The effect of water on the activation and the CO₂ capture capacities of alkali metal-based sorbents

Soo Chool Lee, Bo Yun Choi, Chong Kul Ryu*, Young Soo Ahn**, Tae Jin Lee*** and Jae Chang Kim[†]

Department of Chemical Engineering, Kyungpook National University, Daegu 702-701, Korea *Korea Electric Power Research Institute, Daejeon 305-380, Korea **Korea Institute of Energy Research, Daejeon 305-343, Korea ***Department of Chemical Engineering, Yeungnam University, Kyongsan 712-749, Korea (Received 27 May 2005 • accepted 11 December 2005)

Abstract-Alkali metal-based sorbents were prepared by the impregnation either of potassium carbonate (K_2CO_3) or of sodium carbonate (Na_2CO_3) on the supports (activated carbon (AC) and Al_2O_3). The CO₂ absorption and regeneration properties were measured in a fixed bed reactor at the low temperature conditions (CO₂ absorption at 60 °C and regeneration at 150 °C). The potassium carbonate which was supported on the activated carbon (K_2CO_3/AC) was clarified as a leading sorbent, of which the total CO₂ capture capacity was higher than those of other sorbents. This sorbent was completely regenerated and transformed to its original phase by heating the used sorbent. The activation process before CO₂ absorption needed moisture nitrogen containing 1.3-52 vol% H₂O for 2 hours either at 60 °C or at 90 °C. The activation process played an important role in CO₂ absorption, in order to form new active species defined as K_2CO_3 ·1.5 H₂O, by X-ray diffraction. It was suggested that the new active species ($K_2CO_3 \cdot 1.5H_2O$) could be formed by drying the $K_4H_2(CO_3)_3 \cdot 1.5H_2O$ phase formed after pre-treatment with excess water.

Key words: Carbon Dioxide, Absorption, Potassium Carbonate, Potassium Hydrogen Carbonate, Activation

INTRODUCTION

Carbon dioxide (CO₂) is a major greenhouse gas that is released into the air due to the use of fossil fuels and in consequence it causes global climate warming. CO₂ can be removed from flue gas and waste gas streams by various methods such as membrane separation, absorption with a solvent, and adsorption using molecular sieves [Hagewiesche et al., 1995; Mavroudi et al., 2003; Park et al., 2002, 2004; Siriwardane et al., 2001; Takamura et al., 2001; Wilson et al., 2004]. These methods, however, are costly and consume a lot of energy.

One of the improved techniques for the removal of CO_2 is the chemical absorption of CO₂ with solid regenerable sorbents. The use of solid sorbents containing alkali and alkali earth metals for CO₂ absorption has been reported in many literatures [Gupta and Fan, 2002; Hayashi et al., 1998; Hirano et al., 1995; Nalette et al., 1992; Lee et al., 2004; Liang et al., 2004; Okunev et al., 2000, 2003; Salvador et al., 2003; Sharonov et al., 2001, 2004]. In their papers, alkali metal carbonate was employed in CO2 absorption at low temperatures (50-60 °C) with thermal regeneration easily occurring at a low temperature, while calcium oxide was employed in CO2 absorption at higher temperatures (less than 860 °C). Several studies of an efficient chemical absorption over K2CO3 supported either on carbon [Hayashi et al., 1998; Hirano et al., 1995] or on other porous matrices such as silica gel, Al₂O₃ and vermiculite [Okunev et al., 2000] were also reported using cyclic fixed-bed operations under the moist conditions for the recovery of carbon dioxide from flue gases. The sorption of CO₂ on the K₂CO₃-Al₂O₃ composite sorbent in the presence of water vapor was studied by in-situ IR spectroscopy and X-ray diffraction analysis [Okunev et al., 2003]. Water content was essential to form potassium hydrogencarbonate in all of these absorption reactions, while moisture contained in the flue gases as high as 8-17 vol% negatively affected the adsorption capacity of molecular sieves [Hayashi et al., 1998]. Even though it is well known that water plays an important role not only in the CO₂ capture over alkali metal based sorbents but also in the pretreatment process, the role of water has not been clearly defined in the previous studies. In particular, there have been very few reports regarding the effect of water on the alkali metal promoted sorbents in the pretreatment and in the CO₂ absorption process.

