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Abstract- A steady state convective-diffusion equation is solved using a collocation method to find the concentration 
profile and flux of adsorbing particles near a particle adsorbed on a line. At small values of the gravity number, No=rid 4 
Apg/6kT, the concentration profile and flux vary slowly near the preadsorbed particle, while they are highly non-uniform 
at large values of No. The numerical results are compared with Brownian dynamics simulation for a range of No values. 
The effect of the position of the system boundary on the collocation calculation is discussed and it is shown how the con- 
cept of flux balance may be used to improve the accuracy of the results. Finally, we develop a truncated power series that 
accurately fits the numerical data. 
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INTRODUCTION 

The adsorption of macromolecules such as latexes, proteins, 
bacteria and enzymes plays an important role in many different 
industrial fields, including chromatographic separation, filtration, 
water cleansing and biofouling [Andrade, 1985, 1987; Andrade 
and Hlady, 1987]. Despite their importance, the theoretical anal- 
ysis of these processes is still'at the beginning stage. Although 
the Langmuir theory is widely used to describe adsorption pro- 
cesses, it assumes that the size of the solute particles is much 
smaller than the spacing of binding sites on the solid substrate. 
This is true in the cases referred to above since each solute par- 
ticle randomly covers and bonds with many active sites on the 
substrate. Consequently, the surface blocking effect of preadsorb- 
ed particle is very important and has to be taken into account. 
The adsorption of biomacromolecules is usually regarded as a 
random and (partially) irreversible process. Due to these special 
features, classical equilibrium thermodynamic approaches can not 
be applied to this adsorption process. 

In the random sequential adsorption (RSA) process particles 
are adsorbed randomly and sequentially on a plain substrate 
and fixed at the initially adsorbed place if they do not overlap 
with preadsorbed particles. The kinetics of the model [Schaaf 
and Talbot, 1989] and the structure of deposited particles have 

-been studied. In particular, the saturation coverage [Feder, 1980; 
Hinrichsen et al., 1986], 0~=0.547 .... is in good agreement with 
the experimental estimate (0.55--+0.01) of Onoda and Liniger [1986] 
for the deposition of latex spheres. 

Although the RSA model successfully describes the random, 
irreversible and blocking nature of the adsorption process, it 
does not properly incorporate the transport mechanism of the 
panicles from bulk to substrate. To incorporate this realistic sit- 
uation in the case where the density difference between solute 
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and solvent is not significant, the diffusion random sequential 
adsorption (DRSA) model [Senger et al., 1991, 1992, 1993], 
based upon sequential Brownian dynamics simulation, has been 
developed. Many adsorption configurations are built up by a 
number of independent random walks from the bulk phase to 
the surface. Remarkably, the structure, as characterized by the 
radial distribution function, and the coverage of jammed config- 
uration generated by DRSA model were found to be indistin- 
guishable from those of simple RSA [Senger et al., 1992, 1993; 
Bafaluy et al., 1995]. This reflects that, although it does not take 
into account the proper transport mechanisms, RSA can still be 
a valid model in situations where the particle dynamics is con- 
trolled by diffusion. 

On the other hand, when the density between solute and sol- 
vent is large, the adsorbing panicles follow straight line instead 
of Brownian trajectories. To describe this situation the ballistic 
deposition (BD) model [Talbot and Ricci, 1992] was developed 
in which particles are dropped to the surface, and are accepted 
if they are not blocked by preadsorbed particles or if there is 
room near the blocking particles. In the latter case, the panicles 
roll down the surface of the preadsorbed particles [Talbot and 
Ricci, 1992; Thompson and Glandt, 1992; Choi et al., 1993]. In 
BD, since the effect of nonuniform adsorption is quite signifi- 
cant, the kinetics and the structure of particle deposits are signifi- 
cantly different from those of RSA and DRSA. 

In a real system, the density difference between panicles and 
solvent may be between the two extremes: a diffusion con- 
trolled process and a gravity controlled process. Besides, other 
factors, such as temperature and the particle size, will affect the 
transport mechanism of particle from bulk solution to surface. 
Senger et al. [1992, 1993] have studied the effect of both dif- 
fusion and gravity on the adsorption of hard spheres after fix- 
ing the temperature of system and the density difference between 
solvent and solute, and successfully obtained the jamming cov- 
erages for particle with different sizes. However, the sequential 
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Brownian dynamic simulation which they used has several draw- 
backs including the expense and the uncertainty which results 
from the use of a finite mesh and the starting point of the diffus- 
ing particles. Thus, the primary objective of this study is to de- 
velop a more efficient simulation method which provides ac- 
curate flux distributions of adsorbing particles. The secondary 
objective is to develop an accurate fitting function for the nu- 
merical results. In this study, we do not take into account the 
effect of hydrodynamic interactions and colloidal forces. 

