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Abstract—Nonlinear kinetic parameter estimation plays an essential role in kinetic study in reaction engineering. In
the present study, the feasibility and reliability of the simultaneous parameter estimation problem is investigated for a
multi-component photocatalytic process. The kinetic model is given by the L-H equation, and the estimation prob-
lem is solved by a hybrid genetic-simplex optimization method. Here, the genetic algorithm is applied to find out,
roughly, the location of the global optimal point, and the simplex algorithm is subsequently adopted for accurate con-
vergence. In applying this technique to a real system and analyzng its reliability, it is shown that this approach results in
areliable estimation for a rather wide range of parameter value, and that all parameters can be estimated simultaneously.
Using this approach, one can estimate kinetic parameters for all components from data measured in only one time

experiment.
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INTRODUCTION

Photocatalysis 1s a promising approach to efficient destruction
of environmental pollutants [Alberici and Jardim, 1997, Herrmann,
1999; Ollis, 2000; Chau et al., 2000], and marny experimental inves-
tigations have been reported m this field [Anpo et al., 1997, Sirisuk
et al, 1999]. Because an experimental approach 1s usually costly
and time consuming, some other mvestigations with computer sim-
ulations have also been carried out, which are based on a mathe-
matical kinetic model for the photocatalytic oxidizing process. Re-
searches have shown that most photocatalytic reactions follow the
L-H (Langmur-Hmshelwood) equation [Fox and Dulay, 1993]. In
fact, numerical simulation of the L-H equations 1s not a difficult
task m tself, and here various numencal integral methods can be
applied to the equation to solve concentration profiles of each reac-
tant and product with time. The obstacle is that kmetic parameters
m the L-H equations, that 1s, reaction rate constants and adsorption
equilibrium constants, are not measurable, and there is no way to
deduce an analytical formula to theoretically estimate its value. The
only feasible approach to obtaming therr values is to estimate them
based on experimental data. The reason is that the L-H equations
are a set of implicit nonlnear differential equations that are cou-
pled with each other since some reactants are the resultents of others
mn a multi-component system.

Durmg a long period, kinetic parameters have been estimated
by the so-called mitial rate method [Levenspiel, 1972], which uses
linear regression method, based on the reciprocal form of a smgle
L-H equation. But, this method carmot yield satisfymg results owmg
to the fact that a nonlinear equation is merely replaced by a linear-
1zed equation 1 this method [Mehrab et al, 2000]. When more than
one componertt 1s bemg oxidized simultaneously and the L-H equa-
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tions are coupled with each other, which 15 very often encountered
mn photocatalytic reactions, this method is no longer applicable be-
cause reciprocals of the L-H equations are still nonliear.
Taking mto account the nonlmearity of the L-H equations, sev-
eral approaches have been suggested for nonlinear parameter esti-
mation in reaction engmeermg [Biegler et al,, 1986, Kim et al,, 1990,
Farza et al, 1997; Park and Froment, 1998; Ch et al,, 1999; Balland
etal, 2000]. For kmetic model governed by the L-H equations, Fro-
ment [1987] has shown that nonlmear regression can be appled to
perform nonlinear parameter estunation. Mehrab et al. [2000] have
adopted the Box-Draper nonlinear regression method to find the
best pomnt estimates, in which a vanable metric algorithm 1s em-
ployed with an mmproved gradient calculation. Although the local-
convergence methods mentioned above do have a potential to yield
a better estimation of kinetic parameters and are expected to be us-
able in multi-component systems, there 1s still a rigorous limtation
that a rather good mmtial parameter value should be given. Because
an objective function for nenlinear model often contains more than
one optimum, a local-convergence method s hughly prone to fall
mto non-global optima [Press, 1986] owing to ther downlull (hall-
climbing) algorithm. To protect the parameter estimation from re-
gardng a local optimum as a global one, Belohlav et al. [1997] have
applied a random search method in nonlinear regression. This ap-
proach does work, but 1s computationally less efficient because of
1ts random search algorithm. Especially when more than one com-
ponent is oxidized, it hardly results in a satisfymng estimation.
To locate the global optimum confidently, various approaches
under the term “evolutionary algorithm™ have been also mvesti-
gated recently. Wolf and Maros [1997] have estimated rate con-
stants n oxidizing methane to C, hydrocarbons by the Genetic Al-
gorithm (GA); Park and Froment [1998] have used the GA est-
mated kinetic parameters and tested a heterogeneous catalytic reac-
tion; Balland et al. [2000] have estimated kinetic and energetic pa-
rameters 1 the saponification process of ethyl acetate using the GA.
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Although, the kinetic models studied m these works are not given
by the L-H equation, their nonlinearities are not as strong as that of
the L-H equation, and their final results are not so accurate as those
of local convergence method, these works do show us that the GA
has a potential to find out, roughly, the location of the real global
optmum for the nonlinear estumation problem.