In this work, the CO₂ capture capacity of sorbents was compared by using CO₂ breakthrough curves. The effect of H_2O on their capacities during the activation process was tested in a fixed bed reactor. In order to understand the mechanism of the cyclic operations, the new active potassium species formed during the activation process with H_2O were proposed and identified by the X-ray diffraction method.

EXPERIMENTAL

1. Preparation of Sorbents

Alkali metal-based sorbents used in this study were prepared by impregnation method. A typical preparation procedure for the sorbents supported on the activated carbon and alumina oxide was as follows. Five (5.0) g of the support were added to an aqueous solution containing 2.5-5 g of anhydrous alkali metal carbonate (Na₂CO₃ and K₂CO₃, Aldrich) in 15 ml of de-ionized water. Then, it was mixed with a magnetic stirrer at room temperature for 24 hours [Hirano et al., 1995]. After stirring, the mixture was dried in a rotary evapora-

^{*}To whom correspondence should be addressed. E-mail: kjchang@mail.knu.ac.kr

Table 1. Experimental conditions of alkali metal based sorbents

	Pretreatment	CO ₂ absorption	Regeneration
Temperature (°C)	60, 90	60	150
Pressure (atm)	1	1	1
Flow rate (ml/min)	40	40	40
Gas composition (vol%)	H ₂ O: 1.3, 5, 9, 35, 52	CO ₂ : 1, H ₂ O: 1.3	H ₂ O: 1.3
	N ₂ : Balance	N ₂ : Balance	N ₂ : Balance

tor at 60 °C. The dried samples were calcined in a furnace with N₂ flow (100 ml/min) for 4 hours at 300 °C. The ramping rate of the temperature was maintained at 3 °C/min. The amount of the impregnated alkali metal was determined by using a Varian spectra AA 800 atomic absorption spectrophotometer. Power X-ray diffraction (XRD; Philips, X'PERT) was also measured in order to confirm the structure using Cu K α radiation.

2. Absorption Apparatus and Procedure

Carbon dioxide (CO₂) absorption and regeneration processes were performed in a fixed bed quartz reactor with a diameter of 1 cm, which was placed in an electric furnace under atmospheric pressure. One-half (0.5) g of sorbent was packed into the reactor, and space velocity (SV) was maintained at 3,000 h⁻¹ to minimize severe pressure drops and channeling phenomena. All volumetric gas flows were measured under standard temperature and pressure (STP) conditions. The temperature of the inlet and outlet lines of the reactor was maintained above 100 °C in order to prevent the condensation of water vapor injected to the reactor. The column used in the analysis was a 1/8 inch stainless tube packed with Porapak Q. The conditions of CO₂ absorption and regeneration and the composition of mixed gases are shown in Table 1. Before CO₂ absorption, moist nitrogen gas with 1.3-52 vol% H₂O (6.5-75% relative humidity) at 60-90 °C was supplied to sorbents for 120 minutes by using either a saturator (1.3-9 vol% H_2O) or a syringe pump (35-52 vol% H_2O). When the CO_2 concentration of the outlet gases reached the same level as the inlet gas (1 vol%) during the CO₂ absorption process, the moisture nitrogen containing 1.3 vol% H₂O only was introduced to regenerate the sorbents. The regeneration process was terminated when the CO₂ concentration reached 200 ppm. The outlet gases from the reactor were automatically analyzed every 4 minutes by a thermal conductivity detector (TCD; Donam Systems Inc.) equipped with an auto sampler (Valco Instruments CO. Inc.).

RESULTS AND DISCUSSION

1. Comparison of CO₂ Capture Capacities of Various Sorbents

Table 2 shows total CO₂ capture capacities at 60 °C and the loading amount of alkali metals of various sorbents prepared by the impregnation of alkali metal carbonates after pre-treatment under 1.3 vol% H₂O for 2 hours at 60 °C. The phrase "total CO₂ capture capacity" describes the amount of CO₂ absorbed until the output concentration of CO₂ reached 1 vol%, which is the same value as that of inlet. The total CO₂ capture capacities of the potassium carbonate supported on the alumina oxide and activatied carbon (K₂CO₃/ Al₂O₃ and K₂CO₃/AC) were 38 mg CO₂/g sorbent and 34 mg CO₂/ g sorbent, respectively. The total CO₂ capture capacities of sodiumbased sorbents were less than that of the potassium-based sorbents

