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Applications of Artificial Neural Networks in Chemical Engineering
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Abstract—A growing literature within the field of chemical engineering describing the use of artificial neural networks
(ANN) has evolved for a diverse range of engineering applications such as fault detection, signal processing, process
modeling, and control. Because ANN are nets of basis functions, they can provide good empirical models of com-
plex nonlinear processes useful for a wide variety of purposes. This article describes certain types of neural networks
that have proved to be effective in practical applications, mentions the advantages and disadvantages of using them,
and presents four detailed chemical engineering applications. In the competitive field of modeling, ANN have secured a

miche that now, after one decade, seems secure.
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INTRODUCTION

Traditional approaches of solving chemical engineering prob-
lems frequently have their limitations, as for example in the mod-
eling of highly complex and nonlinear systems. Artificial neural
networks (ANN) have proved to be able to solve complex tasks
in a number of practical applications that should be of interest to
you as a chemical engineer. This paper is not a review of the ex-
tensive literature that has been published m the last decade on ar-
tificial neural networks nor is it a general review of artificial neural
networks. Instead, it focuses solely on certan kinds of ANN that
have proven fruitful in solving real problems, and gives four de-
tailed examples of applications:

1. fault detection

2. prediction of polymer quality
3. data rectification

4. modeling and control

For those who want more information, Appendix A is a partial list
of the many applications of ANN to chemical engineering prob-
lems, but space prohubits a review of these and the many other ar-
ticles that have been published in the last 10 years. A good start to
review ANN in general would be the Handbook of Newral Com-
putation [Fiesler, 1996] and Statistics and Newral Net Users [Kay
and Titterington, 20001].

What are the advantages people see m using artificial neural net-
works in constrast with first principles models or other empirical
models? First, ANN can be highly nonlinear, second the structure
can be more complex, and hence more representative, than most
other empirical models, third the structure does not have to be pre-
specified, and fourth, they are quite flexible models. We will men-
tion some of the disadvantages later on!

An ANN forms a mapping F between and input space X and an
output space Y. We can distinguish three different kinds of map-
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1. Both the mput and output spaces are comprised of contimious
variables, a typical case of process modeling;

2. The input space is comprised of continuous variables whereas
the output space is comprised of a finite set of discrete variables
as in1 classification and fault detection;

3. Both the wmput space and the output space are comprised of
discrete variables that are mapped in so called associative nets (that
will be ignored in this article).

Tn what follows we first discuss the concept of artificial neural
networks, and explamn how their parameters are identified. Then
we specifically describe feedforward nets, recursive nets, and radial
basis function nets, the nets that comprise the major types of nets
reported i the hiterature and used m practice. Fmally, we give some
detailed examples of the application of ANN to common chemi-
cal engineering problems.

ARTIFICTAL NEURAL NETWORKS (ANN)

As the term artificial neural networks implies, early work in the
field of neural networks centered on modeling the behavior of neu-
rons found m the human bram. Engineermg systems are consider-
ably less complex than the brain, hence from an engineering view-
point ANN can be viewed as nonlinear empirical models that are
especially useful in representing input-output data, making predic-
tions in time, classifying data, and recognizing patterns. Appendix
A lists munerous articles I selected from the literatire describing
applications of interest to chemical engineers.

To read the literature on the theory and application of artificial
neural networks, you have to become familiar with the prevalent
jargon, a jargon that is somewhat foreign to engineering.

Fig. 1 shows the basic structure of a single processmg unit in an
ANN which will be referred to as a node in this work and is anal-
ogous to a single neuron in the human brain. A node receives one
or more input signals, 1, which may come from other nodes or
from some other source. Each mput 1s weighted according to the
value w,, which is called a weight. These weights are similar to the
synaptic strength between two connected neurons i the humen
brain. The weighted signals to the node are summed and the result-
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Fig. 1. Structure of a single processing node.
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Fig. 2. Plot of the sigmoid transfer function.

ing signal, called the activation, h, is sent to a transfer function, g,
which can be any type of mathematical fimetion, but 1s usually tal-
en to be a simple bounded differentiable function such as the sig-
moid (Fig. 2). If the function g is active over the entire input. space,
1t 18 termed a global transfer function m constrast with radial basis
functions (to be described subsequently) that are Jocal functions.
The resulting output of the node O, may then be sent to one or
more nodes as an input or talken as the output of an ANN maodel.
A collection of nodes connected to each other forms the artifi-
cial newral network. Cybenko [1987] and numerous subsequent ar-
ticles have shown that various networks of such functions can ap-
proximate any input-output relation to the desired degree of accu-
racy (m the limit exactly). Of course, how many nodes to use can-
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Fig. 3. Structure of a Iayered neural network.
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not be prespecified, but refer to Baum and Haussler [1988] for
some ideas. Fig. 3 13 en example ANN. You can find numerous
other architectures in the literature; Lippmann [1987] documents
at least 50 other networl configurations. Hybrid nets, that is nets
composed of different or similar ANN, or nets cormected to other
types of models that are not ANN, cannot be discussed here, but
a considerable Literature exists for various types of architectures.

A group of nodes called the input layer receives a signal from
some external source. In general, this input layer does not process
the signal unless it needs scaling. Ancther group of nodes, called
the cutput layer, retum signals to the external environment. The re-
maining nades in the networl, are called Aidden nodes because
they do not receive signals from or send a signal to an external
source or location. The hidden nodes may be grouped into one or
more fidden layers. Bach of the arcs between two nodes (the lines
between the circles in Fig. 3) has a weight associated with it. Fig.
3 shows a layered network in which the layers are fully connected
from one layer to the next (mput to hidden, ludden to ludden, ud-
den to output). Although this type of connectivity is frequently
used, other patterns of connectivity are possible. Conmections may
be made between nodes in nonadjacent layers or within the same
layer, or feedback connections from a node in one layer to a node
m a previous layer can also be made. This latter type of comec-
tion 18 called a recurrent connection to be discussed below and, de-
pending on the type of application for which the networl is being
used, such a connection may have a time delay associated with it

Another part of the jargon associated with ANN models relat-
es to moedel 1dentification Generally, there 13 no direct analytical
method of calculating what the values of the weights are if a net-
worl is to model a particular behavior of a process. Tnstead the net-
work must be trained on a set of data (called the training sef) col-
lected from the process to be modeled. Training is just the pro-
cedure of estimating the vahies of the weights and establishing the
network structure, and the algorithm used to do this is called a
“leaming” algorithm. The learing algorithm is nothing more than
some type of optimization algorithm. Once a network 15 tramed,
it provides a response with a few simple calculations, one of the
advantages of using an ANN instead of a first principles model in
cases for which the model equations have to be solved over and
over again.

A key difficulty with optimization for neural network problems
is that multiple minima occur (see Fukuoka et al. [1998]). Since
most training procedures used for neural networls typically find
local mimma starting from randomly selected startmg guesses for
the parameters, it should be expected that local minima of vary-
ing quality will be found. While use of a global optimization pro-
cedure, such as genetic algorithms, branch and bound, or simulated
annealing, might thus appear to be called for, the training time for
such algorithims expands to an unacceptable degree. Consequently,
satisfactory representation of data rests on the use of one local min-
imum achieved in a reasonable time.

