Performance Evaluation of a Pilot Scale Vortexing Fluidized Bed Combustor

Chien-Song Chyang† , Kuo-Chao Lo and Kuo-Lian Wang

Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 320, Taiwan, R.O.C. (Received 4 February 2005 • accepted 7 June 2005)

Abstract–To understand vortexing fluidized bed combustor (VFBC) performances, an investigation was carried out a 0.45 m diameter and 4.45 m height pilot scale VFBC. Rice husks, corn, and soybean were used as the biomass e in a 0.45 m diameter and 4.45 m height pilot scale VFBC. Rice husks, corn, and soybean were used as the biomass feedstock and silica sand serving as the bed material. The bubbling bed temperature was controlled by using water injected into the bed. The experimental results show that the excess air ratio is the dominant factor for combustion efficiency. The in-bed combustion proportion increases with the primary air flow rate and bed temperature, and decreases with the volatile/fixed carbon ratio. The stability constant is proposed to describe the inertia characteristics of the vortexing fluidized bed combustor. The experimental results indicate that the stability of the VFBC increases with bed weight and primary air flow rate, but decreases with bed temperature.

Key words: Vortexing Fluidized Bed Combustor, Combustion Proportion, Biomass, Stability

INTRODUCTION

An improved fluidized bed combustion technique, known as the vortexing fluidized bed combustor (VFBC), has been developed for use as a small- or medium-scale boiler or incinerator. The concept of VFBC was originally presented by Sowards [1977]. It was consisted of a vortex-generating system which was formed by injecting secondary-air tangentially into the freeboard. To increase the residence time of unburned carbon in the freeboard and prevent the elutriation of fine particle from the fluidized bed, an integration of combustor and cyclone was developed by Korenberg [1983]. Based on Korenberg's concept, the vortexing fluidized bed combustor was developed and named by Nieh and Yang [1987]. The characteristics of the VFBC can be represented by the swirl flow within the freeboard.

Numerous experimental and theoretical works have been carried out to investigate the coal combustion mechanism in fluidized combustors in developing an efficient model for large scale fluidized bed combustors. Most of the published data concentrated on the carbon combustion mechanism. To simplify this problem, char or coal particles with low ash content were used in those studies to represent carbon particles. The volatile matter is assumed to be burned quickly [Atimtay, 1987]. Since the volatile matter is responsible for about 40% of the heat released in the combustor, it is imperative to know how fast volatile matter is released from the feedstock.

is greater than that of any other renewable energy. The gasification conversion process can be expected to supply a substantial portion Biomass feedstock contains high volatile material content, 70- 90% for woods vs. 30-45% for typical coals [Schiefelbein, 1989]. The potential contribution of biomass to the world's energy needs of this contribution. However, the source and transportation costs for biomass materials restrict the amount of biomass that can be delivered to a central facility. In Taiwan, most farms are small and

separated; therefore, instead of gasification, combustion may be a promising technology for biomass treatment. Previous research concentrated primarily on biomass gasification [Mariani et al., 1992; Miles and Miles, Jr., 1989].

Fluidized bed combustors have excellent heat and mass transfer characteristics, which have led to fluidization use in many large scale processes, such as fluidized catalytic cracking and fluidized coal combustion. Understanding and predicting the behavior of the fluidized bed process is often limited by our understanding of the underlying fluid-solid mixture mechanism. Instability manifests in gas fluidized beds as "bubbles." Bubbles are caused by the dynamics of particle movement. Bubbles reduce the contact efficiency between the fluid and particles and the heat and mass transfer. A two-fluid model linear equation has been used to investigate the stability of uniform fluidization [Pigford and Baron, 1965; Anderson and Jackson, 1968]. A nonlinear model has also been employed for analysis [Needham and Merkin, 1983; Ganser and Drew, 1990]. Most of these works were conducted from the micro-mechanism viewpoint.

The aim of this study is to understand the characteristics of a pilot scale VFBC for biomass combustion. In this study, the combustion efficiency, combustion proportion and bed stability are investigated under various operating conditions.

THEORY

1. Combustion Proportion

Fixed carbon was assumed burning in the bubbling bed. To know how the heat transfer surface should be arranged within the combustor to maintain a homogeneous temperature distribution, it is necessary to understand the heat proportion released in various sections in the combustor.

To simplify the mathematical calculation procedure, the following assumptions are made:

To whom correspondence should be addressed. E-mail: cschyang@cycu.edu.tw

⁽¹⁾ The combustor is divided into three sections: bubbling bed,

Fig. 1. Schematic diagram of three sections in combustor.

splash zone and freeboard (as showing in Fig. 1). Each section is assumed a continuous stirred tank reactor (CSTR).

(2) The specific heat of the flue gas (not including the water component) is similar to air.

(3) A drying process takes place in the bed.

(4) All of the water injected into the combustor is vaporized near the water injection location.

The mass balance of each section is shown as:

$$
F_{in,i-1} + F_{air,i} + F_{feed,i} + F_{H_2O,i} - F_{out,i} = 0
$$
\n(1)

The energy balance of each section is shown as:

$$
Q_{c,i} + Q_{in,i} - Q_{out,i} - Q_{L,i} = 0
$$
 (2)

Where

$$
Q_{in,i} = F_{ab,i}(1-C) \int_{T_{ref}}^{T_{ab}} C p_{ab} dT + F_{ab,i} C \int_{T_{ref}}^{T_{ab}} C p_{H,O(g)} dT + F_{H,O,i} \int_{T_{ref}}^{T_{H,O}} C p_{H,O(i)} dT] + Q_{out,i-1}
$$
\n(3)

ponent) is similar to an:
\n(3) A drying process takes place in the bed.
\n(4) All of the water injected into the combustor is vaporized near
\nthe water injection location.
\nThe mass balance of each section is shown as:
\n
$$
F_{in,i-1} + F_{air,i} + F_{feed,i} + F_{f,co,i} - F_{out,i} = 0
$$
 (1)
\nThe energy balance of each section is shown as:
\n $Q_{e,i} + Q_{in,i} - Q_{out,i} - Q_{L,i} = 0$ (2)
\nWhere
\n $Q_{in,i} = F_{air,i}(1-C) \int_{T_{ref}}^{T_{air}} C p_{at} dT + F_{air,i} C \int_{T_{ref}}^{T_{air}} C p_{H,O(g)} dT$
\n $+ F_{H,O,i} \int_{T_{ref}}^{T_{inO}} C p_{H,O(i)} dT] + Q_{out,i-1}$ (3)
\n $Q_{out,i} = [F_{air,i}(1-C) + F_{f}(1-X_{H,O} - 9X_{H} \times y_{i})]$
\n $\times \int_{T_{ref}}^{T_{i}} C p_{air} dT + [F_{air,i}C + F_{f}(X_{H,O} + 9X_{H} \times y_{i})]$
\n $\times \int_{T_{ref}}^{T_{i}} C p_{H,O(g)} dT + F_{H,O,i} \times (\int_{T_{ref}}^{T_{i}} C p_{H,O(g)} dT + \lambda)$ (4)
\n $Q_{L,i} = \frac{(T_{i} - T_{sh,i})}{(T_{tr} - T_{sh})} H_{i}$ (5)
\n $\frac{T_{i}}{2 \pi T_{i} k_{i}} + \frac{(T_{e} - T_{e})}{2 \pi T_{2} k_{e}}$ (6)

$$
Q_{L,i} = \frac{(T_i - T_{str,i})}{\frac{(r_b - r_a)}{2\pi r_i k_i} + \frac{(r_c - r_b)}{2\pi r_i k_c}} H_i
$$
\n
$$
(5)
$$