Table 2. Total CO2 capture capacity at 60 °C and the loading
amount of alkali metal of the various sorbents prepared
by the impregnation after the pre-treatment under 1.3
vol% H2O for 2 hours

Sorbent	The loading amount of alkali metal (wt%)	The total CO_2 capture capacity (mg CO_2/g sorbent)
K ₂ CO ₃ /AC	30	34
Na ₂ CO ₃ /AC	30	15
K ₂ CO ₃ /Al ₂ O ₃	28	38
Na ₂ CO ₃ /Al ₂ O ₃	30	7

as shown in Table 2. In particular, the Na₂CO₃/Al₂O₃ sorbent showed a very low CO₂ capture capacity (7 mg CO₂/g sorbent). When the regeneration of the used sorbents was carried out by heating in moisture conditions at 150 °C, the K₂CO₃/AC sorbent was completely regenerated and transformed to its original phase without deactivation. The K₂CO₃/Al₂O₃ sorbent, however, was deactivated during a multiple cycle of the CO₂ absorption and regeneration in the same

Fig. 2. XRD patterns of K₂CO₃/Al₂O₃ sorbents before/after CO₂ absorption at 60 °C: (a) fresh; (b) after pretreatment with 1.3 vol% H₂O; (c) after reaction with 1.3 vol% H₂O and 1 vol% CO₂ at 60 °C; (d) after regeneration with 1.3 vol% H₂O at 150 °C; (●) K₂CO₃; (◆) K₂CO₃·1.5H₂O; (■) KHCO₃; (▼) KAl(CO₃)₂(OH)₂.

condition.

Fig. 1 and 2 shows the XRD patterns of the K₂CO₃/AC and K₂CO₃/ Al₂O₃ sorbents before/after CO₂ absorption at 60 °C. The phase of the K₂CO₃/AC sorbents before reaction is shown in Fig. 1(a) and is assigned to the K₂CO₃ (JCPDS No. 71-1466). As shown in Fig. 1(b), the XRD pattern after pre-treatment with 1.3 vol% H₂O showed two crystal structures which were assigned as K₂CO₃ and K₂CO₃· 1.5H₂O (JCPDS No. 73-0470). It is indicated that the K₂CO₃ phase of fresh sorbent was not completely converted into K₂CO₃·1.5H₂O after pre-treatment. The XRD pattern of this sorbent after CO₂ absorption at 60 °C showed three phases including KHCO₃ (JCPDS No. 70-0095), K₂CO₃, and K₂CO₃·1.5H₂O. It was reported that carbon dioxide was chemically absorbed through the reaction, K₂CO₃+ H₂O+CO₂ \rightleftharpoons 2KHCO₃, in order to form potassium hydrogencarbonate (KHCO₃) over potassium-based sorbents in the presence of moisture [Gidaspow and Onischak, 1975; Hirano et al., 1995; Okunev et al., 2003]. However, the K_2CO_3 phase and $K_2CO_3 \cdot 1.5H_2O$ phase were not completely converted into the KHCO₃ phase even after CO_2 absorption as shown in Fig. 1(c). It was reported that the maximum amount of dynamic activity corresponded to the formation of $K_2CO_3 \cdot 1.5H_2O$ rather than K_2CO_3 itself in the alumina pores [Okunev et al., 2000; Sharonov et al., 2001]. It has been considered that a low CO_2 capture capacity was due to a very little formation of an active species like $K_2CO_3 \cdot 1.5H_2O$ after the pre-treatment with 1.3 vol% H_2O as shown in Fig. 1(b) and (c).

