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Abstract-Nonlinear kinetic parameter estimation plays an essential role in kinetic study in reaction engineering. In 
the present study, the feasibility and reliability of the simtilt~eous parameter estimation problem is investigated for a 
multi-component photocatalytic process. The kinetic model is given by the L-H equatioi~, and the estimation prob- 
lem is solved by a hybrid genetic-simplex optimization method. Here, the genetic algorithm is applied to find out, 
roughiy, the location of the global optimal point, and the simplex algorithm is subsequently adopted for accttrate con- 
vergence. In applying this technique to a real system and analyzing its reliability, it is shown that this approach results in 
a reliable estimation for a rather wide range of parameter value, and that all parameters can be estimated simultaneously. 
Using this approach, one can estimate kinetic parameters for all components from data measured in only one time 
experiment. 
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INTRODUCTION 

Photocatalysis is a pron~ismg approach to efficient destruction 
of eiwironmental pollutants [Albeiici and Ja-dim, 1997; Hem~aam, 
1999; Ollis, 2000; Chai et al., 2000], and many expenmental inves- 
tigations have been reported in this field [Anpo et al., 1997; Sir~uk 
et al., 1999]. Because an experimental approach is usually costly 
and time consuming, some other investig~ons with computer sim- 
ulatiorxs have also been canied out, which are based on a mathe- 
matical kinetic model for the photocatalytic oxidizing process. Re- 
searches have shown that most photocatalytic reactions follow the 
L-H (Langmuu--H~shelwood) equation [Fox and Dulay, 1993]. In 
fact, numerical simulation of the L-H equations is not a difficult 
task in itself, and here various numerical integral methods can be 
applied to the equation to sore  concentration proNes of each reac- 
tant and product with time. The obstacle is that kinetic parameters 
in the L-H equations, that is, reaction rate coilstants and a&ozption 
equilibrium constants, are not measurable, and there is no way to 
deduce an analytical formula to theoretically eslxnate its value. The 
only feasible approach to obtait~ng their values is to estimate them 
based on experimental data. The reason is that the L-H equations 
are a set of implicit nonlinear differential equations that are cou- 
pled with each other since some reactants are the resultants of others 
in a multi-component system. 

During a long period, kinetic l~ranetez~ have been estimated 
by the so-called initial rate method [Levenspiel, 1972], which uses 
linear regression method, based on the reciprocal form of a single 
L-H equation. But, this method cannot yield satisfying results owing 
to the fact that a nonlmear equation is merely replaced by a Imear- 
ized equation in this mettlod [ivlehab et aI., 2(K)0]. When more thai 
one component is being oxidized simultaneously and the L-H equa- 
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tioils are coupled with each other, which is very often encountered 
in photocatalytic reactions, this method is no longer applicable be- 
cause reciprocals of  the L-H equations are still nonlineai~ 

Taking into account the noi~Iineaity of the L-H equations, sev- 
eral approaches have been sttggested for nonlinear parameter esti- 
mation in reaction engineering [Biegler et aI., 1986; Kim et al., 1990; 
Farza et aI., 1997; Park and Froment, 1998; Oh et al., 1999; Balland 
et al., 2000]. For kinetic model govemed by the L-H equations, Fro- 
merit [1987] has shown that nonlinear r~ression can be applied to 
perform nonlinear parameter esttm~on. Ivlehrab et aI. [2000] have 
adopted the Box-Draper nonlinear regression method to fred the 
best point estimates, in which a variable medic algorithn is em- 
ployed with an improved gradient calculation. Although the local- 
convergence methods mentioned above do have a potential to yield 
a better estimation of kinetic para~aetez~ and are expected to be us- 
able in multi-component systems, there is still a ngorotts limitation 
that a rather good initial para~aeter value should be given. Because 
an objective function for nonlinear model often contains more than 
one optimum, a Iocal-convelgence method is highly prone to fail 
into non-global optima [Press, 1986] owing to their downhill (hill- 
climbing) algorithm. To protect the parameter estimation Kern re- 
garding a local optm~L~ as a global one, Belohlav et al. [1997] have 
applied a random search method in nonlinear regression. This ap- 
proach does work, but is computationalIy less efficient because of 
its random search algoz-itt~n. Especially when more than one com- 
ponent is oxidized, it hardly results in a satisfying estimation. 

To locate the global op~num confidently, varioLts approaches 
under the term "evolutionary algoiitl~n" have been also investi- 
gated recently. Wolf and Moros [1997] have estimated rate con- 
stants in oxidizing methane to C2 hydi-ocarborxs by the Genetic Al- 
gorithm (GA); Park and Froment [1998] have used the GA esti- 
mated kinetic parameters and tested a heterogeneous catalytic reac- 
tion; Balland et aI. [2000] bare esN~aated kinetic and energetic pa- 
rameters in the saponific~on process of ethyl acetate using the GA. 
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Although, the kinetic models studied in these works are not given 
by the L-H equation, their nonlinearities are notas s~-ong as that of  
the L-H equation, and their fmaI results are not so aca_trate as those 
of local convergence method, these works do show us that the GA 
has a potential to fred out, roughly, the location of the real global 
optimum for the nonlinear estimation problem. 