Regardless of what tramming algorithm 1s used to calculate the
values of the weights, all of the training methods go through the
same general steps. Fust, the available data 15 divided mtto a tram-
ing and test set(s). The following procedure is then used (called
“supervised learning”) to determine the values of weights of the
network:
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1. for a given ANN architecture, the values of the weights in the
network are imtialized as small random numbers;

2. the inputs of the training set are sent to the network and the
resulting outputs are calculated,

3. some measiure (an objective fimction) of the error between the
outputs of the networle and the known correct (target) values is cal-
culated;

4. the gradients of the objective function with respect to each of
the individual weights are calculated,

5. the weights are changed according to the optinization seerch
direction and step length determined by the optimization code;

6. the procedure returns to step 2;

7. the iteration terminates when the value of the objective func-
tion calculated using the data in the test set starts to increase.

The type of objective function that is typically used in a training
algorithm will be discussed subsequently below.

If target values are not known so that the learmmmg goal 15 not de-
fined in terms of specific correct examples, a procedure called “un-
supervised learming™ that 13 analogous to classification in statistics
can be employed A net will then produce output signals corre-
sponding to the established input category, i.e., extract features
from seemmgly unstructured data. We will not discuss this type of
training,.

The purpose of partitioning the available data into the a train-
mg and test set 1s to evaluate how well the network generalizes
(predicts) to domains that were not included in the training set. For
non-trivial problems you probably cammot collect all of the possi-
ble input-output patterns needed to span the input-cutput space for
a particular behavior or process to be modeled. Therefore, youhave
to train the network with some subset of all of the possible wput-
output patterns. However, the training set must be representative of
the domain of interest if you expect the network to leam (interpo-
late among the data) the underlying relationships and correlations
in the process that generated the data. Tf not, the net may not pre-
dict well for similar data, and may predict poorly for completely
novel data (extrapolate). Noise in the data surprisingly automati-
cally provides some smoothing, namely by adding the absolute
value of the first denivative of the objective fumction as a penalty
to the objective function. By holding some of the data back from
the traming phase to comprise a test set, you can evaluate how well
the neural network can generalize by examining the value of the
prediction error to the test set.

For three reasons you often need to carry out some type of un-
supervised preprocessing of the data to be used in identifying a
networlk so that you can

1. reduce the dimensionality of the data (feature extraction), and
thus the complexity of the net used to represent it along with the
correlations among variables;

2. transform the data into a more suitable format for processing
by the net;

3. eliminate or reduce auto correlation for each variable.

FEED FORWARD NETWORKS

Three layer (sometimes called two layer) feed-forward artificial

Qutputs

Output Layer

Hidden Layer

Input Layer

Inputs

Fig. 4. Graph of the information flow in a feed-forward neural
network. Circles represent computation nodes (transfer
functions), and lines represent weighted connections. The
bias thresholding nodes are represented by squares.

neural networks are commonly encountered models in the litera-
ture (see [Fine, 1999]). Computation nodes are arranged in layers
and information feeds forward from laver to layer via weighted
connections as lustrated n Fig. 4. While the neural network liter-
ature uses jargon such as training patterns, test sets, connections
weights, and hidden layers, for modeling involving ANN, here we
formulate artificial neural network models in terms of classical
nonlinear system identification. Graphs of the network information
flow help explam the more formidable equations.

Mathematically, the typical feed-forward network can be ex-
pressed as

¥=¢[Co(Buth,)th,] (1

where ¥, 13 the output vector caresponding to mput vector u, C
is the connection matric (matrix of weights) represented by arcs
from the hidden layer to the output layer, B is the connection ma-
trix from the mput layer to the ludden layer, and b, and b, are the
bias vectors for the hidden and output layers, respectively. @ - )
are @ -) are the vector valued functions corresponding to the acti-
vation (tramsfer) functions of the nodes m the ludden and output lay-
ers, respectively. Thus, feed-forward neural network models have
the general structure of

y=Mu) @

where f{ - ) 13 a nonlmear mappmg. Hence feed-forward neural net-
works are structurally similar to nonlinear regression models, and
Eq. (2) represents a steady state process.

To use models for identification of dynamic systems or predic-
tion of time series, a vector comprised of a moving window of past
mput values (delaved coordinates) must be mtroduced as mputs
to the net. This procedure yields a model analogous to a nonlinear
finite impulse response model where

Y=yandu=[uw.u_, . u_Jory=flu u_. . .. «_]. (3

The lengths of the moving window must be long enough to cap-
ture the system dynamics for each vanable m practice. In practice,
the duration of the data windows are determined by trial and error
(cross validation), and each mdividual mput and output variable
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might have a separate data window for optimal performance.

If you use windows of past mputs and outputs n feed-forward
neural network models for dynamic modeling, the nets tend to be
very large with the result that they include hundreds of parameters
that have to be estimated. Each additional mput to the neural net
model adds greatly to the size of the networl and the number of
parameters that must be estimated. As a specific example, if the
input vector at time £ consists of 4 different variables, and the num-
ber of past values of each is selected to be 6, the net must contain
24 mput nodes. If this hypothetical network were to have 12 lud-
den nodes and 2 output nodes, the total number of parameters to
be estimated, inchuding the bias terms, would total 326. The large
number of parameters necessitates large quantities of training or
identification data, and slower times for identification.

RECURRENT NETWORKS

Recurrent Neural Networks (RINN) have architectures smmilar
to standard feed-forward Artificial Neural Networks with layers
of nodes connected via weighted feed-forward connections, but
also include time delayed feedback or recurrent connections in the
networle architecture. Examine Fig. 5.

Recurrent neural network models have the same relationship to
feed-forward neural networle models as autoregressive/infinite im-
pulse response models have to moving average/finite impulse re-
sponse models. RNN provide a more parsimomous model struc-
ture of reduced complexity because the feedback connections large-
ly obviate the necessity of data windows of tine lagged mputs.
RNN also have a direct nonlinear state space interpretation use-
ful in optimal estimation as discussed below.

Two mdividual varations of recurrent neural network architec-
tures are commonly employed. The first is called an Tntemally Re-
current Networle (TRN), that is characterized by time delayed feed-
back connections to the hidden nodes. Examine the connections
in the hidden layer in Fig. 5. The remainder of the network com-
pose a standard feed-forward architecture. This structure 1s also
known as an Elman network [Elman, 1990].

Hidden Layer

Input Layer

Inputs
Fig. 5. Representation of internally/externally recurrent neural
networks. Circles represent computation nodes, lines re-
present weighted connections, z indicates time delay. For
clarity not all recurrent connections are shown and bias
nodes are omitted.
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Externally Recurrent Networles (ERN), on the other hand, con-
tain time delayed feedback commections from the output layer to
the hidden layer You can also envision a hybrid recurrent network
which contains both types of recurrent connections, and might be
described as an Internal-External Recurrent Network (IERN) such
as the network pictured in Fig. 5. Simulation studies, both pub-
lished and unpublished, have indicated no clear advantage of using
an TRN versus an ERN;, or even an TERN, for dynamic modeling.
Both TRN and ERN models seem to be equally satisfactory in
most process modeling applications.

Another possibility is to include a moving window of past out-
puts along with the past inputs to the network

YAy Yo o ¥ WU, 0 ]) C)]

analogous to a more general nonlmear time series model.