FORMULATION OF THE TRANSPORT EQUATION 

When the density of the adsorbing particle is larger than that 
of solvent, one should take into account the effect of convection 
due to gravity as well as that of diffusion. In this case, the gov- 
erning steady state convective-diffusion equation [Elimelech, 
1994a; 1994b] becomes, with the assumption of constant dif- 
fusivity and no inter-particle interactions, 

where c is the concentration of the panicles in the solution 
phase, F the force vector acting on a panicle, k the Boltzmann 
constant, and T is the temperature of system. If we use the di- 
ameter of a panicle, d, as a length scale and denote by Co the 
panicle concentration in the bulk phase, the above equation 
can be non-dimensionalized: 

where ~ is the normalized concentration distribution of pani- 
cles in solution phase: 

c 
7-'= co - - .  (3) 

The flux at position r is 

I ) . F  
J(r) = - O - ~ +  kT d~. (4) 

For deposition onto an empty surface, Eq. (2) becomes 

d2_~_~ + Na d ~  = 0, (5) 
dy 2 ' dy 

where 

N a _  axPApg 
6kT (6) 

is the dimensionless gravity number which is the product of the 

Peclet number, Npe--3~ud2U, and the sedimentation number, 
2kT 

N _  d2Aflg 
s =  1-~-~U, that is Na=2NI, eNs. With ~(0)=0 and ~(oo)=1, the 

solution is 

7" = 1 - e m'y (7) 

and the flux at the surface is 

J =-DOC0y ]r~, =-Dco~-y  ]y=o =-D%Na- (8) 
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Fig. I. Normalized concentration distribution of incoming parti. 

des near the surface at steady state without any interfer- 
ence of preadsorbed particles. The solid lines correspond 
to different gravity numbers : No=0.1, 0.3, 0.5, 1.0, 3.0, 5.0, 
7.0, 10.0 from bottom to top. 

As expected, the flux increases with increasing No. Fig. 1 
shows the concentration profiles at different values of No and 
represents the probability distribution of incoming panicles 
near the surface at steady state. As expected, the rate of ad- 
sorption increases with increasing gravity number. As the size 
or the density of panicles increases, the adsorption rate increas- 
es. When NG is close to zero, the concentration of particles in- 
creases slowly to the bulk concentration, but, as N~ increases, 
the concentration of particles rapidly approaches the bulk con- 
centration just above the substrate surface. This means that the 
layer between surface and the bulk phase becomes smaller as 
Na ---*oo and, as No-,0,  the overall concentration profile theoret- 
ically becomes zero (Fig. 1). This means that the irreversible 
adsorption can take place even without any bulk concentration 
difference because the particle dynamics is controlled by local 
density difference, in other words, Brownian dynamics. 

To obtain the rate of arrival of the adsorbing panicles near a 
preadsorbed particle in a 1+1 D system, it is convenient to use 
the coordinate system shown in Fig. 2. The diffusion equation 
then becomes 

a27" ( l + N a s i n 0 ~ 3 ~ + l  2 3 2 ~ + N  6 cos0 31p 
~r--~'+~ r ) Or r 002 r - -~-=0,  (9) 

with boundary conditions 

~V=0, at y=0, (10) 

3t/" ~-N 6 sin0 ~=0 ,  at r= 1, (11) 
Or 

0---~ = 0, at 0=0,  (12) 

~V= qu0= 1-exp(-Na r0 sin0) at r=r0. (13) 

Eq. (11) represents a reflecting boundary at the surface of the 
preadsorbed sphere, Eq. (12) imposes the symmetry requirement 
and Eq. (13) reflects the fact that the concentration profile far 

M a ~ h , l ~ 7  
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Fig. 2. System boundary represented in the cylindrical coordinate 
system. 

from a preadsorbed particle is given by the undisturbed solu- 
tion, Eq. (7). 

