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A b s t r a c t - A  numerical algorithm was developed which estimates a state-dependent model parameter on the hasis 
of transient state observation data. The algorithm was pre~nted for the problem of estimating the temperature depend- 
ence of thermal diffusivity in a one-dimensional heat equation. The estimation problem was converted into a finite 
dimensional optimization problem by the lea:st-squares formulation and B-splines representation of the parameter. 
Numerical experiments were performed using simulated observation data as well as the actual observation data obtain- 
ed in a heat conduction experiment on rubber compound layers. The performance of the algorithm was discussed 
in relation to the effect of the parameter representation scheme, the quality and quantity of the data. 
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INTRODUCTION 

The model equations for a chemical process which are derived 
from application of the conservation principles are commonly call- 
ed state equations, and the dependent variables of the equations 
are called state variables. The model parameters which represent 
material properties are usually dependent on the state variables 
such as temperature or concentration. Temperature-dependent 
thermal conductivity in a heat equation and concentration-depend- 
ent diffusivity in a diffusion equation are examples of the state- 
dependent model parameters. In modeling chemical processes the 
state-dependence of the model parameters should not be neglec- 
ted to get accurate model predictions. 

For pure substances the dependence of transport coefficients 
on temperature or concentration has been the subject of theoretical 
investigations for many years [Reid et al., 1987]. For com- 
pounds, however, theoretical correlations on such dependence are 
seldom available, or are only of dubious value for practical pur- 
poses. In practice the state dependence is usually found by regres- 
sion. For example, in the tire industry the temperature depend- 
ence of thermal conductivity of a rubber compound is found by 
regression of several conductivity values each of which was meas- 
ured under isothermal condition using a special apparatus. This 
procedure can be replaced by a simple heat conduction experi- 
ment on rubber layers followed by direct estimation of the depend- 
ence on the basis of transient temperature observation data [Toth 
et al., 1991]. 

This study aims to develop a numerical algorithm to estimate 
the state dependence of a model parameter on the basis of tran- 
sient state observation data. The following one-dimensional heat 
equation is considered as a specific example 

0 u _  0 [ct(u) 0U]+f (x ,  t, u) 
0t 0x L O x J  

I.C.: u(x, O)=uo(x) 

B.C.: 13oU(0, t)+8o 0~-(0, t)=~o 
O x  

tTo whom all correspondences should be addressed. 

Btu(L, t )+yL~- (L ,  t)=&L (1) 

where the state u denotes temperature, ct(u) the. temperature-de- 
pendent thermal diffusivity of the medium. The parameter esti- 
mation problem associated with the model (1) can be stated as 
follows: 

When the source term f, I.C., and B.C. are known, estimate 
the parameter function a(u) on the basis of observation data u~(x~, 
t~), i=l , - - . ,  nx; j=l,..-,n~. 

Below the estimation algorithm is presented mad tested through 
numerical experiments using simulated data as well as the actual 
data obtained from a heat conduction experiment on rubber com- 
pound layers. 

P A R A M E T E R  E S T I M A T I O N  A L G O R I T H M  

1. Least-Squares Formulation 
The estimation problem is formulated as a nonlinear optimiza- 

tion problem of minimizing an objective functional of the form 

n x  n t  

min J(c0 = E Y, {u(x/, tj; a ) - u ~ }  2 (2) 
a i = l  j=l 

In most cases where the output data are the only information 
available on the system, a least-squares functional is regarded 
as the most natural criterion. Depending on the availability of 
valid statistical assumptions on observation errors or a M/ari in- 
formation on the parameter, one may use a modified objective 
functional [Cooley, 1977]. 
2. B-Splines Parameter Representation 

For numerical implementation of the least-squares regression 
stated in (2) the parameter function ct(u) should be discretized 
in the following sense: The conceptually infinite-dimensional func- 
tion space to which ct(u) belongs is to be constricted to a finite 
dimensional space with a suitable basis [Chung and Kravaris, 
1988]. This will effectively converts the optimization problem of 
(2) into an approximate finite-dimensional one. When the form 
of the function ct(u) is known, our parameter estimation problem 
simply reduces to the estimation of the constmlt coefficients ap- 

372 



Estimation of a State-Dependent Model Parameter 373 

pearing in the expression of a(u). When such an a pr/ori informa- 
tion on a(u) is not available, B-splines are proposed here as an 
effective means of approximate representation of the parameter. 

