for 
such algoridmls expands to an unacceptable degree. Consequently, 
satisfactory representation of  data rests on the use of one local min- 
imum achieved in a reasonable time. 

Regardless of  what training algolJdml is used to calculate tile 
values of  the weights, all o f  the training methods go through the 
same general steps. FirsL tile available data is divided into a train- 
ing and test set(s). The following procedure is then used (called 
"supervised learning") to determine the values of weights of  the 
network: 
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l. for a given ANN architecture, the values of the weights inthe 
network are initialized as small random numbers; 

2. the inputs of the training set are sent to the network and the 
resulting outputs are calculated; 

3. sonle measure (an objective function)of the error between the 
outputs of the network and the known correct (target) values is cal- 
culated; 

4. the gradients of the objective function with respect to each of 
the individual weights are calculated; 

5. the weigt~s are changed accorditg to the optimizatic~l search 
direction and step length determined by the optimization code; 

6. the procedure returns to step 2; 
7. the iteration terminates when the value of the objective fimc- 

tion calculated using the data in the test set starts to increase. 

The type of objective fimction that is typically used in a training 
algorithm will be discussed subsequently below. 

If  taget values are not known so ttlat the learning goal is not de- 
fmed in terms of specific correct examples, a procedure called "un- 
supervised learrmg" that is analogous to classification in statistics 
can be employed A net will then produce output signals corre- 
sponding to the established input category, i.e., extract features 
fi-onl seemingly unstructured data. We will not discuss ff~ type of 
training. 

The purpose of  partitioning the available data into the a train- 
ing and test set is to evaluate how well the network generalizes 
(predicts) to domains that were not included in the training set For 
non-tlivial problems you probably cm~lot collect all of the possi- 
ble input-output patterns needed to span the input-output space for 
a particular behavior or process to be modeled. Therefore, you have 
to tram the network with some subset of all of the possible iuput- 
output patterns. However, the training set must be representative of 
the domain of interest if you expect the network to learn (interpo- 
late among the data) the underlying relationships and correlations 
in the process that generated the data. If not. the net may not pre- 
dict well for similar data, and may predict poorly for completely 
novel data (extrapolate). Noise in the data surprisingly automati- 
cally provides some smoothing, namely by adding the absolute 
value of the first derivative of the objective function as a penalty 
to the objective function. By holding some of the data back from 
the b-airing phase to comprise a test set, you can evaluate how well 
the neural network can generalize by examining the value of the 
prediction error to the test set. 

For three reasons you often need to carry out some type of un- 
supervised preprocessing of the data to he used in identifying a 
network so that you can 

l. reduce the dimensionality of the data (feature extraction), and 
thus the conlplexity of the net used to represent it along with the 
correlations among variables; 

2. transform the data into a more suitable format for processing 
by the net; 

3. eliminate or reduce auto correlation for each variable. 

FEED FORWARD N E T W O R K S  

Three layer (sometimes called two layer) feed-folward artificial 

375 

Fig. 4. Graph of the information flow in a feed-forward neural 
network. Cirdes represent computation nodes (transfer 
functions), and lines represent weighted connections. The 
bias thresholding nodes are represented by squares. 

neural networks are commonly encomitered models in the litera- 
ture (see [Fine, 1999]). Computation nodes are arranged in layers 
and information feeds forward from layer to layer via weighted 
colmections as illustrated in Fig. 4. Wtfile the neural network liter- 
ature uses jargon such as training patterns, test sets, connections 
weights, and hidden layers, for modeling involving ANN, here we 
fommlate artificial nem-al network models in terms of classical 
nonlinear system ideutificatiorL Graphs of the network intbrmation 
flow help explain the more fonnidable equations. 

Mathematically, the typical feed-forward network can be ex- 
pressed as 

y, ~o [C ~o~,(Bu~ + b~,)+ bo] (1) 

where L is the output vector corresponding to input vector u,, C 
is the connection rnatrir (matrix of weights) represented by arcs 
from the hidden layer to the output layer, B is the connection ma- 
tls front the input layer to the hidden layer, and b~ and b are the 
bias vectors for the hidden and output layers, respectively q~h(" ) 
are q~o(. ) are the vector valued functions corresponding to the act/- 
vation (trmlsfer)functions' of the nodes in the hidden and output lay- 
ers, respectively. Thus, feed-forward neural network models have 
the general structure of 

y,=f(u) (2) 

where f(- ) is a nonlinear mapping. Hence feed-foiward neural net- 
works are slrucan-ally similar to nonlinear regression models, and 
Eq. (2) represents a steady state process. 

To use models for identification of dynamic systems or predic- 
tion of time series, a vector comprised of a moving window of past 
input values (delayed coordinates') must be introduced s~s inputs 
to the net This procedure yields a model analogous to a nonlinear 
finite impulse response model where 

y, y, and~ [u~,u~ ....... u~_,,,]ory, f([u,,u~ ..... . .  u~_,,,]). (3) 

The lengffls of the moving window must be long enough to cap- 
ture the system dynamics for each variable in practice. Jzl practice, 
the duration of the data windows are determined by trial and error 
(cross validation), and each individual input and output variable 
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might have a separate data window for optimal performance. 
If  you use windows of past inputs and outputs in feecl-folward 

neural network models for dynamic modeling, the nets tend to be 
very large with the result that they include hundreds of parameters 
that tkqve to be estilnatec[ Each additional input to tile neural net 
model adds greatly to the size of the network and the number of 
paranleters that must be estinlated. As a specific example, if tile 
input vector at time t consists of 4 different variables, and the num- 
ber of past values of each is selected to be 6, the net must contain 
24 input nodes. I f  this hypothetical network were to have 12 hid- 
den nodes and 2 output nodes, the total number of parameters to 
be estimated, including the bias terms, would total 326. The large 
number of parameters necessitates large quantities of training or 
identification data, and slower times for identificatiort 

R E C U R R E N T  N E T W O R K S  

Recurrent Neural Networks (RNN) have architectures similar 
to standard feed-forward Artificial Neural Networks with layers 
of  nodes connected via weighted feed-foiward connections, but 
also include time delayed feedback or recurrent connections in the 
network architec0are. Examine Fig. 5. 

Recun-ent neural network models have tile same relationship to 
feed-fol-ward neural network models as autoregressive/infinite im- 
pulse response models have to moving average/finite impulse re- 
sponse models. RNN provide a more parsilnonious nlodel struc- 
0are of reduced complexity because the feedback connections large- 
ly obviate tile necessity of data windows of time lagged inputs. 
RNN also have a direct nonlinear state space interpretation use- 
ful in optimal estimation as discussed below. 

Two individual variations of recurrent neural network architec- 
0ares are commonly employed. The first is called an Internally Re- 
current Network (IRN), that is characterized by time delayed feed- 
back connections to the hidden nodes. Examine the connections 
in the hidden layer in Fig. 5. The remainder of the network com- 
prise a standard feed-foiward architecture. This structure is also 
known as an Elman network [Elman, 1990]. 

