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Abstract-The Kirkwood-Buff solution theory to give the relations between macroscopic thermodynamic properties 
and the fluctuation integrals (Gij) was utilized to predict solubility of solutes in supercritical fluids. The solvent-solute fluc- 
tuation integral ((]21) in the derivation for solubility of solute is expressed in terms of the solvent-solvent fluctuation in- 
tegral (Gu) using the hard sphere expansion (HSE) conformal solution method with the modified mean density ap- 
proximation (MMDA) where the scaling factor (R12) represents the ratio of the first peak heights of the radial distribution 
functions for the mixture and the reference fluid having the mean density determined from the mean density approxima- 
tion (MDA). The values of R12 were evaluated by considering it as an adjustable parameter and solving the Ornstein-Zer- 
nike equation with the hypernetted chain (HNC) closure, and were compared. It is shown that solubility can be evaluated 
with an equation of state for pure supercritical fluid, three molecular parameters, and the scaling factor (R12) without 
knowledge of critical properties of solutes, which can not be measured precisely for some organic solids. This model ba- 
sed on the molecular theory leads to better results in solubility calculations than both the Peng-Robinson equation of state 
with the classical mixing rule and the previous method with the original MDA instead of the MMDA. It might be due to 
the superiority of the MMDA over the original MDA. 

Key words: Modified Mean Density Approximation (MMDA), Solubility, Supercritical Fluid, Kirkwood-Buff Fluctuation 
Integral 

INTRODUCTION 

Supercritical Fluid Extraction (SFE) has been of substantial 
interest to both the academic and industrial fields because su- 
percritical fluids with gas-like and liquid-like characteristics pro- 
vide a convenient means to achieve solvating properties by in- 
creasing pressure without changing chemical structure and to 
have several advantages over the conventional solvent extraction 
method. Therefore, SFE becomes increasingly important in the 
food, pharmaceutical, petroleum industries, and so on. 

Since thermodynamic property data of supercritical fluids are 
expensive and time-consuming to obtain, it would be desirable 
to predict phase equilibria from modelling with minimal exper- 
imental data. The most widely used method of analyzing super- 
critical fluid equilibrium data is one with cubic equations of 
state. To calculate solubility of solutes in supercritical fluids by 
using an equation of state with appropriate mixing nile, informa- 
tion on critical properties and acentric factor of solutes is need- 
ed. It is, however, known to be very difficult to measure crit- 
ical properties in some organic solutes because decomposition oc- 
curs before the critical point is reached. For those components, es- 
timation methods may be used but those were not known to be 
accurate [Schmitt et al., 1986]. Also, the use of the classical 
mixing rule in the derivative of volumetric properties can dimi- 
nish the accuracy of the solubility prediction. 

There are several approaches to make use of statistical ther- 
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modynamics to provide a better description of solubility of sol- 
utes in supercritical fluids. One of the approaches is based on 
the Kirkwood-Buff solution theory that has established a bridge 
between the molecular interactions on a microscopic level and 
the thermodynamic properties using the concentration fluctuations 
from the grand canonical ensemble [Kirkwood et al., 1951]. 

Pfund et al. [1988] developed the excluded-volume (EV) and 
local-composition (LC) models based on the Kirkwood-Buff fluc- 
tuation integrals to model solubility, and Kwon and Mansoori 
[1993] also incorporated the HSE method with the MDA in the 
fluctuation integral. In all the fluctuation integral approaches, the 
solvent-solute fluctuation integral was replaced by the solvent- 
solvent fluctuation integral at infinite dilution where an equation 
of state for only pure supercritical fluid is required. 

The MDA provides a simple way to predict the radial distri- 
bution functions (RDFs) from pure fluid information. The MMDA 
which was proposed to get better prediction of the important 
structural integrals arising in the asymmetrical attraction contri- 
bution of the perturbation theory is used during the derivation 
of the HSE instead of the original MDA to express the solute- 
solvent fluctuation integral in terms of the solvent-solvent fluc- 
tuation integral. 