In the case of the K_2CO_3/Al_2O_3 sorbent, the XRD results of the fresh sorbent calcined at 300 °C with nitrogen showed K2CO3, K2CO3. 1.5H₂O, and KAl(CO₃)₂(OH)₂ phase as shown in Fig. 2(a). In comparison with the K₂CO₃/AC sorbent, new diffraction lines appeared at 20 of 15.9, 21.6, 26.7, 28.4, 31.7, 35.8, 41.9, and 45.7, which were assigned to the KAl(CO₃)₂(OH)₂ phase (JCPDS No. 21-0979). It is obvious that $KAl(CO_3)_2(OH)_2$ was formed by the reaction of the alumina support with K₂CO₃ during calcination. The XRD patterns of K₂CO₃/Al₂O₃ sorbent after the pre-treatment with 1.3 vol% H₂O showed $K_2CO_3 \cdot 1.5H_2O$ as a major peak along with a minor peak like KAl(CO₃)₂(OH)₂. After CO₂ absorption at 60 °C, the XRD patterns of this sorbent showed three phases such as K₂CO₃, KHCO₃, and $KAl(CO_3)_2(OH)_2$ phases. In particular, the intensity of the $KAl(CO_3)_2$ (OH)₂ peak after CO₂ absorption in Fig. 2(c) increased as compared with Fig. 2(b). After the regeneration at 150 °C in the presence of 1.3 vol% H₂O, this sorbent showed three phases (K₂CO₃, $K_2CO_3 \cdot 1.5H_2O_3$ and $KAl(CO_3)_2(OH)_2$). The $KAl(CO_3)_2(OH)_2$ phase is not completely converted into the original K₂CO₃ phase during regeneration at 150 °C. The decrease in the total CO₂ capture capacity of K₂CO₃/Al₂O₃ sorbent after regeneration was thought to be due to the formation of the inactive phase of potassium aluminium carbonate as reported in previous papers [Okunev et al., 2003; Sharonov et al., 2001]. The total CO₂ capture capacity of the K₂CO₃/Al₂O₃ sorbent decreased continuously during multiple cycles of CO₂ absorption/regeneration as the amount of the inactive species increased. 2. The Effect of Pre-treatment with H₂O on the CO₂ Absorption

In order to investigate the effect of H_2O concentration during the pre-treatment on the CO_2 capture capacity of the sorbent, the total CO_2 capture capacity and the net CO_2 capture capacity of the K_2CO_3/AC sorbent in the presence of 1.3 vol% H_2O and 1 vol% CO_2 were compared at various H_2O concentrations with or without pre-treatment of sorbents and those results were shown in Table 3. The amount of H_2O in the pre-treatment was controlled in the range of 1.3-52

Table 3. Total CO₂ capture capacity and net CO₂ capture capacity of 30 wt% K₂CO₃/AC sorbent in the presence of 1.3 vol% H₂O and 1 vol% CO₂ after the pre-treatment at various concentrations of H₂O for 2 hours either at 60 °C or at 90 °C

Pretreatment conditions		Net CO ₂ capture capacities	Total CO ₂ capture capacities
Concentration of water (%)	Temperature (°C)	(mg CO ₂ /g sorbent)	(mg CO ₂ /g sorbent)
-	-	12.6	25.2
1.3	60	25.1	33.2
5.0	60	37.7	56.2
9.0	60	37.7	62.0
30.0	90	25.1	102.2
52.0	90	25.1	105.0

140

Fig. 3. The breakthrough curves of K₂CO₃/AC sorbents as a function of drying time after the pre-treatment with 52 vol% H₂O at 90 °C and dried for different time durations.

vol%. The net CO_2 capture capacity is defined as the amount of CO_2 absorbed per 1 g of sorbent until the CO₂ concentration, which was emitted from the reactor, remained less than 200 ppm. The total CO₂ capture capacity and the net CO₂ capture capacity of the sorbent without the pre-treatment process was 25.2 mg CO₂/g sorbent and 12.6 mg CO₂/g sorbent, respectively. Depending upon the pre-treatment conditions at various H₂O concentrations, the total CO₂ capture capacity of the K₂CO₃/AC sorbent was varied between 25.2 mg CO_2/g sorbent and 105 mg CO_2/g sorbent. In particular, when the pre-treatment of sorbent was performed with 30 vol% and 52 vol% H₂O at 90 °C (50% and 75% relative humidity, respectively), the rapid increase in the total CO₂ capture capacity was observed under the same absorption experimental condition. This amount was almost completely consistent with the theoretical value of the sorbent, when one mole of K2CO3 absorbed a stoichiometric amount of one mole of CO₂.