Externally Recurrent Networks (ERN), on the other hand, con- 
rain time delayed feedback connections from die output layer to 
the hidden layer. You can also envision a hybrid recurrent network 
which contains both types of recurrent connections, and might be 
described a,s an Illtelrlal-Extelrlal Recun-ent Network (IERN) such 
as the network pic0ared in Fig. 5. Simulation studies, both pub- 
lished and talpublished, have indicated no clear advantage of using 
an IRN versus an ERN, or even an IERN, for dynamic modeling. 
Both IRN and ERN models seem to be equally satisfactory in 
most process modeling applications. 

Another possibility is to include a moving window of past out- 
puts along with the past inputs to the network 

y,=f([y,,, y .  . . . . . .  y,,,; u, u> . . . . . .  u~ ,,,l) (4) 

analogous to a more general nonlinear time series nlodel. 
I f  we allow the vectors u~, xt, and Yt to denote the vector out- 

puts of the input, hidden, and output nodes, respectively, at time 
t, we can formulate an IRN network as a discrete tinle nlodel 

x m =9~(Ax,+Bu,+b~) (5) 

y~+l =9o(Cr~+bo) (6) 

where and (p~(.) are q)o(. ) are the vector valued fitnctions corre- 

sponding to the activation fimctions in the hidden and output lay- 
eis, respectively. In most applications tile scalar elements of tile 
Gaussian activation function for each hidden node are 

%(v,) = e x p ( @ )  (7) 

where v, is tile total input to each node. Usually all tile elements 
are made identical for simplicity. Linear activation fimctions are 
typically used in the output layer. The matrices A, B, and C are the 
matrices of connection weights for the hidden to hidden recunent 
connections, input to hidden, and hidden to output connections, re- 
spectively, and the vectors ba and b o are tile bias vectoi-s for tile 
hidden and output layers. By posing the ~ model in the above 
form we see that this type of  recurrent neural network is a non- 
lineal- extension of tile standard linear state-space nlodel in which 
the outputs of the hidden layer nodes, x~ are the states of the model. 

In a similar fashion we can write nonlinear state space equations 
for the ERN. Whereas in the IRN model the states are the out- 
pigs of the hidden nodes, in the ERN model the states are the out- 
puts of tile nodes in tile output layer so that tile state space eq- 
uations are 

Fig. 5. Representation of  internally/externally recurrent neural 
networks. Circles represent computation nodes, lines re- 
present weighted connections, z -1 indicates l ime delay. For 
clarity not aH recurrent connections are shown and bias 
nodes are omitted. 

x m = 9~ [C ~,(Dx~+Bu~+ b~,)+~] (8) 

y~l ~+~ (9) 

where the matrices B and C and vectors b~ and bo have the same 
meaning for file ERN as die IRN. and file matls D is die matrix 
of weights for the recurrent connections from the output layer at 
time t -1  to the inputs of  the hidden layer at time t. 

Although file ERN and IRN can exhibit comparable modeling 
perfonnance, tiley have different features dlat may make one more 
desirable t i l l  tile other for a particular process. Just like die con- 
ventional linear state space model, die IRN does not have any slruc- 
rural limit on the number of model states because the number of  
hidden nodes can be fi-eely varied. Tile ERN, howevm; can only 
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have the same number of states as model outputs because the out- 
puts are the states. The IRN thus tends to be more flexible in mod- 
eling. The ERN has the advantage that the model states have a 
clear physical interpretation in that they are the variables of the 
process itself, whereas the states of the IRN are hypothetical and 
neither unique nor canonical. 

Since both types of models tkqve been posed as difference eq- 
uations (rather than differential equations), to complete the model, 
a vector of initial values of the model states must be specified. In- 
itializaIion of ERN models is simple because the user can observe 
the current values of the process output and use those values to in- 
itialize the states. Just as with linear state space models, IRN mod- 
els are more difficult to initialize as the states lack physical mean- 
ing. In applications you usually initialize the states of IRN mod- 
els with the median value of the activation function of the hidden 
nodes (0.5 if the activation fimction ranges from 0 to 1.0). Inaccu- 
racies in the state initialization typically result in initial inaccuracies 
in the model predictions, but these die out in a time of the order of  
the dominant time constant of the process being modeled. Such 
startup transients cml be minimized by holding the network inputs 
constant using the initial input vector and cycling the ~ model 
until the states and hence the output of the network becomes con- 
stant. This is equivalent to assuming that u, uofor all t<0. 

SELECTION OF THE SPECIFIC A R C H I T E C T U R E  OF 
AN ANN 

Once you decide on a particular category fi-om which to select 
an ANN for your application, you still must determine the specific 
details concerning the stmc~lre of the nodes (transfer functions) 
and the connections between them. No general theoretically based 
slrategy exists to carry out this task, but numerous strategies have 
been propose& Refer to van de Laer and Henkes [1999] and the 
references therein or to Reed [1993]. An  appropriate size network 
should exhibit: 

1. Good '~genel-alization", i.e., prediction for new data, by avoid- 
ing under- and over-fitting 

2. Computational efficiency; the smaller the network, the fewer 
the parameters, less data is needed, and the identification time is 
less. 

3. Interpretation of the input-output relation is so far as possible. 

Because ANN are not unique, that is many nets cml produce iden- 
tical outputs from prespecified inputs, and many different goals can 
be deemed "best", searching for the "best" net in some sense is 
rarely an efficient use of your time. A "satisfactory" net is all that 
you need to make predictions or classify data. 

I f  you choose to start the training (identification) with more 
nodes and connections than you eventually plan to end up with, 
the net will contain considerable redundant information after the 
training tenninates. Wflat you should do then is prune the nodes 
and/or links from the network without significantly degrading per- 
fomiance, iclurmlg techniques can be categorized into two classes. 
One is the sensitivity method [Lee, 1991]. The sensitivity of the 
error fimction is estimated after the network is gained. Then the 
weights or nodes which relate to the lowest sensitivity are prunec[ 
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The other class is to add terms to the objective function that prune 
the network by diiving some weights to zero during training [Kam- 
ruzzom, 1992; Reed, 1993]. These techniques require some pa- 
rameter tuning which is problem dependent to obtain good per- 
fonnance. An alternate approadl to building a net (the "growing" 
technique) is to start with a small number of hidden nodes and add 
new nodes or split existiig nodes if the perfonnance of the net- 
work is not satisfactory. Pll~Ang is idelNcal to backward elimina- 
tion and growing to forward selection in regression. 

You can apply pli lcipal component analysis, or the Karhunen- 
Loeve Iransformation, to your data set to reduce the nurnber of in- 
puts to a net, and hence reduce the size and stmc~re of the net. 
The ~ansformed coordinates can be arparged in order of their sig- 
nificance, with the first being the components corresponding to the 
major eigenvectors of the correlation maas (largest eigenvalues). 
A major weakness of these methods is that they are not invariant 
under a ~ansformation of the variables. For example a linear scal- 
Lug of the input variables (friar may be caused by a chmge of units 
for the measurements or by scaling needed for identification) is 
stffficient to modify the PCA results. Fea~.~-e selection methods 
that are sufficient for simple distributions of the patterns belonging 
to different classes can fail in classification tasks with complex de- 
cision boundaries, hi addition, methods based on a lillmr depend- 
ence (such as correlation) cannot take care of  arbitrary relations 
between the pattern coordinates and the different classes. 