If we allow the vectors u,, x,, and y, to denote the vector out-
puts of the input, hidden, and output nodes, respectively, at time
t, we can formulate an IR network as a discrete time model

X, =0 Ax+Bu+h) (5
Yu=0{Cx,th)) Q]

where and ¢, - ) are @+ ) are the vector valued functions corre-
sponding to the activation functions in the hidden and output lay-
ers, respectively. In most applications the scalar elements of the
Gaussian activation function for each hidden node are

o w=exp( ) ™

where v, s the total mput to each node. Usually all the elements
are made identical for simplicity. Linear activation functions are
typically used in the output layer. The matrices A, B, and C are the
matrices of commection weights for the hidden to lndden recurrent
connections, input to hidden, and hidden to output connections, re-
spectively, and the vectors b, and b, are the bias vectors for the
hidden and output layers. By posing the TRN model in the above
form we see that this type of recurrent neural network is a non-
linear extension of the standard linear state-space model i which
the outputs of the hidden layer nodes, x, are the states of the model.

Tn a similar fashion we can write nonlinear state space equations
for the ERN. Whereas in the IRN model the states are the out-
puts of the hidden nodes, in the ERN model the states are the out-
puts of the nodes n the output layer so that the state space eq-
uations are

X =0 [Co DX +Bu+h,)+h, 3]
[ ) (9)

where the matrices B and C and vectors b, and b, have the same
meaning for the ERN as the IRN, and the matrix I 1s the matrix
of weights for the recurrent connections from the output layer at
time t—1 to the inputs of the hidden layer at time t.

Although the ERN and IRN can extubit comparable modeling
performence, they have different features that may make one more
desirable than the other for a particular process. Just like the con-
ventional lmear state space model, the IRN does not have any struc-
tural limit on the number of model states because the number of
hidden nodes can be freely varied. The ERN, however, can only
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have the same number of states as model outputs because the out-
puts are the states. The IRN thus tends to be more flexible m mod-
eling. The ERN has the advantage that the model states have a
clear physical interpretation in that they are the variables of the
process itself, whereas the states of the IRN are hypothetical and
neither unique nor canonical.

Smee both types of models have been posed as difference eqg-
uations (rather than differential equations), to complete the model,
a vector of initial values of the model states must be specified. Tn-
tialization of ERN models 1s simple because the user can observe
the current values of the process output and use those values to in-
itialize the states. Just as with linear state space models, TRN mod-
els are more difficult to initialize as the states lack physical mean-
ing. In applications you usually initialize the states of TRN mod-
els with the median value of the activation function of the lndden
nodes (0.5 if the activation function ranges from 0 to 1.0). Tnaccu-
racies in the state initialization typically result in initial inaccuracies
m the model predictions, but these die out m a time of the order of
the dominant time constant of the process being modeled. Such
startup transients can be minimized by holding the network mputs
constant using the mnitial input vector and cycling the TRN model
until the states and hence the output of the network becomes con-
stant. This 18 equivalent to assuming that u,=u, for all t<0.

SELECTION OF THE SPECIFIC ARCHITECTURE OF
AN ANN

Once you decide on a particular category from which to select
an ANN for your application, you still must determine the specific
details concerning the structure of the nodes (transfer functions)
and the cormections between them. No general theoretically based
strategy exists to carry out this task, but numerous strategies have
been proposed. Refer to van de Laer and Henkes [1999] and the
references therein or to Reed [1993]. An appropriate size network
should exhibit:

1. Good “generalization”, i.e., prediction for new data, by avoid-
ing under- and over-fitting

2. Computational efficiency; the smaller the network, the fewer
the parameters, less data is needed, and the identification time is
less.

3. Interpretation of the input-output relation is so far as possible.

Because ANN are not uruque, that 1s marty nets can produce 1den-
tical outputs from prespecified inputs, and many different goals can
be deemed “best”, searching for the “best” net in some sense is
rarely an efficient use of yvour time. A “satisfactory” net is all that
you need to make predictions or classify data.

If you choose to start the tramming (1dentification) with more
nades and connections than you eventually plan to end up with,
the net will contain considerable redundant information after the
training terminates. What you should do then 13 prune the nodes
and/or links from the network without significantly degrading per-
formance. Prunming techmques can be categorized mto two classes.
Omne 15 the sensitivity method [Lee, 1991]. The sensitivity of the
error function is estimated after the network is trained. Then the
welghts or nodes which relate to the lowest sensitivity are pruned.

The other class is to add terms to the objective function that prune
the network by driving some weights to zero during traming [Kam-
ruzzom, 1992; Reed, 1993]. These techniques require some pa-
rameter tuning which is problem dependent to obtain good per-
formance. An altemate approach to bulldng a net (the “growing”
technique) is to start with a small number of hidden nodes and add
new nodes or split exasting nodes if the performance of the net-
worl is not satisfactory. Pruning is identical to backward elimina-
tion and growing to forward selection in regression.

You can apply principal component analysis, or the Karlnmen-
Toeve transformation, to your data set to reduce the number of in-
puts to a net, and hence reduce the size and structure of the net.
The transformed coordinates can be arranged in order of their sig-
nificance, with the first being the components corresponding to the
major eigenvectors of the correlation matrix (largest exgenvalues).
A major weakness of these methods is that they are not invariant
under a transformation of the variables. For example a linear scal-
mg of the mput variables (that may be caused by a change of urits
for the measurements or by scaling needed for identification) is
sufficient to modify the PCA results. Feature selection methods
that are sufficient for simple distributions of the patterns belonging
to different classes can fail in classification tasks with complex de-
cision boundaries. In additon, methods based on a linear depend-
ence (such as correlation) cannot talke care of arbitrary relations
between the pattern coordinates and the different classes.

PARAMETER IDENTIFICATION

If you choose one of the Recurrent Neural Networle (RNN)
structures as a model, Egs. (5) and (6), or (8) and (9), how do you
estimate the values of the parameters (the weights) of the net-
work? The standard way from the perspective of investigators us-
ing neural networks is to train the networks to reproduce the de-
sired dynamic behavior using the backpropagation-through-time al-
gorithm [Hertz, 1991 ]. Closer examination of this technique reveals
that what 13 really being carried out 1s conventional prediction error
estimation [Lyung, 1987] which will be briefly described here.

Let the parameters vector in the RNN nonlinear state-space
model be denoted by 8 where

B={A; B;C;b;b} (10)
for the IRN model and
6={B,C;D;b,; b} {an

for the ERN model. Let the vector of prediction errors of either
model be

e(0)=y,~5,8) (12)

where y, is the vector of observed cutputs and ¥,(8) is the vector
of predictions from the model. The observed data from the pro-
cess being modeled is the set of mput-output vector pairs

Z'={y, u;¥, W, .., ¥, W; ..., ¥, Uy} (13)

where N 1s the number of data samples end u, 15 the process mput
vector. The goal in prediction error identification is to minimize the
prediction errer of the model for the data set Z by adjusting the
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parameter vector 8, i.e.
1 n
min J(8.2") - Y /(8)£(6) (14)
£=1

Eq. (14) is the standard unweighted least squares objective func-
tion. When working with data contaiing outliers it 1s often more
robust to use

min 10, 2) = 34(c(6)) (15)
& N=Z
where the function £(€) is a positive, scaler function such as

£(e)=lel or C(e)=log( 1+ 1¢

Because ANN models are nonlinear in the coefficients, iterative
methods must be used to minimize Eq. (14). The backpropagation
algorithm 1s a gradient descent scheme that 15 well suited for per-
alle] implementation in hardware as each stage uses only local in-
formation about the mnputs and outputs of each activation node.
For calculations on a serial computer, more efficient optimization
techniques such as the BFGS or conjugate gradient algorithms are
preferred. Although analytic formulation of the gradients of 1(8,
Z") with respect to 8 given the specific equations for the ANN is
quite complex because of the existence of state feedback in recur-
rent nets, use of the gradient calculation as done m the BP algo-
rithm [Hertz, 1991, Werbus, 1990] is both intuitive and computa-
tionally efficient. Analytical gradierts of the objective function cen
be combined with an efficient quasi-Newton optimization code
such as NPSOL in MATLAB or GRG2 in Excel to yield rapid pa-
rameter 1dentification. We do not recommend trying to program
the parameter identification code; instead use a commercial code
focusing on ANN.

