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A b s t r a c t - F o u r  diffusion models for the dynamic adsorber, i.e. LDF model, single diffusivity diffusion model, two 
diffusivity diffusion model for beds packed with bidisperse and/or zeolite-type particles, were considered. The third 
moments for the four diffusion models were obtained. Relations between the system parameters involved in each 
model were derived by matching mean, variance or the third moment between diffusion models. The two relations 
from either variance or the third moment matching were examined to investigate which one is superior when model 
simpfification is required, by comparing the time domain elution curves for the single and the two diffusivity diffusion 
models. For the symmetric elution curves, relation from the variance matching is much better as expected, than 
the relation matching the third moment which measures skewness about mean. As the elution curves become highly 
asymmetric, eluting shortly after injection and exhibiting long tailing due to both the small intraparticle diffusivities 
and small space time in the adsorber, either relation failed to satisfactorily simplify the two diffusivity diffusion model. 
Contrary to the expectation that the third moment matching would work better in the asymmetric curves due to 
the n.ature of the third moment, variance matching still gives slightly better results. Relation from the variance, instead 
of the third moment, matching is strongly recommended for model simplification due to its simplicity in fnrmula. 
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INTRODUCTION 

Particles with bidisperse pore structure are widely used as het- 
erogeneous catalysts, adsorbents for separation and purification 

etc. in several processes of chemical industry. Since reaction rate 
insides the commercial catalysts is usually very high, the overall 
reaction rate is controlled mostly by the intraparticle diffusion 
process like in most separation processes using adsorbent. Models 
for t h e  dynamic adsorber packed with either monodisperse or 
bidisperse particles are usually described using the system param- 
eters such as the adsorption rate and equilibrium constants as- 
suming a finite linear reversible rate of adsorption, external film 
mass transfer coefficient and axial dispersion coefficient, in addi- 
tion to the respective intraparticle effective diffusivities. For beds 
packed with bidisperse particles, besides the interparticle mass 
balance, two additional intraparticle diffusion equations for the 
particle and the microparticle are required to realistically describe 
the intraparticle diffusion processes, using the macro- and micro- 
pore effective diffusivities respectively. Diffusion equation for the 
microcrystal is sometimes replaced with the single phase solid 
diffusion equation for beds packed zeolile-type particles in parti- 

cular. However, if one regards the bidisperse particles as monodis- 
perse, only one intraparticle diffusion equation is needed using: 
a single effective diffusivity. In view of the computational convert-. 
ience achieved by eliminating one diffusion equation for the micro- 
particle, the single effective diffusivity model is more attractive 

than the two effective diffusivity one. 
In linear driving force (LDF) diffusion model FGlueckauf and 

Coates~, all the mass transfer processes except for the axial dis-- 

tTo  whom all correspondences should be addressed. 

6O 

persion are lumped into a linear transport rate expression using 

an overall effective mass transfer coefficient, thus completely elim- 
inating mass balance equation for the adsorbing particle. Ragha- 
van and Ruthven [~1985~ have shown that the effective overall 
mass transfer coefficient in the LDF model is related to the var- 
ious system parameters by matching variances from both LDF 
and diffusion models for a bed packed with bidisperse particles. 
In extension of this work, Kim E19903 has obtained the relation- 
ship between the single effective diffusivity and the macro- and 
micropore effective diffusivities by means of the matching of the 
variances from both the single and the two diffusivity diffusion 
models. Kim [19901 examined the adequacy of the relation by 
directly comparing the time domain solutions of the two diffusion 
models, and revealed that its performance becomes poor as both 
the space time and the two effective diffusivities are simulta- 
neously small, leading to the highly asymmetric elution curves. 
This point is well expected since the relation is derived by mat- 
ching variances, not the third moments representing skewness 
about the mean, from the two diffusion models. Hsu and Haynes 
E1981~ addressed that much information for the response curve 
is lost when only mean and variance are used in determining 
system parameters due to the difficulties involved in computing 
higher moments from the experimental response curves. 