The breakthrough curves of the K2CO3/AC sorbent pre-treated with 52 vol% H₂O were shown in Fig. 3 as a function of drying time after pre-treatment. It was observed that the slope of the breakthrough for the sample without drying rapidly increased at 20 minutes. The concentration of CO₂ exiting from the reactor was maintained at about 0.6% for 100 minutes and then it slowly increased. This shape of the breakthrough curve was not found when the sorbents were pre-treated with a low concentration such as 1.3 vol% or 9 vol% of water. In order to investigate the differences in shapes depending on the pre-treatment conditions, the K2CO3/AC sorbents pre-treated with 52 vol% H₂O at 90 °C were dried at 60 °C and the absorption experiments were repeated as shown in Fig. 3. The CO₂ absorption rates of sorbents after drying for 40 minutes were faster than those of sorbent without drying. In particular, the highest net CO₂ capture capacity was observed when sorbent was dried for 40 minutes after the pre-treatment with H₂O. The total CO₂ capture capacities of all these sorbents, however, slightly decreased with increasing the drying time. The total CO₂ capture capacity of the sorbent after an activation process, in which the sorbent was pre-treated with excess water and then dried, was 91 mg CO₂/g sorbent at 60 °C. This indicates that the activation process was an important factor in the

Fig. 4. Total CO₂ capture capacities of sorbents with different K_2CO_3 loading amounts represented by the unit of mg $CO_2/$ g sorbent and mg CO₂/g K₂CO₃ after activation process.

CO₂ absorption process. It is thought that the new active species on the sorbent are formed through an activation process and they play an important role in CO₂ absorption.

To confirm the effect of the activation of sorbent, the total CO₂ capture capacities of sorbents with various K₂CO₃ loadings were tested after activation under two different conditions (1.3 vol% H₂O at 60 °C, 52 vol% H₂O at 90 °C). Fig. 4(a) and (b) show the total CO₂ capture capacities of sorbents with different K₂CO₃ loadings, which are represented by the unit of mg CO2/g sorbent and mg CO2/g K₂CO₃, respectively, after the activation process to convert to K₂CO₃. 1.5H₂O from K₂CO₃ by only pre-treatment of the sorbent in the presence of the low concentration of water $(1.3 \text{ vol}\% \text{ H}_2\text{O})$ or by drying for 40 minutes after the pre-treatment with excess water (52 vol% H_2O). As shown in Fig. 4(a), the total CO_2 capture capacities of three sorbents, in which 18 wt%, 30 wt%, and 43 wt% of K₂CO₃ were impregnated, were almost on the same values under the condition of pre-treatment with 1.3 vol% H₂O. In the case of activation with 52 vol% H₂O and drying, the total CO₂ capture capacities of those sorbents increased linearly from 25 mg CO₂/g sorbent to 137 mg CO₂/g sorbent. The corresponding theoretical values of the total CO_2 capture capacities for the sorbents with four different K₂CO₃ loading amount were shown in Fig. 4. In order to investigate the effect of the activation of sorbents in detail, the amount of the CO₂ absorption per 1 gram of K₂CO₃ was calculated from the breakthrough

curves during CO₂ absorption after activation and it was shown in Fig. 4(b). For the sorbent pre-treated with 1.3 vol% H₂O, the amount of the CO₂ absorption per 1 gram of K₂CO₃ decreased with from 220 mg CO₂/g K₂CO₃ to 90 mg CO₂/g K₂CO₃ as the K₂CO₃ loading amount increased. In the case of activation with 52 vol% H₂O and drying, these total CO₂ capture capacities were almost the same as the theoretical values of the sorbents. Considering that all theoretical values of the K₂CO₃/AC sorbents are about 320 mg CO₂/g K₂CO₃, these values are equivalent to 90-98 percent of those of the sorbents.

These results indicate that the CO_2 capture capacity of potassiumbased sorbents depends on the activation of the sorbent. If the potassium-based sorbent is fully activated under the severe pre-treatment conditions, excellent CO_2 capture capacity and absorption rate can be obtained. It is also indicated that the K_2CO_3 is more easily and effectively converted to the activated form by drying process after the pre-treatment of excess water.