In the present study, we will show it is feasible and reliable to 
estimate simultaneously all kinetic parameters in the L-H equations 
by a hyhiid genetic-simplex opthnization method, even when sev- 
eraI oxidation processes are coupled with each other in the reac- 
tion. The proposed hybrid optimization method is set up in mamg 
the modified GA with the simplex algoritl~n. The role of the mod- 
ified GA is to fred a rough estimation for kinetic parameters, and 
this assures us that subsequent local search mlI converge to the glo- 
bal op lam~ when the result of the rough estimation is used as a 
sta~ng point of the simplex algorithm. The simplex algorithm is a 
local convergence method used to refine the rough estimation and 
to make the estimation more accurate. By analyzing the sensitivity 
of the simulated concenlrations with respect to the esttmated l:aram- 
eter values, we will show that the hybrid optimization method is 
able to estimate parameters accurately and reliably. By applymg it 
to a process about which l:~-eviously published results are available, 
we will s b w  the hybrid method gives a more accurate esamatior~ 

P A R A M E T E R  E S T I M A T I O N  O F  

M U L T I C O M P O N E N T  S Y S T E M  

In the present study, a process of photocatalytic purification of 
three VOC components, which has been extensively investigated 
by Turchi and Rabago [1995], Turchi et al. [1996] and Wolfi~n et 
aI. [1997], wiI1 be adopted for discussion. In the system, there are 
three kinetic-significant reactants (acetone, isopropanoI and metha- 
nol) and one product (carbon dioxide), where acetone is also the 
product of isopropanol oxidation. The three reactants existing in 
the same contamfflated ah- stream, say, representing exlmust stream 
from semiconductor plants, are oxidized simultaneously. The reac- 
tion stoichiometry can be depicted as [Turchi et aI., 1996]: 

Acetone ~ 3  CO2+xH~O 
Isopmpa~ol--+ acetone ~ 3 CO~+xH~O 
Methanol ~CO~+ xH~O 

The L-H equations for this process can be expressed as: 

dc~ k~K~c~ -k~K~c~ 
3 r~ dt I+~K,c, 

~=1 

_ dc~ _ ks Ks c~ 
3 r~ dt 1 +~I~c, 

~=1  

dc3 k3 K3 c3 
3 r3 dt 1 +~I~c, 

$=1  

dc4 _ 3k~ K~ c~ + ks Ks cs (1) 
3 r4 - dt 1 + ~ I ~ c ~  

i = 1  

where subscript 1 denotes acetone, 2 isopropanoI, 3 methanol and 
4 carbon dioxide, c is the concentration, k the reaction rate con- 
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stants and K the adsorption equiIibrium constants. 
In the previous Iitera~are [Turchi et al., 1996; Wolfium et {1 , 1997], 

1<l and K,, i=1, 2, 3, have been estimated separately fi-om experi- 
ments with each individtmI reactmat baying its various initial con- 
centrations. In the present study, with only one set of data, the kinetic 
parameters in the above equations will be esthnated by a hybzid 
optimization method. 

To fulfil1 the nonlinear estimation, let's construct object func- 
tions for four components in the system as follows: 

J,(k, K) = ~ ^ [c,(m) -c,(m)] (2) 
m = 1 

where vector k= {k~, k2 . . . . .  k~  . . . .  } denotes all reaction rate con- 
stants and vector K= {K~, K2, ---, K,,, ... } denotes all adsoiption 
equil ibn~ constants, c,(m) is experimental concentration of the i- 
th component at the m-th instance with time, while 8,(m) is the sim- 
ulated concentration of the i-th component at the m-th instance. Ap- 
parently, the object fimction is a square summation of difference be- 
tween the sim~flated and expenmentaI concentt-afions (Least Square 
Esamafion). To make the problem solvable, it is convenient to com- 
bine all object fractions into a stogie total object fimction by the 
following weighted average (or summation) method. 

n n 

J =Ew, J,/Xw, (3) 
l = 1  l = 1  

where wl is the weight for the i-th component. Thus, the kinetic pa- 
rameter esthnafion problem is expressed as a noiflmear optimiza- 
tion problem as follows: 

f minJ 
(4, h3 

? =~(k,, K,, c, ,ks, Ks, c~ ,A) 
(4) 

Aplmrently, since the L-H equations are a set of implicit nonlinear 
orc~ary differential equations, the object fizlction must be a inulfi- 
peak function. Therefore, the only practical way to solve this prob- 
lem is numerical search method. 

H Y B R I D  O P T I M I Z A T I O N  M E T H O D  

It has been understood that the GA has the potential to locate the 
global o p a r n ~  but its final result may not be aocurate enough, while 
the locaI-convezgence method has the potential to locate the local 
optimum accuzately but is highly prone to fall into non-global op- 
ttmum. Therefore, it is natq_tral to expect that a hybrid algorithm set 
up by matffg the GA with the local convergence method should 
be a promising approach for nonlinear kinetic parameter esama- 
tion. In the folIowing pa-agaph a brief description will be given 
about the GA and the simplex algoiitt=n, which are hybridized for 
the present study. Detailed inibrmafion about these algonthms can 
be found in many previous investigations [Cheney and Kincaid, 
1985; Winston, 1991 ; Gen and Cheng, 1997]. 