In view of these points, the degree of asymmetry about the 
mean which is associated with the third central moment is con- 
sidered in this work to see if the new relationship from the mat- 
ching of the third moment instead of variance gives better agree- 
ment in the time domain solutions especially in the highly asym- 
metric response curves. In the present work, the third central 
moment will be computed for the first time for the LDF, single 
and two diffusivity, and zeolite-type diffusion models considering 
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all the possible mass transfer resistances for completeness, and 
the new relation among the system parameters involved in var- 
ious diffusion raodels will be derived from the mean, variance, 

or third moment nmtching. Each relation obtained via matching 
will be examined in the time domain by numerically inverting 
the Laplace transformed solutions for the single and the two dif- 
fusivity diffusion models. 

D I F F U S I O N  M O D E L S  

v~ + - -  ~ ]  (8) 

The third central moment which is known to be a measure 
of the symmetry with respect to the mean is obtained as follows. 

p:, = f ) t -  v,')~- C(L, t) dt = p~' - 3pl'/a2 - (pl ')~ 

=6_L[2D~_ l + S q D ~  (1+5~)~+1-~  K ~  1 - e  K ~ 
VL e V z t ~ V 2 --e--k-J + ~  k 2] (9) 

!. L D F  M o d e l  
Linear driving force (LDF) diffusion model [Glueckauf-Coates, 

19473 for the dynamic adsorber has been widely used for its 
simplicity and ease of computation. In this model, all the diffusion 
processes except the dispersion due to the bulk convective motion 
were modeled as a linear mass transfer rate to eliminate mass 
balance for the adsorbing particle. 

aQ, =k[C(z, t)-C*(z, t)] (1) 
0t 

where ~ is the particle volume averaged total adsorbate concen- 
tration, C the adsorbate concentration in the mobile fluid and 
C* the mobile phase concentration in equilibrium with the volume 
averaged adsorbed phase concentration ~b. Hence, assuming lin- 
ear adsorption for the very. small adsorbate concentration in the 
mobile fluid, 

~(z, t) = K. C* (2) 

where K represents a pseudoadsorption equilibrium constant mod- 
ified for the total adsorbate concentration instead of the adsorbed 
phase concentration. Mass balance for the adsorbate in the mobile 
fluid phase is, 

0(2 = D~ 0!C _ v._dC _ 1= w 0 ~  (3) 
at e oz 2 oz ~ dt 

Initial and boundary conditions are 

C(z, 0)=0, ~(z, 0)=0, C(0, t)=~(t), C(~, t )=0  (4) 

The n-th absolute moment, p.' can be obtained either from 
the derivatives of the Laplace transformed solution C(L, s) for 
the mathematical model or from the integration of the time do- 
main solution, C(L, t) as follows. 

p . ' = ( - 1 ) "  lira d"C(L, s) -fst".C(L, t) dt (51) 
s~.0 ds n 

The first absolute and second central moments for the LDF 
model were already obtained by many researchers [Ruthven, 
1984; Raghavan and Ruthven, 1985], The first absolute moment, 
or mean, is 

m ' = f ~ t ' C ( L  t ) d t = L ( l + a l ) v  (if) 

where 

51 = 1 - e K (7) 

The second central moment, or the variance, is 

pz = f~ (t-pl '):"C(L, t) dt=iaz ' - (p , ' )  2 
J o  

2. S i n g l e  D i f f u s i v i t y  D i f f u s i o n  Model 
Packed bed diffusion model for the single effective diffusivity 

has been formulated by Schneider and Smith [1968], considering 
all the possible transport rate processes such as the axial disper- 
sion in the bed, external film mass transfer, and intraparticle dif- 
fusion, as well as the finite adsorption rate inside the particle. 
Mass balances for the adsorbable solute in the mobile fluid and 
stationary fluid inside the particles are respectively 

oCI _ D~ d~C1 dC1 3 1 - e r ~  dCp (10) 
Ot c dz z Vdz R, ~ ~P-0R-le:ep 

aCp_Dp 1 ~ - - - a  ( zaCp~ i oQ (II) 
at ~p W aR\R a R ]  ~ at 

The adsorption rate was assumed to be linear due to the very 
small solute concentration in the particle. 

t) -Q z' ] 

where the adsorbed phase concentration, Q is based upon the 
volume of the particle. Initial and boundary conditions are, 

C,(z, 0)=0, G(z, R, 0)=0, Q(z, R, 0)=0 (la) 

C1(0, t)=g(t), Ci(oo, t )=0  (14) 

where g(t) denotes unit impulse at the bed inlet. 