In the present study, we will show 1t 1s feasible and reliable to
estimate simultaneously all kinetic parameters m the L-H equations
by a hybrid genetic-sumplex optinization method, even when sev-
eral oxidation processes are coupled with each other i the reac-
tion. The proposed hybrid optimization method 1s set up i mating
the modified GA with the simplex algorthm. The role of the mod-
ified GA 1s to find a rough estimation for kinetic parameters, and
thus assures us that subsequent local search will converge to the glo-
bal optimum when the result of the rough estimation 1s used as a
starting pomt of the simplex algorithm. The simplex algorithm 1s a
local convergence method used to refme the rough estimation and
to make the estimation more accurate. By analyzing the sensitivity
of the simulated concentrations with respect to the estmated param-
eter values, we will show that the hybrid optimization method 1s
able to estimate parameters accurately and reliably. By applymng it
to a process about which previously published results are available,
we will show the hybrid method gives a more accurate estimation.

PARAMETER ESTIMATION OF
MULTICOMPONENT SYSTEM

In the present study, a process of photocatalytic purification of
three VOC components, which has been extensively mvestigated
by Turchi and Rabago [1995], Turchi et al. [1996] and Wolfrum et
al. [1997], will be adopted for discussion. In the system, there are
three kinetic-sigmficant reactants (acetone, isopropanol and metha-
nol) and one product (carbon dioxide), where acetone 1s also the
product of sopropanol oxidation. The three reactants existing m
the same contaminated air stream, say, representing exhaust stream
from semiconductor plants, are oxidized simultaneously. The reac-
tion stoichiometry can be depicted as [Turchu et al., 1996]:

Acetone—3 CO,+xH,O
Isopropanol —acetone— 3 CO,+xH,O
Methanal —CO,+xH,O

The L-H equations for this process can be expressed as:
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where subscript 1 denotes acetone, 2 sopropanol, 3 methanol and
4 carbon dioxide. ¢ 1s the concentration, k the reaction rate con-

stants and K the adsorption equilibrium constants.

In the previous literature [Turchi et al,, 1996; Wolfrum et al,, 1997],
k, and K, 1=1, 2, 3, have been estimated separately from experi-
ments with each mdividual reactant havmg its various mitial con-
centrations. In the present study, with only one set of data, the kinetic
parameters m the above equations will be estimated by a hybnd
optimization method.

To fulfill the nonlmear estimation, let’s construct object func-
tions for four components m the system as follows:

Ik, K)=i=l[c,-(m>—6,-(m>]2 @

where vector K=k, k,, ..., k,.. ... } denotes all reaction rate con-
stants and vector K={K, K,, ..., K,,, ... } denotes all adsorption
equilibrium constants. ¢{im) 1s experimental concentration of the #-
th component at the m-th instance with time, while ¢,(m) is the sim-
ulated concentration of the i~th component at the m-th mstance. Ap-
parently, the object function 1s a square summation of difference be-
tween the simulated and expenmental concentrations (Least Square
Estimation). To make the problem solvable, 1t is convernent to com-
bme all object functions mto a smgle total object function by the
following weighted average (or summation) method.

J =iw,l,/§,wi 3

where w, 1s the weight for the #th component. Thus, the kinetic pa-
rameter estimation problem 1s expressed as a nonhnear optmniza-
tion problem as follows:
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Apparently, since the L-H equations are a set of mplicit nonlinear
ordmary differential equations, the object function must be a multi-
peak function. Therefore, the only practical way to solve this prob-
lem 1s numerical search method.

HYBRID OPTIMIZATION METHOD

It has been understood that the GA has the potential to locate the
global optimum but its final result may not be accurate enough, while
the local-convergence method has the potential to locate the Jocal
optimum accurately but 1s highly prone to fall mto non-global op-
timum. Therefore, it 1s natural to expect that a hybnd algorithm set
up by mating the GA with the local convergence method should
be a promising approach for nonlinear kinetic parameter estime-
tion. In the followmg paragraph a brief description will be given
about the GA and the smplex algorithm, which are hybridized for
the present study. Detailed mnformation about these algorithms can
be found i many previous mvestigations [Cheney and Kmcaid,
1985, Wmston, 1991 ; Gen and Cheng, 1997].