The GA m ~  a population of individuals, say P(n), for gen- 
eration n and each individual consists of a set of genes, where each 
gene stands for a parameter to be estimated One individual repre- 
sents one potential solution to the problem at hand Each individual 
is evaluated to give some measure of its fitness. Some indivi&aals 

Korean J. Chem.  Eng.(Vol.  18, No.  5) 



654 L. Wang and C. N. Kim 

undergo stochastic transformation by means of genetic operations 
to fonn new individuals. There are two b-amfonnations: crossovei; 
which creates new individuaIs by combinitg parts from two indi- 
viduals, and mutation, which creates a new individual by making 
changes in a single individual. New indMduals, called offspring 
S(n), are then evaluated. A new population is formed by selecting 
fitter individnaIs fi-om the l:~ent population and the offswing popu- 
lation. After some generations, tile algoiitl~-n converges to tile best 
indivi&al, which hopefully represents an optimal or sub-opttmal 
solution to the problem. A general s~ucture of the GA is as follows: 

begin 
n=0; 
initialize P(n); 
evaluate P(n); 
while (not tezmmation condition) do 
begin 

recombine P(n) to yield S(n); 
evaluate S(n); 
select P(n+l ) from P(n) and S(n); 
n=n+l ;  

end 
end 
To be applied to tim concrete problem, some operations of the 

GA are modified here. 
1. Modified Genetic Algorithm 

In tile present study, variables to be optimized are reaction rate 
constar~ k= {k~, k2 . . . . .  k ...... }, and adsorption equilibri~ con- 
stants K= {K~, K2 . . . . .  K,,, .... }, which are all float values, and this 
fact makes the ccdmg proced~-e different from that of the tradi- 
tional GA, whose individuals are all coded by binary figures. 
1-1. Representation 

Using real possible values of tile reaction rate constants and tile 
adsorption equilibrium comtants as its gene, the jth individuals X5. 
can be encoded as: 

~ :  {k~, k~ . . . . .  lg, K~*, K~ . . . . .  I<i} 

/k:~Ig_<uk;/I~_<uK 

where k/is the j-th possible value of reaction rate constant of the 
/th component, while I< 7 is the j-th possible value of adsorption 
eqv~Jiibnum constant of i-th component in the current generation./k 
and uk are tile lower and upper Dnit, respectively, for reaction rate 
constants, and )I<2 and uK are the lower and upper limit, respec- 
tively, for adsorption eqvnlibrium constants. It is also feasible to set 
different limits for each variable. 
1-2. Crossover and Mutation 

In order to explore the search space, some randomly chosen in- 
dividual pars are reccrnbined by crossover operation, which is clear- 
ly sketched by the following two in- dividuals 

v :  {k~, k~, . . . . .  1<, Ki, K~ . . . . .  I~} 

E*,: { kl§ k2*§ kff', K(+',KJ§ ..., Kff') 

New individuals resulting from tile above may be: 

V]: {kL k~, ..., k~, K(, Ki+', ..., Kff'} 

V~+,: {kC', kj +', .... tg +', KC', Kj, .... ~ }  

The position where an individual is cut off for recombination is ran- 

domly chosen, and the number of indivi&als chosen to be recom- 
breed ks set by crossover probability. After crossovm; all entries 
(genes) in all individuals are given a chance of undergoing muta- 
tion operation with a certain mutation probability. I f  a gene is se- 
Iected for rautation operation, it roll be assigned a random value m 
the given range. 
1-3. Evaluation and Selection 

The evaluation function plays the role of tile em&onment m zlatu- 
raI evolution, and it rates individuals in terms of their illness. For 
the mitm'nization problem here, the fitness of each individual is de- 
fined over object function values as: 

F,-'j(5) (5) 

where Fj is the illness of thej-th individuaI ~$, m is the number of 
inclividuaIs in the present generation, and J(Vj) is tile object func- 
tion value of tile j4h  individual. It is apparent that tile individual 
having the smallest object fimction value will have the highest fit- 
ness. In constructing tile next generation, the probability of the se- 
Iection ofthejth inclividuaI is calculated by the folIowing equation: 

(6) P l =  m 

EF, 
j-I 

The sdection is implemented by adopting a roulette wheel approach 
[@en and Cheng, 1997]. 
2. Simplex Algorithm 

From the mathematical point of view, the simplex algorithm is a 
relatively simple algofitl-~n, but ks effective for many optimization 
problems, especially in case it is difficult to deduce an analytical 
gradient formula [Cheney, Kincaid, 1985]. Its principle is as follows: 