The parameter estimation scheme described above is known
as prediction error estimation. An inherent assumption underlying
this strategy 1s that the process output measuremerts, ¥, only con-
tain additive white noise (noise uncorrelated in time) while the pro-
cess inputs are assumed to be deterministic. In reality, these as-
sumptions are rarely met, and it can be shown that even when sim-
ple linear regression is used to model a steady-state process, the
presence of noise 1 the mdependent variable will yvield biased pa-
rameter estimates and biased predictions. Noise in the inputs is
also a serious problem in the identification of linear dynamic mod-
els because when the effect of mput noise 13 neglected, and 1t ex-
ists, prediction error methods cannot give consistent parameter es-
timates. If the noise characteristics of the process measurements
are knowr, this problem can be ameliorated to a degree, but m gen-
eral how to resolve the problem is still open. For nonlinear, non-
parametric system identification such as for ERN or IRN, the prob-
lem of bias similary exists, and is further complicated by the non-
linearity of the madel. Tn the case of nonlinear systems modeled
by parametric models, various types of lmearization based error-mn-
the-variables methods have been proposed [Kim et al., 1990]. Sim-
ilar methods could be applied to neural network models if model
bias became a serious problem.

Another problem with using the prediction error method has to
do with the uncertainty associated with predicted output values.

July, 2000

You cannot assume the values are not autocorrelated even if the
residual errors are normally distnbuted, hence any confidence lim-
its you place on the outputs must be developed with care.

THE BIAS/VARTANCE ISSUE

The great strength of neural networks, m general, 15 their ability
to “leam” (represent) arbitrary mappings through their role as non-
parametric estimators. This strength is also a weakness because in
fitting mput-output data, a large number of weights must be ad-
justed during training. Tf we consider the problem to be one of
forming an estimate y=f{x; D), of an unknown model, E[y|x], giv-
en a training set D={(x,, ¥, ) ..., (X ¥)}, the mean square estima-
tion error between the function we create and the actual model is

E[(f(x; D)—E[y/x]F]=(E[(flx; D)]-E[y[x]’
+E[(ftx; D)-E[f(x; D)]¥] (16)

for any arbitrary x and all possible realizations of D. The first term
on the right hand side of the equality sign is the square of the bias
between our estimate and the unknown model, and the second
term is the variance of our estimate, 1.e.

{estimation error¥=(bias)*+variance (17

thus decomposing the estimation error info bias and variance com-
ponents. A trade-off exists between reducing bias and variance in
estimation theory [Goman et al., 1992; Moody, 1994]. A simple
parametric model with few parameters may show low variance in
the estimation error but mtolerable bias m its predictions due to en
mability to capture the complexity of the system being modeled
A traditional feed-forward neural network with hundreds or thou-
sands of weights may have very low bias but lugh vanance due to
over-fitting of the noisy training data. The goal is to minimize both
bias and variance. You may be able to reduce variance by using
larger and larger training sets, and to reduce bias by increasing size
of the networl,, making a large optimization problem quite difficult
to solve. But a more common approach to the control of estima-
tion bias and variance in modeling feedforward ANN is that of
periodic stopping during training and using cross validation to eval-
uate the residual error. When the residual error no longer decreases,
training is stopped and the weights (coefficients) are fixed. This
procedure 1s a form of regulanization and is discussed from a sys-
tem identification perspective in [Sjoberg and Ljang, 1992]. Other
methods of controlling both bias and variance in neural network
models mclude reducmg the number of weights through primmng
or slowly allowing the network to grow while training to prevent
over-parameterization.

Recurrent networls alleviate many of the problems of over-fit-
ting and the need for large training sets characteristic of feedfor-
ward networks when applied to modeling dynamic processes.
The absence of a need for a history window for each input variable
as well as fewer hidden nodes translates into significantly fewer
weights and less chance of over-fitting for a given data set. In-
corporation of prior knowledge about the process to be modeled
mto the neural net as in Ungar’s work [Psichogious and Unger,
1992] may allow the parameter count to be reduced even further.

MODEL VALIDATION
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Fig. 6. The autocorrelation function for white noise.

Comelation

Model validation 18 an important part of system identification.
Although a large number of statistical hypothesis tests and evalua-
tion critenia have been developed for linear, steady-state systemns,
the problem is much more complicated for nonlinear, dynamic sys-
tems. A simple criterion of model validity is the value of the ob-
jective function J( 0, Z") when the medel is applied to a data set
() different than the data set (Z") used for system identification.

However, such a criterion does not distinguish between error
caused by model mismatch (bias) and the error due to data corrup-
tion. More sophisticated tests are based on correlational analysis in
which you examine the prediction errors, £(8). If a non-linear, non-
parametric model is adequate and unbiased, then the prediction er-
rors should be uncorrelated with all linear and nonlinear combina-
tions of past mputs and outputs [Billings and Varn, 1986]. This
outcome can be determined using the normalized cross-correlation
function

~ zi:r\lﬂ (t)‘V2 (t_ T)

Ppml(T)= (18)

[EL WO w]
Here (AI);mﬁ is the normalized cross-correlation between two vari-
ables (time series Y/, and ), 7 is the time shift, and # is the time
mdex. You can plot the ¢,,,,(T) as a function of T for both positive
and negative time lags. Examine Fig. ¢ which is an example of
&)Wl(’c) when W, 13 a white noise sequence, and exhibits negligi-
ble autocarrelation. Because the estimated correlations will never
be exactly zero, approximate 95% confidence bands can be drawn
as +1.96/4N for large N to mdicate if the correlations are sigm-
ficant. For multivariate, nonlinear models it is of course impractical

to check every possible cross-correlation, but the auto and cross-
correlations should be caleulated for the residuals as a minimal
check on model validity.

RADIAL BASIS FUNCTION NETWORKS

If you view ANN such as shown m Figs. 4 and 5 as providing
system outputs that result from a fimite sum of weighted outputs of
nenlinear functions formmg the hidden nodes, then mumerous net-
works are analogous to ANN. One type 15 the radial basis func-
tion networle (RBFN) which was first used for process modeling
by Chen et al. [1990]. Lee et al. [1999] and Gurumoorthy and

OUTPUTS

INPUTS
Fig. 7. Structure of the radial basis functions network.