B-splines representation of the parameter function a(u) in the 
model (1) proceeds as follows. First, an interval Eum,,,, U,~a~] is 
chosen such that the expected range of variation of the state var- 
iable in (1) is included. The interval is divided into I subintervals 
to define a break point sequence b=(b, ,  b2,-", b~,) satisfying 

u , , , :  b~< b2<"- <b~< bl+, = u,~ (3) 

Next are chosen the order k of piecewise polynomials to be de- 
fined on each subinterval and the number of continuity conditions 
v to be imposed at each of the interior break points, b2,'", b~. 
The space Pl, i.~ of piecewise polynomials thus defined is a linear 
space with the dimension N = ( k - v ) / + v ,  and its basis is called 
the B-sp l ines  Ede Boor, 1978]. The specification l, k v of the 
space Ps is used to generate a knot sequence ~=(~.:a,'", ?~v.~) 
which satisfies the following: 

(1) ~, . . . . .  ~=b~, ~+~ . . . . .  ~+k=b, - , ;  
(2) bz,'", b~ are placed ( k - v )  times, respectively. 

Then the i-th spline B~(u) is defined as 

Bi(u) = (~ +~ - ~)E~,"',~ +k](~ - u)+ k-t (4) 

where E~,'",~*k] denotes the k-th divided difference with respect 
to the dummy variable z and (z-u)+ k-' denotes a truncated pow- 
er function of order k 

(~_ u)+k__,=.f(~- uY-~ if ~>u 
(5) tO if ~<u 

Finally, the parameter function a(u) is approximated as a linear 
combination of the B-splines 

N 
a(u)= Z o,K(u) (6) 

i = l  

The above B-spline representation of a(u) converts the optimi- 
zation problem of (2) into the following form 

min J(to)= ~ ~ [u(x,, t/; ~o)-ut~'} z, where o)eR ~' (7) 
m i=1 j -1  

Minimization was performed using the MINPACK routine rGar-. 
bow, 1978] which implements the Levenberg-Marquardt algori- 
thm designed for least-squares minimization. 
3. Model Solver 

The partial differential equation (PDE) of (1) may show severe 
nonlinearity depending on the form of the state-dependent para- 
meter function a(u). The method of lines (MOL) based on finite 
difference was employed to develop an efficient solution algorithm 
to handle the nonlinearity. First the PDE was converted into a 
system of ordinary differential equations (ODE) by finite differ- 
ence approximation of the spatial derivatives. Then the nonlinear 
ODE system was solved using the DGEAR routine [-Hindmarsh, 
1974] for solving initial value problems. 

Finite difference approximation of the spatial derivatives was 
carried out over N, equidistant point-centered grids discretizing 
the domain (0, L). At the interior nodes (i=2,..., N,-1) ,  the ap- 
proximation takes the form 

Ox Ax 

a(ui ~ ~)(u, + ~ - u 3 -  a ( u i  ~/2)(u,- u,- ,) 
(Ax)2 

(8) 

where 

Ui~-  U,+ 1 
Ui + L~2 ~, - - "  

2 

U,-Iq-U/ 
U, - I,r ~ 2 (9) 

At the boundary nodes ( i=1 and Ns), a different scheme was 
used to make use of the boundary condition as follows: 

dx 

2(l(Ul) ( 50--  [~OUl__ \ 

da 80- p0u~ z 
+ ~ - u  ( u 0 ( ~ )  (10) 

0 x (AX) 2 U s ,  YNs 

d~- ( ~ ) (11) 