THEORY 

The Kirkwood-Buff solution theory provides a connection be- 

tween the microscopic structure of molecules and the thermody- 
namic properties of the fluid through the use of the integrals of 
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the radial distn'bution function gr and the direct correlation func- 
tion c0(r ) defined as: 

Gij= fo[gq (r)-l]4m2dr (1) 

0 2 % = ~c~j(r)4~ dr (2) 

where G o and Cij are called the Kirkwood-Buff fluctuation integ- 
ral and the direct correlation function integral, respectively, and 
Pi is the number density of component i, and p~Go gives the num- 
ber of i molecules in excess of the bulk average that surround 
the central j molecule. Then, the bulk thermodynamic properties 
such as isothermal compressibility (Xr), partial molar volume (V3, 
and the derivative of chemical potential 0.t3 with respect to the 
number of particles are related to Gg or Cg through the Kirkwood- 
Buff solution formalism as follows [O'Connell, 1971, 1981] 

c r 

- - = ~ ~ X k X / ( 1 - - C l d ) ( 3 )  
pRTK" r RT [~p)r [ B [ k=U=l 

~xk(1 -C/k) 
P-Wi = k=l (4) 

s ~xk xt(1 -C~) 
k =11=1 

v (5) 

\ / P m # i  

where [B[ u denotes the cofactor of the element Bu in the c • c 
matrix B, and xk is the mole fraction of component k. The ele- 
ments Bn of the matrix B are defined as 

B= [Bu] =pxk [~u +xtGu] (6) 

where 8~ is the Kronecker delta. 
In order to make use of the Kirkwood-Buff solution forma- 

lism for solubility modeling of solutes in supercritical fluids, the 
number density, at first, is expressed as a function of three de- 
grees of freedom present in binary supercritical mixture, that is, 
temperature, chemical potentials of solvent and solute. With the 
expression of the solute(2)-solvent(1) fluctuation integral Gn in 
binary supercritical mixture and under the assumption of the low 
solute concentration in the supercritical fluid state, the solubility 
of solid solute (Y2) in a supercritical fluid can be expressed as 
[Cochran et at., 1987; Pfund et al., 1988]. 

sat at .at o 1 F , .21  inY2=In(P2YP) +Vs (P-P2)+lnZ + - -  dP (7) 
RT 

In Eq. (7), the superscript 'o' denotes the infinitely dilute con- 
dition. The integral term based on molecular theory in Eq. (7) 
may improve the accuracy of solubility modeling compared with 
the corresponding term in the equation-of-state result having the 
derivative of volumetric properties as follows 

2 sat at sat In y = ln(P 2/P) + V ~ (P-P2) 

RT (PV)~ ,~ . , -R  V (8) 

where n is the number of moles. The accuracy of Eq. (8) may 
be diminished by the inadequacy of the classical mixing rule. 

Pfund et at. [1988] developed the excluded volume (EX 0 and 
local-composition (LC) models to express the infinite dilution fluc- 
tuation integral G;1 in terms of the pure solvent fluctuation in- 

o 
tegral Gn, and the results were better than those with an equa- 

tion of state and classical mixing rule used. 
Cochran et al. [1991], and later Kwon and Mansoori [1993] 

proposed the hard sphere expansion (HSE) model to estimate G~I 

where the MDA is embedded. The MDA, which plays an im- 
portant role in derivation of conformal solution methods such 
as the HSE [Mansoori and Leland, 1972], and the hard convex 
body expansion (HCBE) [Kwon and Leland, 1989], can be ex- 
pressed as 

gij (r) = go (r/~j, p, ~3, kT/e,j) (9) 

where go is the RDF of the reference fluid, k the Boltzmann con- 
stant. In Eq. (9), p' is the mean density given by the relation p'= 
pm(ffx/tSij) 3 where pm is the mixture density and fix is the effec- 
tive diameter defined as in Eq. (10) [Chen et al., 1987]. 

= X,Y-, xi xj ~3 (10) 
l j 

As shown in Eq. (9), the RDF of a pair in a mixture is related 
to that of a hypothetical pure fluid. 

Hoheisel and Lucas [19_84] pointed out that the MDA gives 
poor predictions of the RDF as the size ratio of components in 
the mixture increases. Ely [1986] also showed that the MDA con- 
sistently underestimates the height of the first peak for 1-1 pair 
at a larger size ratio. There were some efforts to modify the 
MDA for improving the predictions of the RDF in mixture and 
structural integrals. Hoheisel and Lucas [1984] applied their com- 
puter simulation data in the Lennard-Jones mixture to correlate 
a scaling function to modify structural integrals estimated by the 
original MDA. Ely [1986] proposed an MMDA by introducing 
a parameter indicating the ratio of the contact values of the RDFs 
of hard sphere mixture and pure hard sphere fluid to scale the 
RDF of pure hard sphere fluid approximated by the MDA. 