When the simplex algoz-iti~'n starts with a given starting point m 
an m dimensional space, it will choose arbitrarily one point differ- 
ent from the starting point along each dimensional axis in a small 
neighborhood of the s~rtitg point, and define a simplex in the search 
space with the given point (starting point) together with the m points 
chosen along each dk-nensional axis (m is the number of l:~-ame- 
ters to be optimized, i.e., the dimension of search space, and the sim- 
plex has m+l points). Then a downhill (or hilI-climbmg) method 
is applied to update tile simplex iteratively and to make the algo- 
rithm fmalIy achieve the oplm-num. Assume that vj is the worst one 
among the m+l points Vl, v2, . . . ,  ~g+l, which means ~} has the big- 
gest object fimction value (in case of minimizing); a new point can 
be created as follows: 

m+l 
E V - - V j  

v* =( I -SV)B +)v '=' 2n (I I) 

where )~ is the step size which can be optimized m each iteratiorL 
By replacing tile worst point vj witi1 tile newly created point v*, tile 
simplex can be updated. In the next iteration, the new worst point 
in the new simplex is idertified and replaced by a new point. If  this 
updating operation is repeated, alI tile In+l points will conle closer 
to the local optimum, and the step size will become smaller [wre- 
st.on, 1991]. When the step size becomes smaller than a given small 
value (com~ergence ci-itez-ia), each one of the m+l points can be 
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regarded as the optimum. 
3. Solution Strategy 

In the simplex algorithm, the simplex is updated by replacing the 
single worst point (the current point) in the search space iteratively. 
Dttdng a single iteration, a new point is selected fi-om the neigh- 
borhcxxt of the cu~Tent point. If the new point Vovides a smaller 
value of the object function, the current point is deleted and the new 
point will be used in the process of the simplex algonttma; otherwise, 
another neighbor is selected and tested It is clear that this search 
strategy provides local optimtrn values only, and these values depend 
on the selection of the starting point Considering the fact that the 
opN-nization problem in the present study is implicit and nonIinea; 
which means that the object function generally has more than one 
ex~-ema, we have to voduce a reasonable starling point to ensure 
the simplex algontl-~ convelges to a global opttmurn rather than a 
local optimum. On the other side, the GA is a compromise between 
an accurate local conveigence method and a robust random meth- 
od; it combines elements of directed and stochastic searcK It has 
been shown by many investigations that the GA will finally con- 
verge to the best individual roughly with a random initial popula- 
tion, but it is hard to improve its acc~aacy. In our hybrid method 
for kinetic pa-aneter esthnation, the genetic algorithm is used not 
to find the final best solution to the problem, but to yield a rough 
guess of parameters, which will be used as the starting point of the 
simplex algofitt:r therefore, it is unnecessay to let the GA oper- 
ate a long time till it finally converges to the best solution. 

In our hybrid op~mzation method, the GA is adopted fl~fly with 
its initial individuaIs created randomly in a given bound of param- 
eter values. About 2(300 generations are evolved, and the fittest in- 
dividual in the population (from the fn~t generation to the last gen- 
eration) is chosen as the favorite point Here, the number of genera- 
tions used in the GA is an empirical value based on the experience 
of the at~hor because there is no general value for this purpose. Suc- 
cessively, the simpIex algorithm is started to refine the soIution by 
using the point given by the GA as its starting point. When the step 
size of the sit~aplex algorithm is smaller that 1.0e-6, the search pro- 
cess is stopped and the optLmization is regarded as converged. 

P E R F O R M A N C E  OF THE HYBRID M E T H O D  

By the hybrid opdlnizafion method mentioned in the above sec- 
tion, all kinetic parameters in the system defmed by Eq. (1) have 
been estimated simultaneously by only one set of data, which is 
read ca-efiflly fi-on] the published experh'nentaI figure [Turchi et 
al., 1996]. For the sake of convenience, the taits of concentration, 
reaction rate constants and adsoiption equilibrium constants are all 
changed into ST system. In this test with the modified GA, the pop- 
ulation has 200 individuals, the cTossover probability is set 0.2 and 
mutation probability ks set 0.01. The convei~ence criterion for the 
simplex algorithm is that its step size is smaller than 1.0• 10 -a, which 
means all points of the fmaI stage of the simplex algorithm come 
close enough and wander in a very small region (approxh-nated by 
a polyhedron whose diameter is smaller than 1.0• With the 
assumption that 0<k~<10000 and 0<K~<10, i=1, 2, 3 (it ks a rea- 
sonable guess judging fi-om our knowledge of reaction engineer- 
ing, and if these bounds do not work, we ca] easily change these 
bounds), the hybrid optimization method finally yields the esti- 
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Fig. 1. Comparison of experimental observariom with the simu- 
lated concentrations based on the estimated parameters by 
the hybrid optimization method (AU experimental data are 
the same as those in Fig. 2). 

mated values as follows: 

k~ = 140.8013766138399, K~ =0.02038825898700673 
k~ =7275.7 08194557086, K~=0.01252516703250473 
k3 =68.65429354582977, K3=0.2569758737264554 