Kosanovich [1998] review some of the theory (existence, unicue-
ness, stability etc). The structure of a RBFN (Fig. 7) differs from
ann ANN i that the mputs to the network are fed directly mito the
hidden nodes through comnections with unity fixed weights. Each
node represents only a limited range of the total range of an mput
variable, hence 15 a local function. The transfer function of each
hidden node is a radial basis function (RBF) usually Gaussian or
ellipsoidal:

g(l):exp[—“%“f) (19)

where I denotes the vector of inputs to the node, ¢ is a vector
which centers each function of the RBF m the mput space, G 1s a
“span” parameter, and || - || a vector norm. Note that the output of
this radial basis function is 1 when I=c and drops off to zero as I
moves away from ¢ (figuratively shown by the sketches m the cir-
cular node symbols in Fig. 7). The outputs of the hidden nodes are
then sent to an output layer through a layer of weighted connec-
tions. The weighted signals are summed, and the sum forms the
output of the networls, i.e. the transfer functions in the output layer
are lmear. The sum of overlappmg functions g) form a smoothed
representation of data as do ANN, and have been shown to be
capable of universal approximation [Frombe, 1988].

Two major advantages exist for this type of network structure.
First, using established numerical methods for clustering (group-
mg) data, the values of ¢ can be calculated for each ludden node.
Selection of the number of hidden nodes is a complex problem in
clustering. The values of G can be arbitrary or evaluated (separate-
ly from ¢) by sunple optimization. The weights to the output layer
can be calculated directly during training by linear regression be-
cause of the linear relations between output nodes and the outputs
of the radial basis functions. Thus, the time to tramn the network 1s
much shorter than for ANNs. Second, if a unique new input vector
18 encountered 1n testing, the network output will go to zero be-
cause of the local properties of the RBF in Eq. (19). This is a ma-
jor advantage over most other networle types since neural networks
generally extrapolate for new nputs very poorly. While RBFIN
suffer from this same problem, at least they are capable of detect-
g when the network 1s being asked to extrapolate.

One major disadvantage of RBEN 1s that like ANN tine must
be explicitly incorporated into the structure by using a window of
past process mputs and outputs as the mputs to the network. Un-

Korean J. Chem. Eng.(Vol. 17, No. 4)
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Fig. 8. A typical heat exchanger. I, =F; and F,=F, for the example.

Table 1. Prespecified data for the normally operating heat ex-

changer
Stream 1 Stream 2 Stream 3 Stream 4
Temperature, T (K 533 977 708.2 599.8
Flow rate, F (kg/hr) 9080 4086 9080 4086
Pressure, P (kPa) 207 345 148 236

fortunately, with RBFN, the size of the netwaork scales exponen-
tially with the mumber of inputs to the networle. Each of the hid-
den nodes represents a bunp m the wmput space, and the munber of
bumps required to model a process over the entire space rises ex-
ponentially with the dimension of the input space. Even for steady
state models, RBFN become mmpractical with more than 4 or 5 -
put variables.

We now present four examples of applications of ANN m typi-
cal chemical engineering processes.

EXAMPLE 1. FAULT DETECTION USING AN ANN

This example from Suewatanalcul [1993] demonstrates the use
of a feedforward ANN to detect faults in a heat exchanger. Fig. 8
is a sketch showing the input and output measurements of an ex-
changer. The temperature and flow rate deviations from normal
were deemed to be symptoms of the physical causes of faults. The
two physical causes considered faults here were tube plugging and
partial fouling m the heat exchenger mternals. The diagnostic abil-
ity of a neural network is compared with Bayesian and KNN clas-
sifiers to detect the mtermnal faults.

Rather than using data from an operating heat exchanger, the
Simulation Sciences code PROCESS was used to generate data
for clean emd fouled conditions for a steady state counter-current
heat exchanger. To generate the data for both the clean and faulty
conditions, a data file for each faulty (and normal) condition was
prepared. Information about the thermodynamic properties of the
streams, the fluid and exchanger physical properties, the configura-
tion of the heat exchanger, the number of tubes, the size of the
tubes and shell, and the fouling layer thickness in the tube and
shell sides (for fouled conditions) was prespecified. Table 1 lists
the physical data and the normal parameters for the heat exchanger.

Tube side:

Feed: mixture of water: ethyl benzene: styrene of composition
{(weight percent)

July, 2000

55:25: 20
Number of tubes: 108; length: 4.88 m; outside tube diameter:
3.18 em; thickness: 0.26 cm; tube arrangements: square tube pitch:
3.97 cm; tube-side fouling layer thickness: O

Shell side:

Feed water
inside diameter: 54 cm
shell-side fouling layer thickness: O cm

Baffles:
Number of cuts (segments) for each baffle: single

For the fault of tube plugging (tube-sided only), the degree of
the fault was classified into 4 cases-the number of tubes plugged
was 5, 3,2, and 1. In the study of foulmg (both for the tube-side
and the shell-side), the degree of fouling was expressed as a func-
tion of the decreased cross-sectional area which was also classified
into 4 cases, namely a decrease of 8%, 5%, 3%, and 1%, respec-
tively. To malke the simulated measurements more realistic, two
different levels of normally distributed noise were added to the de-
terministic flows, pressure, and temperatures so that the coeffi-
cients of variation of the noise were 0.02 and 0.01. Fig. 9 illus-
trates a typical feedforward ANN used to classify the respective
faults.

To tram the ANN, each measurement, namely the temperatures
of all four streams (T,, T,, T,, and T,), the two flow rates (F, and
F,), and the pressure drops in the tube and shell size (AP, and
AP, for both the normal (cleany) and faulty states had to be lin-
early scaled to be between the range of —1 and 1. The network was
trained so that 0.9 represented the normal state (ves) while 0.1 re-
presented the faulty state (no). For example, a target output pat-
tern of 0.9 0.9 0.9 represented a pattern in which the heat ex-
changer was cleann The target pattern from a state m whuch there

12 hidden nodles

Qutput lnyer

fouled shell

(If no, output = 0.9
else, output = 0.1)

totally-plugged tubes  fouled tubes
(If no, output = 0.9 (If no, output = 0.9
clse, output = 0.1) else, output =0.1)

Fig. 9. The network architecture used in the training for internal
fault detection (bias nodes are not shown).
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was one or more totally-plugged tube was 0.1 0.9 0.9. The target
output pattermn of 0.9 0.1 0.9 represented a state m which fouled
tubes existed while a target output pattern of 0.9 0.9 0.1 repre-
sented a state in which fouling existed on the shell side. The train-
mg data set contamned 80 patterns each for the four different classes
(a total of 320 training patterns). Another set of 20 patterns for
each class was used for testing the classification capability of the
ANN (a total of 80 patterns). NPSOL was the optimization code
used in the training of the ANN.

In testng the ANN, a threshold value of 0.5 for the output of an
output nade was used as the discrimination criterion for classifica-
tion. If the activation of an output node was greater than 0.5, then
that node was deemed activated and represented a faulty state of
the exchanger. Tf the node value was less than 0.5, then the node
was deemed to be not activated, and the fault was said not to oc-
cur. Table 2 lists the results for one set of runs from the training
and testing of the net.

By way of comparisory, the two tradition classifiers, Bayesian
and k-nearest neighbors (KINN, K=5 in Table 3), were also ap-
plied to the data sets. Table 3 lists the results.

Multivariate hypothesis tests on the means of the measurements
gave much larger rates of misclassification. The conclusion is that
ANN for thus type of analysis are no worse than traditional meth-

ods of classification, and may have some edge.