D OCp { =:kt[Cl(z, t )-C,(z,  R,, t)], ~ R  ~- JR_0=0 (15) PaR e=ep " 

The first absolute and second central moments for the above 
mathematical model were obtained by Schneider and Smith 
[19687. The first absolute moment and the second central mo- 
ment are 

m' :--L( 1+ ~,) (16) 
v 

.L [D~  (1+51) 2+8p] (17) 

where 

~1 = I -s + K~) (18) 
E 

The third central moment is computed as 

ia3=6~_[2D~ I + S Q D ,  (1+5,) z , -I 
~ -  t ~ ~ + 6,~ + 8aJ (20) 

where 
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 ,:28 R,2 +_1 R,t 
1% \15 Dp 3 k~ / 

+ 1 - e  F_K.,:' (ee+tG) 3 __/et  V 
e L k .  2 + 315 {aaV k , )  

+ 14(R" '1( Rp 1+ 2(Rp212~] (21) 
,Dp ;kkf /  \DpY)J  

3. T w o  D i f f u s i v i t y  D i f f u s i o n  Model 
Mass balances; for the small adsorbable component in the beds 

packed with bidisperse particles were formulated by Hashimoto 
and Smith [1973], considering a finite rate of adsorption. Mass 
balance in the mobile fluid is 

_0(;_2 Dr aa,2e vOCe 3 1 - e t ~  OC~ (22) 
at - e 0; :2 - Oz - R~ e - ~ o R  e e,, 

Mass balance equations in the stationary macronore and micro- 
pore fluids are respectively 

oC. D,, 1 O (R"OC"t 3 1--c.--UbD, OC, 
a( =e.  R'-' 0R\ "oR/  r, ~. Or .... (23) 

oC,:l--a~,-~: ,  D~ O (reaC,'  t 1 3 0  
at e, r e Or ',. ar/-~ a t  (24) 

where 

OQ =1%[ C'(z' R' r' t) at Q(z, R, r, t ) ]  K~ (25) 

In the above formulation, adsorption was assumed to occur in 
the micropores only due to the much higher adsorbable surface 
area in the micropores compared with that in the macropores, 
and the size of the microparticles was assumed to be uniform 
for conciseness�9 Initial and boundary conditions are, 

Cdz, 0)=0, CJz, R, 0) -0 ,  Ci(z, R. r, 0)=0. 
Q(z, R, r, 0)=0 (26) 

Cd0, t)=8(t), C2(oo, t ) - 0  (27) 

oC. 
D.-00C" la e =k,CC~(z, t)-C.(z, R,, t)], a i r  I~ ,=o (23) 

C,(z, R, re, t )=C.(z ,  R, t), aC,}  = 0  (29) 
Or r=0 

The first absolute and the second central moments for this 
model were obtained by Hashimoto and Smith ~1973], and are 
shown below respectively. 

p~' = -L-(1 + 8~) (30) 
v 

L [ D ,  (1+80 ~ ] 
p~=2 v L ~ va +8 .+5 ,  (31) 

where 

8~= 1 - ~  (G+ r (32) 
8 

s --'" \15 D. 3- (33) 

1 - e [ I ~ a  + i (~,+IG)"(rr 
8,= ~ Lk~  1 5 1 - ~ Z ~ - ~ \ I ) I / J  (34) 

The newly obtained third central moment is written as follows. 
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�9 ~ v ~ - 7 -  V ~ +a,,+ 

where 

P":' + 1 R, lr : 

+I-~.[K, C 2 ~,+K. K,2/r/ ' ,  2 (c,+K~) :~ (r,~t2 
~ -  LI~: ~ + i5 i7a~7:-~ k ,  f.D:) -t- 315 (1-8,,-8~) ~ ,. D)} 

+ (8,. +3158*+ I~) :~ {35( R~ 12+ l k ,  / 4(, ~(D,,. �9 Rp',}k~, + 2( ~ ) e } ]  (36) 

4. T w o  D i f f u s i v i t y  D i f f u s i o n  Mode l  for Z e o l i t e - t y p e  Part i -  
c l e s  

For beds packed with the zeolite-type particles, many investiga- 
tors usually choose a model based on the single-phase adsorption 
instead of two phase adsorption of both gas and adsorbed phases 
in the microcrystal, due to the strong force field associated with 
the pore wall. Therefore only the microparticle diffusion equation 
is replaced by the solid diffusion equation, all the other mass 
balances being the same. 