For a sphere depositing on a plane in the presence of a pread- 
sorbed particle we use a spherical coordinate system with azi- 
muthal symmetry. The governing steady state diffusion equation 
Eq. (2) takes the form 

0r 2 ~- +N a sin + r 002 

( tan0 N cos0 ~ 07-' 
- [ - 7 -  - a - - y - - ) - ~ -  =0,  (14) 

where we have again assumed constant diffusivity and no inter- 
particle interactions. The boundary conditions are the same as in 
the 1+1 D system. 

NUMERICAL ANALYSIS 

Eq. (9) does not possess analytical solutions. Numerical solu- 
tions, however, may be conveniently and rapidly obtained with 
a collocation procedure. To apply the method, the region of in- 
terest is first mapped to a square region and we select nr • nc 
collocation points at the nodes of a square lattice (In ortho- 
gonal collocation, the collocation points are already determined 
from the roots of Jacobi-Polynomial. The method has the ad- 
vantage of accuracy at the collocation points but also the disad- 
vantage of inflexibility since we can not choose the collocation 
points as we want.). 

The numerical solution is represented as a linear combination 
of Lagrange polynomials with unknown coefficients. Substitu- 
tion of these functions in the differential equation yields a resi- 
dual function and the unknown coefficients are determined by 
setting the residual functions equal to zero at the collocation 
points. The complete concentration profile may then be ob- 
tained by interpolating between the collocation points. Full de- 
tails of the method are presented in the Appendix. 

After obtaining a set of converged solutions, we can calcu- 
late the flux of particles at the interface by differentiating the 
probability function: 

[,0y )y=O {. or  Jy=O 

where r is the position on the surface relative to the center of 
the preadsorbed particle. 

In order to understand the influence of the preadsorbed sphere, 
it is convenient to divide the solution into two parts: 

7% % +  7"i, (16) 

where 7* 0 is the steady state distribution of particles when the 

surface is empty and q'l is the perturbation induced by a pread- 

sorbed particle. From Eq. (8), Eq. (15) and Eq. (16), we have 
the following equation: 

J(r)=J0 +Jl(r), (17) 

where 

J0 =-Dc0NG (18) 

is the flux on an empty surface and J1, therefore, shows the ef- 
fects of lateral diffusion relative to convection due to gravity. 

We have found that the flux J1 should satisfy a normalization 
condition which we now derive. Since the total flux to the sur- 
face must be the same with and without a preadsorbed particle 
we have in the 1+1 D system that 

f ?  J(x) d x = J (  Jodx, (19) 

where we take a lower limit of one on the left hand side cor- 
responding to the particle diameter since there is no flux within 
the exclusion region of the adsorbed particle. Inserting Eq. (18) 
into Eq. (19) yields 

Jl(X) dx = 1. (20) I a Jo 

In the 2+1 D system, the equivalent relationship is 

2~? Jl(r) r dr= 1. (21) 
J0 

In this paper, we assume the diffusion coefficient D is con- 
stant but it really depends on the viscosity of fluid and the dis- 
tance between particles and the substrate [Pagonabaraga and Rubi, 
1994]. And, also, we does not take into account the effect of van 
der Waals and double-layer forces between particles. The effect 
of hydrodynamic and colloidal interactions on the deposition pro- 
cess is investigated elsewhere [Pagonabaraga and Rubi, 1994]. 

BROWNIAN DYNAMICS SIMULATION 

In order to confirm the effectiveness of collocation method, we 
have used the Brownian dynamic simulation. The general idea of 
the simulation has already been explained elsewhere [Senger et 
al., 1991, 1992]. In this section, we present the key details. In 
1+1 D system under the influence of gravity, the jump proba- 
bilities of a particle from its position to one of four adjacent 
nodes are: 

P(x +) = P(x-) = 1 
2 + exp(~Nc,/4R) + exp(-SN c/4R) 

(22) 

Korean J. Ch. E.(Vo|. 14, No. 2) 



120 H.S. Choi and J. Talbot 

exp(-3Na/4R) 
P(Y+) = 2 + exp(rN a/4R) + exp(-rN a/4R) (23) 

exp( +rNa /4R ) 
p(y-)= 2+exp(SNc,,/4R)+exp(-SNc,/4R) (24) 

where G is the jump distance and x+ denotes a jump of one 
step in the positive x direction, etc. Each particle starts at a ran- 
domly chosen point in a plane at a height equal to 3R. Ac- 
cording to the probability of making a step, the trajectory of a 
particle is determined. Once it hits the surface, it is fixed but if 
it continuously diffuses away from the surface, it is rejected. 