NUMERICAL EXPERIMENTS 

The performance of the estimation algorithm was tested 
through numerical experiments. Depending on how the observa- 
tion data were obtained, our estimation runs are divided into two 
groups using the simulated data and the actual experimental data, 
respectively. 
1. S imula ted  Data Generat ion 

Hypothetical observation data were generated for the system 
governed by 

0 u _  0t 0x 0 [a(u)~-x ] 

I.C.: u(x, 0)=25 
B.C.: u(0, t)=u(0.02, t)=150 (12) 

The true parameter function a(u) was assumed to have the follow- 
ing forms for u~[25 ,  150]. 

an(u)= 1.75X I0-7--3.33X lO-~~ (13) 

ar2(u)---- 1.67X I0-7+ 3.33 X 10-gu - 1.67X 10-nu ~ (14) 

The numerical solution to (12) were obtained using I01 grid 
points. Random numbers with normal distribution N(0, o) were 
generated and added to the numerical solutions at the assumed 
sensor locations in order to simulate the observation error. Sev- 
eral combinations of the error level ~ and the number of sensors 
n,. were used in order to address the effect of the quality and 
quantity of observation data on the estimation performance. 

For an easy grasp of the relative magnitude of numerical values 
involved, the governing equation was converted into a dimension- 
less form beforehand. The state variable u was transformed into 
the dimensionless state u according to 

u -  u-u~.. (15) 

where u~,.=25~C and u,~=150~ The interval [u,.i., u,.~] indi- 
cates the range of variation of u in the systera governed by (12), 
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Fig. i. Measured temperature profiles in a stack of rubber compound 
layers. 

and is also used in the  B-spline representation of a(u). The inde- 
pendent  variables x, t and the parameter  a were scaled by the 
reference values of 0.02 m, 1500 sec and 1.67• -7 m2/sec to 

define the dimensionless quantities x, L and a, respectively. Un- 
der  such transformations of variables, the true parameter  func- 
tions to be estimated can be expressed in dimensionless forms 

as  

an(U) = 1 -  0.25u (16) 

an(u)  = 1.4375 + 1 .875u-  1.5625u 2 (17) 

2. Actual  Data  A c q u i s i t i o n  
Transient  temperature measurements  were obtained from a 

heat conduction experiment on rubber  comt~gund layers. Four 
layers with the thickness 0.0063, 0.0070, 0.0071 and 0.0076 m, re- 
spectively, were stacked in folds. The specimen was heated from 
the top and the bottom surfaces which were to be maintained 
at constant temperatures  in a Pl-controlled apparatus. Tempera- 
ture was measured at every 15 sec for 3000 ~ r  using five 
thermocouples which were either attached on the surfaces or in- 
serted between the layers. Fig. 1 shows the measured tempera- 
ture transients. The aspect ratio of the specimen was large enough 
for one-dimensional analysis along the thickness direction. In the 
estimation runs the two temperature curves obtained at t he  top 
and bottom surfaces were used as the time-varying boundary con- 
ditions for solving the model, while the other curves as the obser- 
vation data to be compared with the model predictions. 

R E S U L T S  AND D I S C U S S B ) N  

The estimates of the parameter  a(u) obtained under  varying 
simulation conditions are presented in Figs. 2-7 in dimensionless 
forms. Table 1 summarizes the conditions and minimization status 
of the estimation runs presented in each Figure. 

Fig. 2 compares two estimates of a n  obtained under  different 
parameter representation schemes. The ']inea~" estimate was ob- 
tained by estimating the coefficients a, b in the linear representa-  
tion a + b u  assumed for a(u). Both estimates are close to the true 
parameter. Furthermore our numerous simulation runs yielded 

the same estimate in each case regardless of the initial guess 
a (~ which implies that the global minimum was reached. 