The GA mantains a population of mdividuals, say P(n), for gen-
eration i1 and each mdividual consists of a set of genes, where each
gene stands for a parameter to be estimated One mdividual repre-
sents one potential solution to the problem at hand Each ndividual
1s evaluated to give some measure of 1ts fitness. Some mdividuals
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undergo stochastic transformation by meeans of genetic operations
to form new mdividuals. There are two transformations: crossover,
which creates new mdividuals by combimng perts from two mdi-
viduals, and mutation, which creates a new individual by making
changes m a single mdividual. New mdividuals, called offspring
S(m), are then evaluated. A new population 1s formed by selecting
fitter mdividuals from the parent population and the offspring popu-
lation. After some generations, the algorithm converges to the best
mdividual, which hopefully represents an optimal or sub-optimal
solution to the problem. A general structure of the GA 1s as follows:
begin
n=0;
mutialize P(n);
evaluate P(n),
while (not termination condition) do
begin
recombine P(n) to yield S(n);
evaluate S(n),
select P(n+1) from P(n) and S(n),
n=n+I;
end
end
To be applied to this concrete problem, some operations of the
GA are modified here.
1. Modified Genetic Algorithm
In the present study, variables to be optimized are reaction rate
constants k={k;, k,, ..., k,, ... }, and adsorption equilibrium con-
stants K={K,, K, ..., K,, ... }, which are all float values, and this
fact makes the coding procedure different from that of the tradi-
tional GA, whose mndividuals are all coded by bmary figures.
1-1. Representation
Using real possible values of the reaction rate constants and the
adsorption equilibrium constants as its gene, the jth ndividuals V,
can be encoded as:
VoK K, . LK, KLK, KD
Ik<i<uk; K<Ki<uK
where k/ is the j-th possible value of reaction rate constant of the
ith component, while K/ is the j-th possible value of adsorption
equilibrium constant of #-th component m the current generation. 7k
and uk are the lower and upper limit, respectively, for reaction rate
constants, and /K and uK are the lower and upper limit, respec-
tively, for adsorption equilibrium constants. It is also feasible to set
different limits for each variable.
1-2. Crossover and Mutation
In order to explore the search space, some randomly chosen m-
dividual pairs are recombined by crossover operation, which 1s clear-
ly sketched by the followmg two - dividuals

VoKL LR KL K, K

Vo KL R KRR, L K

New mdividuals resulting from the above may be:
VindkL K, LR KL, K
Vi kK LSRR K LUK

The posiion where an mdividual 1s cut off for recombmation 1s ran-
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domly chosen, and the number of mdividuals chosen to be recom-
bined 13 set by crossover probability. After crossover, all entries
(genes) m all mdividuals are given a chance of undergoing muta-
tion operation with a certam mutation probability. If a gene is se-
lected for mutation operation, 1t will be assigned a random value in
the given range.
1-3. Evaluation and Selection

The evaluation function plays the role of the environment m natu-
ral evolution, and 1t rates mdividuals m terms of their fitness. For
the minmmization problem here, the fitness of each mdividual 1s de-
fined over object function values as:

gJ v,)
F,= 1) (5)

where F, 1s the fitness of the j~th mdividual v, m is the number of
individuals in the present generation, and J(V) 1s the object func-
tion value of the j-th mdividual. It 15 apparent that the mdividual
having the smallest object function value will have the highest fit-
ness. In constructing the next generation, the probability of the se-
lection of the yth mdividual 1s calculated by the following equation:

P =

I

= ®
ZFE
i=t
The selection 1s implemented by adopting a roulette wheel approach
[Gen and Cheng, 1997].
2. Simplex Algorithm

From the mathematical pomnt of view, the simplex algonthm 1s a
relatively simple algorithm, but 1s effective for many optimization
problems, especially m case 1t 1 difficult to deduce an analytical
gradient formula [Cheney, Kincaid, 1985]. Its principle is as follows:

When the smplex algonithm starts with a given starting pomt in
an m dimensional space, it will choose arbitrarily one point differ-
ent from the starting pomt along each dimensional axis m a small
neighborhood of the startng pomnt, and define a simplex m the search
space with the given pomnt (startmg pomt) together with the m points
chosen along each dimensional axis (m 1s the number of parame-
ters to be optimized, 1.e., the dimension of search space, and the smm-
plex has m+1 pomts). Then a downhill (or hill-climbing) method
1s applied to update the simplex iteratively and to make the algo-
rithm finally achieve the optimum. Assume that v, 1s the worst one
among the m+1 portts v, Vs, ..., V,.,, which means v, has the big-
gest object function value (in case of mmimizing), a new point can
be created as follows:

m*l

2V,
Vv =(1-MV, HAE— an

where A is the step size which can be optimized in each iteration
By replacig the worst point v, with the newly created pomnt v', the
simplex can be updated. Inn the next iteration, the new worst poirtt
1 the new simplex is identified and replaced by a new pomnt. If this
updatmg operation 1s repeated, all the m+1 points will come closer
to the local optumum, and the step size will become smaller [Win-
stor, 1991]. When the step size becomes smaller than a given small
value (convergence criteria), each one of the m+1 pomts can be
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regarded as the optimum.
3. Solution Strategy

In the simplex algorithm, the simplex 1s updated by replacing the
single worst point (the current point) m the search space iteratively.
During a single iteration, a new point is selected from the neigh-
borhood of the current pomt. If the new pomt provides a smaller
value of the object function, the current point is deleted and the new
pomt will be used m the process of the sumplex algonthm; otherwise,
another neighbor 1s selected and tested It 1s clear that this search
strategy provides local optimum values only, and these values depend
on the selection of the starting pont. Considering the fact that the
optimization problem in the present study 1s mmplicit and nonlinear,
which means that the object function generally has more than one
extrema, we have to produce a reasonable starting point to ensure
the simplex algonthm converges to a global optimum rather than a
local optimum. On the other side, the GA 1s a compromise between
an accurate local convergence method and a robust random meth-
od; it combines elements of directed and stochastic search It has
been shown by many mvestigations that the GA will fmally con-
verge to the best mdividual roughly with a random 1mutial popula-
tior, but 1t 15 hard to mprove its accuracy. In our hybrid method
for kinetic parameter estimation, the genetic algorithm 1s used not
to find the final best solution to the problem, but to yield a rough
guess of parameters, which will be used as the starting poit of the
simplex algonthm; therefore. 1t 1s urmecessary to let the GA oper-
ate a long time till it fmally converges to the best solution.

In our hybrid optumization method, the GA 1s adopted fustly with
its 1utial individuals created randomly m a given bound of param-
eter values. About 2000 generations are evolved, and the fittest in-
dividual m the population (from the first generation to the last gen-
eration) 1s chosen as the favorite pomt Here, the number of genera-
tions used m the GA 1s an empirical value based on the experience
of the author because there 1s no general value for this purpose. Suc-
cessively, the simplex algonthm is started to refine the solution by
using the pomt given by the GA as 1ts startng pomt. When the step
size of the simplex algorithm 1s smaller that 1.0e-6, the search pro-
cess 1s stopped and the optimization is regarded as converged.

PERFORMANCE OF THE HYBRID METHOD

By the hybrid optimization method mentioned m the above sec-
tiory, all kinetic parameters n the system defined by Eq. (1) have
been estimated simultaneously by only one set of data, which 1s
read carefully from the published experimental figure [Turch et
al., 1996)]. For the sake of convenience, the units of concentration,
reaction rate constants and adsorption equilibrium constants are all
changed mto SI system. In this test with the modified GA, the pop-
ulation has 200 mdividuals, the crossover probability 1s set 0.2 and
mutation probability 1s set 0.01. The convergence criterion for the
simplex algorithm is that its step size is smaller than 1.0x10°°, which
means all pomnts of the final stage of the simplex algorithm come
close enough and wander m a very small region (approximated by
a polyhedron whose diameter is smaller than 1.0x10°%). With the
assumption that 0<k,<10000 and 0<K,<10, 1=1, 2, 3 (it 15 a rea-
sonable guess judgmg from our knowledge of reaction engineer-
mg, and if these bounds do not work, we can easily change these
bounds), the hybnd optimization method fmally yields the esti-
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Fig. 1. Comparison of experimental observations with the simu-
lated concentrations based on the estimated parameters by
the hybrid optimization method (All experimental data are
the same as those in Fig. 2).

mated values as follows:

k,=140.8013766138399, K,=0.02038825898700673
k,=7275.7 08194557086, K,=0.01252516703250473
k,=68.65429354582977, K,=0.2569758737264554