PARAMETER IDENTIFICATION 

If  you choose one of the Recurrent Neural Network (RNTN) 
smacmres as a model, Eqs. (5) and (6), or (8) and (9), how do you 
estimate the values of the parameters (the weights) of the net- 
work? The standard way from the perspective of investigators us- 
ing neulN networks is to train the networks to reproduce the de- 
sired dynamic behavior using the backpropagation-through-fime al- 
gorithm [Hertz 1991]. Closer examination of this technique reveals 
that what is really being carried out is conventional prediction error 

estimation [Lyung, 1987] which will be briefly described here. 
Let the parameters vector in the RNN nonlinear state-space 

model be denoted by 0 where 

O=fA; B; C; b~; bo} (10) 

for the IRN model and 

0={B; C; D; b,,; bo} (11) 

for the ERN model. Let the vector of  prediction errors of  either 

model be 

st(0) y , - g (0 )  (12) 

where yt is the vector of observed outputs and 77,(e) is the vector 
of predictions from the model. The observed data from the pro- 
cess being modeled is the set of  input-output vector pairs 

Z~-(yl, ul; y~, u~; ..., y, t~; ..., y~, u~} (13) 

where N is the number of data samples and u~ is the process input 
vector. The goal in prediction error idelNfication is to minimize the 
prediction enor of the model for the data set Z • by adjustiig the 
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parameter vector 0, i.e. 

rain J(O,Z") e~(O) e,(O) (14) 

Eq. (14) is the standard unweighted least squares objective func- 
tion. Wtlen working with data contairmlg outliers it is often more 
robust to use 

ilfis J(O,Z ~) = ~(e,(O)) (15) 

where the fimction ~(c) is a positive, scaler function such as 

g(e)=lel or g(e)=log(l+ ~e ~ ) 

Because ANN models are nonlinear in the coefficients, itemtive 
methods must be used to minimize Eft (14). The backpropagation 
algolidml is a gradient descent schenle that is well suited for par- 
allel implementation in hardware as each stage uses only local in- 
formation about die inputs and outputs of each activation node. 
For calculations on a serial computer, more efficient optimization 
techniques such as the BFGS or conjugate gradient algorithms are 
prefen-ec[ Although analytic fonnulation of tile gradients of J(0, 
Z ~) with respect to 0 given the specific equations for the ANN is 
quite complex because of the existence of state feedback in recur- 
rent nets, use of tile gradient calculation as done in die BP algo- 
rithm [Hel-t~ 1991; Werbus, 1990] is both intuitive and computa- 
tionally efficient. Analytical gradients of tile objective function can 
be combined with an efficient quasi-Newton optimization code 
such as NPSOL in MATLAB or GRG2 in Excel to yield rapid pa- 
lameter identification. W~e do not recolrmlend tlying to progranl 
the lmmmeter identification code; instead use a commercial code 
focusing on ANN. 

The parameter estimation scheme described above is known 
as prediction error estimatiort An inherent assumption underlying 
tiffs swategy is d~at die process output measurements, y~ only con- 
tain additive wbite noise (noise uncorrelated in time) while the pro- 
cess inputs are assumed to be deterministic. In reality, these as- 
sumptions are rarely met, and it Cml be shown that even when sin> 
ple linear regression is used to model a steady-state process, the 
presence of noise in tile independent variable will yield biased pa- 
rameter estimates and biased predictions. Noise in the inputs is 
also a serious problem in the identification of linear dynamic mod- 
els became when tile effect of input noise is neglected, and it ex- 
ists, prediction error methods cannot give consistent parameter es- 
timates. If  the noise characteristics of the process measurements 
are known, dais problem Cml be ameliorated to a degree, but in gen- 
eral how to resolve the problem is still opert For nonlinear, non- 
paranlebic system identification such as for ERN or IlZN, die prob- 
lem of bias similary exists, and is fitrther complicated by the non- 
linearity of the model. In the case of nonlinear systems modeled 
by Imramebic models, various types of linearizafion based error-in- 
the-variables methods have been proposed [Kim et al., 1990]. Sim- 
ilar methods could be applied to neulN network models if" model 
bias became a serious problem. 

Another problem with using the prediction error method has to 
do with die uncertainty associated with predicted output values. 

You cannot assume the values are not autocorrelated even if'the 
residual errors are nouslally distributed, hence any coiffidence lim- 
its you place on the outputs must be developed with care. 

THE BIAS/VARIANCE ISSUE 

Tile great sU-eugti1 of near-al networks, in general, is their ability 
to "learn" (represent) arbitrary mappings through their role as non- 
parametric estimators. This strength is also a weakness because in 
fitting input-output data, a large number of weights must be ad- 
justed during training. If we consider the problem to be one of 
forming an estimate y f(x; D), of an unknown model, E[y Ix], giv- 
en a waining set D = {(xl, yl) . . . . .  (x~, YN)}, the mean square estima- 
tion error between the fimction we create and the actual model is 

E[(f(x; D)- E[y] x])2]=(E[(f(x; D)]- E[ylx]) 2 
+E[(f(x; D)- E[f(x; D)l)q (16) 

for any mbiwaly x and all possible realizations of D. Tile first [elli1 
on the right hand side of the equality sign is the square of the bias 
between our estimate and die unknown model, and tile second 
term is the variance of  our estimate, i.e. 

(estilnation encr ~ = Coias) 2 +variance (17) 

thus decomposing the estimation error into bias and variance com- 
ponents. A Wade-off exists between reducing bias and variance in 
estimation theory [Goman et al., 1992; Moody, 1994]. A simple 
parametric model with few parameters may show low variance in 
die estilnation error but intolerable bias in its predictions clue to an 
inability to capture the complexity of the system being modele& 
A Waditional feed-fo~vard neural network with hundreds or thou- 
sands of weights may have very low bias but high variance clue to 
over-fitting of the noisy Waining data. The goal is to minimize both 
bias and variance. You may be able to reduce variance by using 
larger and larger training sets, and to reduce bias by increasing size 
of the network, making a large optimization problem quite difficult 
to solve. But a more common approach to tile control of estima- 
tion bias and variance in modeling feedforward ANN is that of 
periodic stopping during training and using cross validation to eval- 
uate tile residual error. When tile residual error no longer decreases, 
training is stopped and the weights (coefficients) are fixed. This 
procedure is a fcml of regularization and is discussed from a sys- 
tem identification perspective in [Sjoberg and Ljaug, 1992]. Other 
methods of controlling both bias and variance in neural network 
models include reducing die number of weights tiarough prtmmg 
or slowly allowing the network to grow while Waining to prevent 
ov er-parameterization. 