In 2+1 D system, panicles can jump to one of six adjacent 
nodes. The corresponding probabilities are simply modified as 
follows: 

1 
P(x +) = P(x-) = P(z +) = P(z-) = 

4 + exp(rNv/4R) + exp(-rNc,/4R) 

(25) 

exp(-SN a/4R) 
P(y+) = (26) 

4 + exp(SN a/4R) + exp(-6N a/4R) 

exp(+3N G/4R) 
P(Y-) = 4 + exp(SN n/4R) + exp(-(SN a/4R)" (27) 

RESULTS 

1. Probabil ity of  Finding an Incoming Particle near a Pread- 

sorbed Particle 

The probability distribution, W, of the position of the center 
of the diffusing particle at steady state is shown in Fig. 3. The 
black pie represents the preadsorbed particle and the gray quart- 
er annulus represents area excluded to the center of an incom- 
ing sphere. The lines are contours of constant concentration 
normalized by the bulk value. The contour plot at low gravity 
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Fig. 3. Probability distribution of finding an incoming particle 
near a pceadsorbed particle in 1+1 D system. Lines repre- 
sent contour plots of probability distribution of partides. 
(a) N.=0.1 , (b) Nc,=l.0, (c) No= 2.0, (d) Na=5.0. 
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number, Fig. 3(a), shows a slowly varying distribution of par- 
ticles consistent with diffusion controlled dynamics. As the 
gravity number increases, the overall adsorption rate also in- 
creases and the adsorption rate of particles in the vicinity of a 
preadsorbed particle is larger than that far away from the pread- 
sorbed particle (see Fig. 4). When Na=l.0 [Fig. 3(b)], the con- 
centration profile varies rapidly and one can observe the ac- 
cumulation of particle density just above the preadsorbed par- 
ticle. When No=2, 5 [Fig. 3(c) and (d)], the biased distribution 
becomes dominant and so intense that the denser concentration 
profile is observed in the vicinity of the preadsorbed particle. 
The four figures taken together show qualitatively the transition 
between a diffusion controlled process and a convection dom- 
inated process due to gravity. As the gravity number increases, 
the bulk phase moves closer to the surface. Thus, even in the 
absence of the preadsorbed particle, the probability distribution 
becomes very steep. When N~=5, the bulk phase approaches 
around y=2 at x=4. 
2. Correction of  Numerical  Results 

The numerical solution is sensitive to both the number of col- 
location points (no) and the location of the system boundary (ro). 

2.5 1 - - nc = 5 Jr/J~ Ix=l = 1.43147+5.74824 * exp(-0,332623 No) 
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~", -- ~=:~ ~ 2"5 k t simulati~ 1 
t" -- ~I: ~ -- fitting ..I 

~,i'~ ~'.\ ~ 1.5 

,.oL . . . . . . . . . . . . . .  

E %<~ "", 5 lO 15 20 

o.o L . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . .  
1 2 3 4 5 6 

X 

Fig. 4. Dependence of local flux distributions, JdJ0, on the number 
of collocation points. The insert shows the effect of vary- 
ing the number of collocation points on the flux at x = l .  
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Fig. 5. Effect of the location of the system boundary on the local 
flux distribution. In the insert, solutions of Brownian dy- 
namic simulation show good agreement with numerical 
solutions obtained after normalization of the fluxes cal- 
culated by the collocation method. 
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Fig. 6. Comparison of the normalized flux distribution with solu- 
tions of Brownian dynamic simulations using different val- 
ues of mesh sizes. 

Fig. 4 shows the effect of varying no. In this calculation, N~=I 
and r.=10. The insert represents the change of flux just near 
preadsorbed particle with increasing no. When many collocation 
points are used, as the figure shows, numerical solutions asym- 
ptotically approach the true solution. When n~_>19, reasonable 
numerical solutions can be obtained. The fitting function of the 
small figure shows that JJJo 1~r,1.43147 as n--~co. 