$$
\times \int_{\tau_{\alpha}}^{\tau_{\alpha}} \mathbf{C} \mathbf{p}_{H_{z}O(g)} dT + \mathbf{F}_{H_{z}O,i} \times (\int_{\tau_{\alpha}}^{\tau_{\alpha}} \mathbf{C} \mathbf{p}_{H_{z}O(g)} dT + \lambda)
$$
(4)

$$
Q_{L,i} = \frac{(\mathbf{T}_{i} - \mathbf{T}_{si,j})}{\frac{(\mathbf{T}_{b} - \mathbf{T}_{a})}{2\pi r_{1} k_{s} + \frac{(\mathbf{T}_{c} - \mathbf{T}_{b})}{2\pi r_{2} k_{c}}}\mathbf{H}_{i}
$$
(5)

$$
\mathbf{r}_{1} = \frac{(\mathbf{r}_{b} - \mathbf{r}_{a})}{\ln(\frac{\mathbf{T}_{b}}{\mathbf{r}_{a}})}
$$
(6)

texing Fluidized Bed Combustor

\n
$$
r_2 = \frac{(r_c - r_b)}{\ln\left(\frac{r_c}{r}\right)}\tag{7}
$$

 is calculated using the iteration method based on the mass and energy balances. e_y is the external value of e_y is the external value of e_y balances.

The combustion proportion in each section is given by Eq. (8).

$$
X_{c,i} = \frac{Q_{c,i}}{\sum_{i=1}^{3} Q_{c,i}} \times 100\%
$$
 (8)

Where y_i
d y_i is ca
d y_i is ca
d energy 1
The com
 $X_{c,i} = \frac{Q_i}{\sum_{i=1}^{3} C_i}$
The temped. Integral
integrals from eased) of
Stability
To describility
is stability
is: (1) The Fe can be
(3) The sp while state energ is the extent of volatiles combustion in the i_s exection,
icludical sing the iteration method based on the mass
balances.

Extent of volation method based on the mass

balances.
 $\frac{2}{2} \times 100\%$ (8)

combustion propor and y_i
and y_i
and er
and y_i
and er
and y_i
and er
and y_i
and er
and y_i
and y_i
and y_i
and z_i
and z_i
and z_i
and z_i
and z_i
and y_i
and z_i
and z_i
and y_i
and z_i
and y_i
and y_i
and y_i
and The temperatures in each section and combustor surface are measured. Integrating the mass and energy balance and heat loss calculations from the combustor surface, the combustion proportion (heat released) of each section can be calculated. g Fluid
 $(\frac{r_c - r_b}{r_b})$
 $\ln(\frac{r_c}{r_b})$

are y_i is calculary ba

is calculary ba

is calculary ba
 $=\frac{Q_{c,i}}{\sum_{i=1}^{3}Q_{c,i}}$

temper

integration the signal density controlling
 $\sum p_{sand}$ of the FB

controlling
 $\sum p_{sand}$ rc ui triew later all the leg poperation have the second the second of the control of the Where y_i
Where y_i
Where y_i
V is calculency b
1 y_i is calculency b
1 y_i is calculency b
The comb
 $X_{c,i} = \frac{Q_{c,i}}{\sum_{i=1}^{3} Q_i}$
The temped. Integral
ons from 1
assed) of examples
The descributions of Stability c
1 $\frac{V_i}{V_i}$ is alcuded to the set of the set in the conduction of $\lambda_{s,a}$ of the conduction of $\lambda_{s,a}$ of $\lambda_{s,a}$ of λ

2. Stability Constant

To describe the stability of a bubbling fluidized bed combustor, the stability constant $(τ)$ is proposed based on the following assumptions:

(1) The FBC bubbling bed is assumed to be a CSTR.

(2) The heat loss in the bubbling bed from the outside FBC surface can be neglected.

While step changing water injection is employed, the unsteady state energy balance can be expressed as:

$$
W_b C p_{sand} \frac{dT_b}{dt} = Q_{g\omega, b} - F_{out} \int_{298}^{T_b} C p_s dT
$$
 (9)

surface and C_{p_s} is the specific heat of flue gas.

(3) The specific heats, Cp, and Cp_{sano}, are assumed to be constant.
While step changing water injection is employed, the unstead;
te energy balance can be expressed as:
 $W_s C_{p,\text{osc}} \frac{dT_1}{dt_s} = Q_{\text{gas},s} - F_{\text{tot}} \int_{\text{cm}}^5 C$ Where the F_{out} is the flow rate of the flue gas left from the bed
face and C_p, is the specific heat of flue gas.
For mathematical algorithm convenience, the heat generated in
bubbling region, Q_{omab}, is expressed by surface and Cp_s is the specific heat of flue gas.

For mathematical algorithm convenience, the bubbling region, Q_{senk}, is expressed by t

(T_{k,as}) at the steady state. Therefore, Eq. (9) car

the following:

W_{^{8}C_P}</sub> For mathematical algorithm convenience, the heat generated in the bubbling region, $Q_{g\omega,b}$, is expressed by the final temperature
 $(T_{b,\infty})$ at the steady state. Therefore, Eq. (9) can be transformed into

the following:
 $W_s C_{p,conf} \frac{dT_1}{dt} = F_{off} \int_{298}^{T_s} C_{p,} dT - F_{off} \int_{298}^{T_s} C_{$ the following: e can be

(3) The s

While state energy

W_bCp_{sand}

Where the and

How there the and

When the followin

W_bCp_{sand}

When the dons

W_bCp_{sand}

When the dons

W_bCp_{sand}

When the dons

W_bCp_{sand}

In $\frac{dT_b}{dt}$ dTb reglected.

pecific heats, Cp, and Cp_{san}

ep changing water injectic

balance can be expressed

balance can be expressed

dualize C_{gen,b} – F_{out} \int_{298}^{τ} Cp,dT

ee F_{out} is the flow rate of t

cp_s is the spec Tb face and
For math
bubblin
w, w) at the
followin
W, Cp_{sana}
When th
med cons
W, Cp_{sana}
 $\frac{dT_b}{dt} = -\frac{1}{V}$
The τ ca
ions as fc
I.C.
The stabi de Form de regneration de regneration de regneration de variant de variant de variant de la poste de variant de la poste de l Cp_s is the specific heat of flue gas

ematical algorithm convenience,

g region, Q_{sen,b}, is expressed by

steady state. Therefore, Eq. (9) ca

g:
 $\frac{dT_b}{dt} = F_{out} \int_{298}^{T_{\text{bg}}} Cp_s dT - F_{out} \int_{298}^{T_s} Cp_s dT$

e variation in

$$
W_b C p_{sand} \frac{dT_b}{dt} = F_{out} \int_{298}^{T_{b,x}} C p_s dT - F_{out} \int_{298}^{T_s} C p_s dT
$$
 (10)

sumed constant. When the variation in bed temperature is small, Cp_s can be as-

$$
W_b C p_{sand} \frac{dT_b}{dt} = F_{out} C p_s [(T_{b,\infty} - 298) - (T_b - 298)]
$$
 (11)

$$
\frac{dT_b}{dt} = -\frac{F_{out}Cp_s}{W_bCp_{s,and}}(T_b - T_{b,\infty}) = -\frac{1}{\tau}(T_b - T_{b,\infty})
$$
(12)
The τ can be obtained by solving Eq. (12) with the initial con-
ions as follows:
I.C. $t=0$, $T_b=T_{b,0}$ (13)