In this work, a modified MDA (MMDA) is proposed by intro- 
ducing the scaling factor R~j which means the ratio of the heights 
of the first peaks of the radial distribution functions in the mix- 
ture and hypothetical reference fluid having the mean density de- 
termined from the MDA. 

gij (r) = R# go (r/qj, p,~3, kT/e#) (11) 

The MMDA in Eq. (11) has the same form as that proposed by 
Ely [1986]. While Ely defined R~ as the ratio of the contact 
values of the RDFs as explained before, Rii will be treated as 
an adjustable parameter and will be tested its propriety by solv- 
ing the integral equation for gij and go in Eq. (11). It may be a 
drawback of this approximation that g0(r) in Eq. (11) does not 
approach unity as r--too unless R~j is unity, but it is not a prob- 
lem in practice because of the smaller contribution of g(r) to fluc- 
tuarion integral when r becomes large as Ely [1986] pointed out. 
It can be shown in Eq. (11) that the MMDA is equal to the 
MDA when the value of R~j is 1. 

Expanding go of mixture with respect to the RDF of hard 
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sphere in powers of e~j/kT yields 

�9 3 -- [ go(r/qj,p~pkT/e~j)-Rq gh~ (yq, #m d~3) 
L 

l< 1 , ~ r , ( y  o , p.  d2) + r2(y0,/~ d2) + ...... (12) + 

where d, is the effective pure-fluid diameter, y is the dimension- 
less distance (= r/o), and F~'s are the dimensionless universal func- 
tions. 

Substituting Eq. (12) into Ecl. (1) gives the following Eq. (13) 
o o 

relating G21 at a low concentration of solute to G n and G h~'~ at 

infinite dilution using the molecular parameters 6n, 0~2, and 0.12, 
and the scaling parameter Rlz. 

G21 = G12 = R12 %2 Gu + R 1 2 ~  1- (13) 
~il en ) 

where 

0-32~12 
a~z- (14) 

cjha,o = 0-31 I : [ghs (y)_ 114/ry2 dy (15) 

o The solvent-solvent fluctuation integral Gtl in the first term of 

the right hand side in Eq. (13) can be evaluated through the 
isothermal compressibility relation in Eq. (3) when an equation 
of state is chosen. For pure components, Eq. (3) can lead to 

~3~ -1 (16) G~t = ! ( P ~  RT~rr-1) = po Z~ ~ 

In the same way, it is possible to determine G ~'~ in Eq. (15) 
with a hard sphere equation of state given. Even though the Car- 
nahan-Stafling equation of state [1969] is known to be the most 
accurate, it makes it impossible to integrate the last term in Eq. 
(7) analytically [Cochran et al., 1991]. The following type of the 
hard sphere equation of state proposed by several researchers 
[Kim et al., 1986; Moshen-Nia et al., 1993] is used because of 
its simplicity and thus applicability of analytical integration as done 
in the previous work [Kwon and Mansoori, 1993]. 

Z ~ - l+c-zr/ 
t_cir/ (17) 

where r I (=~poO/6) is the packing fraction, cl and ca are constants 
whose values for the equation proposed by Moshen-Nia et al. 
[1993] are 1.88 and 2.48, respectively. Eq. (17) is also known 
to be accurate in the range of 0_<'q<0.35 [Moshen-Nia et al., 
1993]. From F__,lS. (15) and (17), G ~'~ is described as follows 

G~,o - 2-  elf/ 
1+2c2r/_ cxc2r/2 (18) 

It can be seen from Eqs. (13), (15), and (16) that there are 
four parameters (two molecular size parameters on, 0~2, and one 
dimensionless parameter a~2, and the scaling factor Rtz) needed 
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to determine solubility of solute instead of the knowledge of crit- 
ical properties of solute, which can not be measured accurately 
for some organic solids. 