aC2 =D~ 32C2-v3C~ _ 3 1 ~12,,~" aC~,] (37) 
ot ~ oz 2 Oz R~ ~ OR'~ ~, 

oC,, = D,, 1 e (  .. aC. )_.._ 3 1 - e , . - e a  D_ Oq=l 
0t ~; R e oR R - e -  r e,, ' o r , ,  ,, 

(38) 

0q D, 
= r 2 ) (39) 

3t re Or 

where the adsorbed phase concentration, q is based upon the 
mierocrystal volume. Hsu and Haynes E19813 formulated a similar 
model taking into account both a finite rate of adsorption and 
size distribution of microcrystals. In this derivation, microcrystal 
size was assumed to be uniform. 

Initial and boundary conditions are, 

Cdz, 0)=0, C.(z, R, 0)=0, q(z, R, r, 0)=0 (40) 

Cd0, t)=8(t), Cdoo, t )=0 (41) 

0G D"OR le: , k,[Cdz, t)-C,,(z. R b, t)], OC,, eR ,=o (42) 

3.D, aql :k@~ q(z, R, r,, t)] aq: I 
r, Or .... ~ ] '  Or' , ' ,  =0 (43) 

Since the microcrystal volume based adsorbed phase concen- 
tration, q is related to the particle volume based adsorbed phase 
concentration, Q by ( 1 - e . - g e ) q - Q ,  linear adsorption rate based 
upon the microcrystal volume can be changed to the particle w)l- 
ume based adsorption rate by multiplying a factor of (1 ~,,-~).  

aQ = (1 - e,, - ee) 3 .  D~ aq [~ . = (1 - g , ,  - 8~)[< 
at r~ Or 

�9 Q(z, R, r,, t) ] 
[CJz, R, t ) -  (I-(r J (44) 

Since Q(z, R, r,-, t)= C.(z, R, t), one can easily obtain the following 
relationships by comparing the above equation with Eq. (25) at 
r----r~. 

k.=(I-~-80)I~, K.=(1-e~ 8b)K (45) 

Hence, 
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- (46) 
k, k 

Furthermore, comparison of the last terms in Eqs. (24) and (38) 
using Q : K , C ,  and Q = ( 1 - r  results in 

D, = K" D. (47) 

Considering the relations between the system parameters in- 
volved in thetwo diffusivity and the zeolite-type two diffusivity 
diffusion models, the two diffusion models are essentially equiva- 
lent. 

The first absolute moment and variance for the above diffusion 
model are written respectively as 

~,  = L(~ + 80 (48) 
V 

L D, (1+8,)'+5,+8] 
gs=2 ~ [ ~ W , ,j (49) 

where 

5, =1  c{c,+(1 e,,--sDK} (50) 
E 

(51) 
s D,, 3 ~ ,  

The third central moment is computed as follows. 

g : ~ = 6 L [ 2  D~S 1+51v_~ t. aD~ (1.+80-~ _ 8 ~ + 8 , } + 8 : d v  a (53) 

where 

�9 1 R/-' 
8~ = 28t(1 - s~-- se)K(1-5 -D-7-~ +13 kT-~ }',,-~- + i [ R '  ~( K D~.)r2 

1 - s [ ~ [ I K . / / " K .  z 2 K'I(r,21+ 2 (r, Zts ~ + 

R "~ (R~et( R~ t + {~:~ + ( 1 -  g" - G)K " { 3 5 ( ~ ) ,  + 1 4 \ ~ } \ ~ j  

RESULTS AND DISCUSSION 

!. The First  Moment  Matching 
When all the first absolute moments in various diffusion models 

are made equal, adsorption equilibrium constants are'. related in 
general as listed below. 