The τ can be obtained by solving Eq. (12) with the initial conditions as follows: τ can be obtained by solving E_a (12) with the initial con-

$$
\mathbf{C.} \qquad \qquad \mathbf{t} = \mathbf{0}, \qquad \qquad \mathbf{T}_b = \mathbf{T}_{b,0} \tag{13}
$$

The stability constant can then be calculated by using Eq. (14).

$$
(T_{b,\infty})
$$
 at the steady state. Therefore, Eq. (9) can be transformed into
the following:

$$
W_b C_{P_{s, and}} \frac{dT_b}{dt} = F_{out} \int_{298}^{T_{b,\infty}} Cp_{,} dT - F_{out} \int_{298}^{T_{b}} Cp_{,} dT
$$
(10)
When the variation in bed temperature is small, Cp_s can be assumed constant.

$$
W_b C_{P_{s, and}} \frac{dT_b}{dt} = F_{out} C_{P_s} [(T_{b,\infty} - 298) - (T_b - 298)]
$$
(11)

$$
\frac{dT_b}{dt} = -\frac{F_{out} C_{P_s}}{W_b C_{P_{s, and}}} (T_b - T_{b,\infty}) = -\frac{1}{\tau} (T_b - T_{b,\infty})
$$
(12)
The τ can be obtained by solving Eq. (12) with the initial conditions as follows:
I.C. $t=0$, $T_b=T_{b,0}$ (13)
The stability constant can then be calculated by using Eq. (14).

$$
\tau = -\frac{t}{\ln(\frac{T_b - T_{b,\infty}}{T_{b,0} - T_{b,\infty}})}
$$

3. Combustion Efficiency
Korean J. Chem. Eng. (Vol. 22, No. 5)

3. Combustion Efficiency

Korean J. Chem. Eng.(Vol. 22, No. 5)

775

Fig. 2. Pro flow chart of vortexing fluidized hed combustor

For different combustion systems, different formulas have been
weloped to calculate the combustion efficiency. In this work, the
mbustion efficiency is defined as the ratio of actual heat released
the combustor to the the developed to calculate the combustion efficiency. In this work, the combustion efficiency is defined as the ratio of actual heat released in the combustor to the theoretical energy availability of a given feedstock and feed rate during the combustion process, i.e., Eq. (15).

$$
\eta = \frac{Q_c}{F_f L H V_{feed}} \times 100\%
$$
\n(15)

Where Q_c is the heat released in the combustor.

4. Experimental Approach

Where Q_c is the heat released in the combustor.
Experimental Approach
A schematic diagram of the combustion system
The fluidizing air (primary combustion air) w
hp Roots blower and the secondary air was surp
bo blower A schematic diagram of the combustion system is shown in Fig. 2. The fluidizing air (primary combustion air) was supplied by a 15 hp Roots blower and the secondary air was supplied by a 7.5 hp turbo blower. The combustor was 0.45m in diameter and 4.45 m in height. It was fabricated of stainless steel 316 and insulated with 150 mm thick Kaowool ceramic fiber. The feed material was supplied with the screw feeders. The feeding rate was controlled by adjusting the rotation speed of the drive motors. The feeding material went into the combustor through a chute located about 0.45 m above the air distributor. The system temperature was controlled by using in-bed and freeboard water injection. For differ
reloped to
mbustion when the comb
dstock and
 $\eta = \frac{Q_e}{F_f L H}$
Where Q_e
Experim
A schema
The fluid hp Roots
bo blower ght. It was
bo blower ght. It was combined with the using in-
I went interved to assign t different
ped to ca
stion efflicombustdock and fe
combustdock and fe
 $\frac{Q_c}{F_f L H V_{feca}}$
ere Q_c is t
seriment
consumed the fluidizin
Roots blower. The variance of the same of the same of the gas v
as cooled
flue gas v a Fig. Roots blower 12. Strew feeder
2. Orifice meter 12. Strew feeder
4. Rootedr 14 Compressor
4. Recorder 14 Compressor
5. Manumeter 16 Cyclome
6. The
monometre 15 Secondary air 20 Secondary in the heat exchanger
7. Tusto

The flue gas went through the air pollution control devices (APCD) and was cooled to about 200 °C before discharge into the atmosphere. The particulates in the flue gas were trapped by using two cyclones and a wet scrubber.

For a given operating condition, the temperature of the combustor was controlled by the in-bed injection water flow rate. Steady state was achieved when the temperature profiles were constant. Once the steady state condition was reached, the fly ash from the cyclones was weighed and collected for analysis. The operating conditions are summarized in Table 1.

September, 2005

Table 1. The experimental conditions

Table 2. The properties of feedstock

The feedstock used in this study were rice husks, corn and soybean biomass. Silica sand was used as the fluidized material. The approximate and ultimate analyses and physic properties of the feedstock are listed in Table 2.

RESULTS AND DISCUSSION

1. Temperature Distribution

The temperature distribution profiles within the combustor at various excess air ratios are shown in Fig. 3. Two peaks are observed on the temperature profile. The first is at 0.8 m above the gas distributor. This peak can be attributed to the large amount of volatile material ignited in this section. The second peak is just above the

Fig. 3. Temperature distribution in the VFBC with various primary air flow rates (corn=15.9 kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, secondary air flow rate=0.6 Nm³/
min, feeding purge air=0.2 Nm³/min). static bed height=0.24 m, secondary air flow rate=0.6 $Nm³/$ static bed height=0.24 m, secondary air flow rate=0.6 Nm³
min, feeding purge air=0.2 Nm³/min). min, feeding purge air= 0.2 Nm³/min). min, feeding purge air=0.2 Nm3

Fig. 4. Effect of primary air flow rate on combustion proportion (corn=15.9 kg/hr, soybean=18.6 kg/hr, static bed height= 0.24 m, secondary air flow rate=0.6 Nm³/min, feeding purge air=0.2 Nm³/min, temperature=800 °C).

secondary air injection location. This peak is caused by the combustion of unburned carbon and volatiles resulting from the fresh injected air. The results, shown in Fig. 3, demonstrate that to maintain the bed temperature at 800° C, the amount of water injected with primary air must be increased. This is attributed to the in-bed combustion proportion increasing with the excess primary air ratio.

Because the volatile and ignited carbons are nearly exhausted at the exit and the heat was lost from the combustor surface, the temperature detected at the freeboard exit is lowest.

2. Combustion Proportion

Fig. 4 shows the primary air flow rate effect on the combustion proportion. The results shown in Fig. 4 reveal that the in-bed combustion proportion increases significantly with the increase in primary air flow rate. This is attributed to the increase in excess air and combustible mixing with the air as the primary air flow rate increases. Both factors, excess air and mixing, can enhance the reaction rate of combustibles with air in the bed. The results obtained in this study are in agreement with that obtained by Bautista-Margulis et al. [1996]. (corn=15.9 kg/hr, soybean=18.6 kg/hr, static bed height=
0.24 m, secondary air flow rate=0.6 Nm²/min, feeding purge
air=0.2 Nm³/min, temperature=800 °C).
secondary air injection location. This peak is caused by the co 0.24 m, secondary air flow rate=0.6 Nm³/min, feeding purge air=0.2 Nm³/min, temperature=800 °C).

air=0.2 Nm³/min, temperature=800 °C).

ary air injection location. This peak is caused by the com-

of unburned carbo 0.24 m, secondary air now rate=0.6 Nm³
air=0.2 Nm³/min, temperature=800 °C
air=0.2 Nm³/min, temperature=800 °C
ary air injection location. This peak is c
of unburned carbon and volatiles resulu
air. The results, sho C).