While Pflmd et al. [1988] used an equation of state with over 
50 constants to calculate the properties of pure supercritical fluid 
[Huang et at., 1985] and executed the numerical integration, the 
Peng-Robinson equation of state [1976], which is still widely 
used in predicting thermodynamic properties of fluids and their 
mixture, is chosen in this work. The Peng-Robinson equation 
of state is given by 

Z= 1 - (  a ) P (19) 
1--bp ~ l+2bp-  (bp) a 

The results obtained by this MMDA model will be compared 
with those by Eqs. (8) and (19) for supercfitical fluid mixtures 
along with the following classical mixing rule. 

a --/,~)x i xj aq, a 0 = (1-kq ~ (20) 

b =,~,xibi (21) 
i 

where kij is an adjustable parameter determined to fit experimen- 
�9 tal solubility data. 

The scaling factor R12 used in the MMDA will be deter- 
mined by regarding it as an adjustable parameter. On the other 
hand, Rn can be evaluated through computer simulation such as 
the molecular dynamics (MD) and Monte Carlo (MC) method 
or by solving the integral equation in order to check the pro- 
priety of the value evaluated by optimization. Supercritical solu- 
tions considered in this work are extremely dilute with solute 
mole fractions typically of the order 10-L10 -4. In many cases, 
however, the use of single solute molecule is not sufficient to cal- 
culate the property of interest accurately by computer simulation 
method [I_,i et aL, 1995]. 

Assuming that solvent and solute molecules are described by 
the Lennard-Jones potential and the intermolecular interaction 
is pairwise-additive, the value of Rn can be evaluated by solv- 
ing the Omstein-Zemike equation in combination with a closure 
for the RDFs of mixture and pure reference fluid defined from 
the MDA and comparing the first peaks of the RDFs. The Om- 
stein-Z, emike integral equation is given by 

h(r) = c(r) + p ~ c(r-r')h(r')dr (22) 

where h(r) is the total correlation function and c(r) is the direct 
correlation function [Hansen and McDonald, 1986]. 

The hypemetted chain (HNC) approximation is adopted here 
as a closure with the Omstein-Zemike integral equation since the 
HNC closure is accurate enough to describe the thermodynamic 
and structural properties treated in this work even though it does 
not give a correct critical point [Tanaka and Nakanishi, 1994]. 
The HNC closure is 

h(r) =exp[-flu(r)+t(r)]-I (23) 

where ~ is 1/kT, u(r) is the intermolecular potential, and t(r) is 
the indirect interaction part defined as follows 

t(r) = h(r)- c(r) (24) 
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Therefore, it is possible to solve Eqs. (22) and (23) for g12(r) 
and go in Eq. (11) for mixture and reference fluid having the 
mean density determined from the definition of the MDA. In 
order to get the RDFs the integral equation is solved iteratively 
until the difference in the indirect interaction part t(r) between 
two successive iterations becomes less than the threshold value, 
10 -5 , for all distance ranges treated here. 

To apply the Omstein-Zemike equation to solve for the RDFs 
of the mixture and the reference fluid with the MDA, the like 
and unlike molecular parameters should be known and thus the 
following Bertholet mixing rule is used. 

tru+ tr22 
a x 2 - - -  (25) 

2 

E12 = ~]~11E22 (26) 

RESULTS AND DISCUSSION 

To apply the Kirkwood-Buff fluctuation integrals and the HSE 
along with the MMDA to calculate solubility of solid solutes in 
supercritical fluids and to compare the solubility data with those 
by the Peng-Robinson equation of state with the classical mix- 

ing rule, several aromatic compounds in supercritical carbon di- 
oxide and ethylene were tested. Tables 1 and 2 listed the sources 
from which the data needed to calculate solubility were taken. 

As in the previous work [Kwon and Mansoori, 1993] where 
the original MDA is embedded, the Peng-Robinson equation of 
state and the hard-sphere equation of state proposed by Moshen- 
Nia et al. [1993] are used to evaluate G1~ for pure supercritical 

fluid and G h~'~ for hard sphere fluid, respectively. 

The same values for all molecular parameters (t~u, a12, and 
r are used to check if the results in this work are better than 
those in the previous work with the original MDA, and only the 
scaling factor Rx2 is considered an additional parameter to be op- 
timized to fit the experimental data. The following two cases are 
considered: (i) all molecular parameters are temperature-independ- 
ent (ii) one parameter of the parameters related to energy param- 
eter as shown in Eq. (14) is temperature-dependent. The scal- 
ing parameter R12 is, however, regarded as temperature-depend- 
ent in both cases. 