Fig. 5 shows the change of flux distribution with different lo- 
cations of the system boundary, r,, when Nc.=100 and n~=19. 
When No, is large, the numerical solutions sensitively depend 
on r0. As shown in the figure, the flux distribution is overes- 
timated for r0=1.38 and it is underestimated when r 0 is 1, 3 or 
1.35. This effect results from the fact that we assume the un- 
disturbed boundary condition at an arbitrary position, r=r,. But, 
we can correct these fluxes by applying the flux balance (19). 
As a result of normalization using Eq. (20), three fluxes are 
transformed into one flux distribution as shown in the insert of 
Fig. 5. Thus, this correction procedure using the concept of 
flux balance can remove possible errors which may result from 
the numerical analysis. 
3. Effectiveness of Collocation Method 

Fig. 6 compares the particle flux distributions obtained by 
collocation with those obtained by Brownian dynamics simu- 
lation. When 5=0.02 in the Brownian dynamics simulation, the 
two results show good agreement. In the cases of ~i=0.05, 0.1, 
however, the Brownian dynamics results show large local fluc- 
tuations of fluxes. Large deviations between two results are ob- 
served near preadsorbed particle if insufficient lattice spacing is 
used. The accuracy of numerical solutions obtained from Brown- 
ian dynamic simulation sensitively depends on the number of 
independent simulations as well as on the size of lattice spac- 
ing. Table 1 compares the calculation conditions of two meth- 
ods. For the comparison, a workstation (Sparc 20) was used. 
For example, the collocation method is 13 times faster than the 
Brownian dynamics simulation when ~i=0.02. 
4. Particle Flux Distributions Near a Preadsorbed Particle 

Fig. 7 shows the effect of gravity number on the normalized 
flux, JdJ,,. As N,  increases, the convection due to gravity con- 
trols the dynamics of adsorbing particles and the lateral dif- 
fusion becomes relatively weaker. Fig. 7 also supports the gen- 
eral argument that lateral diffusion favors a uniform distribu- 

Table 1. Comparison of computing times of collocation method 
and Brownian dynamic simulation 

Simulation[ Collocation Brownian dynamic simulation 
" , , , ~ o d s  method (100 independent runs) 

Comparison ~ No,=10 nc=19 ~i=0.02 5=0.05 5=0.1 
1 

Time (sec) [ 58 754 122 31 

1 6  F . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  , . . . . . . . . .  -~ 

14 
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X 

Fig. 7. Normalized flux distributions calculated at different values 
of Na. 

tion of particles on the surface, although even when Nc;=0 the 
adsorption is non-uniform due to geometric blocking. Thus, at 
large values of No, the perturbation is restricted to the imme- 
diate vicinity of the adsorbed particle and the flux distribution 
function approaches a delta function at x=l. When an adsorb- 
ing particle follows a pure Brownian dynamics trajectory (No,-- 
0) from the bulk phase to the surface near a preadsorbed par- 
ticle, it can move any direction with equal probability through 
the bulk phase and hit the surface of a preadsorbed particle. As 
a result of this reflection from the surface of  the preadsorbed 
particle, diffusing particles accumulate near the preadsorbed par- 
ticle. However, as No increases, the diffusing particles have a 
bias under the field. This difference of particle movements leads 
to varying rates of arriving particles onto the surface near a pre- 
adsorbed particle as displayed in Fig. 7. As expected, the ad- 
sorption rate is more intense near a preadsorbed particle as the 
gravity number increases. 

We have attempted to fit the numerically obtained flux dis- 
tributions. We are guided in the choice of function by the ana- 
lytic result for no diffusion [Slattery, 1981], No=0. In this case, 

The obvious choice of fitting function, JJJ0=(~ - 1)x -~ where 
~ is an adjustable parameter, gives, unfortunately, poor results. 
Thus, we employed a power series function with 6 parameters 
as a fitting function: 

J l  = ~ ~ . _ ~ / .  (29) 
J0 i=1 x ~ 

The fitting parameters are presented in Table 2. All fitting func- 
tions give excellent agreement with the simulation data, as shown 
in Fig. 8. 