C). caused by the com-

ting from the fresh

strate that to main-

to the in-bed

so primary air ratio.

nearly exhausted at

or surface, the tem-

on the combustion

the in-bed com-

the increase in pri-

crease in e air=0.2 Nm
ary air injectified of unburned
air. The rest
bed temperimary air multion proportial
and the heat
and the heat
and the heat
at edeted at 1
4 shows the pion. The resule proportion is
in flow rate.
Some proportion /min, temperature=800 on
on location. This peak is
l carbon and volatiles rest
lts, shown in Fig. 3, demot
ature at 800 °C, the amoust be increasing with the exc
ile and ignited carbons are
was lost from the combus
he free cau dimensional divided as a control of the cause of the capacity of the relation of the capacity of the control of the relationship of the capacity of the control of the control of the control of the control of the contro

Fig. 5 shows the bed temperature effect on the combustion proportion in each section. The combustion proportion in the bubbling region increases with the bed temperature. This is attributed to the

Fig. 5. Effect of bed temperature on combustion proportion (corn= 15.9 kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, primary air flow rate=2 Nm³/min, secondary air flow rate= 0.6 Nm³/min, feeding purge air= 0.2 Nm³/min).

higher reaction rate at higher bed temperature.

Corn and soybeans exhibit different volatile/fixed-carbon ratios. The volatile/fixed-carbon ratio can be adjusted by changing the corn and soybean feed rates. The results, as shown in Fig. 6, demonstrate that the combustion proportion in the bubbling region decreases with the volatile/fixed-carbon ratio. This is in agreement with the statement that most of the fixed carbon is burned in the bubbling bed and most volatiles are burned in the freeboard.

For the same test, the volatile/fixed-carbon ratio was adjusted by changing the rice husk and soybean feed rates, respectively. The combustion proportion in the bubbling region increases with increasing volatile/fixed-carbon ratio, as shown in Fig. 7, which is contrary to the result shown in Fig. 6. This is attributed to the higher elutriation rate of rice husks because of its lower density. Rice husks rose with the gas flow and burned in the freeboard. As shown in Figs. 6 and 7, the results demonstrate that the feedstock characteristics significantly affect the combustion proportion in each section. Fig. 5. Effect of bed temperature on combustion proportion (corn= **primary air flow rate=2 Nm**²/min, secondary air flow rate=0.6 Nm²/min, secondary air flow rate=0.6 Nm²/min, feeding purge air=0.2 Nm²/min).

The constrained the different colatile/fixed-carbon ratios.

Italie/fix primary air now rate=2 Nm
0.6 Nm³/min, feeding purge
reaction rate at higher bed ten
and soybeans exhibit differe
latile/fixed-carbon ratio can be
bean feed rates. The results, a
e combustion proportion in the volatile/f air=0.2 Nm³/min).

air=0.2 Nm³/min).

apperature.

ent volatile/fixed-carbon ratios.

adjusted by changing the com

is shown in Fig. 6, demonstrate

the bubbling region decreases

This is in agreement with the

bon is **0.6 Nm**
reaction and soy
atile/fixed and soy
atile/fixed fixed be combut
that if most volatile
that if most view same is right if and the result
the e of rice e gas flow the result
the result show affect
the result of ric /min, reeding purge air=0.2 Nm²
rate at higher bed temperature.
tybeans exhibit different volatile/fix
d-carbon ratio can be adjusted by c
d rates. The results, as shown in Fi
stion proportion in the bubbling
e/fixed-ca

3. Combustion Efficiency

Combustion behavior is represented by the combustion efficiency. Therefore, the effects of various operating parameters on the combustion efficiency are investigated in this section. Fig. 8 shows the primary air flow rate effect on the combustion efficiency when the secondary air flow rate is kept constant. From Fig. 8, the combustion efficiency increases with the increase in primary air flow rate.

Fig. 6. Effect of volatile/fixed carbon ratio on combustion proportion (corn=0-35.1 kg/hr, soybean=0-33.1 kg/hr, static bed height=0.24 m, bed temperature=800 °C, excess air ratio= 40%, in-bed stoichiometric air ratio=100%, feeding purge air= 0.2 Nm³/min).

This is attributed to higher turbulence and in-bed excess air ratio caused by increasing the primary air flow rate. Higher turbulence and in-bed excess air lead to better gas-solid contact and higher oxygen mass transfer rate to the fuel particle surface. Therefore, the char combustion rate in the bubbling bed increases as the superficial velocity increases [Winter et al., 1997]. These results also imply that the oxygen concentration and gas-solid mixing in the bed are the dominant factors for combustion.

The effect of in-bed stoichiometric air percent ratio on the combustion efficiency at a given excess air ratio of 40% was studied (Fig. 9). From Fig. 9, the deviation between the maximum and minimum combustion efficiency values is within 3%. Therefore, we can state that the in-bed stoichiometric air percent ratio (or primary to secondary air ratio) effect can be neglected. The bed height effect (or bed weight) on the combustion efficiency, as shown in Fig. 10, is also minimal. In these two experiments, the superficial gas velocities and combustion temperatures were kept the same; therefore, the combustible residence times in the combustor were similar. Two most important factors in combustion efficiency (combustion temperature and residence time) were not changed with the varying of experimental variables. Consequently, the combustion efficiencies are not changed with the in-bed stoichiometric air percent ratio and bed height. secondary air ratio) effect can be neglected. The bed height effect (or bed weight) on the combustion efficiency, as shown in Fig. 10, is also minimal. In these two experiments, the superficial gas velocities and combustio height=0.24 m, bed temperature=800 °C, excess air ratio=40%, in-bed stoichiometric air ratio=40%, feeding purge air=0.2 Nm³/min).
40%, in-bed stoichiometric air ratio=100%, feeding purge air=0.2 Nm³/min).
4tirbuted to height=0.24 m, bed temperature=800
40%, in-bed stoichiometric air ratio=1
40%, in-bed stoichiometric air ratio=1
air=0.2 Nm³/min).
attributed to higher turbulence and in-
by increasing the primary air flow rate
bed exce 00%, feeding purge
bed excess air ratio

2. Higher turbulence

1. Higher turbulence

1. Therefore, the

1. Therefore, the

1. Therefore, the

1. The seases as the superfi-

1. The bed are

1. The same in the bed maximum an air=0.2 Nm³/min).
attributed to higher turbulence and in-bed excess air ratio
by increasing the primary air flow rate. Higher turbulence
by increasing the primary air flow rate. Higher turbulence
ord excess air lead to air=0.2 Nm
attributed to
by increasing
attributed to
by increasing
ord excess air
ass transfer rambustion rat
ocity increase
except computation effect of in-b
efficiency at
. From Fig. 9,
combustion e that the in-b
weight highe g the p lead t to in the p lead t to in the lead t to in the S [Wire center of the s lead t a give the d strike the connect the connect the connect the induced strike in the induced strike in the induced strike in th

September, 2005

Fig. 7. Effect of volatile/fixed carbon ratio on combustion proportion (rice husk= $0-41.6$ kg/hr, sovbean= $0-33.1$ kg/hr, static bed height=0.24 m, bed temperature=800 °C, excess air ratio=40%, in-bed stoichiometric air ratio=100%, feeding purge air= 0.2 Nm³/min).