For both cases, the values of molecular size parameters t~u 
and ~2 were found to be not so sensitive to solubility as cq2. 
Fig. 1 shows the results on solubility of naphthalene in carbon 
dioxide at 308 K by the original MDA and the MMDA when 

Table 1. Temperature and pressure ranges tested in this work and data sources of  carbon dioxide systems 

Carbon dioxide Temperature Pressure Solubility Sublimation Critical Acentric Solid molar 
system range (K) range (bar) ref. pressure properties factor volume 

Acridine 308.1-343 101.6-364.1 A A B B C 
Aenzoic acid 308-343.1 101.1-364.1 A, G A F F C 
Biphenyl 308.8-330.5 104.6-484 I A F F C 
2,3-Dimethylnaphthalene 308-328 99-280 G G B B C 
2,6-Dimethylnaphthalene 308-328 96-280 G G B B H 
Fluorene 303-343 69.9-483.5 E E B B C 
Hexamethylbenzene 303-343 69.9-438.5 E E B B C 
Naphthalene 308-328 60.8-334.3 G, J E F F C 
1,4-Naphthoquinone 318-343 100.9-364 A A B B A 
Phenanthrene 303-343 80.9-414.5 E, G E H H C 
Phenol 309-333 78.3-246.2 E K F F C 
Pyrene 308-343 83.6-483.4 E C B B C 
Triphenylmethane 303-323 69.9-414.5 E C B B C 

Table 2. Temperature and pressure ranges tested in this work and data sources of  ethylene systems 

Ethylene Temperature Pressure Solubility Sublimation Critical Acentric Solid molar 
system range (K) range (bar) ref. pressure properties factor volume 
Anthracene 323-358 104.4-483.6 D E F F C 
Benzoic acid 308-343.1 101.1-364.1 G A F F C 
2,3-Dimethylnaphthalene 308-328 77-280 G G B B C 
2,6-Dimethylnaphthalene 308-328 78-280 G G B B H 
Fluorene 298-343 69.9-483.5 E E B B C 
Hexamethylbenzene 298-343 63 -483.5 E E B B 
Naphthalene 285-323 50.7-303.9 D, J E F F C 
Phenanthrene 298-343 56.1-280 D, G E H H C 
Pyrene 318-348 104.3-483.6 E C B B C 
REFERENCE 
(A) Schmitt and Reid [1986] 
(C) Weast, R. C. [1984] 
(E) Johnston et al. [1982] 
(G) Kumik et al. [1981] 
(I) McHugh and Paulaitis [1980] 
(K) Van Leer and Paulaitis [19801 

(B) Haselow et al. [1986] 
(D) Johnston and Eckert [1981] 
(F) Reid et al. [1987] 
(H) Bartle et al. [1992] 
(J) Tsekhanskaya et al. [1964] 
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the same values in the previous work were assigned to oft and 
G,2. The MMDA gave better prediction of solubility than the 

. 0 1  

. 0 0 1  

. ~ - ' - -  [] D [] 

.0001 , I , I ~ I = 

0 100 200 300 400 

Prnsaura (bar) 
Fig. 1. Comparison of the solubility predictions of naphthalene- 

COz system at 308 K by the MDA and MMDA when a,2 
is considered as temperature-independent. 
(---: MDA, --:  MMDA, [~: exp.) 

original MDA. The results in case of temperature-independent 
parameters are listed in Table 3 for carbon dioxide systems and 
in Table 4 for ethylene systems. Both results were compared with 
those from the MDA as well as the Peng-Robinson equation of 
state with the classical mixing rule. As shown in Tables 3 and 
4, the MMDA produced better results on solubility prediction 

than both cases. 
When one of the parameters, ~,2, related to energy parameters 

was considered temperature-dependent as in the binary interac- 

tion parameter k12 in Eq. (20), the values of t~t2 and R12 were op- 
timized and regressed as a function of temperature while the 
same values of at, and t~t2 were used. The results in the car- 
bon dioxide-naphthalene system are shown in Fig. 2 and all re- 
suits considered in this case are listed in Tables 5 and 6, which 
show this MMDA model also provides improvement over the 
MDA and the Peng-Robinson equation of state with the classi- 
cal mixing rule. 