Recurrent networks alleviate many of the problems of over-fit- 
ting and the need for large ~ining sets characteristic of feedfbr- 
ward networks when applied to modeling dynamic processes. 
The absence of a need for a history ~4ndow for each input variable 
as well as fewer hidden nodes translates into significantly fewer 
weights and less chance of over-fittiug for a given data set. In- 
corporation of prior knowledge about the process to be modeled 
into die neural net as in Ungar's work [Psichogious and Ungm; 
1992] may allow tile parameter count to be reduced even further. 

MODEL VALIDATION 
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Fig. 6. The autocorrelation function for white  noise. 

Model validation is an important part of system identification. 
Although a large number of statistical hypothesis tests and evalua- 
tion criteria have been developed for linear, steady-state systems, 
the problem is much more complicated for nonlinear, dynamic sys- 
tems. A simple criterion of model validity is the value of the ob- 
jective function J(0, Z N) when tile model is applied to a data set 
(Z ~) different than the data set (Z ~) used for system identificatiorr 

However, such a criterion does not distinguish between error 
caused by model mismatch (bias)and tile error clue to data corrup- 
tiorL More sophisticated tests are h~sed on correlational analysis in 
which you examine tile prediction elTorS, ~(0). If a non-linea; non- 
parametric model is adequate and unbiased, then the prediction er- 
rors should be uncorrelated with all linear and nonlinear combina- 
tions of  past inputs and outputs [Billings and Varn, 1986]. This 
outcome can be determined using the normalized cross-correlation 
function 

3 r  ~,=, u/,(t)~At- z) 
$~,(~) (is) 

[ ~ I t ~  (t)~_~ff, ~I/~ (t) ] 
^ 

Here ~,~ is the normalized cross-correlation between two vari- 
ables (time series u~ and uA), �9 is the time shift, and t is the time 
index. You can plot tile ~ ~,~,(~) as a function of �9 for both positive 
and negative time lags. Examine Fig. 6 which is an example of 
~ ; , (~)  when ~l is a white noise sequence, mid exhibits negligi- 
ble antocorrelation. Because the estimated correlations will never 
be exactly zero, approximate 95% confidence bands can be drawn 
as +1.96/,]iq for large N to indicate if the conelations are signi- 
ficant. For multivariate, nonlinear models it is of course impractical 
to check every possible cross-correlation, but the auto and cross- 
correlations should be calculated for the residuals as a minimal 
check on model validity. 

R A D I A L  B A S I S  F U N C T I O N  N E T W O R K S  

If  you view ANN such as shown in Figs. 4 and 5 as providing 
system outputs ti~at result fionl a fufite sum of weighted outputs of 
noi~inear ftalCIiOnS fonning file tfi&ten nodes, then numerous net- 
works are analogous to ANN. One type is tile radial basis func- 
tion network (RBFN) which was first used for process modeling 
by Chen et al. [1990]. Lee et al. [1999] mid Gurumoorthy and 

Fig. 7. Structure of the radial basis functions network. 

Kosanovich [1998] review some of the theory (existence, unique- 
ness, stability etc). The stmcture of a RBFN (Fig. 7) differs from 
an A N N  in that the inp~s to the network are fed directly into the 
hidden nodes through connections with unity fixed weights. Each 
node represents only a lmlited iange of the total lange of an input 
variable, hence is a local fimction. The transfer fimction of each 
hidden node is a radial h~sis function (RBF) usually Gaussian or 
ellipsoidal: 

g ( I ) = e x p ( - ~ )  (19) 

where I denotes the vector of inputs to the node, c is a vector 
which centers each function of the RBF in tile input space, O is a 
"span" l:~araneter, and I1' II a vector norm. Note that the output of 
this radial basis fimction is 1 when I=e and drops off to zero as I 
moves away fi-om e (figar-atively shown by tile sketches in tile cir- 
cular node symbols in Fig. 7). The oulputs of the hidden nodes are 
then sent to an output layer through a layer of weighted connec- 
tions. The weighted signals are summed, and the sum forms the 
output of the network, i.e. the transfer fim~ons in the output layer 
are linear. Tile sum of overlapping farlctions g(I) fonn a smoothed 
representation of  data as do ANN, and have been shown to be 
capable of universal approximation [Frombe, 1988]. 

Two major advaltages exist for this type of network sb-ucture. 
First, using established numerical methods for clustering (group- 
ing) data, tile values of c can be calculated for each hi&ten node. 
Selection of the number of hidden nodes is a complex problem in 
clustering. The values of ~ can be arbflrary or evaluated (separate- 
ly fi-onl c) by simple optimizalion. Tile weigt~s to tile output layer 
can be calculated directly &tring training by linear regression be- 
cause of the linear relations between output nodes and the ontputs 
of the radial basis fimctions. Thus, the time to train the network is 
much shorter than for ANNs. Second, if a unique new input vector 
is encountered in testing, tile network output will go to zero be- 
cause of the local propemes of the RBF inEq. (19). This is a ma- 
jor advantage over most other network types since neural networks 
generally extrapolate for new inputs vei N poorly. W2file RBFN 
suffer from this same problem, at least they are capable of detect- 
ing when tile network is being asked to extrapolate. 

One major disadvmltage of RBFN is that like ANN time must 
be explicitly incorporated into the slructure by using a window of 
past process inputs and outputs as file inputs to tile network. Un- 
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HctL g.~.r n l l~  

F~" 

Fig. 8. A typical heat exchangel: F~=F3 and F2=F4 for the example. 

55: 25:20 
Number of tubes: 108; length: 4.88 In; outside tube dianleter: 

3.18 cm; thickness: 0.26 cm; tube an-angements: square tube pitctz 
3.97 cm; tube-side fouling layer thickness: 0 

Shell side: 

Feed: water 
inside diameter: 54 cm 
shell-side fouling layer thickness: 0 cm 

Table 1. Prespecified data for the normally operating heat ex- 
changer 

Stream 1 Stream 2 Stream 3 Stream 4 

Temperature, T (K) 533 977 708.2 599.8 
Flow rate, F (kg/hr) 9080 4086 9080 4086 

Pressure, P (kPa) 207 345 148 236 

fommately, with RBFN, the size of the network scales exponen- 
tially with the number of inputs to the network. Each of  the hid- 
den nodes represents a bump in tile input space, and tile nuulber of  
bumps required to model a process over the entire space rises ex- 
ponentially with the dimension of the input space. Even for steady 
state models, RBFN become mlpractical with more than 4 or 5 ill- 
put variables. 

We now present four examples of applications of ANN in typi- 
cal chemical engineering processes. 

E X A M P L E  1. FAULT D E T E C T I O N  USING A N  A N N  

This example from SuewatannM~ [1993] demons4iates the use 
of a feedtbrward ANN to detect faults in a heat exchanger. Fig. 8 
is a sketch showing the input and output measurements of an ex- 
changer. Tile tenlperature and flow rate deviations fronl normal 
were deemed to be symptoms of the physical causes of faults. The 
two physical causes considered faults here were tube plugging and 
partial fouling in tile heat exct~nger intenlals. Tile diagnostic abil- 
ity of a neural network is compared with Bayesian and KNN chs- 
sifiex~ to detect die internal faults. 