To understand the volatile/fixed-carbon ratio effect on the combustion efficiency, corn and soybean mixtures were used as the feedstock. The volatile/fixed-carbon ratios were adjusted by changing the corn feed rate range from 0 to 35.1 kg/hr and the soybean range from 0 to 33.1 kg/hr. According to the results shown in Fig. 11, the combustion efficiency increased with the increase in volatile/fixedcarbon ratio. This is caused by the amount of unburned char particles. In this study, the heat losses are considered two possibilities, the apparatus heat loss from the surface of combustor and the unburned char particle elutriated. The higher the volatile/fixed carbon ratio leads the less unburned char particles discharge. Consequently, the low probability for char particles elutriation and high volatile combustion rate, the overall combustion efficiency will increase with the volatile/fixed-carbon ratio. This statement is in agreement with the results of Paul et al. [1993], obtained from a fluidized bed combustor using coal of various rank as the feedstock. They found that the higher the fixed carbon content, the lower the combustion efficiency. the volatile/fixed-carbon ratio. This statement is in agreement with
the results of Paul et al. [1993], obtained from a fluidized bed com-
bustor using coal of various rank as the feedstock. They found that
the higher the bed height=0.24 m, bed temperature=800 °C, excess air ratio=40%, in-bed stoichiometric air ratio=100%, feeding
purge air=0.2 Nm³/min).
mderstand the volatile/fixed-carbon ratio effect on the com-
efficiency, com and soy bed negm=0.24 m, bed temperature=800

de negm=0.24 m, bed temperature=800

tio=40%, in-bed stoichiometric air ratio-

purge air=0.2 Nm'/min).

Inderstand the volatile/fixed-carbon ratio effection

efficiency, corn and soy **purge air=0.2 Nm'/min).**
 nderstand the volatile/fixed-carbon ratio effect on the con-

efficiency, com and soybean mixtures were used as the feed-

efficiency, com and soybean mixtures were adjusted by denaping

the v purge air=0.2 Nm
nderstand the volati
efficiency, corn and
The volatile/fixed-ca
n feed rate range fro
to 33.1 kg/hr. Accor
stion efficiency increase
in this study, the heat l
us heat loss from the
use heat loss from the
p

4. Bed Stability

One of the most important advantages of the fluidized bed combustor (FBC) is the bed temperature inertia. The bubbling bed serves as a heat reservoir, maintaining bed temperature while the feedstock heating value is always changing. The stability constant, τ , is used

Fig. 8. Effect of primary air flow rate on combustion efficiency (corn=15.9 kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, secondary air flow rate= 0.6 Nm³/min, feeding purge air = 0.2 Nm³/min, temperature= 800 °C).

Fig. 9. Effect of in-bed stoichiometric air percent ratio on combustion efficiency (static bed height=0.24 m, primary air flow rate=2.0 Nm³/min, excess air ratio=40%, feeding purge air= 0.2 Nm³/min, temperature= $800 °C$).

to represent the stability of the fluidized bed. A higher stability constant implies that the system is more stable.

The stability constant, τ , was calculated from the bed temperature history variation data produced by the step change in cooling water injected into the bed. The step change of cooling water injection worked as a disturbance of feedstock heating value. When a certain set combustion condition was achieved, the rate of cooling water injection would be changed suddenly and sustained this new change. The dynamic behaviors of bed temperature change were collected and analyzed via Eq. (14). The bed weight, primary air rate and initial bed temperature effects on the stability were investigated. rate=2.0 Nm³/min, excess air ratio=40%, feeding purge air=0.2 Nm³/min, temperature=800 °C).
Sent the stability of the fluidized bed. A higher stability consent the stability of the fluidized bed. A higher stability co rate=2.0 Nm
0.2 Nm³/min
9.2 Nm³/min
sent the stabi
plies that the
stability cons
tory variation
injected into tworked as a
n set combus
ter injection v
ange. The dyn
d and analyze
ial bed tempe /min, excess air ratio=40%, feeding purge air= 0.2 Nm
sent the phies that
stability variged is stability
worked in set contexned in the contexned in the contexned of the example. The contexned is also the example. m **min, temperature=800** or
stability of the fluidized be
at the system is more stable
constant, τ , was calculate
iation data produced by th
mot the bed. The step chases a disturbance of feedst
mbustion condition was ed. .
ed. .
e. d fi ie s
mgcock
chicale terd v
tabi

All of the experiments conducted for the stability test were pre-

Fig. 10. Effect of static bed height on combustion efficiency (corn= 15.9 kg/hr, soybean=18.6 kg/hr, bed temperature=800 °C, primary air flow rate=2.0 Nm³/min, excess air ratio=40%, in-bed stoichiometric air percent ratio=100%, feeding purge air= 0.2 Nm³/min).

Fig. 11. Effect of volatile/fixed carbon on combustion efficiency (corn=35.1-0 kg/hr, soybean=0-33.1 kg/hr, static bed height =0.24 m, bed temperature=800 °C, excess air ratio=40%, in-bed stoichiometric air ratio=100%, feeding purge air $=0.2$ Nm³/min).

ceded using a fuel-feeding rate of 15.9 kg/hr for corn and 18.6 kg/ hr for soybeans. Most of the experiments were conducted at a 40% excess air ratio (variables of bed weight and bed temperature). When a step change in water injection (0.1 L/min) was employed, the bed temperature vs. time data were recorded and analyzed. A typical result is shown in Fig. 12. The stability constant, τ , is in agreement with a first order equation, as shown in Eq. (14). corn=35.1-0 kg/hr, soybean=0-33.1 kg/hr, static bed height
=0.24 m, bed temperature=800 °C, excess air ratio=40%,
in-bed stoichiometric air ratio=100%, feeding purge air
=0.2 Nm³/min).
ceded using a fuel-feeding rate of =0.24 m, bed temperature=800 °C, excess air ratio=40%,
in-bed stoichiometric air ratio=100%, feeding purge air
=0.2 Nm³/min).

sing a fuel-feeding rate of 15.9 kg/hr for corn and 18.6 kg/

ybeans. Most of the experiment =0.24 m, bed temperature=800
in-bed stoichiometric air ratio=
=0.2 Nm³/min).
sing a fuel-feeding rate of 15.9 kg
ybeans. Most of the experiments
ir ratio (variables of bed weight an
anange in water injection (0.1 L/min
 2) The set of the same state in the set of 100%, feeding purge air sylum (100%, feeding purge air divided ded temperature). When all was employed, the bed and analyzed. A typical pustant, τ , is in agreement 1. (14). ta =0.2 Nm³/min).

sing a fuel-feeding rate of 15.9 kg/hr for corn and 18.6 kg/

ybeans. Most of the experiments were conducted at a 40%

ir ratio (variables of bed weight and bed temperature). When

anange in water inject =0.2 Nm
sing a fuel
ybeans. M
ir ratio (va
aange in w
ture vs. tij
shown in Fi
pht. This is
er the bed
er the bed

As shown in Fig. 13, the stability constant, τ , increases with the bed weight. This is attributed to heat sink effect in the bed. The bed heat capacity increases when the bed weight increases. In other words, the higher the bed weight, the less sensitive the bed is to tempera780

Fig. 12. Typical temperature changes in bed after increasing water injected by step change (corn=15.9 kg/hr, soybean=18.6 kg/hr, excess air ratio=40%, in-bed stoichiometric air ratio=100%, feeding purge air=0.2 $Nm³/min$).

Fig. 13. Effect of bed weight on stability constant (corn=15.9 kg/ hr, soybean=18.6 kg/hr, excess air ratio=40%, in-bed stoichiometric air ratio=100%, feeding purge air=0.2 $Nm³/$ min, temperature=800 °C, U/U_m=10.9).

ture (feedstock heating value) changes.

