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Abstract−The pH neutralization process has long been taken as a representative benchmark problem of nonlinear
chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult
to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous
approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem
grows, the dynamic programming approach suffers from the curse of dimensionality. In order to avoid this problem, the
Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis [1996]. The NDP approach is
to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used to find the
optimal input movement in real time control. The approximation could be any type of function such as polynomials,
neural networks, etc. In this study, an algorithm using NDP approach was applied to a pH neutralization process to
investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic characteristics of this
algorithm. As the approximator, the neural network which requires training and the k-nearest neighbor method which
requires querying instead of training are investigated. The approximator has to use data from the optimal control
strategy. If the optimal control strategy is not readily available, a suboptimal control strategy can be used instead.
However, the laborious Bellman iterations are necessary in this case. For pH neutralization process it is rather easy to
devise an optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration.
Also, the effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the
conventional PID control.

Key words: pH Neutralization Process, The NDP (Neuro-Dynamic Programming), Constraint on Input Movement, k-Nearest
Neighbor Method, Neural Network

INTRODUCTION

Generally, it is often inefficient to control the nonlinear processes
with linear control methods. In order to achieve more accurate and
precise control performance, the most rigorous solution for the con-
trol of nonlinear system is to use the optimal control strategy obtained
by dynamic optimization considering the nonlinearity of the pro-
cess.

The optimal control strategy can be obtained using standard Dy-
namic Programming (DP). The aim of Dynamic Programming is
to find the optimal time-varying input policies by minimizing the
objective function which is defined according to the specific con-
trol purposes, and in most cases, the optimal strategy is calculated
rather numerically than analytically. If the size of problem is large,
the calculation load can be enormous and the solution cannot be
obtained within the given sampling time even with quite a fast com-
puter. This problem is called as ‘Curse of Dimensionality’ and this
makes the on-line control using DP virtually impossible [Kaisare
et al., 2003]. However, as the Neuro-Dynamic Programming (NDP)
approach is introduced, the application of DP to nonlinear processes
becomes possible and the field of application for NDP is growing.
This approach is to perform the vast amount of calculation offline,
to learn the optimal strategy in a simple form of approximation and
to calculate the optimal strategy based on the approximation of cost-

to-go function online. Cost-to-go (or profit-to-go) function as a per-
formance objective function can be approximated by a nonlinear
function or neural network (NN) and this can reduce the calcula-
tion burden so that the dynamic programming approach can be ap-
plied online. But the NN requires appropriate training before use
and the training of NN is not trivial for many cases. To avoid the
difficulty in NN training, local approximation method could be used
such as the k-nearest neighbor method (kNN).

In this study, simulation-based DP method suggested by Kaisare et
al. [2003] is investigated against a pH neutralization process. Through
the simulations, the neural network and the kNN method are com-
pared. An optimal control of pH neutralization process to avoid the
Bellman iteration is suggested and the effects of constraints on input
moves are investigated.

NEURO DYNAMIC PROGRAMMNG (NDP)

1. Dynamic Programming
A discrete-time dynamic system can be described by an n-

dimensional state vector x(k) and an m-dimensional input vector
u(k) at time step k. Choice of an m-dimensional control vector u(k)
determines the transition of the system from x(k) state to x(k+1)
through the following relations [Bertsekas and Tsitsiklis, 1996; Bry-
son Jr., 1999],

x(k+1)=Fh(x(k), u(k)) (1)

where Fh denotes the process model equation and h represents the
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sampling time. A general dynamic optimization problem for such
a system is to find the optimal sequence of control vectors u(k) for
k=0, ..., N−1 to minimize a performance index which is related to
the cost-to-go function.

Before defining the cost-to-go function, the one-stage-cost, φ should
be defined. Among many ways, the most popular one-stage-cost
can be chosen as follows, with the weighting factors Q and R.

φ(x(k), u(k))={Q×[x(k+1)−xsp]
2
}={R×∆u(k)

2
}. (2)

where k=0, ..., N−1, u(0)=u0, and xsp denotes the set point.
Then the cost-to-go can be expressed as follow.

(3)

where φN represents the final cost. If N is infinite, then it becomes
the infinite horizon cost-to-go function. It can be expressed as a re-
cursive form,

Jk(x(k))=E[φ(x(k), u(k))]+Jk+1(Fh(x(k), u(k)) (4)

and the above equation can be shown to satisfy the Bellman equa-
tion [Bertsekas and Tsitsiklis, 1996].