Korean J. Ch. E.(Vol. 14, No. 2) 
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Table 2. Fitting parameters of Eq. (29) at different values of Nn 

N~; Yl 72 73 74 "/5 Y6 Fitting range 
1 0.00603 0.38445 6.1641 -13.318 12.876 4.6776 1<x<8.2 
2 0.000731 - 0.25649 8.343 --13.445 10.582 -3.4339 1<x<5.85 
5 0.001384 - 0.17534 0.52807 15.639 21.504 8.0907 1<x<3.3 

10 0.1668 2.9108 19.345 54.562 - 46.103 11.827 1<x<2.42 
20 1.2204 12.361 - 42.711 48.262 12.909 - 24.226 1<x<1.72 
30 1.1751 - 19.62 116.44 - 315.85 387.22 - 162.52 1<x<1.53 
40 15.073 - 157.17 642.43 1277.7 1219.2 433.67 1<x<1.47 
50 60.963 - 546.99 1936.3 3364.2 2844.8 921.43 l<x<l.50 

100 1384.1 - 9969.4 28442 - 40114 27906 7633.4 1<x<1.29 

~11 i i  1 , , , 1 1 1 1 1 , 1 , , , 1 | 1 , ,  , i , ,  , t l l l l l t , ,  , l [ I t l t l l l l ,  

| 4  NG ~ 16~" . . . . . . . . . . . . . .  

0,0 / t  
10 V 40 _~- $ 

[ ] 2 o  ~- 4 
~ -  8: o |0 ~" 
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6 �9 1 X (Ji/J0) Lnum~i~Hy~l~htted 

4 - -  fitting lines 

2 ~ / _ / :  : .,,I 

, ,  

0.0  0.2 0 .4  0.6 0.8 1.0 

l / x  2 

Fig. 8. Comparison of the fitting functions (29) with numerical 
results calculated at various values of N~, 

C O N C L U S I O N S  

The convective-diffusion equation is useful for calculating the 

particle concentration profile and the rate of deposition over col- 
lector surfaces in a variety of deposition systems. While the con- 

vective-diffusion equation has been previously used to calculate 

the adsorption rate of particles on the bare surface [Elimelech, 

1994a, 1994b], it has been extended here to the calculation of 
the particle flux distribution in the presence of a preadsorbed 
particle. First of all, convective-diffusion equations have been 
formulated in both 1+1 and 2+1 dimensional polar coordinate 
systems and solved for the 1+1 dimensional case by a colloca- 

tion method. When the convection due to gravity dominates the 
diffusion due to molecular motion of particles, the concentration 

distribution of adsorbing particles shows a dramatic change from 

a slowly varying to a strongly biased distribution near the pread- 

sorbed particle. From the concentration profiles particle flux dis- 
tributions have been calculated at different No, values and com- 

pared with the results of Brownian dynamics simulation. This 

comparison shows that the collocation method is accurate and 
more efficient than the Brownian dynamic simulation. 

In this numerical study, we have also found that normaliza- 
tion based upon the concept of flux balance has allowed us to 

correct possible numerical errors due to the assumption of  undis- 
turbed boundary condition at an arbitrary position, r=r0. Thus, 
when one numerically calculates particle flux distributions near 
a preadsorbed particle at high Na values, one can overcome the 
difficulty of choosing appropriate system boundary because each 

numerical solution can be transformed to the correct distribution 
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by normalization. 

Finally, we have developed a truncated power series with 6 
parameters as a fitting function which provides a good fit to the 

numerical solutions. This fitting function can be used to gen- 

erate the structure of particle deposits on the line. As we did 
before elsewhere for Na=0 [Thompsor ad Glandt, 1992], one 

can obtain the probability distribution of particles adsorbing be- 

tween two preadsorbed particles by superimposing the flux due 

to two isolated preadsorbed particles. 
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Appendix. Application of the Collocation Method 

To solve Eq. (2), we used a collocation method. For the sake 

of convenience, we transformed the convective-diffusion equation 

from (r, 0)-coordinates to normalized ( F ,  O)-coordinates in 1+1 

and 2+1 D systems: 

O = 2 0 ,  r -  r-1 (A.1) 
7r r0-1" 

Now, the convective-diffusion equation can be written as 

02~ - - a~e - a2 'e+h(~' ,  0 ) - ~ - = 0 ,  
Or 2 I-fir, 0 ) ~ - + g ( r ) ~ -  (A.2) 

and, in the 1+1 D system, 

f(r, 0 )=  1_ + sin O , (A.3) 
k + r  k 

h(r, O) =-k(k + r )  

where 

1 
k= ro-----T' (a.6) 

and, in the 2+1 D system, 

[ " f(r, 0 )=  2_ + sin 0 , (A.7) 
k+r k 
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h(r, O)=-  - cos 2 #  n ' (A.8) 

respectively, with the boundary conditions (in both ID and 2D) 