EXAMPLE 2. PREDICTION OF POLYMER QUALITY
USING AN ANN

This example from Barton [1997] illustrates the use of a recur-

Table 2. Classification rates for the neural network (when the
noise coefficient of variation was 0.02)

Tube plugging:
Number of % correctly classified
totally-plugged tubes Training Testing
3 100 100
3 100 100
2 100 100
1 100 95

Tube-side fouling;

% correctly classified

% area was decreased

Training Testing
3 100 95.00
3 100 93.75
2 98.75 92.50
1 97.50 86.25
Shell side fouling;:

% correctly classified

% area was decreased

Training Testing
3 100 96.25
3 100 95.00
2 98.75 93.75
1 97.50 92.50

Table 3. Classification rates yielded by traditional methods (when
the noise coefficient of variation was 0.02)

Tube plugging
Number of Bayes procedure 5-NN procedure
totally plugged  Training  Testing  Training  Testing
tubes % correct % correct % correct % correct
5 100 100 100 98.00
3 100 100 100 95.00
2 100 98.00 100 92.50
1 100 93.00 100 89.75
Tube-side fouling
Bayes procedure 5-NN procedure
%o area was — , — ,
decreased Training  Testing Training  Testing
% correct % correct % correct % correct
5 100 96.00 100 93.00
3 100 91.50 100 89.00
2 98.75 90.00 98.75 83.00
1 97.50 88.00 97.50 80.50
Shell-side fouling
Bayes procedure 5-NN procedure
% area was — - — -
decreased Training  Testing Training  Testing
% correct % correct % correct % correct
5 100 97.00 100 96.00
3 100 95.00 100 93.50
2 98.75 91.00 98.75 90.00
1 98.75 89.00 98.75 80.50

rent ANN to predict polymer quality in an industrial reactor unit.
Operation and control of industrial polymerization reactors is dif-
ficult because of the lack of reliable and timely measurements of
key polymer product quality variables close to the reactor. Often
product samples must be collected hours downstream from the re-
actor, after the polymer finishing operations. Measurement of these
quality variables is typically performed oft-line in a laboratory and

[ Industrial Reactor ]
Xur
Xar
X3
M¢
X l,o

x5
FF @ X30

-
@

Finishing Secti T
Q, ;

Qe @ ’

Fig. 10. Schematic of an industrial polymerization reactor.
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may not be available for several hours after the sample is delivered
to the lab. Thus, the measurements of the quality variables armive
too late to provide useful feedback for control.

Fig. 10 is a schematic of an industrial polymerization reactor and
subsequent fimishing section. The reactor feed flowrate, FE, and
feed temperature, FT, are measured and the feed stream is analyzed
for the monomer concentration, M, which can be manipulated, and
several key impurities, X, which are disturbances that affect the
product quality. The feed rate for the polymerization catalyst, CA,
18 a manipulated vanable, and 15 also measured. The temperature
in the reactor, T, is measured along with the liquid level, T.. A re-
cycle stream from the reactor is analyzed for unreacted monomer,
M, and the key impurities, X, ... The recycle flowrate, OF, and the
recycle temperature, OT, are measured, but not directly manipu-
lated.

After the polymer product leaves the reactor, it must be pro-
cessed another two to six hours in the finishing section. After the
fimshing section, the final polymer product 15 sampled every four
howrs and analyzed in the laboratory which takes another four
hours to retum the quality measurement, Q. The product quality
is also measured on-line Q,,, but the on-line mstrument was unreli-
able and only sporadically available, and when in operation was
difficult to keep calibrated.

The reactor in Fig. 10 was used to manufachure several differ-
ent polymer grades spanning a wide operating range over which
the reactor 13 lighly nonlinear. The polymer fiishing section mm-
parts dynamics to the response Q,, to changes in reactor conditions
due to mixing.

An intemally recurrent net (TRN) shown in Fig. 11 was used to
model the dynamic process, particularly when changes occurred
on transition from one grade of polymer to another.

The model corresponding to Fig. 11 is

X, =0(AX+Bu)
¥ =Cxyy (20)

where X, 13 the network’s mternal state vector prediction (outputs
of the hidden nodes) at time t+1; y,,, is the network prediction from
the vector of process outputs, in this case the network output is the
product quality prediction, Q,,; and u, 1s the vector of network m-
puts at time t. The input vector to the TRN model consisted of the
measurements I, CA, M X, » X, 5 X, 5 T, and M,, as ndicated

u(t) y y(t+1)=Qirn

i

<> One Time-step Delay

Q Input Node

A Context Node O Computation Node

Fig. 11. The IRN structure used in modeling the reactor.
July, 2000

in Fig. 10. 6(+) is a vector-valued nonlinear (sigmoidal) activation
function; end A, B, and C are weight matrices that are tramned us-
ing historical data. Q,, below represents the company’s prediction
from a previously developed steady state model.

The IRN 1n this work was tramned using approxumately 10,000
hours of data collected at one hour sample intervals over several
months, and tested using approximately 2,000 hours of data. A
pure time delay of 3 hours for the product quality was found to
vield the best TRN model, and was incorporated directly into the
trawming and testmg data. The difference between the 6 hour pure
delay estimated for Q, and the 3 hour delay used for Q,,, is ex-
plained by the dynamic lag associated with product mixing in the
finishing section. For this problem, an TRN with 4 hidden nodes
gave the best performance. The measurements for Q,, were inter-
polated to fill in the three howrs of mussmg data between the Qy,
samples.

For this problem the TRN yielded better long term predictions
then feed forward networks with feedback of past outputs because
potentially erroneous old process output measurements did not
have to be used m the network mput vector. Long term predictions
were necessary for this model because the goal was to use the
model to develop strategies for directly controlling Q,, during
grade transitions.

The criterion for evaluating models for predicting Q,; was the
standard prediction error (SPE):

- ’l 3 & ¥
SPE_ N;(Qiab,r Qmod,!)

where Qy, 18 the quality measwement, QM 15 the model prediction
(either Q,,, or Q,), t is the sample time, and N is the number of
sarmples 1 the data set. In this work the product quality was scaled
to lie between 0 and 10.

Fig. 12 compares the predictions from the linear steady-state
model developed by the company operating the reactor with the
predictions from the TR for the test data set, and the (delayed) lab
data (which may not necessarily be correct).

The IRN 15 clearly better able to capture the dynamic character-
istics of the reactor; and does an excellent job of predicting the pro-
duct quality several hours before the laboratory measwement be-
come available. In Fig. 12 two polymer grades are shown and four

Fig. 12. Comparison of polymer product quality predictions for
testing data set.
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Table 4. Comparison of the Standard Prediction Errors (Scaled
SPEs) for Quality Prediction by the Steady-State and

IRN Models
Model Number of parameters Train Test
Q. 12 0.458 0.466
Qi 57 0.191 0.210

grade transitions. Quality above 3 represents a “high” grade poly-
mer, while quality below 1 represents a “low™ grade polymer.
Quality between 1 and 3 is in a grade transition region, and the
TRN predictions are shown to be excellent in these regions. The
large discrepancy between Q,,, and Q. in the high grade region be-
tween t=1800 and t=2000 in Fig. 12 is caused by the failure of the
steady-state linear model to mclude the effects of mpunty X,

Table 4 lists the SPE results for the TRN model versus the
steady-state model when used to predict the product quality. The
IRN meodel represents a marked mmprovement over the linear
steady-state model in terms of SPE due to the modeling of process
dynamics that are mmparted by the polymer fimshing sectiory and
because the effects of measured impurities are included in the TRN
model. The TRN model accurately predicts the quality variable over
the entire reactor operating region, even between grades, elimmat-
ing the need for switching between different models in different
operating regions.