From Fig. 14, one can find that at a certain temperature the stability constant increases with the flow rate of primary air. And from Fig. 15 the results illustrate that the stability constant decreases with bed temperature. The stability constant is indicative of the speed of response of the process and depends on the operating conditions. In this study, we have only limited information on the effects of primary air flow rate and bed temperature. The simple tests of this study are not enough to interpret completely and accurately. Therefore, further studies are needed to clarify these phenomena. Even though the mechanisms of the bed temperature stability are not clear, an empirical correlation is developed to predict the bed temperature Fig. 13. Entroposition and the stability constant in the stability constant \mathbf{R} and \mathbf{S} and $\$ ichiometric air ratio=100%, feeding purge air=0.2 Nm³/
nichiometric air ratio=100%, feeding purge air=0.2 Nm³/
min, temperature=800 °C, U/U_m=10.9).
Stock heating value) changes.
Fig. 14, one can find that at a certa ichiometric air ratio=100%, feeding purge air=0.2 Nm²
min, temperature=800 °C, U/U_{mj} =10.9).
dstock heating value) changes.
Fig. 14, one can find that at a certain temperature the sta
nstant increases with the flow rat / min, temperature=800
dstock heating value) cha
Fig. 14, one can find tha
mstant increases with the f
he results illustrate that the
perature. The stability con
of the process and depe
udy, we have only limited
flow rate an Example 2.1 and the same of primal standard and the estability constant is indicatively and accuracy the same position of the predict of the predict of the predict of the predict the same of the predict the same of the pr

September, 2005

Fig. 14. Effect of primary air flow rate on stability constant (corn= 15.9 kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, secondary air flow rate= $0.6 \text{ Nm}^3/\text{min}$, feeding purge air = 0.2 Nm³/min. temperature= 800 °C).

Fig. 15. Effect of bed temperature on stability constant (corn=15.9) kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, secondary air flow rate=0.4 Nm³/min, in-bed stoichiometric air ratio=100%, feeding purge air=0.2 Nm³/min, U/U_{mi}= 10.9).

stability constant. Using regression analysis, a relation

$$
\tau = 4.588 \times 10^{-4} \times \frac{(W_b + 258.51)(Q_i + 1.2105 \times 10^{-3}(T_b + 273.15))}{(T_b + 273.15)^{5/3}}
$$
\n(16)

was obtained that correlates all of the experimental data obtained in this study with an average deviation of 2.1%, and standard deviation of 3.0%, as shown in Fig. 16. The agreement between the estimated values and the experimental data is good. ondary air flow rate=0.4 Nm³/min, in-bed stoichiometri
air ratio=100%, feeding purge air=0.2 Nm³/min, U/U_{m/}
10.9).
bility constant. Using regression analysis, a relation
 τ =4.588×10⁻⁴× $\frac{(W_b + 258.51)(Q_i + 1.2105 \times$ The Train-Holomontairead is and the experimental data obtained with an average since the experimental data obtained with an average deviation of 2.1%, and standard deviation with an average deviation of 2.1%, and standard kg/hr, soybean=18.6 kg/hr, static bed height=0.24 m, secondary air flow rate=0.4 Nm³/min, in-bed stoichiometric
air ratio=100%, feeding purge air=0.2 Nm³/min, U/U_m=
10.9).
Stability constant. Using regression analys ondary air how rate-0.4 Nm
air ratio=100%, feeding purg
10.9).
constant. Using regression anal
588×10⁻⁴× $\frac{(W_b + 258.51)(Q_t + 1)}{(T_b + 258.51)(Q_t + 1)}$
ained that correlates all of the
udy with an average deviation of
.0%, as **e air=0.2 Nm³/min, U/U_{mg}=

lysis, a relation

1.2105 × 10⁻³ (T_b+273.15))

+273.15)^{5/3} (16)

experimental data obtained

of 2.1%, and standard devia-

agreement between the esti-

is good.

ON** air ratio=100%, feeding purge air=0.2 Nm
10.9).

constant. Using regression analysis, a relation

588 × 10⁻⁴ × $\frac{(W_b + 258.51)(Q_1 + 1.2105 \times 10^{-3}(T_6 + 273.15)^{5/3}}{(T_b + 273.15)^{5/3}}$

ained that correlates all of the expe $\frac{N_b + 273.15)}{m_g}$ (16)
data obtained
andard devia-
ween the esti-

CONCLUSION

Fig. 16. Comparison between experimental and predicted stability constant.

In this study, the bed temperature within a combustor was controlled by using water injected into a fluidized bed combustor. The bed excess air ratio was the major parameter for combustion efficiency. The combustion efficiency increased with the increase in primary air flow rate (excess air ratio) bed temperature and feedstock volatile/fixed carbon ratio. The bed height effect on the combustion efficiency was minimal.

A higher combustion proportion within a bubbling bed can be obtained by increasing the bed temperature or primary air flow rate. The combustion proportion within the bed decreased with the volatile/fixed carbon ratio when the feedstock was mixture of soybeans and corn. This is in agreement with our inference. However, the combustion proportion within the bed increased with the increase in volatile/fixed carbon ratio when the feedstock was a mixture of rice husks and soybeans. Rice husk elutriation into the freeboard was the dominant factor for heat released in the freeboard.

The inertia of a fluidized bed combustor can be represented by the stability constant, which increases with the bed weight, primary air flow rate, and decreases with the bed temperature. An empirical correlation was proposed to express the relationship between the stability constant and operating conditions such as bed weight, bed temperature and primary air flow rate. The agreement between the estimated values and experimental data is good. The inertia of a fluidized bed combustor can be represented by
the inertia of a fluidized bed combustor can be represented by
the istability constant, which increases with the bed temperature. An empirical
correlation was

NOMENCLATURE

 C : moisture of air [kg/kg]

 Cp_{air} : specific heat capacity of air [kcal/kg-°C]

 Cp_{a_k} : specific heat capacity of air [kcal/kg-^o
 $Cp_{H_2O(l)}$: specific heat capacity of liquid water
 $Cp_{H_2O(l)}$: specific heat capacity of gaseous wa
 Cp_s : specific heat capacity of flue gas [kca
 Cp_{sand} : specific Cp_{H₂O(l)}: specific heat capacity of liquid water [kcal/kg^{-o}C] Cp_{H₂O(g): specific heat capacity of flue gas [kcal/kg^{-o}C] Cp_{samd}: specific heat capacity of flue gas [kcal/kg^{-o}C] Cp_{samd}: specific heat capaci} $Cp_{H₂O(1)}$: specific heat capacity of liquid water [kcal/kg °C]

- $Cp_{H_2O(\epsilon)}$: specific heat capacity of gaseous water [kcal/kg^oC]
- Cp_{H₂O(g): specific heat capacity of gaseous water [kcal/kg-°C]
Cp_{sand}: specific heat capacity of flue gas [kcal/kg-°C]
Cp_{sand}: specific heat capacity of sand [kcal/kg-°C]
 F_{air} : air mass flow rate [kg/min]
 F_{f}} Cp_{sand}: specific heat capacity of flue gas [kcal/kg-°C]
Cp_{sand}: specific heat capacity of sand [kcal/kg-°C]
F_{air} : iair mass flow rate [kg/min]
 F_f : feeding rate [kg/min]
 F_{H_2O} : injection water flow rate [kg/ $C_{p_{s}}$: specific heat capacity of flue gas [kcal/kg^oC]
- Cp_{start} : specific heat capacity of sand [kcal/kg-°
 F_{air} : air mass flow rate [kg/min]
 F_f : feeding rate [kg/min]
 F_{H_2O} : injection water flow rate [kg/min]
 F_{in} : input gas mass flow rate [kg/min] Cp_{stand} : specific heat capacity of sand [kcal/kg-°C]
- F_{air} : air mass flow rate [kg/min]
- F_{c} F_{f} : feeding rate [kg/min]
 F_{H_2O} : injection water flow r
 F_{in} : input gas mass flow r : feeding rate $\lceil \text{kg/min} \rceil$
- F_{air} : air mass flow rate [kg/min]
 F_f : feeding rate [kg/min]
 F_{H_2O} : injection water flow rate [k]
 F_{in} : input gas mass flow rate [k] F_{H_2O} : injection water flow rate $\lceil \frac{kg}{min} \rceil$
- F_{H_2O} : injection water flow rate [kg/min]
 F_{in} : input gas mass flow rate [kg/min] $F_{\scriptscriptstyle in}$ F_{in} : input gas mass flow rate [kg/min] : input gas mass flow rate [kg/min]