Comparison 1s made between the simulated concentrations ob-
tamed from our estimated kinetic parameters and the experimental
concentrations m Fig. 1. Because the exact values of the kinetic pa-
rameters are unknown, the only way we can show the perfor-
mance of the hybrid optimization method 1s to compare our est-
mated results with those i other published mvestigations. Here, for
the comparison the estimated results made by Turchu et al. [1996]
and Wolfrum et al. [1997] are reproduced m Fig. 2, where their pa-
rameter estmation was based on smgle component data (separate
estimation for each component). For clarification, data are aranged
1 the same style i the two figures, where it 1s very clear that our
hybrid optimization method gives a more accurate estunation of
the kinetic parameters m the system, because the simulated con-
centrations based on the hybrid optimization method fit more ac-
curately with the expermmental data than those based on separate
estimation though the mathematical kinetic models are the same.
Furthermeore, only 27 expermental concentrations of each reactant
are used for our estimation, whule it has been reported m the previ-
ous literature that a series of experiments for each component are
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Fig. 2. Comparison made by Turchi et al. [1996] between experi-
mental observations of photocatalytic process given in Eq.
(1) and simulated concentrations based on parameter esti-
mation by single component data (I' denotes temperature,
RH denotes relative humidity).
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necessary for their parameter estimation.

Thus application mdicates that the hybrid optimization 1s feasible
for simultaneous estimation of kinetic parameters m the L-H equa-
tions for a multi-component system, and this method does give a
more accurate estimation than what the separate estunation method
does.

RELIABILITY OF THE ESTIMATION

In order to show the reliability of the kmetic parameter estima-
tion, let’s analyze the sensitivity of the simulated concentrations with
respect to the estimated kanetic parameters, which determines error
transfer during the estimating process. To clarify the problem, a single
comporent system 1s used for discussion, whose L-H equation is:

_dc _ kK¢
Tdt 1+Ke ©

where ¢ 1s concentration, k 1s the reaction rate constants and K 1s
the adsorption equilibrium constants.
1. Sensitivity

It s known that there must be some measurement error mtro-
duced into the measured concentration during experimernts, and the
measurement error will affect the estmation results. The ratio of
error m the estimated parameters to that mtroduced m measurements
1s determined by the sensitivity of the estmated perameter with re-
spect to the value of the object function. Because the experimental
concentration profile with time in1 the given system 1s fixed m the
process of parameter estimation (it was used as mput), we can con-
sider the sensitivity of the estimated parameters with respect to the
simulated concentrations mstead. It 1s not a difficult task to obtamn
the sensitivity of simulated concentrations from the L-H equations.

_ c(m)~ " Ko())
Sem 1/d I/Atjzl T1K00) 0]
- 1/d°(m) JAfS ke ®

=11 +KC(J)]

where s, , 1s the sensitivity of k with respect to the m-th sumulated
concentrations, while s, 15 sensitivity of K with respect to the m-
th simulated concentrations. ¢(j) is the simulated concentrations at
the j-th mnstance with time and At s time mnterval between concen-
tration sampling.

Generally, k>>1 while K<<1; it makes s, s, ,, I Most cases.
Thus fact means that error i1 the estimated reaction rate constant is
larger than that in the estimated adsorption equuilibrium constant,
where both the errors are caused by the expermmental concentra-
tions error. However, 1t does not mean that the estimated K 1s more
reliable than estinated k, because therr absohute magnitudes are dif-
ferent. If “relative sensitivity™ 1s to be used, we can easily find the
error transfer:

de(m)e &

e KK¢(j
ISy, =1/——~— e el /A tz <))

=l +KC(J)]Cref ©

rsKm—l/dc(myC’ef I/Ati kKc()

(10)
F+KEG) o,y

where rs, ,, and 13, are the relative sensitivity of the estimated k
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Fig. 3. Simulated concentration of the system given in Eq. (6) and
its sampling.

and K with respect to the concentrations, respectively, and c,/is the
reference concentration (we use the mitial concentration as the re-
ference here). Because K is small, 1 +K.¢(j) is a little larger than 1,
andrs, <18, ,,, we can deduce that the estimated k has a little smaller
relative error than the estimated K when the same experimental con-
centrations are used, which means the estimated reaction rate con-
stant 1s a little more reliable than the estimated adsorption equilib-
rium constants.