EXAMPLE 3. DATA RECTIFICATION IN A DYNAMIC
PROCESS USING AN ANN

This example from Karjala [1995] shows how nonparametric
models can be used to adjust process data. The goal of data rectifi-
cation is to compensate for random and nonrandom measurement
errors by making suitable adjustments to the measured values of
the process variables in order to provide the best (in some sense)
estimates of the “true” values. This example focuses on detecting
and eliminating gross and random errors, but does not address
other important problems such as bias, correlations, nonperiodic
data, missing measurements, and nonsymmetric probability distri-
butions for the process measurements.

The term data reconciliation usually refers to the adjustment
of process measwements to conform to some prescribed model.
Since the model used in this example is nonparametric, that is the
structure is built from the process data itself, we refer to the adjust-
ment as data rectification. Furthermore, as explamed below, the
model involved does not necessarily use current data in the adjust-
ment, but uses predicted values of the variables. Consequently, the
term rectification in the sense of “making the data right” seems to
be the appropriate word to use.

Anunfortmate aspect of the literatire on the rectification of data
collected in a dynamic process is that the reported results of re-
ctification always appear to be favorable, because the authors of
the papers usually assume a known model and probability distribu-
tion for the noise in the data. To demonstrate how well rectification
works, the authors simulate determimstic process data and corrupt
the data by adding the known noise (almost always white Gauss-
ian), and perhaps gross errors. Then, the noise and gross errors are
removed wsmg the knowr, exact model by the strategy proposed

by the authors of the paper.

But how good 15 the rectification if the process model 1s not
known exactly as is usually the case in practice? Furthermore, how
good is the rectification if the probability distribution of the noise is
different m practice than the assumed distribution? In this example
we describe how intemal recurrent neural nets can be used for the
rectification of data from dynamic process whose true mathemati-
cal description is unknown and uncertain.

Dynamic data rectification can be posed as a general optimiza-
tion problem in which the equations representing the model, the
ANN, form part of the constraints:

Minimize: ¢(m, i, m, _, 1, A) 20

Subject tor £, x, u, (=0
hix, t)=0
g(x, =0

where @ 15 a generalized objective function (normally the sum of
squares or absolute values), x, is a vector of state variables at time t
(not all of which are measured), m, and m, are the measurements
and rectified measurements, respectively, f is the dynamic process
maodel, g is a vector of inequality constraints (including bounds on
the variables), and h 15 a vector of known equality constramts. For
state space models the model constraint equations f are typically
expressed as dynamic differential equations which are solved via
orthogonal collocation on finite elements. The above minimization
problem is usually performed for a moving window of past meas-
urements. This window must be long enough to captire relevant
process dynamics, but kept to a minimum to keep the nonlinear
programming problem size tractable.

In data rectfication using an IRN as the model f m Eq. (21),
the idea is to build a model of the process in which one step
ahead predictions can be made of both the input and the output
variables. The input variables may need special treatment (see
Barton [1996]). The mathematical model for rectification is

m=G(m, , m,_, m,, A m (22)

where m, is the estimate of the process measurement vector at
time t, m, 1s the actual measurement vector, and G( - ) s the non-
linear mapping we seek to identify. Note that with this model the
current M, 1s not calculated from m,, the current measurement.
You cannot use m,as an independent variable in the nonparametric
representation G because then system identification would yield
the trivial identity mapping of fx,=m, Because the noise in each
measurement is assumed to be uncorrelated with the noise in pre-
vious meastrements, it is possible to identify a system that describ-
es the evolution of the measurement vectors in time using a predic-
tion error model. The problems encountered when the noise in the
measurements 15 autocorrelated 13 beyond our scope here. Because
the model input vector m,_, is not deterministic and contains meas-
urement noise, the parameter estimates from the TRN maodel will
be biased. Nevertheless, good results have been obtained for non-
linear processes m which the process measwrements are corrupted
by Gaussian and spike type measurement errors. In “trammng” the
IRN, ie., estimating the values of the coefficients, the targets are
the measurements. The states of the net are the outputs of the *“hid-
den” nodes, but these vanables have no physical meanmg, and the
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Fig. 14. Rectification of the outlet temperature.

mumber of nodes was determined by trial and error.

To compare rectified measurements with their “true” values, we
used a model published by Seinfeld [1970] to develop simulated
measurements (You cannot use actual process data and know what
the “true™ values of the measurements are.). The process consisted
of a continuous nonlinear stirred tank reactor (CSTR) with a first-
order exothermic reaction and heat removal by a coil or jacket.
Jang et al. [1986] used this example to compare extended Kalman
filtering to a nonlinear programming approach for state and para-
meter estimation. We added Gaussian noise to the sunulated deter-
ministic process measurements, and used the simulated noisy
measurements in identifying an TRN model for rectification based
on step changes m the mputs to the reactor.

Figs. 13 and 14 show the results using the trained net for rectifi-
cation of the outlet concentration and temperature (the solid lines),
respectively, together with the simulated test data (the diamonds),
and the respective true values (the dashed line). You can see that
the rectified values are excellent. Keep i1 mind that the results
shown above did not require that the true model be used as a con-
straint. An important but usually ignored factor in process model-
mg 1s that variable delay occurs i a response from a process so
that modeling the delay successfully in a theoretically based model
18 quite formidable. The IRN model automatically accommodates
delay.

EXAMPLE 4. PROCESS CONTROL USING AN ANN
July, 2000

This example from MachMurray [1993] explains how an ANN
model can be used for model predictive control. Model predictive
control (MPC) involves using a process model to predict future
process behavior so that the controlled variables can be manipu-
lated such that the process will meet some deswed future state(s),
e.g., set-point, trajectory of set-points, maximize a yield, minimize
the operating cost, or any combination of these. The performance
of MPC relies heavily on the quality of the process model, and de-
veloping or identifying a valid process model is a major part of the
work required to implement MPC.

Maodels based on first principles represent the process by a set
of equations (linear and/or nonlinear ordinary and partial differen-
tial equations, and algebraic equations) derived from conservation
laws and knowledge of the process. The model form is well esta-
blished, but values of a few parameters have to be either estmated
from data or derived from physical laws in order to male predic-
tions using such models. Models constructed in this fashion are
known as parametric models.

Tn contrast, nonparametric models comprise an arbitrary but us-
ually very flexible model structure mvolving numerous parameters
which must be estimated from ample process data. The key advan-
tage of nonparametric models are that little or no a priori knowl-
edge of the process 1s required, the development time for the mod-
el can be quite short compared to the first principles approach, and
prediction using the identified model is rapid because sets of eq-
uations do not have to be solved for each new mput vector. A pro-
cess can not wait several seconds for the optimization problem to
be solved if 1t requires controller action immediately.

When posed as an optimization problem, MPC uses the pro-
cess model as a constraint in evaluating the trajectory of the pro-
cess according to some objective function. Traditionally, the objec-
tive function is expressed as:

@ zg[ysp(tkw) 75}(tk+j )] TQ;[ysp(tkﬂ) 7?(1:5(*] i

+3 AWt R Au(h,) 23)

J=1

subject to:
§=F(y,w (24)
wSAU(t )Y, , (25)
JAu(t,., ) <Au,,, (26)

where y,(t,.,) 1s the vector of set-points of the controlled vari-
ables and ¥(t,.,) is the vector of model predictions of the con-
trolled variables at time t,, (t, is the current time) which is gen-
erated by the model of the process represented by F P is the pre-
diction horizon; it defines the time interval for optimizing the pro-
cess trajectory and how far mto the future the process model will
be called on to predict.