Comparison is made between the sinmlated concen~atiom ob- 
tained fi-om our estimated kinetic parameters and the expmmentaI 
concenlrations in Fig. 1. Because the exact values of the kinetic pa- 
rameters are un!~own, the only way we can show the perfor- 
mance of the hybrid optimization method is to compare our esti- 
mated results with those in other published investigatiom. Here, for 
the comtx~-ison the estimated results made by Tuxchi et al. [1996] 
and Wolff-am et aI. [1997] are reproduced in Fig. 2, where their pa- 
rameter esNnation was based on single comtxment data (separate 
estimation for each component). For clmfication, data are an-anged 
in the same style in the two figures, where it is very clear that our 
hybrid opN'nization method gives a more accurate estimation of 
the kinetic parameters in the system, because the simulated con- 
cen~-ations based on the hybrid optimization method fit more ac- 
curately with the expei~nentaI data than those based on separate 
esttrnation though the mathematical kinetic models are the same. 
Furthem]ore, only 27 expei~nentaI concei~-ations of each reactant 
are used for our estilnation, while it has been reported in the previ- 
ous Iitera~-e that a series of expe:-hnents for each component are 
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Fig. 2. Comparison made by Tm'clfi et al. [1996] between experi- 
mental observations of photocatal3~ic process given in Eq. 
(1) anti simulated concenn'arions based on parameter esti- 
marion by single component data 07 denotes tempelature, 
RH denotes relative humidity). 
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necessary for their parameter estimation. 
This application indicates that the hyh' id optflnization ks feasible 

for simultaneous estimation of  !dnetic t ~ a m e t e ~  in the L-H equa- 
tions for a multi-component system, and this methcd does give a 
more accua-ate es~-nafion than what the separate es~-nation method 
d o e s .  

R E L I A B I L I T Y  O F  T H E  E S T I M A T I O N  

In order to show the reliability of  the kinetic parameter estima- 
tion, let's analyze the sensitivity of  the smmlated concentrations with 
respect to the estimated kinetic parameters, which determines error 
transfer duairg the e s ~ n ~ n g  txocess. To cla-ify the problem, a single 
component system is used for discussion, whose L-H equation is: 

dc kKc 
r = d--t = 1 +Kc (6) 

where c is concentration, k is the reaction rate constants and K is 
the adsorption equilibzium constants. 
1. Sensitivity 

It is known that there must be some measurement error intro- 
duced into the measured concentration ckrmg experiments, and the 
measurement error wilI affect the estimation results. The ratio of  
error in the es~nated paranetea~ to that introduced in measurements 
is determined by the sensitivity of  the eslzmated parameter with re- 
spect to the value of the object functior~ Because the expez-h-nental 
concentration profile with time in the given system is fixed in the 
process of  t~-ameter estimation (it was used as input), we can con- 
sider the sensitivity of the estimated para'netm~ with respect to the 
simulated concentrations instead. It is not a difficult task to obtain 
the sensitivity of  simulated concentrations fi-om the L-H equations. 

sk,., = l / d C d ~ =  l /At i~  Kc(j) 
1 +Kc(j) (7) 

s .~dc(m) . . .2@'  kc(j) 
K , = ' " ~ = - - -  = ' " " ~ 2 . ,  ^ ( 8 )  
" dK j=l [1 +Kc(j)] ~ 

where se,, is the sensitivity of k with respect to the m-th simulated 
concentrations, while sf.,~ is sensitivity of  K with respect to the m- 
th simulated concentrations, c(j)  is the simulated concentrations at 
the j-th instance with time and At is time interval between concen- 
tration sampImg. 

GeneraUy, k>>l  while K<<I ;  it makes se,,>s~,,, in most cases. 
This fact means that error in the esttrnated reaction rate constant is 
larger than that in the estimated adsorption equilibmrn cons ta~  
where both the errors are caused by the experimezltal concentra- 
tions error. However, it does not mean that the estimated K is more 
reliable than estimated k, because their absolute magnitudes are dif- 
ferent. I f  ~176 sensitivity" is to be used, we can easily fred the 
error transfer: 

r~ -1/d~(m)/c'~,r~ 1/A/~' kKc(j)  
o~.,,, - .  dk/k - *  ~,=~ [I +Kcd)~c,. s (9) 

" Xlc(m)/c ~r 1 /Ate '  kKS(j) rsK,., = t / d K / K "  ~ (I0) 
j : l  [ I +Kc(j)]~o,0s 

where rs e,,, and rsr.,,, are the relative sensitivity of  the estimated k 
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Fig. 3. Sinmlated concenlralion of file system given in Eq. (6) and 
its sampling. 

and K with respect to the concentrations, respectively, and %/is  the 
reference concentration (we use the initial concentration as the re- 
ference here). Because K is small, 1 + K c ( j )  is a little linger than 1, 
and z~,,<r%,,,, we can deduce that the estimated k has a little smaller 
relative error than the estimated K when the same experimental con- 
centrations are used, which means the esti~'nated reaction rate con- 
stant is a l ine  more reliable than the estimated adsorption equilib- 
rium constants. 