Because the relative sensitivity 1s a function of the kinetic pa-
rameters (to be estimated) and the concentrations, this fact makes it
dufficult to abstract a general formula of sensitivity analysis for all
reaction processes. Instead, we use a concrete numerical test to show
how the error introduced mto the experimental concentrations will
affect the accuracy of the estimated parameters. Let k=100, K=0.01,
and the mitial concentration s ¢(0)=100 in the system given by Eq.
(6). It 15 easy to simulate this system and the obtaned concentra-
tions are sketched m Fig. 3. To test the reliability of kinetic param-
eter estimation by the hybrid optimization method, we sample the
simulated concentration at 30 different instances along time span
evenly from O to 9 seconds, which are marked as discrete small cir-
cles mn the figure. Here we pretend that we know nothing about the
values of k and K, and they have to be estimated with the sampled
concentrations. In an ideal case (no error exists in the expenimental
concentrations), the estimated k end K by the hybrid optimization
method are

k=100.0000000360223
K=0.000996699993527

The obtained parameters are almost the same as their real values,
and the test indicates the hybrid optimization method has the po-
tential to recover kinetic parameters accurately. Now, let’s infroduce
a random error mto the mput concentrations:

exac!+8 (1 1 )

where ¢, 15 concentration without any error (calculated with given
parameter values), € 1s the mean zero random error mtroduced mto
the concentrations with [€]<2 in this test, and ¢, s concentration

Cmmtzc



On the Feasibility and Reliability of Nonlinear Kinetic Parameter Estimation 657
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Fig. 4. Distribution of the estimated reaction rate constant with
500 times estimation including random error.
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Fig. 5. Distribution of the estimated adsorption equilibrium con-
stants with 500 times estimation including random error.

used for parameter estimation.

Considermg the randomness of the mtroduced error, we run the
estimation 500 times to abstract an approximate statistical character-
1stic. The distnibutions of estimated reaction rate constant are marked
m Fig. 4, while distributions of estimated adsorption equilibrium
constant are m Fig. 5. It 15 very clear from the figures that the es-
timated k and K are distributed m small bounded regions, respec-
tively, with their average values:

k=100.5615342848486
K=0.010061512537634

Here, the estimated parameters are very close to their real values. This
result shows that the errors mn the estimated parameters are bounded,
and if enough data are available, the parameters can be recovered
accurately.

If only one set of data is available, the reliability of the parame-
ter estimation can be shown by the distribution of the relative error
defmed n the following equation:

e=(x—X)=X (12)

0.6 r — .'_ —

Probability

02 L

0.4 02 0 02 0.4
Relative error in estimated parameter
Fig. 6. Distributions of the probabilities of the estimated parame-

ters with respect to relative error when random error js in-
troduced into the system (based on 500 estimations).

where e 1s the relative error and x denotes either k or K. X denotes
the average of x. Here, to show the reliability of the estimated re-
sults, we use a probability density furiction with respect to the relative
errar of the estimated results, where the probability density func-
tion 1s obtamed by counting the number of pomts and by smooth-
mg the resulting probabilities to a curve. The probability density
functions of k and K are sketched together m Fig. 6 for convenience
of comparison.

From the probability density functions, we can easily draw two
bottom lmes. The furst one 1s that each of estumated k and K has a
high and narrow peak around the zero relative error pomt with bound-
ed relative errors. It assures us that, when only one set of data 1s
used, the estimations are rehable even though some expermmental
error exists m the concentration. The second one is that the reac-
tion rate constant can be estimated more reliably than the adsorp-
tion equulibrium constants, because the probability density function
of the former has a higher peak around the zero relative error pourt,
and thus agrees with the result of the qualitative sensitive analysis
carried out before.

2. About the Object Function

In the kmetic parameter estmation, the role of the object func-
tion 15 to make the simulated concentrations as close to the exact
concentrations (o experimental concentration error) as possible. If
the exact concentrations are available (which 1s not the case that
we can expect), the 1deal object function should be

1= 3 [©ure) e T (a3

where ¢,,..{m) 1s the ideal exact concentrations While C ) 18
the simulated concentrations, and m denotes m-th mstance with time.
Apparently, the function’s mmumum 1s zero, which means there is
no difference between the smulated and the exact concentrations
when the function 1s mirumized, and in this case the estimated pa-
rameters should be accurate, as shown i the above numerical test.
But, in practice, the experimental errors always exist and are un-
known, which makes the exact concentrations unavailable; there-
fore, the object function given by Eq. (2) 1s commonly used mnstead
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But, this substitution (replace) causes the simulated concentration
to deviate lightly from the exact one. To show it clearly, the object
function 1s rewritten here as:

I =i;1[cm<m) (1) ~CopgareaT)]’ (14)

m which the expermmental concentration 1s decomposed mto two
components: the one 1s the exact concentration and the other 1s the
experimental error €(m). If the simulated concentrations and the
exact concentrations are the same, the object function defined mn
Eq. (14) will have the value of is(m)z. Because we cannet find
this situation m a real app]icatic,;ri,l 1t 15 assumed m the estimation
algorithm that the simulated concentration is the same as the exact
one when the object function defmed m Eq. (14) 1s mimumized. In
fact, 1t is not what we can get in a real application.
Let’s consider the following inequality:

2
il[cmxrn) FE(T) ~C eI €

3 [Curard() G + 3 e(m (s

m=1 m=1

It indicates that the mimmum of object function defmed m Eq. (14)
should be smaller than i £(m)’, where C,.{m) are not equal to

Coedm). Of course, the estimated perameters are also mfluenced
by the errors i the experimental concentrations.

Here, we can consider the “overshoot” of the object function,
which can be defined as the value by which the minimum of the

object function defined in Eq. (14) is smaller than i e(m)’. Because

the overshoot of the object function 1s gmerallymsfhall, the error in
the estimated parameters is also small and tolerable. On the other
hand, the “overshoot” 1s not caused by the optimization algorithm
itself, but by the fact that no detailed information about the experi-
merttal error 1s available, which forces us to use the object function
defmed m Eq. (14) mstead of the one defined m Eq. (13). From the
mformation poutt of view, it is reasonable that we cannot recover
the kinetic parameters exactly when some information about the
reaction 1s lost in the experiment.
3. Further Verification

To show further the reliability of the hybrid optimization method
for kinetic parameter estmation, here the fitness of the estimated
concentrations (calculated based on the estimated kinetic parameters)
to the given exact concentrations 1s tested, where the mitial values
used to calculate the estimated concentrations are different from
those used to estimate kinetic parameters. Let’s consider the fol-
lowing two component system:

di4 - kAKACA

dt 1+K ¢, +K ¢,

deg _ kgKgep —kKycy a6)
dt 1+K ¢, K

where subscripts A and B denote components A and B, respectively.
Given the kinetic parameters as k,=100, k;=40, X ,=0.04 and K=
0.01, the exact concentration profile with different mtial values of
components A and B can be easily calculated as lines m Fig. 7, where
three sets of rutial concentrations are chosen for the test In Fig.
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Fig. 7. An artificial experiment of a two-component system. (Exact
concentrations are denoted by lines, while sampled concen-
trations with random error are denoted by discrete mark-
ers).

(a) Initial concentrations of ¢,(0)=180 and c40)=180 (mol/L).
(b) Initial concentrations of ¢ 4(0)=120 and cz(0)=120 (mol/L).
(c) Imtial concentrations of ¢,{0)=60 and c{0)=60 (mol/L).

7(a), the initial concentrations are ¢,(0)=180 and c;(0)=180, n
Fig. 7(b) ¢, (0)=120, c(0)=120, while m Fig. 7(c) ¢,(0)=60, c,(O)=
60. To estimate the kanetic parameters, the exact concentration pro-
files are sampled evenly from the time range of O to 20 seconds with
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an mterval of 0.5 second. A bounded random relative error, whose
maximum will not exceed 5% of the concentrations, 1s superposed
on the exact concentration to simulate the experiment error. For com-
parison, concentration samples are also sketched m the figure as di-
screte markers.

Choosmg the concentration samples m Fig. 7(a) as mput, the hy-
brid optimization method estimates the four kinetic parameters as

k,=94.64923483415211, k,;=42.39506915461477
K,=0.03972790629826880, K,=0.008864935373366311

If the concentration samples m Fig. 7(b) are chosen as mput, the
estimated parameters will be:
k,=111.2879861550922, k;=38.6591 5807659286
K,=0.03671313198303160, K,=0.001036427370199021
While the concentration samples n Fig. 7(c) are used, the estimated
result will be:
k,=98.99980578291010, k,=37.01748896537582
K,=0.04292663036394419, K,=0.001120936475488305

It 1s clear that all three sets of the estunated parameters are close to
the exact parameter values with a very small error, which mdicates

T

=41

: | — Componcnt A |
;| Component B

Concentration difference (mol/L)

I — i AL .. — _I_E —)
0 4 8 12 16 20
Residence time (3)

L=
W

i i é i 5

Conceniration difference (mol/L)

A5 b Lo |
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Residence time (s)

Fig. 8. (a) The concentration difference between the exact one
[given in Fig. 7(a) and (c)] and the cuxrently calculated one.
(a) Initial concentrations of ¢,{0)=180 and ¢c{0)=180 (mol/L).
(b) Initial concentrations of ¢,(0)=60 and cz(0)=60 {mol/L).

that the hybrid optimization method 1s mdependent on the mutial
concentrations.