N.,..18 the number of control moves in a control horizon, C,
which will be made by the controller (C<P). If C 15 shorter than
the prediction horizon, the mampulated variables, u, are assumed
to remain constant at their last computed values, u(t,,.), for the re-
mainder of the precition horizon Q) and R, are weighting matrices
for each time step along the prediction and control horizons respec-
tively, and are usually diagonal matrices.
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Eqs. (25) and (26) restrict the changes which can be made in the
values of the mampulated vanables, since for a real process the ma-
nmipulated variables may be limited in range and rate of change by
physical limitations of the operating equipment.

As posed m Egs. (23)-(26), the tuning parameters of MPC are F,
C, and the weighting matrices, (), and R, Generally, a longer con-
trol horizon will make the controller more aggressive as will a
shorter prediction horizon and vice versa. R, penalizes control
moves and hence large elements in R, will make the controller less
aggressive. There are no generally accepted rules of thumb for se-
lecting the tuning parameters, but the computation time required
to perform the optimization will increase as either P or C is in-
creased Depending on the complexity of the model used to de-
scribe the process, the computation time to perform the optimiza-
tion may be the hmiting factor n applying MPC, and hence mflu-
ence the selections of the values of F, C, and the type of model it-
self. For stability of such a system when the model is an ANN re-
fer to Kulawsk1 and Brdys [2000].

To demonstrate the use of ERN in control, MachMurray devel-
oped an ERN model based on the work of Patwardhan [1991] who
modeled a pilot plant packed distillation column (see Fig. 15). A
feed stream enters the column (with flow rate, feed, and compo-
sition, xf) between two packed sections (a rectifymng section and
a stripping section) that contain a structured or unstructured pack-
ing material which is used to produce and support the liquid-vapor
mterface mside of the colunn. Mass transfer occurs between the
vapor flowing up and the liquid flowing down the column. The
vapor exiting at the top of the column is condensed, and peart of the
resulting liquid flow is returned to the column at the top (the re-
fhrx, ##); the remainder is taken as the distillate product (dis?) with
composition xd. Part of the liquid flow out of the bottom of the col-
umn is vaporized (vbr) in a reboiler and sent back to the bottom of
the column. The remainder is taleen as the bottoms product with a
composition of xb.

The reason that this packed column is of interest is that the pro-
cess gam changes sign over the operating region shown m Fig. 16.

Patwardhan’s model for the separation of a binary mixture of cy-
clohexane and n-heptane contained two partial differential equa-
tions, three ordinary differential equations, and eight algebraic eq-
uations, and was used in lieu of data from the actual pilot plant col-
umn to simulate data for identification of the ERN. The model as-
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Fig. 15. Diagram of a packed distillation column.
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Fig. 16. Steady-state output of the VE model with Sulzer packing,
xf=0.5 and xd=1—xb.

surned:

* equumolar counter diffusion
* negligible liquid phase mass transfer resistance
« vapor boilup used as an input.

T the identification of the colummn, the feed composition (xf) and
flow rate (feed) were assumed to be the disturbances, and the ma-
nipulated variables were the vapor boilup rate (vbr) and either the
refhux rate (7#) or the distillate rate (dis?). Since the level in the con-
denser drum was held constant, the value of the distillate rate de-
termined the value of the reflux rate and vice versa. Various ERN
maodels were used to predict the distillate and bottoms composi-
tions, xd and xb, respectively, the controlled variables. Patwardhan's
VE model was deemed to be the “true” process, and his code was
used to generate the deterministic training and test data for the
ANN modeling. The operation and design parameters of the col-
umn used were identical to those used by Patwardhan.

Data for the traming and data sets used to estimate the weights
in the ERN were generated by making step changes in the feed
variables and recording the response of the exit compositions every
605 (the time constant n this region of operations was approxi-
mately 4000 s). Two PT controllers were used to change the manip-
ulated vanables to states such that the distillate and bottoms com-
positions would return to their set points after the disturbances in
the feed had been introduced. Because of the relatively low volu-
metric hold up m the packed sections of the colunn and the man-
ner in which the “true” model was implemented mathematically,
there was virtually no dead time associated with the response of
the outputs of the column when changes were made in any of the
disturbances or manipulated inputs.

Gaussian random noise with a coefficient of vanation of 0.01
for each of the four input and two output variables was added to
the deterministic measurements to represent measurement noise.
All of the resulting data were scaled mnto the range of zero to one
in order to prevent scaling problems during training of the ERN,
and also to msure a fair influence of each of the output variables
when the objective function was computed. To give the precision
needed, the final sizes of the training and test sets comprised 8333
data pomts each.
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386 D. M. Himmelblau

Because Patwardhan’s maodel (which represented the actual col-
umn well) took too long to solve for the purpose of control, one
of his simpler approximate models developed for control (the 7,
model) comprised of one ordinary differential equation and three
nonlinear algebraic equations was compared to various ERN. The
result of control using the ERN shown below are for a maodel with
2 recurrent mputs to the lndden nodes, 15 lndden nodes, and a total
of 197 weights. This particular model represented the best bal-
ance between representing the steady state and unsteady state data
simulteneously. In practice it 13 possible that a network which
modeled the dynamics very well and the steady state very poorly
(or vice versa) could be selected over a network which modeled
both the dynamics and steady state moderately well.

Fig. 17 shows the response of one column output, the distillate
composition, to two changes mn the setpomt Some slight steady
state offset occurred with the ERN network for the bottoms com-
position as shown in Fig. 18 as might be expected to occur in prac-
tice because of mismatch between the model used by the controller
and the actual process (e.g. the parameters for the mass transfer eq-
uations will not be exactly correct).

To reduce the steady state offset, a simple error feedback scheme
was added to the model predictive controller. Use of the 7 and
ANN models for MPC wes also compared when measured distur-
bances were introduced into the feed flowrate. Fig. 19 shows that
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Fig. 19. Response of the distillate composition for MPC using the
Z and ERN models after step disturbances in the feed
flowrate.

the ERN model (with the error feedback scheme implemented)
provided substantially better control performance than did the 7,
model.

WHAT ARE THE FUTURE PROSPECTS FOR ANN?

Many competing types of models exist for process modeling
besides ANN. A number of the advantages and disadvantages of
using ANN have been discussed m previous sections. For pro-
cesses too complex to be modeled by a first principles model, not
well understood, or that take too long to model with varnous em-
pirical models, an ANN model might be a very effective choice
for a model. Because ANN worlk best when interpolating, the need
to collect suitable data and the time required to train the nets re-
present the two disadvantages in using ANN. On the other hand,
in principle ANN would involve less model mismatch for a real
process and would reduce the computation time to predict outputs
from inputs. Some process design and operation simulators, such
as those by Pavilion Technologies, Inc., already incorporate ANN
based on the argument that an engineer can model a process cquick-
ly from the process data alone. Probably the arrival of more val-
dated software that use ANN as part of a state and/or dynamic
process flowsheeting code will be needed if practicing engineers
are to use ANN extensively in the next decade.
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