Because the relative sensitivity is a function of the Imletic pa- 
rameters (to be estimated) and the concentrations, this fact makes it 
difficult to abstract a general formula of  sensitivity analysis for all 
reaction processes. Instead, we use a concrete numerical test to show 
how the error introduced into the experimental concentrations will 
affect the accua-acy of the estimated parameters. Let k = 100, K=0.01, 
and the initial concentration is c(0)=100 in the system given by Eq. 
(6). It is easy to simulate this system and the obtained concentra- 
tions are sketched in Fig. 3. To test the reliability of  kinetic param- 
eter estimation by the hybrid optimization method, we sample the 
s imt~ ted  concentration at 30 different instances along time span 
evenly from 0 to 9 seconds, which are marked as discrete small cir- 
cles in the figure. Here we pretend that we know nothing about the 
values o f k  and K, and they have to be estimated ruth the sampled 
concentrations. In an ideal case (no error exists in the expenmental 
concentrations), the esttrnated k and K by the hybrid optimization 
method are 

k = I00.0000000360223 
K=0.009999999993527 

The obtmned parameters are almost the same as their real values, 
and the test indicates the hybrid opNmzation method has the po- 
tential to recover kinetic parameters acc~_trately. Now, let's intrcduce 
a random error into the input concentrations: 

%~,=co~o~,+s (I I) 

where c ..... is concentration without any enor (calculated with given 
parameter values), s is the mean zero random error intrcduced into 
the concentrations with IsF2 in this test, and q ~  is concentration 
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Fig. 4. Distribution of  the estimated reaction rate constant  with 
500 times est imation including random error. 
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Fig. 5. Distribution of  the estimated adsorption equilibrium con- 
stants wi th  500 times estimation including landom error 

used for parameter estimation. 

Considering the randonmess of the introduced eno:; we ran the 
estimation 500 times to abstract an approximate s t ~ h c a l  character- 
istic. The distributions of esthnated reaction rate constant are marked 
in Fig. 4, while distributions of estimated adsorption eq~/librkwn 
constant are in Fig. 5. It is very clear flora the figures that the es- 

thnated k and K are dist:ibuted in small bounded regions, reslec- 
~/vely, with their average vaIues: 

O.~F .......... T .............. ............. : .......... i ................... ~ ............. ? ......... : ................... : ...................... : ........................ 

i .............. i ............ : ............... i .............. ii-i-'ri ................ ! ............... iI-- ~:~ ........ 

0.4 

o 
e ~  

0.2 ............. ! ............. : ............... ! ........ ~ ........... ~ ............... 1 ............... i ................ 

0 [ , __;:K . . . . . . . . . . . . . . .  "'--• 
-0.4 -02 0 0.2 0.4 

Relative error in eslimated parameter 

Fig. 6. Distributions of the probabilities of  the estimated parame- 
ters with respect to relative m-or  when  random error is in- 
troduced into the system (based on 500 estimations).  

where e is the relative error andx  denotes either k or K. g denotes 
the average of x. Here, to show the reliability of the estimated re- 
sults, we use a probability density fimction with resl:eCt to the relative 

error of the estimated results, where the probability density func- 
tion is obtained by counting the number of points and by smooth- 
mg the resulting probabilities to a c~m~e. The probability density 
fimctioi~s ofk  and K are sketched together in Fig. 6 for convenience 

of  compa:ison. 
From the probability density fact ions,  we can easily draw two 

bottom lines. The first one ks that each of estimated k and K has a 

his162 and :~ row  leak around the zero relative en-or point with hound- 
ed relative errors. It assures us that, when only one set of data is 
used, the estimations are reliable even though some experimental 
error exists in the concentration. The second one is that the reac- 
tion rate corxstant can be estimated more reliably than the adsorp- 

tion equilibrium consta:ts, because the probability density fu::ction 
of the former has a higher peak around the zero relative error point, 
and this agrees with the result of the qualitative sensitive analysis 

camed  out before. 
2. A b o u t  the  O b j e c t  F u n c t i o n  

In the kinetic parameter estimation, the role of the object fimc- 
tion is to make the simulated concentrations as close to the exact 
concentrations (no expe:ime::tal concentration error) as possible. If 

the exact concentrations are available (which is not the case that 
we can expect), the idea1 object function shonId be 

k=I00.5615342848486 

K=0.010061512537634 
J : ~f~ [c ...... (m) - %,,,~,~,o,(m)] ~ (I3) 

m = 1 

Here, the esthnated parameters are very close to their reaI values. This 
result shows that the errors in the estimated parameters are hounded, 
and if enough data are available, the pa-amete:~ can be recovered 

accu:ately. 
If  only one set of data is available, the reliability of the parame- 

ter estimation can be shown by the distribution of the relative error 
defined m the followmg equation: 

e = ( x - s  (I2) 

where %~c~m) is the ideal exact concentrations while c,,,,~,a~(m) is 
the simulated concentrations, and m denotes m-th instance with hllle. 
Apparently, the fflnction's minmmm ks zero, which means there is 

no difference between the simulated and the exact concentratio:~s 
when the fimction is minimized, and m this case the estimated pa- 
rameters should be accurate, as shown in the above numeiicaI test. 
But, m practice, the experimental errors always exist and are un- 
known, which makes the exact concenh-ations unavailable; there- 

fore, the object function given by Eq. (2) is commonly used instead 
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But, this substitution (replace) causes the simulated concen~ation 
to deviate lightly from the exact one. To show it clem-ly, tile object 
function ks rewritten here as: 

J = ~  [ c . ~ , ( m )  + e ( m )  - c=,,, , . ,~,.a(m)] ~ ( I 4 )  
m = 1 

in which the experimental concentration is decomposed into two 
components: the one is the exact concentration and the other is the 
expe:%nental en-or e(m). I f  tile sinlulated concenh-ations and the 
exact concentrations are the same, the object fi_mction defined in 

p 

Eq. (14) mlI  have tile value of ~ g ( : n ) L  Because we cannot fred 
m = 1 

this situation in a real application, it is assumed in tile estmlation 
algorithm that the simv~ted concenlration is the same as the exact 
one when the object function defined in Eq. (14) is minimized In 
fact, it is not  what  we can get  in a real application. 