K =  s~+ IG=~ ,+  s,+ K,= s o + ( 1 - ~ o -  sDK, (55) 

The second equality in the middle holds true since the total 
particle porosity is sum of the macro- and microparticle porosities, 
i.e., ~=s,~+s,. In the solid diffusion equation for the zeolite-type 
particles, microcrystals are considered to be nonporous, i.e., e , -0 .  
Hence the last equality holds recovering K~ = ( 1 - a , , -  ~:DK,. proved 
earlier. 
2. Variance Matching 

By matching both mean and variances from the various diffu- 
sion models for the packed bed-type adsorbers, one can easily 
obtain the following relations between system parameters in- 
volved in the model. 

k \ s ~ + I G !  k,, L , p + o  k~ 

( 1 + 1 R/ + 1( 'is r//D, 

+ !  Rp :: (1 ~ . - ~ 0 K  ~ _  _t +--1 R# 
3 k~ {~,+(1--~-~b)K,-} ~ k 15 D~ 

1 (1 - s , , -  sb)K r/ + 1 R t 
4---  �9 (56) 
1 5  ! ~ o §  D, 3 k, 

In this way the overall effective mass transfer coefficient, k 
in the LDF model is shown to be related to the system parameters 
in other diffusion models. 

From the relations for the single and two diffusivity diffusion 
models, the following equality has been obtained. 

R , S - R , ~ + (  ' .~.+_+~. '12 rcS/D, 
Dp - D,, ,. s , ,  s, K~ I 1 -~ ,Zeh  (57) 

Likewise, matching equations for the single and the zeolite-type 
two diffusivity diffusion models leads to, 

Rp 2 __ l~ 2 _f (1-- S,-- sb)K r, 2 
Dp D,, {a., + (1 - a, , -  sDK.} 2 Dc (58) 

Since the various transport rate resistances are additive to the 
variance for the linear systems, all the external diffusion resist- 
ances as well as the internal resistance related to the finite ad- 
sorption rate cancel out, leading to the same formula obtained 
by Kim E1990~ which consists of the intraparticle diffusion resist- 
ances only. 
3. The Third M o m e n t  Matching 

The third central moments from the LDF, single and two diffu- 
sivity, and zeolite-type two diffusivity diffusion models were mat- 
ched using the relation from the first moment matching to result 
in the following relationship. 

2 D~ 1+51 K 2 K a 
v s k + k s 

=2D~ 1 5~ IG- 1 R f ,  1 Rp~] 

+"" + " ' I G  2 [ 1  R~ 2 + 1 Rp 

Rp's R~ ~ R~ -~' R# ~ + I ~  :~ 
+ ( e t ' + K ' ) : ~ [ 3 5 ( ~ ) + 1 4 ( ~ ) ( ~ )  2 ( ~ - / ) ]  k, ~  ig- --- 

=2D~ I+~,~K~ ~ .,(1 Rr 2 1 R~) 
~ ; - k ~  -+ (~ "+s '+KD-  E ~ - ~ - ~  " . 

1 (e,+K,) s ~r2] 

+ (e"+s'+K~)~ 35 +14 I): - + 2 ( ~ ) ]  
3:15 

r, 2/D, 

l -  a,,- e~ l 

D, =2  ( 1 -  e~-  sDK. + _  fT .  
e ,, 15 D,, 

. , / 1  R~z+ 1 R, 
+ s~ +(1-s~-s~)K,-#~l ~ D: 3- -k)-)] 

+ 2{r + (I - s~-  sb)K,} 
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(1 s, -- s~)I~,( I~ +15U! / (1 -  Rp2 + 1 Rp 
k, D</\15 -[J;; 3 k , /  

{v~+(1-~--eb)E}:' 35 Re 2+ R,2 R, '  , ,{Re2V] 

+(1__s __s,)Ke[(~)e+2(~_)(D2\D,I)+~tD,) j 2  fr+::\ e] (59, 

where 6~ defined below for each diffusion model represents the 
total relative retention due to both stationary fluid and adsorption 
inside the particle, compared to that for the nonporous particles 
with no adsorption. 

8t = 1--- E.K = -1~- E (cp + K~)= 1 - E (~, + e, + K~) 
s S g 

= !.Z.g {s, + (1 - ~ - eb)K<} (60) E 

Both mean and the third central moments for the single and the 
two diffusivity diffusion models were matched to result in the 
following relationship. 

R,< 0 ' + &  + ( [  I4~ ] 2 1 + 1  R,2 + !Pk ;  ] 
D, <Pe e ,+E ,  ,~,~Et~ ~ D e 3 

+ (  -~z--+-~-I:' r'Z/Di [ 0 i+8,  ( K, ]~1 
~+~:+I~] l - ~ - s ~  Pe s,+I% +\~,+K~]k 

-t ~ + ~'~- K~ ( ! p "x + I R~I-) 1 r<~lD, ] 
~,+K, \15 D~ 3 -+ 21 1 - s , , - ~  

(61) 

where 0 is the space time defined as L/v and Pe, the Peclet num- 
ber defined as uL/D,. If both mean and the third central moments 
from the single and the zeolite-type two diffusivity diffusion mod- 
els were made equal, one can easily obtain the following relation- 
ship. 