Fig. 3 shows ctn and its three  estimates with the linear, quad- 
ratic, and B-splines representation, respectively. It is d e a r  that 
the linear estimate cannot adequately describe the variation of 

the true parameter  over the whole range of the state variable. 
This is also evident from the much larger va]ue of J ,~ in Table 
1 compared to the other two estimates. On the other hand, both 
the quadratic and B-splines estimates are in gtod agreement  with 
the true parameter.  In fact, since the B-splines with the specifica- 

Table l. Summary of conditions and status of estimation runs 

Figure True Observation data specification Parameter Minimization status 
No, parameter r ~ nt specification a(0) jr0) J . .  Iterations 

2 a n  0.5 1 i00 Linear 0.9 5.44X 10 -2 1.52X i0 -3 6 
@ x~- 0.5 B-splines*(1,4,3,4) 1.47 X 10 -3 5 

3 a n  0.5 I 100 Linear 1.5 2.06 X 10-t 1.93 X 10-a 8 
@ ~-~0.5 Quadratic 1.30)< I0 -s 12 

B-splines(1,4,3,4) 1.25 X 10 -3 5 

4 a n  0.5 1 100 B-splines 0.9 5.44X 10 -2 1.47X 10 -3 5 
1.0 @ ~-~0.5 (1A,3,4) 5 .94xi0  -2 5.72x10 -a 5 
2.0 7.73x 10 -z 2.34x i0 -z 8 

5 a n  0.I I 100 B-splines(1,4,3,4) 0.9 5.36X 10 -2 5.60x 10 -5 6 
@ x-~0.5 B-splines(5,4,3,8) 4.92X I0 -s 4 

B-splines(10,4,3,13) 4.90 X I0 -s 24 
6 a n  0.1 3 I00 B-splines(1,4,3,4) 0.9 1.31x I0-  t 1.82 X 10 -4 5 

@ x-~ 0.25 B-splines(5,4,3,8) 1.81 X I0-4 6 
0.5, 0.75 B-splines(10,4,3,13) 1.78X I0 -4 10 

7 Unknown Unknown 3 200 Linear 1.0 1.72 5.41 X 10 -2 7 
@ x ~  0.2,3, Quadratic 5.42 x 10 -2 11 
0.48, 0.73 B-splines(1,4,3,4) 5.40 x 10 -2 13 

B-splines(2,4,3,5) 5.32 x 10 -z 10 

*B-splines specification in terms oi (I, k, v, N) 
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Fig. 2. Linear and B-splines est imates  o f  ctn. 
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Fig. 3. Linear, quadratic, and B-splines estimates of ctm. 

tion (1,4,3,4) is equivalent to a cubic polynomial, it has the capabil- 
ity of describing the state-dependent variation of the true param- 
eters used in our simulation. 

Fig. 4 shows the effect of the level of observation error on 
the estimation performance. As the error level increases, the re- 
sulting B-splines estimate becomes more inaccurate. 

Fig. 5 shows how the B-splines estimates behave as the level 
of discretization N is increased for the parameter function. When 
an excessive number of splines are employed for parameter re- 
presentation, the estimate shows a symptom of instability in the 
form of growing oscillations. This is due to the lowered sensitivity 
of the model output with respect to each spline coefficient. Such 
ill-conditioned estimates also show up in the estimation of the 
spatially-varying parameters in distributed parameter systems 
I-Yeh, 1986; Chung and Kravaris, 1988]. Fig. 6 shows that ill con- 
ditioning can be alleviated a little when more observation data, 
obtained using additional sensors, can be utilized in the estima- 
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Fig. 4. Effect o f  the level o f  observation error on the B-splines est ima-  

tes o f  r 
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Fig. 5. Effect of the level of discretization on the B-splines est imates  

of ctn when n~= 1. 

tion. 
The increasing number of splines facilitate the representation 

of complex patterns of variation of ct(u). It also leads to the smaller 
values of the objective function in the least-squares estimation 
as shown in Table 1. However, Figs. 5 and 6 clearly points out 
that the smaller J,j, obtained using higher N does not necessarily 
correspond to the better estimate when error-corrupted data are 
used in the estimation. It is because the least-squares minimiza- 
tion procedure forces the model output to blindly track even the 
error components in the data. Such tracking is possible only when 
the parameter a(u) is allowed to vary freely with u as an element 
of a high dimensional function space, but the ensuing ill-condition- 
ed estimate is usually contrary to our physical intuition on the 
expected behavior of the parameter. 