Let 's  consider the followmg ineqmality: 

[%:~,(m) +e(m) -%,,,~,:,~e(m)] ~ -< 
m = 1 

z ~ [ r  . . . . . .  ( h i ) -  Ca , , , umtea (n ] )  ] 2 +  ~ ( n ] ) 8  ' ( I 5 )  
in =1 in =1 

It  inclicates that the mitNnum of object function defined in Eq. (14) 

should be sraaller than ~2 g(ra) ~, where %,,~o~.~(ra) are ,lot equal to 
m = 1 

%=~(m). Of  course, the es~nated parameters are also influenced 
by  the en-oi~ in the experhnentaI concei~-ations. 

Here, we can consider tile <bve~hoot" of  the object fimctioi% 
which can be defined as the value by which the minimum of  the 

object function defined in Eq. (14) is smaller than ~ g(m) ~. Became 
m = 1 

the overshoot of the object fimction is generally small, the enor  in 
the es~m-nated parameters is also small and tolerable. On the other 
hancl, the <<overshoof' is not caused by the op~nization algolitl~n 
itself, but by the fact that no detailed information about the experi- 
me~a l  error is available, which forces us to use the object fimction 
defined in Eq. (14) instead of  the one defined in Eq. (13). From the 
information point of  view, it is reasonable that we cannot recover 
the kinetic parameters exactiy when some information about the 
reaction is lost in tile expemnen t  
3 .  F r e S h e r  V e r i f i c a t i o n  

To show further tile reliability of tile hybrid opNnization inethod 
for kinetic parameter es~nation, here the fitness of  the esttrnated 
concentrattons (calculated tmsed on the eslm'nated Idnetic parameters) 
to the given exact concen~-ations is tested, where tile initial values 
used to calculate the es~m-nated concer~rations are different fi-om 
those used to estimate Idnetic parameters. Let's consider the fol- 
lowing two component  system: 

d% k~K~% 
dt 1 +K,c ,  +K~% 

d% k~K~% -k~K,c~ 
- ( I 6 )  

dt I +K~% +K~% 
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Fig. 7. An al t i t idal  experiment of a t w o - c o m p o n e n t  sy s t e m.  (Exact 
c o n c e n t ~ t i o m  a r e  d e n o t e d  b y  l ines,  w h i l e  s a m p l e d  c o n c e n -  
t r a t i o n s  wi f l l  r a n d o m  e r r o r  are  d e n o t e d  b y  d i s c r e t e  m a r k -  
ers) .  
( a )  11311181 concen~tatiol]s o f c~(0 )= 180 and %(0 )= 180 (rnol/L). 
(b) Initial concentrations of c~(0) = 120 and %(0) = 120 (moI/L). 
(c) Initial concea]trations of %(0)=60 and %(0)=60 (moI/L). 

where st~scripts A and B denote components A and B, respectively. 
Given the kinetic parametei's as kA = 100, kB=40, KA=0.04 and KB = 
0.01, the exact concenlration profile with different initial values of  
components A and B can be easily calculated as Imes in Fig. 7, where 
three sets of  initial concen~-ations are chosen for tile test In Fig. 

7(a), the initiaI concen~ations are CA(0)=180 and %(0)=180, in 
Fig. 7Co) cA(0)=120, %(0)=120, while in Fig. 7(c) cA(0)=60, %(0) = 
60. To estimate the Idnetic imrameters, the exact concentration pro- 
files are sampled evenly fi-om the time range of 0 to 20 seconds with 
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an interval of  0.5 second A bounded random relative eno~; whose 
maxamum will not exceed 5% of  the concentrations, is superposed 
on the exact concenlration to simvilate the expenment error. For com- 
imzison, concentration sanples are also sketched in the figure as di- 
screte markers. 

Choosing the concentration sanples  in Fig. 7(a) as input, the hy- 
brid oplm-nization method estimates the four kinetic parameters as 

k,=94.64923z183zl 15211 k~=z12.39506915z161 z177 
K,=0.03972790629826880, K~=0.008864935373366311 

If  the concentration samples in Fig. 7(b) are chosen as input, the 
estimated parametm~ will  be: 

k, =111.2879861550922, k~=38.65915807659286 
K, = 0.03671313198303160, K~ = 0.00103642737019902 I 

While the concenlration samples in Fig. 7(c) are used, the estimated 
result wil l  be: 

k~=98.99980578291010 k~=37.0 I7z18896537582 
KA=O.Od29266303639ddI9, K~=0.00 I120936z175z188305 

It is clear that all three sets of  the estimated parameters are close to 
the exact parameter values with a very small eno~; which indicates 
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Fig .  8.  (a )  T h e  c o n c e n t r a t i o n  d i f f e r e n c e  b e m . e e n  t h e  e x a c t  o n e  
[given in Fig.  7(a)  a n d  (c)l and  IRe cm'renl ly  c a l c u h t e d  one .  
(a) Initial conce~-alio~s o f cA(0) = 180 and %(0) = 180 (mol/L). 
(b) Initial concentrations of  c~(0)=60 and %(0)=60 (mol/L). 

that the hybrid optin~ization method is independent on the itfitial 
concentrations. 