(5)

where E[·] denotes expected value and superscript * implies the
optimal value. For simplicity, J*(x(k)) will be shortened as J*(k).
The final goal of DP is to find the input strategy u(k), k=1, ..., N-1
so that the optimal cost-to-go function J*(k) satisfies the Bellman
equation for all time-step k. The solution can usually be obtained
numerically and it suffers from the curse of dimensionality when it in-
volves the gridding of large state space dimension. In order to circum-
vent the problem, one approach suggested by Kaisare et al. [2003]
described in the next section can be applied.
2. Simulation-Approximation-Evolution (SAE) Algorithm

The SAE algorithm [Kaisare et al., 2003] is one of the reinforce-
ment learning methods and it involves computation of the con-
verged cost-to-go approximation offline, which is described in Fig. 1.
The SAE algorithm is roughly composed of two parts. The first part

is “Simulation part.” Since the true optimal control strategy is very
hard to obtain, the simulation is performed using a suboptimal con-
trol law to make training data set which is used for the calculation
of the infinite horizon cost-to-go function (Eq. (5)) for each state
visited during the simulation. Then the suboptimal cost-to-go func-
tion is calculated by

(6)

where N is sufficiently large for the system to reach a new steady
state. The second part is “Cost approximation part”. In this part,
the cost-to-go function approximation is performed by fitting a neu-
ral network or other function approximator to the data from “Sim-
ulation Part.” In addition to that, Bellman iteration and policy update
procedure is performed to improve the approximation of the cost-
to-go function if a suboptimal control policy is used [Kaisare et al.,
2003; Lee and Lee, 2004].
3. Cost-to-go Approximator

In the algorithms using the neuro-dynamic programming, the per-
formance of the approximator for the cost-to-go approximation is
crucial. As approximators, the global approximator and the local
approximator can be considered. Global approximators like neural
network, polynomial, etc. are the parametric approximators which
require extensive offline training, and the local approximators like
k-nearest neighbor, kernel-based aproximator, etc. are nonparamet-
ric approximators which require extensive querying instead of offline
training.
3-1. Neural Network

The neural networks are composed of simple computing ele-
ments in parallel. These elements are inspired by biological ner-
vous systems. A neural network (NN) to approximate a particular
function can be trained by adjusting the weights of the connections
between elements [Demuth and Beale, 1998] as in Fig. 2. Because
the NN is one of global approximator, it is difficult to confirm the
safeguard against over estimation and the ability of extrapolation
even though the computation of function evaluation is easy once
trained. Furthermore, the convergence for Bellman iteration using
NN is not guaranteed. Thus, the training of NN is quite critical to
the performance of the neuro-dynamic programming approaches.
3-2. k-Nearest Neighbor Method

The k-nearest neighbor (kNN) method is a very intuitive meth-
od that classifies unlabeled examples based on their similarity with
the training set. For a given unlabeled example, xu∈ℜ D (ℜ D is a

Jk x k( )( ) = E φ x i( ) u i( ),( ) + φN
i = k

N − 1

∑

J* x k( )( ) = E φ x k( ) u k( ),( )[ ]  + J* x k + 1( )( )
 u  

limmin

J k( ) = φ i( )
i = k

N

∑

Fig. 1. Architecture for offline computation of cost-to-go approxi-
mation. Fig. 2. The schematic diagram for neural network training.



944 D. K. Kim et al.

September, 2004

workspace), the k “closest” labeled examples in the training data set
are found and assigned as xu to the class that appears most fre-
quently within the k-subset. The kNN only requires an integer k, a
set of labeled examples (training data), and a metric to measure close-
ness [Osuna, 2002]. The kNN can conveniently handle the quite
complex nonlinearity with sufficient data set and training effort is
not needed. However, finding the neighboring data set may require
extensive data querying procedure. The convergence for Bellman
iteration can be guaranteed. But the query time for nearest neigh-
bor is increased in proportion to the number of training data [Lee,
2003].
4. Bellman Iteration

Since the optimal control law is not readily available to begin
with, a suboptimal control policy can be used for training of the
cost-to-go approximation, and the resulting control law is doomed
to be suboptimal. To improve the approximation, the cost or value
iteration can be performed until convergence based on the Bellman
equation [Kaisare et al., 2003].

(7)

This step may impose an enormous computational burden, but it
will be performed offline.

pH NEUTRALIZATION PROCESS

The pH neutralization process has long been taken as a repre-
sentative benchmark problem of nonlinear chemical process con-
trol due to its nonlinearity and time-varying nature. In this study,
the pH neutralization process is selected as the control target system
with neuro-dynamic programming approach.
1. pH Neutralization Process

The neutralization is a chemical reaction. The control objectives
are to drive the system to a different pH conditions (tracking con-
trol) or to regulate the effluent pH value despite the disturbance by
manipulating the flow rate of titrating stream [Henson and Seborg,
1994, 1997]. The process is illustrated in Fig. 3 and the operating
conditions are shown in Table 1. The reactor type of the neutraliza-
tion process is a continuous stirred tank reactor (CSTR) with baf-
fles, which has a volume of 2.5 L. The inlet stream consists of a
strong acid stream (q1: feed solution), a weak acid stream (q2: buf-
fer solution) and a strong base stream (q3: titrating solution), which

are pumped to the CSTR. It is assumed that the perfect mixing in
tank and the complete dissociation in solution at 25 oC occur [Yoo,
2002]. Table 1 shows the typical operating conditions of the pro-
cess of concern.
2. pH Neutralization Process Model

Generally, the strong acid-base reaction is always assumed to
reach equilibrium in water solution almost instantly. This implies
the reaction rates approach infinity. So, the reaction rate terms can
be ignored in process model for simplification. Using these assump-
tions, Gustafsson and Waller [1983] proposed a model using reac-
tion invariants. As the strong acid and base solutions are com-
pletely dissociated into ions, the chemical reactions with a weak
acid solution reach equilibrium state. The chemical reactions in the
system are as follows [Yoo, 2002].