R ,  ~ r 0 1 + ~ , + ( _~_.__. i r 1 R/  + !  R, ] 

- D~ l_Pe s .+(1-~: . -~)~ k< , - ( t -~ , , -~Ot~ }  "~ k. 

21 D. -E-, J-~ {~7(-i--s :' D, t P e  K< 

+~+e~+(1-s.-sOI<(I R,~ +! r, VD, ]  
I~ \15D,, 3 ~ )  + 1  K, j (62:) 

Other than the relation obtained by the variance matching, the 
relations from the third moment matching consist of the cross 
terms between the transport rate resistances involved, thus be- 
coming more complex compared with the ones from the variance 
matching. 
4. Compar i son  between Variance and the Third Moment 
Matching 

in order to examine the superiority of the two relationships 
obtained by eitlher the variance or the third moment matching 
especially for the cases of the asymmetric response curves, the 
single and the two diffusivity diffusion models among the four 
diffusion models considered in this work, were selected for corn- 
parison in the time domain. The time domain solutions were corn- 
puted using the numerical inversion technique of the Laplace trans- 
formed solution suggested by Dang and Gibilaro [-1974]. 

First, the two diffusion models were made dimensionless for 
the sake of comparison efficiency, using the following dimension- 
less space and time variables. 

v 
B" 
g 

30 

25 M (a) Na= 10 & Ni=parameter 

~" 2.O ~ o  

1 . 5  < )  

E- 
1.0 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 

T / I T I  1 

1 . 2  , . , , 

(b) No=05 & Ni=porometer ] 
/ 

06 " / 

13.4 - i; 

0'00 0.5 1.0 1.5 2.0 2.5 
T/rth l 

Fig. l . l ime  domain elution curves when s=0.4, ~o=~i=0.3, sh=0, 
Pe=1000, 1~=200, Bo=Mi=Bp=Mp=O. Solid line, two dif- 
fusivity model with N. and N~. Dotted line, single diffusivRy 
model with Np computed from variance matching. Dot dashed 
line, single diffusivi~ model with Np computed from the third 
moment matching. 

z t 
Z = -~, z = ~ ,  m, = (63) 

The following dimensionless system parameters were also defined 
for the single and the two diffusivity diffusion models respec- 
tively. 

N _  0D~ De Bp= Dp 
p -  Rp 2 , Mp = k.Re ~ ,  k, Rp (64) 

N 0D~ N = D, D~ 
= 7 , .  Mi = B . -  (65) 

R~ z ' ' r,? ' ~ r , ~  z '  krRp 

Therefore, the relation from the variance matching between the 
single and the two diffusivity diffusion models can be rewritten 
using the dimensionless parameters defined above; for the rela- 
tion from the variance matching, 

1 . . . .  1 1 ( s ,+ I~  "~1 
N~ N. + t } (66) 1-s,,--eb . e ,+s~+K, N, 

Likewise, the relation from the third moment matching be- 
comes 

1 [ 1+8, 1 I~ 
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1.5 

1.1 

"2  0.7 
u3 
F 

I 

.C.O.3  
C7~ 
O 

-0.1 

-0.5 

' ~ - - ~ , u  r ' I ' I / ' I ' I ' t ' I ' 

.15 

- 0 .5  -0.1 0.3 

log NG 

/ 
u3 / 

/ 
! 

i , L _  

0.7 1 .5 

Fig. 2. Contour plot with the single diffusivity parameter N r from the 

variance matching. The same parameters as in Fig, !. 

1.5 

1.1 

0.7 

' I ' I I ' I ' 

/ 
r p ~  

.C. 0.3 ~ "  / - 

-o~ ~ .  b o > -  

-o,5 , , , , , ,  . . . .  I ,  I , , , ! , ,  
-0.5 -0.1 0.3 0.7 i .1 i .a 

log Na 

Fig. 3. Contour plot with the single diffusivity parameter Np from the 

third moment matching. The same parameters as in Fig. I. 