Rather than using data from an operating heat exchanger, the 
Simulation Sciences code PROCESS was used to generate data 
fox- clean and fouled conditions fox a steady state counter-cuirent 
heat exchanger. To generate the data for both the clean and fmtity 
conditions, a data file for each faulty (and normal) condition was 
prepared. Information about the thermodynamic properties of the 
streams, the fluid and exchanger physical properties, the conftgura- 
tion of tile heat exchanger, die nunlber of tubes, tile size of tile 
tubes and shell, and the fouling layer thickness in the tube and 
shell sides (for fouled conditions) was prespecified. Table 1 lists 
tile physical data and tile normal paranletex-~ for tile heat ~xchalgex: 

Baffles: 

Number of cuts (segments) for each baffle: single 

For the fault of tube plugging (tube-sided only), the degree of  
the fault was classified into 4 cases-the number of tubes plugged 
was 5, 3, 2, and 1. In tile study of fouling Cooti1 for die tube-side 
and the shell-side), the degree of fouling was expressed as a fruac- 
tion of tile decreo~sed cross-sectional area which was also classified 
into 4 cases, namely a decrease of 8%, 5%, 3%, and 1%, respec- 
tively. To make the simulated measurements more realistic, two 
different levels of normally distributed noise were added to tile de- 
terministic flows, pressure, and temperatures so that the coeffi- 
cients of variation of the noise were 0.02 and 0.01. Fig. 9 illus- 
trates a typical feedfc~ward ANN used to classify tile respective 
faults. 

To train tile ANN, each measuremenk namely tile texnpex-atures 
of all four streams (TI, T2, T3, and T4), the two flow rates (F1 and 
F2), and the pressure drops in the tube and shell size ( A P ~  and 
AP,~a), for both tile nomlal (clean) and faulty states had to be lin- 
early scaled to be between the range o f -  1 and 1. The network was 
trained so that 0.9 represented the normal state (yes) while 0.1 re- 
presented the faulty state (no). For example, a target output pat- 
tern of  0.9 0.9 0.9 represented a pattern in which the heat ex- 
changer wo~s cleax Tile target pattern fi-om a state in which there 

Tube side: 

Feed: mixture of water: ethyl benzene: styrene of composition 
(weight percent) 

Fig. 9. The network arclfitecture used in the training for internal 
fault detection (bias nodes are not shown). 
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was one or more totally-plugged tube was 0.1 0.9 0.9. The target 
output pattern of 0.9 0.1 0.9 represented a state in which fouled 
tubes existed while a target output pattem of 0.9 0.9 0.1 repre- 

sented a state in which fouling existed on the shell side. The train- 
ing data set contained 80 patterns each for the four different classes 
(a total of 320 training patterns). Another set of 20 patterns for 
each class was used for testing the classification capability of the 
ANN (a total of 80 pattems). NPSOL was the optimization code 

used in the training of the ANN. 
]zl testing the ANN, a tin-eshold value of 0.5 for the output of an 

output node was used as the discrimin~on criterion for classifica- 

tio11 If the activation of an output node was greater than 0.5, then 
that node was deemed activated and represented a faulty state of 

the exchanger. If the node value was less than 0.5, then the node 
was deemed to be not activated, and the fault was said not to oc- 
cur. Table 2 lists the results for one set of runs from the training 

and testing of the net. 
By way of conlparisoil, the two tradition classifiers, Bayesian 

and k-nearest neighbors (KNN, K=5 in Table 3), were also ap- 
plied to the data sets. Table 3 lists the results. 

Multivariate hypothesis tests on the means of the measurements 

gave much larger rates of misclassification. The conclusion is that 
ANN for tiffs type of analysis are no worse than b-aditional meth- 
ods of classification, and may have some edge. 

E X A M P L E  2. P R E D I C T I O N  O F  P O L Y M E R  Q U A L I T Y  
USING AN ANN 

This example from Barton [1997] illustrates the use of a recur- 

Table 3. Chssilication rates yielded by traditional methods (when 
the noise coefficient of  variation was  0.02) 

Tube plugging 

Number of Bayes procedure 5-NN procedure 

totally plugged Training Testing Training Testing 

tubes % correct % correct % correct % correct 

5 100 100 100 98.00 
3 100 100 100 95.00 
2 100 98.00 100 92.50 
1 100 93.00 100 89.75 

Tube-sidefouling 

Bayes procedure 5-NN procedure 
o~ a r e a  w a s  

decreased Training Testing Training Testing 

%correct %correct %correct %correct 

5 100 96.00 100 93.00 
3 100 91.50 100 89.00 
2 98.75 90.00 98.75 83.00 
1 97.50 88.00 97.50 80.50 

SheH-sidefouling 

Bayes procedure 5-NN procedure 
% area was 
decreased Training Testing Training Testing 

%COlxect %con-ect %con-ect %co~ect 

5 100 97.00 100 96.00 
3 100 95.00 100 93.50 
2 98.75 91.00 98.75 90.00 
1 98.75 89.00 98.75 80.50 

Table 2. Classification rates for the neural network (when the 
noise coefficient of  variation was  0.02) 

Tube plugging: 

Number of % COlxectly classified 

totally-plugged tubes Training Testing 

5 100 100 
3 100 100 
2 100 100 
1 100 95 

Tube-side fouling: 

% COlxectly classified 
% area was decreased 

Training Testing 

5 100 95.00 
3 100 93.75 
2 98.75 92.50 
1 97.50 86.25 

Shell side fouling: 

% correctly classified 
% area was decreased 

TrNning Testing 

5 100 96.25 
3 100 95.00 
2 98.75 93.75 
1 97.50 92.50 

rent ANN to predict polymer quality in an industrial reactor trait 

Operation and control of industrial polymerization reactors is dif- 
ficult because of the lack of reliable and timely measurements of 

key polymer product quality variables close to the reactor. Often 
product samples must be collected hours downstream fi-onl the re- 
actor, after the polymer finishing operations. Measurement of these 

quality variables is typically performed off-line in a laboratory and 

Fig. 10. Schematic of  an industrial polymerization reactor. 
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may not be available for several hours after the sample is delivered 
to the lab. Thus, the measurements of the quality variables arrive 
too late to provide useful feedback for control. 

Fig. 10 is a schematic of an industrial polymerization reactor and 
subsequent finishing section. The reactor feed flowrate, FF, and 
feed temperature, FT, are measured and the feed stream is analyzed 
for the monomer conceim-ation, M,~ which can be raanipulated, and 
several key impurities, X,:, which are disturbances that affect the 
product quality. The feed rate for the polymerization catalyst, CA, 
is a manipulated variable, and is also raeasured. The temperature 
in the reactor, T, is measured along with the liquid level, L. A re- 
cycle stream from the reactor is analyzed for umeacted monomer, 
Ms, and the key impurities, X,, o. The recycle flowrate, OF, and the 
recycle temperature, OT, are measured, but not directly manipu- 
lated. 