Most of values of scaling factor, R~2, were found not to be 
far from unity. From the fact that better results were obtained 
with small deviation of R12 from unity, it can be concluded that 
the radial distribution function plays an important role in evalu- 
ating fluctuation integrals as expected, and that the better results 
in both temperature-independent and temperature-dependent sys- 
tems might be due to the superiority of the MMDA over the 
original MDA. 

Up to now, we calculated solubilities using the scaling factor 

Table 3. Solubility results on carbon dioxide systems with the HSE model when all parameters are independent of temperature (On=4.6/~) 

Carbon dioxide Number PR EOS HSE (MDA) model HSE (MMDA) model 

system of points kl 2 AAD (~12 ~12 AAD R12 AAD 

Acridine 28 0.1001 13.01 7.96 5.948 15.91 0.979-1.017 8.83 
Benzoic acid 55 0.0102 26.75 7.338 5.209 19.05 0.998-1.009 17.22 
Biphenyl 42 0.1510 55.12 7.82 5.179 25.14 1.013-1.147 17.15 
2,3-Dimethylnaphthalene 15 0.0913 10.58 7.875 5.287 9.66 0.998-1.010 7.97 
2,6-Dimethylnaphthalene 15 0.1061 5.65 7.538 4.95 12.25 0.996-1.007 9.60 
Fluorene 30 0.0865 9.92 7.9 5.541 16.37 0.994-1.036 8.97 
Hexamethylbenzene 27 0.1009 17.17 7.8 5.224 24.14 0.976-1.024 17.97 
Naphthalene 64 0.0965 23.97 7.25 4.395 21.83 0.985-1.053 14.47 
1,4-Naphthoquinone 18 0.0502 30.55 7.797 5.701 10.52 0.999-1.006 7.97 
Phenanthrene 36 0.1032 22.38 8.08 5.92 23.81 0.987-1.032 14.53 
Phenol 41 0.1261 23.78 6.95 3.73 21.7 0.998-1.099 8.29 
Pyrene 22 0.9637 28.49 8.183 6.352 29.28 0.992-1.016 18.22 
Triphenylmethane 22 0.0877 19.32 8.824 7.206 21.75 0.985-1.010 16.94 

AAD 415 24.26 20.43 13.59 

Table 4. Solubility results on ethylene systems with the HSE model when all parameters are independent of temperature (o11=4.7 ~) 

Ethylene Number PR EOS HSE (MDA) model HSE (MMDA) model 

system of points k,2 AAD G12 cxz~ AAD R~2 AAD 

Anthracene 29 0.0501 13.74 7.53 5.478 10.18 0.993-1.004 8.38 
Benzoic acid 15 - 0.0653 18.31 7.127 5.194 13.89 1.000-1.012 10.62 
2,3-Dimethylnaphthalene 18 0.0101 15.56 6.52 4.765 15.82 0.993-1.002 13.99 
2,6-Dimethylnaphthalene 18 0.036 9.07 6.92 4.961 18.12 0.990-1.009 15.10 
Fluorene 24 0.0083 17.95 7.67 5.822 23.07 0.997-1.023 18.28 
Hexamethylbenzene 24 0.0218 19.1 7.945 5.952 1 2 . 1  0.978-1.003 7.32 
Naphthalene 84 0.0151 36.84 7.22 4.766 15.46 0.998-1.015 14.60 
Phenanthrene 45 0.0245 32.88 7.95 6.44 1 0 . 7  0.991-1.001 9.66 
Pyrene 15 0.0089 14.73 8.185 6.952 21.15 0.996-1.010 11.32 

AAD 272 25.00 14.91 12.39 
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as an additional parameter. On the other hand, the value of R12 
can be determined by solving the Omstein-Zemike equation along 

o l  

. 0 1  

. 0 0 0 1  

_ _=,_~----=----= 

/ 
i I I I t 

1 O0 2 0 0  3 0 0  4 0 0  

Pressure (bar) 

Fig. 2. Comparison of the solubility predictions of naphthalene- 
COs system at 308 K by the MDA and MMDA when an 
is considered as temperature-dependent. 
(---: MDA, --:  MMDA, D: exp.) 