3. Structure Identification of the Active Sorbents by XRD

The formation of active species in sorbents is directly related to the CO_2 capture capacity. The structural change after pre-treatment

Fig. 5. XRD patterns of K₂CO₃/AC sorbents before/after CO₂ absorption at 60 °C: (a) fresh; (b) after pretreatment with 52 vol% H₂O; (c) after drying for 40 minutes with N₂ (d) after absorption of CO₂ in the presence of 1.3 vol% H₂O and 1 vol% CO₂ at 60 °C; (e) after regeneration with 1.3 vol% H₂O at 150 °C; (●) K₂CO₃; (◆) K₂CO₃·1.5H₂O; (■) KHCO₃; (◆) K₄H₂(CO₃)₃·1.5H₂O.

with water has already been mentioned by other researchers [Hayashi et al., 1998; Hirano et al., 1995; Okunev et al., 2003]. The relationship between CO₂ capture capacities and structural changes during the activation process by moisture nitrogen, however, has not been clearly defined. Fig. 5 shows the X-ray diffraction patterns of structural changes of the K₂CO₃/AC sorbents before/after CO₂ absorption. Fig. 5(a) shows the XRD patterns of fresh sorbents (43 wt% K₂CO₃) calcined at 300 °C. When the pre-treatment with 52 vol% H_2O was carried out, new diffraction lines with 2θ of 11.6, 23.3, 30.9, 31.9, 36.1, 38.9, and 47.5 appeared on the XRD results, which were assigned to $K_4H_2(CO_3)_3 \cdot 1.5H_2O$ referring to the JCPDS file number 20-0886. After drying this sample for 40 minutes, the K₂CO₃· 1.5H₂O phase, which was assigned to the JCPDS file number 73-0470, was formed on the activated carbon support from the K_4H_2 (CO₃)₂·1.5H₂O phase as shown in Fig. 5(c). This fact indicates that the new active species, K₂CO₃·1.5H₂O, could be formed by drying the $K_4H_2(CO_3)_3 \cdot 1.5H_2O$ phase which is formed after the pre-treatment with excess H₂O. As shown in Fig. 5(d), the XRD pattern shows that the only KHCO₃ phase was formed after CO₂ absorption over the new active species. In the case of activation with $1.3 \text{ vol}\% \text{ H}_2\text{O}$, K_2CO_3 was not completely converted into the active species, K_2CO_3 . 1.5H₂O because of the low concentration of water as stated in the previous section. In the case of activation with 52 vol% H₂O, K₂CO₃ could be completely converted into K₂CO₃·1.5H₂O. This indicates that the enhanced CO₂ capture capacity can be obtained by converting the entire K₂CO₃·1.5H₂O phase to the KHCO₃ phase and that the sorbents can be fully regenerated to the original state if the sorbents are fully activated with excess water.

CONCLUSIONS

The CO₂ capture capacity was measured in a fixed bed reactor at low temperature conditions (CO₂ absorption at 60 °C and regeneration at 150 °C). The K₂CO₃/AC sorbent was clarified as the leading sorbent of which the total CO₂ capture capacity was higher than that of other sorbents. This sorbent was completely regenerated into its original phase by heating the entrapped sorbent. The CO₂ capture capacity of the K₂CO₃/Al₂O₃ sorbent, however, decreased during multiple cycles of CO₂ absorption/regeneration. This result was explained through the formation of $KAl(CO_3)(OH)$, which was not completely converted to the original K₂CO₃ phase. The activation process with excess water before CO₂ absorption must be always carried out in order to enhance not only the CO₂ capture capacity of the sorbent but also the rate of CO_2 absorption. The enhanced CO_2 capture capacity can be obtained by converting the entire K₂CO₃. 1.5H₂O phase to the KHCO₃ phase if the sorbents are fully activated with excess water. The new active species could be formed by drying the $K_4H_2(CO_3)_3 \cdot 1.5H_2O$ phase formed after pre-treatment with excess water.

ACKNOWLEDGMENTS

This research was supported by a grant (DA2-202) from Carbon Dioxide Reduction & Sequestration Research Center, one of the 21st Century Frontier Programs funded by the Ministry of Science and Technology of Korean government. This research was supported by the Kyungpook National University Research Team Fund, 2002.