After the polymer product leaves the reactor, it must be pro- 
cessed another two to six hours in the finishing sectiort After the 
fufishing section, the final polymer product is sampled every four 
hours and analyzed in the laboratory which takes another four 
hours to return tile quality measurement, Ql,b. The product quality 
is also measured on-line Qo,, but the on-line instrument was unreli- 
able and only sporadically available, and when in operation was 
difficult to keep calibrated. 

The reactor in Fig. 10 was used to manufacture several differ- 
ent polymer grades spanning a wide operating range over which 
the reactor is highly nonlinear. The polyraer finishing section im- 
parts dynamics to the response Q~b to changes in reactor conditions 
clue to mixing. 

An internally recurrent net (IRN) shown in Fig. 11 was used to 
model the dynamic process, particularly when changes occurred 
on transition from one grade of  polymer to another. 

The model corresponding to Fig. 11 is 

x,< =~(Ax;+Bu,) 
y,+~=Cx.~ (20) 

where X~+ 1 is the network's internal state vector prediction (oulputs 
of the hidden nodes) at time t+l; Y~I is the network prediction from 
the vector of process outputs; in this case the network output is the 
product quality prediction, Q,~; and u~ is the vector of network in- 
puts at time t. The input vector to the ~ model consisted of the 
measureme,~ FF, CA, Ms X~,/, Xz,s X3,/, T, and 1Vg, as indicated 

in Fig. 10. 0(.  ) is a vector-valued nonlinear (sigmoidal) activation 
function; and A, B, and C are weight matrices tilat are b-ained us- 
ing historical data. Q,, below represents the company's prediction 
from a previously developed steady state modal. 

The IRN in tim work was trained using approximately 10,000 
hours of data collected at one hour sample intervals over several 
raonths, and tested using approximately 2,000 hours of data. A 
pure time delay of 3 hours for the product quality was found to 
yield the best IRN model, and was incorporated directly into the 
training and testing data. The difference between the 6 horn pure 
delay estimated for Q,, and the 3 hour delay used for Q~ is ex- 
plained by the dynamic lag associated with product mixing in the 
finishing section. For this problem, an IRN with 4 hidden nodes 
gave the best performance. The measurements for Qz~b were inter- 
polated to fill in the three hours of missing data between the Ql,b 
samples. 

For this problem the IRN yielded better long term predictions 
than feed forward networks with feedback of past outputs because 
potentially erroneous old process output measurements did not 
have to be used in the network input vector. Long telli1 predictions 
were necessary for this model because the goal was to use the 
model to develop strategies for directly controlling Q~b during 
grade transitions. 

The criterion for evaluating models for predicting Q~ was the 
standard prediction error (SPE): 

l ^ 
SPE = ~o~,, Q ..... ) 

where Q~b is the quality measurement, Q,,,od is the model prediction 
(either Q,~ or Q,,), t is the sample time, and N is the number of 
samples in the data set. In t i~ work tile product quality was scaled 
to lie between 0 and 10. 

Fig. 12 compares the predictions from the linear steady-state 
model developed by the company operating the reactor with the 
predictions from the IRN for the test data set, and the (delayed) lab 
data (which may not necessarily be correct). 

The IRN is clearly better able to captu-e the dynanfic cha-acter- 
istics of the reactor, and does an excellent job of predicting the pro- 
duct quality several hours before the laboratoly measurement be- 
come available. In Fig. 12 two polymer grades are shown and four 

Fig. 11. The IRN structure used in modeling the reactor. 
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Table 4. Comparison of the Standard Prediction Errors (Scaled 
SPEs) for Quality Prediction by the Steady-State and 
IRN Models 

Modd Number ofparameters Train Test 

Q~ 12 0.458 0.466 
Q,,, 57 0.191 0.210 

grade transitions. Quality above 3 represents a "high" grade poly- 
me1; while quality below 1 represents a "low" grade polymei: 
Quality between 1 and 3 is in a grade transition region, and the 
IRN predictions are shown to be excellent in these regions. The 
large discrepancy between Q,~ and Q,, in the high grade region be- 
tweent=1800 and t=2000 in Fig. 12 is cansed by the failure of the 
steady-state lineal- model to include the effects of impurity X2. 

Table 4 lists the SPE results for the IRN model versus the 

steady-state model when used to predict the product quality. The 
IRN model represents a marked improvement over the linear 
steady-state model in terms of SPE due to the modeling of process 
dyikamics that are imparted by the polymer fn~ tmg  section, and 
because the effects of measured impurities are included in the IXN 

model. The IRN model acaz-ately predicts the quality variable over 
the en6ze reactor opel-a~g region, even between grades, eliminat- 
ing the need for switching between different models in different 

operating regions. 

EXAMPLE 3. DATA RECTIFICATION IN A DYNAMIC 
PROCESS U S I N G  A N  ANN 

This example from Karjala [1995] shows how nonparametric 
models can be used to adjust process data. The goal of data rectifi- 
cation is to compensate for random and nonrandom measurement 
errors by making suitable adjustments to the measured values of 
the process variables in order to provide the best (in some sense) 
estimates of the '~ue"  values. This example focuses on detecting 
and eliminating gross and random errors, but does not address 
other important problems such as bias, correlations, nonperiodic 
data, missing measurements, and nonsymmetric probability distri- 
butions for the process nteasureraents. 

The term data reconciliation usually refers to the adjustment 
of process measurements to coiffOlm to some prescribed raodel. 
Since the model used in this example is nonparametric, that is the 
s~ucmre is built from the process data itself, we refer to the adjust- 
ment as data rectification. Furthennore, as explained below, rite 
model involved does not necessarily use current data in the adjust- 
ment, but uses predicted values of the variables. Consequently, the 
term rectification in the sense of "making the data right" seems to 

be the appropriate word to use. 
An arffortunate aspect of the lit~-ature on the rectification of data 

collected in a dynamic process is that the reported results of re- 
ctification always appear to be favorable, because the authors of 
the papers usually assume a known model and probability distribu- 
tion for the noise in the data To demonstrate how well rectification 
works, the authors simulate detenninistic process data and corrupt 
the data by adding the known noise (almost always white Ganss- 
ian), and perhaps gross errors. Then, the noise and gross errors are 
removed using the known, exact model by the strategy proposed 

by the authors of the paper. 
But how good is the rectification if the process model is not 

known exactly as is usually the case in practice? Furthermore, how 
good is the rectification if the probability distribution of the noise is 
different in practice than the assumed disbJbution? In ffais example 
we describe how internal recurrent neural nets can be used for the 
rectification of data fi-om @naraic process whose true mathemati- 
cal description is unknown and uncertairt 

Dynamic data rectification can be posed as a general optimiza- 
tion problem in which the equations representing the model, the 
ANN, form part of the constraints: 

Minimize: <D(m,,lh,,ln, 1,1i~ 1,A) (21) 
/ i  

Subject to: f(~, x;, u,, 0=0 
h(x. t) 0 
g(x,, t)_>0 

where d9 is a generalized objective function (nomtally the sum of  
squares or absolute values), x t is a vector of state variables at time t 
(not all of which are mcasar-ed), m~ mtd th, are the measuremeats 
and rectified measurements, respectively, f is the dynamic process 
model, g is a vector of inequality constraints (including bounds on 
rite variables), and h is a vector of known equality constmit~s. For 
state space models the model constraint equations f are typically 
expressed as dynamic differential equations which are solved via 
orthogonal collocation on finite elements. The above minimization 
problem is usually performed for a moving window of past meas- 
ureraents. This window must be loug enough to captar-e relevant 
process dynamics, but kept to a minimum to keep the nonlinear 
programming problem size tractable. 