with the HNC closure for the RDFs of the mixture and reference, 

fluid. The values of the parameters 622, e12, and e22, which are 
needed to solve the Omstein-Zernike integral equation using the 
Lennard-Jones potential, can be determined from the relation of 
the Bertholet mixing rule in Eqs. (25) and (26) and the known 

values of ~11, t~12 and cq2. 
In the carbon dioxide-naphthalene system at 328 K and 125 

bar as an example, the value of 622 calculated from ~n (=4.60A) 
and 61z (=7.253) is 9.90,3L and those of en, e]2, and e22 are also 
determined from %2 (=4.395). The Omstein-Zemike integral equa- 
tion with the HNC closure was solved to find out the locations 
of the first peaks of the RDFs in the mixture and the reference 
fluid where the MDA was used. Fig, 3 shows the results on 
the RDFs in mixture and pure reference fluid with the MDA 
when Y2 is 0.001. The heights of the first peaks of mixture (g12) 
and reference fluid (go) were found to be 1.973 and 1.930, respec- 
tively. Therefore, the value of R12 becomes 1.022 from the de- 
finition of R~z in Eq. (11), which is very close to 1.020 deter- 
mined by optimization. Though the MDA does not reproduce g~2 
of the mixture as shown in Fig. 3 when the size parameters of 
the constituents of the mixture are quite different, the MDA has 
been successfully utilized to derive conformal solution methods 
due to an error cancellation in evaluating integrals containing 
RDF such as Gij in Eq. (1) [Tan, 1987]. 

Applicability of the hard sphere equation of state used in this 
work needed should also be mentioned. As explained before, the 

Table 5. Solubility results on carbon dioxide systems with the HSE model when aiz is considered as temperature-dependent (a,=4.6/~) 

Carbon dioxide Number of PR EOS HSE (MDA) model HSE (MMDA) Model 

system points kl 2 AAD ~12 AAD r R12 AAD 

Acridine 28 0.0964-0.1064 9.67 5.86-5.997 9.06 5.684-5.867 0.998-1.092 6.80 
Benzoic acid 55 - 0.0015-0.0246 14 .16  5.2-5.238 17.18 4.857-7.254 0.606-1.111 12.87 
Biphenyl 42 0.1242-0.1553 37.06 5.215-5.475 14 .3  5.149-6.197 0.775-1.038 7.16 
2,3-Dimethylnaphthalene 15 0.0861-0.0955 6.77 5.282-5.312 8,22 5.031-5.396 0.961-1.100 5.18 
2,6-Dirnethylnaphthalene 15 0.1047-0.1073 4.93 4.911-4.966 9.68 4.586-5.605 1.073-1.129 3.93 
Fluorene 30 0.0826-0.0909 8.78 5.512-5.631 8,37 5.382-5.612 1.009-1.052 5.87 
Hexamethylbenzene 27 0.0989-0.1033 17.04 5.149-5.276 1 8 . 5 4  4.924-5.051 1.079-1.109 11.09 
Naphthalene 64 010938-0.9819 23.79 4.348-4.541 13.23 4.177-4.757 0.928-1.104 11.95 
1,4-Naphthoquinone 18 0.0471-0.0548 29.88 5.7-5.719 7 .85  5.666-5.847 0.958-1.012 6.68 
Phenanthrene 36 0.0914-0.1082 15.53 5.875-6.019 1 4 . 3 4  5.793-6.106 0.926-1.070 12.21 
Phenol 41 0.0951-0.1304 19.95 3.706-3.915 7 .51 3.681-5.082 0.669-1.019 6.09 
Pyrene 22 0.0904-0.1043 26.36 6.332-6.396 1 5 . 1 7  6.202-6.290 1.031-1.048 15.15 
Triphenylmethane 22 0.086-0.0934 15 .99  7.2-7.28 15.79 7.030-7.049 1.029-1.057 14.60 

AAD 415 18.93 12,80 9.73 

Table 6. Solubility results on ethylene systems with the HSE model when at2 is considered as temperature-dependent (flu=4.7 A) 