1 [ 1+5~ 1 + 1 c . + . ~ + [  K, ~2 M, ] 
= - - 1  l~o) [ -  - -  

N, [ ~ ,+~+K~ Pe 21N,," . s , + s , + E , ]  N, J 

1 (" ~,+K, ):' 1 [  1+8, 1 

1 s,,+a,+IG l+5B~ + - -  
15 e,+IG N~ 

M, (67, 

Fig. 1 shows the time domain elution curves for the single and 
two diffusivity diffusion models. The concentration at the bed 
exit was computed in terms of the dimensionless parameters de- 
fined earlier, in addition to the Peclet number, Pe and the adsorp- 
tion equilibrium constant, IG. The Peclet number and the adsorp- 
tion equilibrium constant were chosen as 1000 and 20t), respec- 
tively. Dimensionless parameters, B, and B~ were taken as zeroes 
since the external film mass transfer coefficient is known to be 
extremely large for the gas phase system. Both M, and imp were 
also taken as zeroes due to the very fast adsorption rate constant 
for the cases of physical adsorption, although this view is not 
generally accepted by Smith and his coworkers [Schneider and 
Smith, 1968; Suzuki and Smith, 1972: Hashimoto and Smith, 1973; 
Hashimoto and Smith, 1974; Dogu and Smith, 1976]. System pa- 
rameter Np for the single diffusivity diffusion model is computed 
from either Eq. (66) for the variance matching or Eq. (67) for 
the third momenl_ matching, using N, and N, given for the two 
diffusivity diffusion model. When N~ is rather large (see Fig. l- 
a), elution curves from the single diffusivity diffusion model with 
Np computed from the variance matching agrees well with those 
from the two diffusivity diffusion model regardless of the magni- 
tude of N,. However, elution curves for the: single diffusivity diffu- 
sion model with Np computed from the third moment matching 
deviate a little, and agreement between the two curves gets worse 
as the curves become symmetric. This point is well expected since 
Np is computed trom the third moment matching, representing 
skewness about mean. When N~ is small (Fig. l-b), the elution 
curves for the single diffusivity diffusion model with Np from both 
variance and the third moment matching deviate much from those 

for the two diffusivity diffusion model as N, gets smaller. When 
both N, and N, are simultaneously small, elution curves emerge 
shortly after injection and become highly asymmetric. In these 
extreme circumstances, relation from either variance or the third 
moment matching is not acceptable. By simulating dynamic adsorb- 
ers under plug flow, Kim [1990] has already revealed that the 
relation from the variance matching does not hold in this region. 
Other than the expectations that the third moment matching 
would give better agreement for the cases where both N, and 
N, are very. small, the results are unfortunately unsatisfactory. 

Both variance and the third moment matching were more thor- 
oughly compared using the contour plot shown in Figs. 2 and 
3, respectively. To measure the degree of disagreement, the fol- 
lowing sum of error squares were computed. 

250  

S(N,. N,)= E [C~(1, iAz; N~, N,) G(I,  iAr; N~)] ~ 
I 1 

with A~=0.01 m~ (68) 

In Fig. 2, the single diffusivity parameter, Np is computed using 
the variance matching, i.e. Eq. (66), and N~ in Fig. 3 using the 
third moment matching, Eq. (67). Contour labels were obtained 
by taking common logarithm of the sum of error squares. Compar- 
ed to the third moment matching, variance matching gives lower 
sum of error squares over the whole region of scanning as well 
as even in the lower lefthand corner where elution curves become 
highly asymmetric, thus suggesting that the model simplification 
from the two diffusivity to the single diffusivity diffusion model 
be done using the. variance matching which leads to much simpler 
formula than the third moment matching. 

NOMENCLATURE 

g a  

B~ 
C 

C *  

:dimensionless parameter defined in Eq. (65) 
:dimensionless parameter defined in Eq. (64) 

adsorbate concentration in the mobile fluid in the LDF 
model 
mobile phase concentration in equilibrium with 
Laplace transform of C 
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C~ 

C~ 

C,l 

C, 
Cp 

D.  