In data rectification using an IRN as the model f in Eq. (21), 
the idea is to build a model of the process in which one step 
ahead predictions cmt be made of  both the input and the output 
variables. The input variables may need special treatment (see 
Barton [1996]). The mathematical model for rectification is 

lh~ G(m~_,,m~_~,m~_3,A,m0) (22) 

where lh, is the estimate of the process measurement vector at 
tinte t, m~ is the actual measurement vector, and G(-  ) is the non- 
linear mapping we seek to idea@. Note that with this model the 
current m, is not calculated from m,, the current raeasureraent. 
You cannot use m~as an independent variable in the nonparametric 
representation G because then system identification would yield 
the trivial identity mapping of th, m,. Because the noise in each 
measurement is assumed to be uncorrelated with the noise in pre- 
vions measurements, it is possible to idelNfy a system that describ- 
es the evolution of the measurement vectors in time using a predic- 
tion error model. The problems encountered when the noise in the 
measurements is autocorrelated is beyond our scope here. Because 
the model input vector m~ l is not deterministic and contains meas- 
urement noise, the parameter estimates from the IRN model will 
be biased Nevertheless, good results have been obtained for non- 
linear processes in which the process measar-eatents are CC~Tupted 
by Gaussimt mtd spike type measurement errors. In '~-aitmtg" rite 
]XN, i.e., estnnatiug the values of the coetiicients, the talgets are 
the measurements. The states of the net are the ontputs of the "hid- 
deft' nodes, but these variables have no physical meaning, mtd the 
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Fig. 13. Rectification of the outlet concentration. 

Fig. 14. Rectification of the outlet temperatm~. 

number of nodes was determined by trial and error. 
To compare rectified measurements with their '~ue" values, we 

used a model published by Seinfeld [1970] to develop simulated 
measurements (You cannot use actual process data and know what 
the '~ae" values of the raeasureraents are.). The process consisted 
of a continuous nonlinear stirred tank reactor (CSTR) with a first- 
order exothermic reaction and heat removal by a coil or jacket 
Jang et al. [1986] used tiffs example to compare extended Kahnan 
filtering to a nonlinear programming approach for state and para- 
meter estimati011. We a&ted @aussian noise to tile silnulated deter- 
ministic process measurements, and used the simulated noisy 
measurements in identifying an IRN model for rectification based 
on step changes in the inputs to the reactol: 

Figs. 1 3 and 1 4 show the results using the trained net for rectifi- 
cation of the outlet concentration and temperature (the solid lines), 
respectively, together with the simulated test data (the diamonds), 
and the respective true values (the dashed line). You can see that 
tile rectified values are excellent. Keep in raind that tile results 
shown above did not require that the tree model be used as a con- 
s~aint. An important but usually ignored factor in process model- 
ing is that variable delay occm-s in a response frora a process so 
that modeling the delay successfiflly in a theoretically based model 
is quite f01midable. The IRN raodel automatically accolrmlodates 
delay. 

EXAMPLE 4. PROCESS CONTROL USING A N  A N N  

This example from MacMurray [1 993] explains how an ANN 
model can be used f01- model predictive c011trol. Model predictive 
control (MPC) involves using a process model to predict fu0are 
process behavior so that the controlled variables can be manipu- 
lated such fflat the process will meet some desired futtae state(s), 
e.g., set-point, trajectory of set-poirlts, maximize a yield, minimize 
the Opel-aIillg co~t, O1" any c01nbiuation of these. Tile peff01nlance 
of MPC relies heavily on the quality of the process model, and de- 
veloping or idelNfying a valid process model is a major part of the 
work required to inlpleraent MPC. 

Models based on first principles represent the process by a set 
of equations (linear and/or nonlinear ordinary and partial differen- 
tial equations, and algebraic equations) derived from conservation 
laws and knowledge of the process. The model form is well esta- 
blished, but values of a few parameters have to be either estinlated 
from data or derived from physical laws in order to make predic- 
tions using such models. Models constmcted in this fashion are 
known as pararaetric models. 

In conlrast, nonparametric models comprise an arbitrary but us- 
uaUy very flexible model sb-uctta-e involving nunlerous parameters 
which must be estimated from ample process data. The key advan- 
tage of nonlmmmetric models are that little or no a priori  knowl- 
edge of the process is required, file developnlent time f01 file raod- 
el can be quite short compared to the first principles approactg and 
prediction using the identified model is rapid because sets of eq- 
uations do not have to be solved f01- each new input vector. A pro- 
cess can not wait several seconds for the optimization problem to 
be solved if it reqtm-es c011troller action ilnraediately. 

When posed as an optimization problem, MPC uses the pro- 
cess model as a cons1iaint in evaluating the trajectory of the pro- 
cess accordkg to some objective function. Trax!itionally, file objec- 
tive function is expressed as: 

F 
lJs ^ T =~[y~p(t~+,) y(t~+~)] Q[y~p(t>) y(t>~)] 

j = l  
~%~ 

+ Z AuT(t~+~)R~Au(t~+~) (23) 
j=l 

subject to: 

7~=F(y,u) (24) 

u~,,_<Au(t~+,)_<U~o, (25) 

I/,u(t~+,)l <AU~o~ (26) 

where y,p(t~+) is the vector of set-points of file controlled vari- 
ables and 7)(L+~) is the vector of model predictions of  the con- 
trolled variables at time tk+: (tk is the current time) which is gen- 
erated by the model of the process represented by E P is the pre- 
diction horizon; it defines the time interval for optimizing the pro- 
cess trajectory and how far into file futta-e file process raodel will 
be called on to predict_ 

N,o~, is the number of control moves in a control horizon, C, 
which will be made by file c011troller (C_<P). If C is shorter thml 
the prediction h01izon, file raanipulated variables, u, are assumed 
to remain constant at their last c01nputed values, u(t~+~), for the rc- 
raainder of file preciti011 holJZOll. Q, and l~j are weighlmg raabices 
for each time step along the prediction and control horizons respec- 
tively, mid are usually diagonal raatrices. 
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Eqs. (25) and (26) restrict the changes which can be made in the 
values of the manipulated variables, since for a real process the ma- 
nipulated variables may be limited in range and rate of change by 
physical limitations of the operating equipment. 