To check the reliability of  the hybrid optimization method in an- 
other way, one of the tt~ee sets of  es~nated parameters mentioned 
above is chosen to c a l c ~ t e  the concentration profile with different 
initial values. Here, the estimated l:~mnetm~ related to the itfitial 
concenlrations %(0)=120, %(0)=120 are chosen, but the concentra- 
tion profiles are calculated with the initial values %(0)=180, %(0) = 
180 and %(0)=60, %(0)=60 The goodness of  the aptx-oximation 
to the exact concentrations is sketched in Fig. 8, where the good- 
ness is denoted by a concenlration difference between the exact one 
(given in Fig. 7(a) and (c)) and the currently calculated one. The 
concenlration differences shown in Fig. 8(a) are calculated with ca 
(0)=180, %(0)=180, while in Fig. 8(b) itfitial values are %(0)=60, 
%(0)=60. 

When the initial concel-~ations are ca(O) =180, %(0)=180 in this 
figure, the maximal difference is only about 5; when %(0)=60, % 
(0)=60, the maximal difference is only about 1.2. The maximal re- 
lative errors in both cases are less than 3%, which is less than the 
relative errors introduced into the concentration samples. It is clear 
in Fig. 8 that the concel~ation differences between the exact and 
the estimated value are very small with both sets of initial concen- 
trations. The small concentration difference indicates that the esti- 

mated kinetic parameter is a good approximation to the real exact 
value. Considea-ing the fact that the itfitial concenlrations used for 
comparing concentration difference are different fi-om that used to 
estimate kinetic pa-ametez~, it can be concluded that the hybrid op- 
timization method has the capability to estimate kinetic parameters 
reliably with only one set of  concentration samples, provided that 
the mathematical model is a reasoilable description of a focused 
reaction. Of  course, when many sets of  data are avaiIable, the esti- 
mation can be improved by some related statistical method. 

C O N C L U S I O N  

For a photocatalytic reactions, eithe, single component or i:mlti- 
component systems, it has been customary to estimate kinetic pa- 
rameteis sepa-ately based on single component data, even when the 
L-H equations are coupled where more than one reactants are in- 
volved In this study, for a multi-component photocatalytic system, 
it has been illusa-ated that simultaleous l:a-ameter estimation is fea- 
sible in soMng the relevant multi-objective opttmization problem 
by a hybrid genetic-sm:plex method In this method the genetic al- 
goritt:-n is used to fred roughly an optimum in a rather wide range, 
while the simpIex algorithm is used sequentially to refme the rough 
optimum mad make it accurate. Applying it to a real reactiotl, we 
found the estimated results by the hybrid optimization method are 
more accurate than those of  existing investigations. By semitivity 
atlalysis and numerical verificatioil, it has been also shown that the 
estimation is reliable even when only one set of  experimental data 
(with ut~aloml error) is available. This investigation proposes an 
effective approach to abstract Idnetic parameters fi-om very few ex- 
perimental data. 

A C K N O ~ r L E D G E M E N T  

This work was supported by Korea Research Foundation C=-a:~s 

K o r e a n  J.  C h e m .  Eng . (Vo l .  18, N o .  5) 



660 

(KRF-1999-005-E00025). 

NOMENCLATURE 

C~ 
Cexac,(m) 

c,(m) 

C,wa~latea(In ) 

c,(m) 

e 

5 
J 
J, 
k 
k~ 
k~ 
K 
K, 

/k 
/K 
p, 
r~ 
uk 
LrK 
v, 
~V~ 

X 

L. Wang and C. N. Kiln 

concentration of component i [reel/L] 
the ideal (without error) concentration at the ruth in- 
stance [moI/L] 
the ruth observation of concentration of the compo- 
nent i [moI/L] 
the simulated concentration at the ruth instance [reel/ 
5] 
the ruth simulated concentration of component i [mol/ 
5] 
the relative error 
the fitness ofj th ch-omosome 
object function 
object function of component i 
collection of  all reaction rate constant 
reaction rate constant of component i [moI/(L)(s)] 
thejth possible value of k~ 
collection of  all adsorption equilibrium constants 
adsorption equilibrium constant of  component i [L/ 
tool] 
thejth possible value of K~ 
lower limit of  the reaction rate constant 
lower limit of  the adsorption equilibrimn constant 
possibility of thejth chromosome 
reaction rate of component i [moI/(L)(s)] 
upper limit of the reaction rate constant 
upper limit of  the adsorption equilibrkma constant 
the/th chromosome 
average weight of  component i 
one of es~m-nated reaction rote constants or adsorption 
equilibrium constants 
average o f x  

Greek Letter 
s(m) : random error at the ruth instance 
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