 F_{tot} : output gas mass flow rate [kg/min]
 H_{tot} : height of the tih section [m]
 K_k : thermal conductivity of sec. 316 [kg]
 K_k : thermal conductivity of sec. 316 [kg]
 K_k : thew rate of primary air [Nm¹/min]
 : output gas mass flow rate [kg/min] F_{out} H_i H_i : height of the ith section [m]
 μ , thermal conductivity of s.s.
 μ , thermal conductivity of section
 μ , thermal conductivity of section

LHV_{*R_{NC}I*} : wet base low heating valu
 Q_i : flow rate of primar : height of the ith section [m] $k_{\rm s}$: thermal conductivity of s.s. 316 [kcal/m-min-°C] ks. \therefore thermal conductivity of s.s. 316 [kcal/m-min-2
ks. \therefore thermal conductivity of seramic fiber [kcal/m-min-2
LHV_{n-1}: wet base low heating value of Feedstock [kcal/m-min-of thermal conductivity of external [Nm k_{c} : thermal conductivity of ceramic fiber [kcal/m-min-°C] kc μ : thermal conductivity of ceramic fiber [keal/m-min-official/m-min-official/m-min-official/m-min-official/m-min-official/m-min-official/m-min-off-min-off-min-off-min-off-min-of-min-of-min-of-min-of-min-of-min-of-m LHV $_{\text{feed}}$: wet base low heating value of feedstock [kcal/kg] LHV_{6ee}: 1 the base low heating value of feedstock [kcal/kg] Q. \therefore the base of pinnary air [Nm/min]
Q. \therefore flow nate release in combustor [kcal/min]
Q. \therefore then release of ith section [kcal/min]
Q. \therefore then tele Q_1 : flow rate of primary air [Nm³/min] Q_c : total heat release in combustor [kcal/min]

Q_c : heat release of ith section [kcal/min]
 Q_0 : theat loss with flue gas exhausting [kcal/min]
 Q_0 : input heat [kcal/min]
 Q_0 : input heat [kcal/min]
 Q_0 $Q_{c,i}$ Q_c, : heat release of ith section [kcal/min]

Q_{cm}, i heat loss with flue gas exhusting [kcal/min]

Q_{cm}, i heat generation form the dombustor O_g, beat loss with flue gas exhusting [kc],

Q_m : i temperature of int : heat release of ith section [kcal/min] : heat loss with flue gas exhausting [kcal/min] O_{ϵ} Q₁ : heat loss with flue gas echancing [kcal/min]

Q₂ : heat generation from fuel combuston in bed

Q₂ : heat loss from surface of combustor [kcal/min]

Q₂ : heat loss from surface of combustor [kcal/min]

L₃ : Qgen, \therefore their generation from fitted Combustion in bed [kcal/min]

Qg. : heat loss from surface of combustor [kcal/min]

Qg. : heat loss from surface of combustor [kcal/min]

L_{is} : temperature of initi air ["C]

T_i Q_n : input heat [kcal/min]
 Q_L : heat loss from surfac
 Q_{nm} : output heat [kcal/min]
 Q_L : output heat [kcal/min]
 T_{nn} : temperature of inlet is check in the subsequent of inlet is chemperature [°C] $T_{n,\sigma}$: Q_L : heat loss from surface of combustor [kcal/min]
 Q_m : output heat [kcal/min] T_{av} : temperature of linet ari ["C]
 T_{av} : bed temperature [°C]
 T_{av} : final bed temperature [°C]
 T_{av} : infina Q_{out} : output heat [kcal/min]
 Q_{out} : output heat [kcal/min]
 T_{ab} : temperature of inlet air
 T_{b} : initial bed temperature [°C]
 T_{b} : initial bed temperature T_{b}
 T_{b} : itemperature of the ith T_{H_{20 : temperature of inlet air $[°C]$ T_{ab} : temperature of inlet air $[{}^{\circ}$
 T_{ab} : the temperature $[{}^{\circ}C]$
 T_{b} , initial bed temperature $[{}^{\circ}C]$
 T_{b} , initial bed temperature $[{}^{\circ}C]$
 T_{b} : temperature of the ith section
 T_{b} : te : bed temperature [°C] T_{b, 0} : bed temperature [°

T_{b, 0} : initial bed temperat

T_{b, ω} : final bed temperat

T_p, is emperature of the

T_{p,} : reference temperat

T_{r_p} : reference temperat

r_p : reference temperat

r_p : emperat $T_{b,\omega}$: initial bed temperature [$\binom{n}{k}$: initial bed temperature [$\binom{n}{k}$: temperature of the ith sector
 $T_{h,\omega}$: temperature of the ith sector
 $T_{H,\omega}$: temperature of injected $\binom{n}{k}$: reference temperat : initial bed temperature $[°C]$: final bed temperature $[°C]$ $T_{b,\omega}$: final bed temperature [°
 T_{H_2O} : temperature of the ith s
 T_{H_2O} : temperature of injected
 T_{H_2O} : temperature of injected
 T_{m} : reference temperature,
 T_{m} : reference temperature,
 T_{m} : loga : temperature of the ith section $[°C]$ T_{L_{RO}}: temperature of the ith section [^o]

T_{LRO}</sup>: temperature of injected water [^o]

T_{LRO} : reference temperature, 25 °C [^o]

temperature of combustor surfa

r_{La} : temperature of combustor surfa

r_L_T : $T_{H₂0}$: temperature of injected water [°C] T_{H_2O} : temperature of injected water $[{}^n_1_{m'}]$: reference temperature, 25 °C $[{}^n_2_{m'}]$: temperature of combustor surfains $T_{m'}$: togarithmic mean radius [m] : T_{m} : togarithmic mean radius [m] : T_{m} : T_{rw} : reference temperature, 25 or
 T_{rw} : temperature of combustor r_n
 T_{rw} : logarithmic mean radius [n
 r_s : inner diameter of combusts
 T_{sw} : inner diameter of combusts
 T_{sw} : outer diameter of combus C [°C] T_{urr} : temperature of combustor surface [^o

r₁ : logarithmic mean radius [m]

r₂ : logarithmic mean radius [m]

r₁ : uner diameter of combustor [m]

r₁ : outer diameter of combustor [m]

r₃ : bed weight [kg] : temperature of combustor surface $[°C]$ r_1 : logarithmic mean radius [m]
 r_2 : logarithmic mean radius [m] r_2 : logarithmic mean radius [m]
 r_a : inner diameter of combustor [m] r_a : inner diameter of combustor [m]
 r_a : outer diameter of combustor [m]
 r_b : outer diameter of combustor will
 N_{H_2O} : bed weight [kg]
 $X_{e,i}$: combustion proportion of the ith
 X_{H_2O} : weight percenta r_b : outer diameter of combustor [m]

v. betweight [kg]