As pased in Eqs. (23)-(26), the tuning parameters of MPC are P, 
C, and the weighting matrices, Q and R:. Generally, a longer con- 
trol horizon will make the controller more aggressive as will a 
shorter prediction horizon and vice versa. R: penalizes control 
moves and hence large elements in Rj will make the controller less 
aggressive. There are no generally accepted roles of thumb for se- 
lecting the tuning parameters, but the computation time required 
to perform the optimization will increase as either P or C is in- 
creased Depending on the complexity of  the model used to de- 
scribe the process, the computation time to perform the opfimiza- 
lion may be the lhniting factor in applb/mg MPC, and hence influ- 
ence the selections of the values of P, C, and the type of model it- 
self For stability of such a system when the model is an ANN re- 
fer to Kulawski and Brdys [2000]. 

To demonstrate the use of ERN in control, MacMurray devel- 
oped an ERN raodel based on the work of Patwardhan [1991] who 
modeled a pilot plant packed distillation column (see Fig. 15). A 

feed stream enters the column (with flow rate, feed, and compo- 
sition, xj) between two packed sections (a rectifying section and 
a stripping section) that contain a structured or unstmctured pack- 

ing material which is used to produce and support the liquid-vapor 
interface inside of the coluum. Mass b-ansfer occurs between the 
vapor flowing up and the liquid flowing down the column. The 
vapor exiting at the top of the coluum is condensed, and part of the 
resulting liquid flow is returned to the column at the top (the re- 
flux, rr); the remainder is taken as the distillate product (diat) with 
composition xd  Part of the liquid flow out of the bottom of the col- 
umn is vaporized (vbr) in a reboiler and sent back to the bottom of 
the colurnrt The remainder is taken as the bottoms product with a 
composition of xb. 

The reason that this packed column is of interest is that the pro- 
cess gain changes sign over the operating region shown in Fig. 16. 

Patwardhan's model for the separation of a binary mNmre ofcy- 
clohexane and n-heptane COl~ned two partial differential equa- 
tions, ttn-ee ordinaly differenlial equations, and eight algebraic eq- 
nations, and was used in lieu of data from the ac~ml pilot plant col- 
urml to silnulate data for identificalion of the ERN. The model as- 

Fig. 15. Diagram of a packed distillation column. 
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Fig. 16. Steady-slate output of the VE model with Sulzer packing, 
xf=0.5 and x d = l - x b .  

Stmled: 

�9 equmlolar counter diffusion 
�9 negligible liquid phase mass transfer resistance 
�9 vapor boilup used as an input. 

Inthe identification of the coluran, the feed composition (aj) and 
flow rate (feed) were assumed to be the disturbances, and the ma- 
nipulated variables were the vapor boilup rate (vbr) and either the 
reflux rate (rr) or the distillate rate (d~). Since the level in the con- 
denser di-um was held constant, the value of the distiUate rate de- 
termined the value of the reflux rate and vice versa. Various ERN 
models were used to predict the distillate and bottoms composi- 
tions, xd andxb, respectively, the cor~xolled variables. Patwardhaffs 
VE model was deemed to be the '~rue" process, and his code was 
used to generate the deterministic training and test data for the 
ANN modeling. The operation and design parameters of the col- 
umn used were identical to those used by Patwardhan. 

Data for the training and data sets used to eslknate the weights 
in the ERN were generated by making step changes in the feed 
variables and recording the response of the exit comlmsitions every 
60 s (the tune constant in this region of operations was approxi- 
mately 4000 s). Two PI controllers were used to change the manip- 
ulated variables to states such that the distillate and bottoras con> 
positions would retom to their set points after the disturbances in 
the feed had been introduced. Because of the relatively low volu- 
metric hold up in the packed sections of the colunm and the man- 
ner in which the ~ u e "  model was implemented mathematically, 
there was virtually no dead time associated with the response of  
the outputs of the column when changes were made in any of the 
disturbances or manipulated inputs. 

Gaussian randora noise with a cocfficient of variation of 0.01 
for each of the four input and two output variables was added to 
the deterministic measurements to represent measurement noise. 
All  of the resulting data were scaled into the range of zero to one 
in order to prevent scaling problems during training of the ERN, 
and also to insure a fair influence of  each of the output variables 
when the objective fimction was computed To give the precision 
needed, the final sizes of the training and test sets comprised 8333 
data points each. 
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Because Patwardhan's model (which represented the actual col- 
umn well) took too long to solve for tile pulpase of  control, one 
of  his simpler approximate models developed for control (the Z 
model) comprised of one ordinary differential equation and three 
nonlinear algebraic equations was compared to various ERN. Tile 
result of control using the ERN shown below are for a model with 
2 recun-e~lt inputs to die hidden nodes, 15 hidden nodes, and a total 
of 197 weights. This particular model represented the best bal- 
ance between representing the steady state and t a s t e @  state data 
Sinlultaneously. In practice it is passible that a network which 
modeled the dynamics very well and the steady state very poorly 
(or vice versa) could be selected over a network which modeled 
both the dynamics and steady state moderately well. 

Fig. 17 shows the response of  one column output, the distillate 
composition, to two changes in tile setpoint. Some slight steady 
state offget occurred with the ERN network for the bottoms com- 
position as shown in Fig. 18 as might be expected to occur in prac- 
tice because of mismatdl between tile model used by tile controller 
and the acttml process (e.g. the parameters for the mass transfer eq- 
uations will not be exactly correct). 

To reduce the steady state offset, a simple error feedback scheme 
was added to the model predictive controller. Use of the Z and 
ANN models for 5/IPC was also compared when measured distur- 
bances were introduced into the feed flo~wate. Fig. 19 shows that 

Fig. 17. Response of the distillate composition under MPC to set- 
point changes using the Z and ERN models. 

Fig. 19. Response of the distillate composition for MPC using the 
Z and ERN models after step disturbances in the feed 
flowrate. 

the ERN model (with file error feedback scheme mlpleraented) 
provided substantially better control performance than did the Z 
model. 

WHAT ARE THE FUTURE PROSPECTS FOR ANN? 

Many competing types of  models exist for process modeling 
besides ANN. A number of the advantages and disadvantages of  
using ANN have been discussed in previous sections. For pro- 
cesses too complex to be modeled by a first principles model, not 
well understood, or that take too long to model with various em- 
pirical models, an ANN model might be a very effective choice 
for a model. Because ANN work best when interpolating, the need 
to collect suitable data and die time required to train file nets re- 
present the two disadvantages in using ANN. On the other hand, 
in principle ANN would involve less model mismatch for a real 
process and would reduce the computation time to predict outputs 
from inputs. Some process design and operation simulators, such 
as those by Pavilion Technologies, Inc., already incorporate ANN 
based on the argument that an engineer can model a process quick- 
ly from the process data alone. Prolmbly the arrival of  more val- 
idated software that use ANN as part of a state and/or dynamic 
process flowsheefing code will be needed if practicing engineers 
are to use ANN extensively in die next decade. 
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