Ethylene Number PR EOS HSE (MDA) model HSE (MMDA) model 

system of points kt 2 AAD 1~12 AgO a12 Rt2 AAD 
Anthracene 29 0.938-0.0526 8.28 5.455-5.486 7.64 5.362-5.690 0.920-1.048 7.47 
Benzoic acid 15 - 0.0571-0.0743 15,13 5.18-5.225 10.12 4.903-5.740 0.854-1.107 9.51 
2,3-Dimethylnaphthalene 18 0.0001-0.0141 13.73 4.759-4.813 1 3 . 9 2  4.3,32-6.264 0.695-1.148 9.83 
2,6-Dimethylnaphthalene 18 0.0308-0.0379 8.05 4.934-4.99 15.52 4.597-6.807 0.631-1.128 10.56 
Fluorene 24 0.0037-0.0155 15.62 5.816-5.852 1 9 . 4 3  5.521-6.234 0.873-1.114 11.08 
Hexamethylbenzene 24 0.0587-0.0284 18.99 5.877-5.952 7.76 5.928-6.397 0.864-1.010 5.40 
Naphthalene 84 0.0109-0.0181 35.43 4.757-4.8181 1 4 . 3 3  4.650-5.864 0.745-1.033 11.83 
Phenanthrene 45 0.0094-0.0377 22.48 6.405-6.642 9.76 6.187-8.037 0.698-1.067 6.16 
Pyrene 15 0.0046-0.0136 12.31 6.94-6.984 11.24 6.900-6.995 0.985-1.026 10.87 

AAD 272 21.55 12.38 9.40 

Korean J. Ch. E.(Vol. 14, No. 3) 



190 Y.J .  Kwon et al. 

2.0 

1.5 

m 1 . 0  
O) 

0.5 

1 I I 
t 
I 
! 
I 

V 

0.0 [ I t I t I i 

0 2 3 4 5 

y 

Fig. 3. gu (r) and go (r) at 328 K and 125 bar from the Orstein- 
Zernike integral equation with the HNC closure when yz= 
0.001. 
[ - :  go(r), ---: g12(r)] 

packing fraction r I in Eq. (17) should be less than 0.35, which 
was satisfied in the whole range tested in this work. When anoth- 
er hard sphere equation of state proposed by Kim et al. [1986] 
was used, the results were found to be almost same. The simple 
type of equation like Eq. (17) was substituted for the Camahan- 
Starling equation for the analytical integration of Eq. (i5) as men- 
tioned before. 

CONCLUSION 

Using the formalism on the Kirkwood-Buff fluctuation inte- 
gral for solubility prediction by Cochran et al. [1987], the MMDA 
instead of the original MDA for the HSE conformal solution 
method was used to evaluate solubility of solids in supercritical 
fluids. 

In this work, the scaling factor R12 representing the ratio of 
the first peak heights of the radial distribution functions in the 
mixture and reference fluid with the MDA was needed. When 
R12 was considered as an additional parameter, better results on 
solubility prediction were obtained than those of the previous 
work with the original MDA as well as by the Peng-Robinson 
equation of state with the classical mixing rule. The values of 
R~2 by optimizing to fit experimental data were found not to be 
far from those by solving the Ornstein-Zernike integral equa- 
tion with the HNC closure. 

Better results for both temperature-independent and tempera- 
ture-dependent systems might be due to the superiority of the 
MMDA over the original MDA. 

NOMENCLATURE 

a, b : parameters in the Peng-Robinson equation of state 
B~ : element of the matrix defined in Eq. (6) 

May, 1997 

c(r) : direct correlation function 
C : direct correlation function integral defined in Eq. (2) 
gu : pair distribution function for solvent-solvent pairs 
gl: : pair distribution function for solvent-solute pairs 
Gn : solvent-solvent Kirkwood-Buff fluctuation integral 

o G n : solvent-solvent Kirkwood-Buff fluctuation integral at 
infinite dilution of solute 

G~2 : solvent-solute Kirkwood-Buff fluctuation integral 
h(r) : pair correlation function 
k : Boltzmann's constant 
N : number of particles 
P : pressure 
R : gas constant 
Rn : scaling factor in the MMDA 
t(r) : indirect part of potential of mean force 
T : temperature 
u(r) : intermolecular potential 
V : molar volume 
x : mole fraction 
y : dimensionless distance 
Y2 : solubility 
Z : compressibility factor 

Greek Letters 
512 : parameter defined in Eq. (14) 
eij : energy parameter for the Lennard-Jones potential 
rl : packing fraction 
~:r : isothermal compressibility 
6 o : size parameter for the Lennard-Jones potential 
p : number density 

Superscripts 
HS : hard sphere 
o : at infinite dilution of the solute 
sat : saturation condition 

Subscript 
o : pure reference fluid 
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