V. betweight [kg]

X._{t.}, : combustion proportion of the ith

X._{t.}, : combustion proportion of the ith

X._{t.}, : weight percentage of water in fect

x.

y. iv r. couter diameter of combustor with insulation [m] W_a : bed weight [kg]
 $W_{A,\nu}$: combustion proportion of the ith section [-] $X_{\mu,\nu}$: weight percentage of water in feedstock [-] X_{μ} : weight percentage of We W_b : bed weight [kg]

X_{e,*i*} : combustion pro

X_{H₂} : weight percenta

X_H : weight percenta

Y_i : weight percenta

: combustion extic

: combustion effi

: latent heat of w_i

: stability constant

T : stabil $X_{\mu,\rho}$: combustion proportion of the ith section [-]
 $X_{\mu,\rho}$: weight percentage of water in feedstock [-]
 X_{μ} : weight percentage of H element in feedstock
 Y_{μ} : combustion extent of volatiles in the ith X_{H_2O} : weight percentage of water in feedstock [-]
 X_H : weight percentage of H element in feedstock [-]
 η : combustion extent of volatiles in the ith sec
 η : combustion efficiency [-]

2 : latent heat of w η : combustion efficiency [-]
 λ : latent heat of water [kcal/

- λ : latent heat of water [kcal/kg]
 τ : stability constant [min]
- : stability constant [min]

REFERENCES

- Anderson, T. B. and Jackson, R., "Fluid Mechanical Description of Flu-
-
- Bautista-Margulis, R. G., Siddall, R. G. and Manzanares-Papayanopouls, L. Y., "Combustion Modeling of Coal Volatiles in the Freeboard (1996).
- Ganser, G. H. and Drew, D. A., "Nonlinear Stability Analysis of a Uni-
- Korenberg, J., "Integrated Fluidized Bed/Cyclone Combustion Develeds., 491 (1983).
- X_n : weight percentage of H element in feedstock [-]

7, : combustion extent of volatiles in the ith section

7, : combustion efficiency [-]

2. i.latent heat of water [kcal/kg]

7. i.latent heat of water [kcal/kg]

7. y_i : combustion extent of volatiles in the ith section [-1]

7 : combustion efficiency [-1]

2 : contoustion efficiency [-1]

2 : stability constant [min]
 REFERENCES

Anderson, T. B. and Jackson, R., "Fluid Mechanica idized Beds," *Ind. Eng. Chem. Fundam.*, 7(1), 12 (1968).

Intay, A. T., "Combustion of Volatile Matters in Fluidized E
 Eng. Chem. Res., **26**, 452 (1987).

tista-Margulis, R. G, Siddall, R. G and Manzanares-Pay

ouls, Atimtay, A. T., "Combustion of Volatile Matters in Fluidized Bed," *Ind. Eng. Chem. Res.*, 26, 452 (1987).
Bautista-Margulis, R. G., Siddall, R. G and Manzanares-Papayanop-
ouls, L. Y., "Combustion Modeling of Coal Vola Eng. Chem. Res., 26, 452 (1987).

utista-Margulis, R. G, Siddall, R. ouls, L. Y., "Combustion Modeling

of a Calorimetric Fluidized Bed (1996).

nser, G H. and Drew, D. A., "Nonli

formly Fluidized Bed," *Int. J. Multi_q* of a Calorimetric Fluidized Bed Combustor," $Fuel$, $75(15)$, 1737 (1996).

1996).

1996).

Inser, G H. and Drew, D. A., "Nonlinear Stability Analysis of a Uni-

formly Fluidized Bed," *Int. J. Multiphase Flow*, 16(3), 447 formly Fluidized Bed," *Int. J. Multiphase Flow*, 16(3), 447 (1990).
renberg, J., "Integrated Fluidized Bed/Cyclone Combustion Deve
opment," *Proc. 4^h. Int. Conf. on Fluidization*, Kunii, D. and Tori, F
eds., 491 (1983) opment," *Proc. 4^h. Int. Conf. on Fluidization*, Kunii, D. and Tori, R., eds., 491 (1983).

riani, G., Benefenati, E., Fanelli, R., Nicoli, A., Bonfitto, E. and Jaco-

pone, S., "Incineration of Agroindustrial Waste and Mariani, G., Benefenati, E., Fanelli, R., Nicoli, A., Bonfitto, E. and Jacopone, S., "Incineration of Agroindustrial Waste and Macropollut-(1992).
- ants and Micropollutants Emission," *Chemosphere*, **24**(11), 1545 (1992).
les, T. R. and Miles, T. R., Jr., "Overview of Biomass Gasification in
the USA," *Biomass*, **18**(3-4), 163 (1989).
edham, D. J. and Merkin, J. H., " Miles, T. R. and Miles, T. R., Jr., "Overview of Biomass Gasification in the USA," *Biomass*, **18**(3-4), 163 (1989).
edham, D. J. and Merkin, J. H., "Propagatic
Korean J. Cher
- Needham, D. J. and Merkin, J. H., "Propagation of a Voidage Distribu-

Korean J. Chem. Eng.(Vol. 22, No. 5)

tion in a Uniformly Fluidized Bed," J. Fluid Mech., 131, 427 (1983).

- Nieh, S. and Yang, G., "Particle Flow Pattern in the Freeboard of a Vortexing Fluidized Bed," Powder Technol., 50, 121 (1987).
- tion in a Uniformly Fluidized Bed," *J. Fluidi* Mech., 131, 427 (1983).

A₅ S. and Yang, C₄, "Particle Flow Pattern in the Freehoard of a Vote

texting Fluidized Bed," *Powder*, For when the Uniformly Fluidized Bed, 1. eximg Fluidized Bed," Powder Technol., 50, 121 (1987).

at J., J., Peletr, K., and Lane, G. L., "Relation Between Combustor", Fueral Conditions, The Company and Coal Rank in Fluidized Bed Combustor", Fueral Coal Rank in Fl Paul, J., Peeler, K. and Lane, G. L., "Relation Between Combustion Efficiency and Coal Rank in Fluidized Bed Combustor," Fuel, 72, 73 (1993).
- ciency and Coal Rank in Fluidized Bed Combustor," Fuel, 72, 73
ciency and Coal Rank in Fluidized Bed Combustor," Fuel, 72, 73
first, R. L. and Baron, T., "Hydrodynamic Sability of Fluidized Bed"
Ind. Eng. Chom. Fundam, 4 Pigford, R. L. and Baron, T., "Hydrodynamic Stability of Fluidized Bed," Ind. Eng. Chem. Fundam., 4, 81 (1965). Ind. Eng. Chem. Fundam., 4, 81 (1965).
- Schiefelbein, G.F., "Biomass Thermal Gasification Research: Recent Results from the Unite States DOE's Research Program," Biomass, 19, 145 (1989).
- Sowards, N. K., US Patent No. 4060041 (1977).
- Results from the Unite States DOE's Research Program," Biomass, N.R. (1971).
19., 14.5 (1989).
19., 14.5 (1989).
near, F., Proh, M. F., and Hofstaar, H., "Terry-crainer in a Puel Parti-
near, F., Proh, M. F., and Hofstaar, 19, 145 (1989).
wards, N. K., US
nter, F., Prah, M.
cle Burning in a
tion, and Char (
(1997). Winter, F., Prah, M. E. and Hofbauer, H., "Temperature in a Fuel Particle Burning in a Fluidized Bed: The Effect of Drying, Devolatilization, and Char Combustion," Combustion and Flame, 108, 302 tion, and Char Combustion," *Combustion and Flame*, 108, 302
(1997). (1997).