REFERENCES

- Gidaspow, D. and Onischak, M., *Process for regenerative sorption CO*₂, U. S. Patent 3,865,924 (1975).
- Gupta, H. and Fan, L. S., "Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas," *Ind. Eng. Chem. Res.*, 41, 4035 (2002).
- Hagewiesche, D. P., Ashour, S. S., Al-Ghawas, H. A. and Sandall, O. C., "Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine," *Chem. Eng. Sci.*, **50**(7), 1071 (1995).
- Hayashi, H., Taniuchi, J., Furuyashiki, N., Sugiyama, S., Hirano, S., Shigemoto, N. and Nonaka, T., "Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K₂CO₃-on-carbon," *Ind. Eng. Chem. Res.*, **37**, 185 (1998).
- Hirano, S., Shigemoto, N., Yamaha, S. and Hayashi, H., "Cyclic fixedbed operations over K₂CO₃-on-carbon for the recovery of carbon dioxide under moist conditions," *Bull. Chem. Soc. Jpn.*, 68, 1030 (1995).
- Lee, S. C., Choi, B. Y., Lee, S. J., Jung, S. Y., Ryu, C. K. and Kim, J. C., "CO₂ absorption and regeneration using Na and K based sorbents," *Stud. Surf. Sci. Catal.*, **153**, 527 (2004).
- Liang, Y. and Harrison, D. P., "Carbon dioxide capture using dry sodium-based sorbents," *Energy Fuels*, 18, 569 (2004).
- Mavroudi, M., Kaldis, S. P. and Sakellaropoulos, G P., "Reduction of CO₂ emissions by a membrane contacting process," *Fuel*, **82**, 2153 (2003).
- Nalette, T. A., Birbara, P. J. and Aylward, J. R., *Preparation of high capacity unsupported regenerable CO₂ sorbent*, U. S. patent 5,079,209 (1992).

- Okunev, A. G, Sharonov, V. E., Aistov, Y. I. and Parmon, V. N., "Sorption of carbon dioxide from wet gases by K₂CO₃-in-porous matrix: influence of the matrix nature," *React. Kinet. Catal. Lett.*, **71**(2), 355 (2000).
- Park, S. W., Kumazawa, H. and Sohn, I. J., "Unsteady-state absorption of CO₂ into w/o emulsion with aqueous alkaline liquid droplets," *Korean J. Chem. Eng.*, **19**, 75 (2002).
- Park, S. W., Choi, B. S., Kim, S. S. and Lee, J. W., "Mass transfer of carbon dioxide in aqueous polyacrylamide solution with methyldiethanolamine," *Korean J. Chem. Eng.*, 21, 1205 (2004).
- Salvador, C., Lu, D., Anthony, E. J. and Abanades, J. C., "Enhancement of CaO for CO₂ capture in an FBC environment," *Chem. Eng. J.*, 96, 187 (2003).
- Sharonov, V. E., Tyschishchin, E. M., Moroz, E. M., Okunev, A. G. and Aristov, Y. I., "Sorption of CO₂ from humid gases on potassium carbonate supported by porous matrix," *Russ. J. Appl. Chem.*, 74(3), 409 (2001).
- Sharonov, V. E., Alexey, G, Okunev, A. G and Aristov, Y. I., "Kinetics of carbon dioxide sorption by the composite material K₂CO₃ in Al₂O₃," *React. Kinet. Catal. Lett.*, **82**(2), 363 (2004).
- Siriwardane, R. V., Shen, M. S., Fisher, E. P. and Poston, J. A., "Adsorption of CO₂ on molecular sieves and activated carbon," *Energy Fuels*, 15, 279 (2001).
- Takamura, Y., Narita, S., Aoki, J., Hironaka, S. and Uchida, S., "Evaluation of dual-bed pressure swing adsorption for CO₂ recovery from boiler exhaust gas," *Sep. Purif. Technol.*, 24, 519 (2001).
- Wilson, M., Tontiwachwuthikul, P., Chakma, A., Idem, R., Veawab, A., Aroonwilas, A., Gelowitz, D., Barrie, J. and Mariz, C., "Test results from a CO₂ extraction pilot plant at boundary dam coal-fired power station," *Energy*, **29**, 1259 (2004).