D, 
D, 

D: 
k 
K 

k, 
K, 
k 
K, 

kt 

L 
m l  

M, 
Mp 
N. 
Ni 
Np 
Pe 
q 

Qt 

r 

R 
r, 

R, 
S 

t 
U 

V 

Z 

Z 

:adsorbate concentration in the mobile fluid in the single 
diffusivky model 

: adsorbate concentration in the mobile fluid in the two dif- 
fusivity model 

:adsorbate concentration in the macropore 
:adsorbate concentration in the micropore 
: adsorbale concentration in the stationary fluid inside the 

particle 
effective macropore diffusivity 
solid phase diffusivity in the zeolite microcu,'stal 
effective micropore diffusivity 
single effective diffusivity in the particle 
effective axial dispersion coefficient 
overall effective mass transfer coefficient 
pseudoadsorption equilibrium constant based on pellet vol- 
t i m e  

adsorption rate constant based on pellet volume 
adsorption equilibrium constant based on pellet volume 

:adsorption rate constant based on microcrystal volume 
: adsorption equilibrium constant based on microcrystal vol- 

ume 
:external film mass transfer coefficient (fluid to particle) 
:length of packed bed 
:variable defined by ~ ' /0  
: dimenskmless parameter defined in Eq. (65) 
: dimenskmless parameter defined in Eq. (64) 

dimensionless parameter defined in Eq. (65) 
dimensionless parameter defined in Eq. (65) 
dimensionless parameter defined in Eq. (64) 
Peclet number defined as uL/D~ 
adsorbed phase concentration based on the microcrystal 
volume 
adsorbed phase concentration based on the '~article vol- 
ume 
particle volume averaged total adsorbate concentration 
radial coordinate of the microparticle 
radial coordinate of the particle 
microparticle radius 
particle radius 
variable in the Laplace transform domain 
time 
superficial velocity in the empty bed 
interstitial velocity in the bed 

:variable for the axial direction of the bed 
:dimensionless variable defined by z/L 

Greek  Let ters  
8~ :variable defined in Eq. (60) 
g : bed porosity 
g, : macropore porosity based on the particle volume 
c~ :volume fraction of binder based on the particle volume 
ci : micropore porosity based on the particle volume 
ep :total pellet porosity based upon the particle volume 
~,,' : the n-th absolute moment 
g2 :the second central moment or variance 
ja:~ :the third central moment 
0 :space time defined by L/v 
v :dimensionless time defined by t/0 

R E F E R E N C E S  

Dang, N. and Gibilaro, L., "Numerical Inversion of Laplace Trans- 
forms by a Simple Curve Fitting Technique", Chem. Eng. J., 
8, �9 157 (1974). 

Dogu, G. and Smith, J. M., "Rate Parameters from Dynamic Exper- 
iments with Single Catalysts Pellets", Chem. Eng. Sci., 31, 123 
(1976). 

Glueckauf, E. and Coates, J.E., ~Theory of Chromatography", J. 
Chem. Sot., 1315 (1947). 

Hashimoto, N. and Smith, J. M., "Macropore Diffusion in Molecu- 
lar Sieve Pellets by Chromatography", Ind. Eng. Chem. Fun- 
dam., 12(3), 353 (1973). 

tfashimoto, N. and Smith, J. M., "Diffusion in Bidisperse Porous 
Catalyst Pellets", Ind. Eng. Chem. Fundam., 13(2), 115 (1974). 

Hsu, L. K. P. and Haynes, H.W., "Effective Diffusivity by the Gas 
Chromatography Technique: Analysis and Application to Meas- 
urements of Diffusion of Various Hydrocarbons in Zeolite NAY", 
AIChE f ,  27(1), 81 (1981). 

Kim, D. H., "Single Effective Diffusivities for Dynamic Adsorption 
in Bidisperse Adsorbents", AIChE J., 36(2), 302 (1990). 

Raghavan, N. S.. and Ruthven, D. M., "Simulation of Chromatogra- 
phic Response in Columns Packed with Bidisperse Structured 
Particles", Chem. Eng. Sci., 40(5), 699 (1985). 

Ruthven, D., "Principles of Adsorption and Adsorption Processes", 
John Wiley and Sons, New York (1984). 

Schneider, P. and Smith, J. M., "Adsorption Rate Constants from 
Chromatography", AIChE J., 14(5), 762 (1968). 

Suzuki, M. and Smith, J. M., "Dynamics of Diffusion and Adsorp- 
tion in a Single Catalyst Pellet", AIChE f ,  18(2), 326 (1972). 

January, 1996 