The best performance was achieved in Figs. 5 and 6 with the 
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Fig. 6. Effect of the level of discretization on the B-splines estimates 

of an  when n~=3.  

But the B-splines estimate with N = 5  appears to reveal an initial 
symptom of ill-conditioning: The estimates with higher N were 
found to be increasingly oscillatory. Considering such behavior 
of the estimates with increasing N, the B-splines estimate with 
N--4 was taken as the best one describing the temperature-de- 
pendence of the thermal diffusivity of the rubber compound used 
in the experiment. 

CONCLUSIONS 

A numerical algorithm was developed which estimates the tem- 
perature dependency of the thermal diffusivity in a heat equation. 
The estimation problem was formulated into a finite dimensional 
optimization problem by the least-squares method and B-spline 
approximation of the parameter. A stable solution to the nonlinear 
model equation was found by the method of lines based on finite 
difference scheme�9 The performance of the algorithm was tested 
through numerical experiments using the simulated data and the 
actual data. The B-spline approximation using a small number 
of splines was proposed as a method of representing the state 
dependence of the parameter when its functional form is not 
known a/mort ' .  
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Fig. 7. Estimates of the temperature-dependence of the thermal diffu- 
sivity of the rubber compound. 

B-spline specification (1,4,3,4) because the simple linear shape 
of a n  can be sufficiently described by the small number of splines. 
There is no definitive method of determining the optimal level 
of discretization when the true parameter is unknown in practice. 
But it is believed that the state dependence of the parameters 
encountered in most practical applications can be represented well 
enough by a small number of splines. The final decision ought 
to be guided by engineering judgment on the expected behavior 
of the parameter. 

Fig. 7 show the four estimates of the thermal diffusivity of 
the rubber compound obtained by using the actual data shown 
in Fig. 1. The dimensionless state variable u was based on u ~ =  
30~ and u ~ =  152~ The estimation runs were executed in se-. 
quence by increasing the number of basis functions one by one.. 
Almost identical estimates were obtained in the first three cases. 
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NOMENCLATURE 

a, b : coefficients in linear representation of thermal diffusivity 
a(u) [-m2/sec] and [mZ/sec ~ respectively 

Bi :i-th B-spline function 
b :break-point sequence in B-splines representation 
f :source term in heat equation [~C/sec] 
J :objective function in nonlinear regression 
J~i. :minimized objective function value 
k :order of piecewise polynomials 
L :length of one-dimensional domain Em] 
l :number  of subintervals for B-splines representation 
N : number of B-splines (dimension of the space) 
Ns : g of grid points used in solving state equations 
n~ :number  of observation points 
n~ :number  of measurements at each ob~rvation point 
t : time I-sec] 
u : temperature [~ 
tf ~' :temperature observation data [~ 
uo :initial temperature distribution [~ 
ui :temperature at i-th grid point [~ 
x :space variable [m] 

G r e e k  Letters  
a :thermal diffusivity [m2/secj 
[3c, yo, 5o : coefficients in the B.C. at x = 0  in (1) 
[3t., YL, 8L : coefficients in the B.C. at x = L  in (1) 
Ax :grid size l-m] 
o :standard deviation of observation error [*C] 
v :number  of continuity conditions in B-splines representa- 

tion 
:dummy variable used in divided-difference 
:knot point sequence in B-splines representation 
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co :vector of B-spline coefficients 

Superscripts 
obs : observation data 
(0) :initial guess in minimization of objective function 

: dimensionless variable 

Subscripts 
max : maximum 
min : minimum 
T : true 
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