To check the reliability of the hybrid optimization method m an-
other way, one of the three sets of estmated parameters mentioned
above 1s chosen to calculate the concentration profile with different
rutial values. Here, the estimated parameters related to the mutial
concentrations ¢,(0)=120, c;{0)=120 are chosen, but the concentra-
tion profiles are calculated with the mitial values ¢,(0)=180, c(0)=
180 and ¢,(0)=60, c;(0)=60. The goodness of the approximation
to the exact concentrations 1s sketched mn Fig. 8, where the good-
ness 1s denoted by a concentration differerice between the exact one
(given m Fig. 7(a) and (¢)) and the currently calculated one. The
concentration differences shown m Fig. 8(a) are calculated with ¢,
(0)=180, c5(0)=180, while m Fig. 8(b) mutial values are ¢,(0)=60,
cx(0)=60.

When the mitial concentrations are ¢, (0180, ¢;(0)=180 mn this
figure, the maximal difference 13 only about 5; when ¢,(0)=60, ¢,
(0)=60, the maximal difference is only about 1.2. The maximal re-
lative errors m both cases are less than 3%, which 1s less than the
relative errors mtroduced mto the concentration samples. It 1s clear
mn Fig. 8 that the concentration differences between the exact and
the estimated value are very small with both sets of mitial concen-
trations. The small concentration difference mdicates that the esti-
mated kinetic parameter 1s a good approximation to the real exact
value. Considermg the fact that the wmutial concentrations used for
comparing concentration difference are different from that used to
estmate kmetic parameters, 1t can be concluded that the hybrid op-
timization method has the capability to estimate kinetic parameters
reliably with only one set of concentration samples, provided that
the mathematical model 13 a reasonable description of a focused
reaction. Of course, when many sets of data are available, the esti-
mation can be improved by some related statistical method.

CONCLUSION

For a photocatalytic reactions, either single component or multi-
component systems, it has been customary to estimate kmetic pa-
rameters separately based on simgle component data, even when the
L-H equations are coupled where more than one reactants are m-
volved In this study, for a multi-component photocatalytic system,
1t has been 1lustrated that simultaneous parameter estimation 1 fea-
sible m solving the relevant multi-objective optimization problem
by a hybrid genetic-smplex method. In this method the genetic al-
gorithm 1s used to find roughly an optimum 1 a rather wide range,
while the simplex algorithm 1s used sequentially to refme the rough
optimum and make 1t accurate. Applymg it to a real reaction, we
found the estimated results by the hybnid optimization method are
more accurate than those of existmg mvestigations. By sensitivity
analysis and numerical verification, it has been also shown that the
estimation 1s reliable even when only one set of expermmental data
(with unknown error) is available. This mvestigation proposes an
effective approach to abstract kinetic parameters from very few ex-
perimental data.
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NOMENCLATURE

c : concentration of component 7 [mol/L]

Coum)  : the ideal (without error) concentration at the mith in-
stance [mol/L]

c(m) : the mth observation of concentration of the compo-
nent i [mol/L]

Comuaed L) © the smulated concentration at the mith mstance [mol/

L]

c(m) : the mith simulated concentration of component 7 [mol/
L]

e : the relative error

F - the fitness of jth chromosome

I : object function

I, : object function of component i

k - collection of all reaction rate constant

k, : reaction rate constant of component 7 [mol/(L)(s)]

k/ - the jth possible value of k,

K : collection of all adsorption equilibrium constants

K, : adsorption equilibrium constant of component i [L/
mol]

X/  the sth possible value of X,

Ik : lower limit of the reaction rate constant

K - lower limit of the adsorption equilibrium constant

P, : possibility of the jth chromosome

T : reaction rate of component i [mol/(L)(s)]

uk - upper limit of the reaction rate constant

UK - upper lim1it of the adsorption equilibrium constant

vV, . the #th chromosome

W, : average weight of component 7

X : one of estimated reaction rate constants or adsorption
equilibrium constants

X : average of x

Greek Letter

e(m) : random error at the mith instance
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