~ - - = -  k \ / 

~ = 0  at # = 0  and 0Nr_<l 

3 ~  0 -a~-= at 0=1 and 0~<r_<l. (A.9) 

The approximate solution of the above diffusion equation can 
be written as a linear combination of Lagrangian Polynomials 
such as 

m +2 n +2 

~ 7-,0)= } 6 ( # ) x  4(7)% (A.10) 

where 

/i(r) = f i  r - r ,  ( a . l l )  
k = l , * ~ i  r i - r  k 

and 

m 
/ j(0)= H O-Ok (A.12) 

k= l , k* j  O i --  O k 

where n and m are the number of collocation points in r-direc- 
tion and 0-direction, respectively. Let us denote 

I~6,)=L,j, t/#,)=L;, 

31s (#~) 36(7;) =A,,, --=A D 
07-, 00, 

a2lj (0i) 02l)(}-' ) =B#, =B;j (a.13) 
377 3#2 

Since the Lagrangian polynomial has the following property: 

0, if i:#j 
L~j = 1, if i=j (A.14) 

we can replace the partial derivatives of Eq. (A.2) with linear 
combinations of Lagrangian polynomials: 

m +2 ,'1 +2 

tl~(r*' Or)= ~, ,~LijLki ~i = 7"tk' (A.15) 

b~r,,01) .,+~.+2 .+2 
-/=~l /~ L/sA~ IfJiJ=,~ A~ ~t (A.16) 

m +2 32 tIg.r,,O,) = ~i B;S %Y (A.19) 
3 # 2  ": 

Substituting Eq. (A.15)-(A.19) into Eq. (A.2), we can construct 
the residual function R(r, #): 

n+2 

R(rk,0,)= i~,[B,~ ~,  + f(r,,<,#t)A,u ~ ; ]  
m + 2  

+ ~l[g(}"k)BD ~ s +h(7,,<,0t)AD ~,U ]. (A.20) 

And the boundary conditions can be written as follows: 

/ff + rS in  # t t p  

n+2 N l - x 
= ~.A,~ % + ~ s i ,  1~0,i%, =0 

,=, K t~ j 

~ r ~ . 0 3 = 0  

3~?,,0,,,§ m +2 

a 0  = J ~=IAn+2'j tlJkj = O. ( A . 2 1 )  

After inserting the boundary conditions F.q. (A.21) into Eq. (A. 
20) and rearranging it, we finally obtain the following alge- 
braic equation: 

.... 2 r _  ~ ,r 
+ ~z Lg(r k) [B# - ' - ' , , ,  +2 A - 7 - ~  { 

~ m  +2,m +2 ) 

t. ""+-' '+~ ; ]  

where 

and 

(A.24) 

a: ~rk,#l )  .§ 
- ~B~ t/~u (A.17) ~'~2 "= 

3 q'(?k, #, ) "+2 
3# - ,-:}, ab% (A.18) 

NOMENCLATURE 

BD : ballistic deposition 
c : particle concentration in the solution phase 
c,, : particle concentration in the bulk phase 

Korean J. Ch. E.(Vol. 14, No. 2) 
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d : diameter of a particle 
D : diffusion coefficient 
DRSA : diffusion random sequential adsorption 
F : force vector acting on a particle 
I,, : area of integration under curves in Fig. 5 
J(r) : flux at position r on the surface 
Ji : flux distribution due to the effect of a preadsorbed particle 
J~ : flux on an empty surface 
k : Boltzmann constant 
nc : number of collocation point 
N~ : dimensionless gravity number 
Nee : Peclet number 
Ns : sedimentation number 
P : probability for jumping of a particle from its position to 

one of adjacent positions 
r : position on the surface relative to the center of the pread- 

sorbed particle 
RSA : random sequential adsorption 
T : temperature of system 
x, y, z : Cartesian coordinate axes 

Greek Letters 
8 : jump distance 
0~ : saturation coverage of adsorbed particles 

: normalized concentration distribution of particles in solu- 
tion phase 

~, : steady state distribution of particles when the surface is 
empty 

~t : distribution due to the effect of a preadsorbed particle 
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