H2CO3�HCO3
−+H+,

HCO3
−
�CO3

2−+H+,

H2O�OH−+H+. (8)

The equilibrium constants for the reactions are defined as

(9)

The total amount of the reaction invariant is not affected by the
degree of chemical reaction. According to this fact, the reaction in-
variants can be derived from the stoichiometry. As Gustafsson and
Waller proposed, two kinds of reaction invariant variables are de-
fined in this process. The first reaction invariant is the concentra-
tion of charge related ions, and the other reaction invariant is the
total concentrations related to carbonate ions.

Wai=[H+]i−[OH−]i−[HCO3
−]i−2[CO3

2−]i,

Wbi=[H2CO3]i+[HCO3
−]i+[CO3

2−]i. (10)

where Wa denotes the charge-related reaction invariant, Wb denotes
the carbonate ion-related reaction invariant, and i=1, 2, 3, 4 for each
stream in Fig. 3.

The relationship between pH value and the reaction invariants is
given by a nonlinear equation from Eqs. (9)-(10) which represent
the relation between a hydrogen ion concentration and reaction in-
variants.

(11)

The pH value is the negative logarithm of the hydrogen ion concen-
tration (pH=−log[H+]), so the pH value can be determined if Wa

and Wb are known.
The dynamic process model for the pH neutralization process

can be derived from the component balance for the reaction invari-
ants [Yoo, 2002]:

Ji + 1 = φ x u,( ) + Ji Fh x u,( )( )
 u  

limmin

Ka1 = 
HCO3

−[ ] H+[ ]
H2CO3[ ]

----------------------------- Ka2  = 
CO3

2−[ ] H+[ ]
HCO3

−[ ]
--------------------------- Kw = H+[ ] OH−[ ], ,

Wb

Ka1 H+[ ]  + 2Ka1Ka2⁄ H+[ ] 2⁄
1+ Ka1 H+[ ]  + Ka1Ka2⁄ H+[ ] 2⁄
--------------------------------------------------------------- + Wa + 

Kw

H+[ ]
---------- − H+[ ]  = 0

Fig. 3. The pH neutralization process.

Table 1. Operating conditions of pH neutralization process

Symbols Values Stream Composition

V 2,500 [ml] q1 0.003 M HNO3

q1 9.0 [ml/s] 5.0×10−5 M H2CO3

q2 0.6 [ml/s] q2 0.01 M NaHCO3

q3 8.5 [ml/s] q3 0.003 M NaOH
5.0×10−5 M NaHCO3
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(12)

In the above dynamic process model, it is assumed that the flow
rates and the concentrations of the feed and buffer streams are known
except for two properties, Wa1 and Wb2 and they are considered as
the unknown parameters (θ). Therefore, the dynamic process mod-
el can be obtained as the following state space model [Yoo, 2002]:

x=f(x, t)+g(x, t)u+Fθ(t)θ
c(x, y)=0 (13)

where

u=q3, y=pH4, pK1=−logKa1, pK2=−logKa2,

3. Optimal Control Strategy
The suboptimal control law is used in the “Simulation Part” of

SAE algorithm. If the suboptimal control is close to optimal con-
trol, the improvement of cost-to-go function by Bellman iteration
is not necessary. Fortunately, in this process, an optimal control can
be devised from a simple principle. The required flow rate of titrat-
ing stream to make the mixture of inlet streams with the desired
pH value can be calculated from the information of the inlet streams
and the additional amount of titrating stream to make the contents
of the CSTR at the desired pH value has to be injected in a shortest-
possible time. In this manner, the effluent pH value can be reached
to the desired value in shortest time without overshoot or under-
shoot. This control law is not exactly optimal due to the residence

time of the effluent stream considering the constraints of the flow
rates, but it is close enough to the optimal control law. Moreover,
the amount of additional injection of the titrating stream can be ad-
justed to make the performance better. By using this optimal strat-
egy, the laborious Bellman iteration is omitted in this study.

RESULTS AND DISCUSSIONS

The NDP approach is applied to the pH neutralization process
both using a global approximator (NN) and a nonparametric local
approximator (kNN).
1. Results using Neural Network

As an approximator, a multilayer feedforward NN is used, which
consists of two input states, 5-neuron hidden layer, and 1-neuron
output layer. The weighting factors of one-stage-cost function are

V
dWa4

dt
------------ = q1 Wa1 − Wa4( ) + q2 Wa2  − Wa4( ) + u Wa3  − Wa4( )

V
dWb4

dt
------------ = q1 Wb1 − Wb4( ) + q2 Wb2  − Wb4( ) + u Wb3  − Wb4( )

f x t,( ) 1
V
---- q2 Wa2  − x1( ) − q1x1

q1 Wb1 − x2( ) − q2x2

g x t,( ) = 
1
V
---- Wa3  − x1

Wb3  − x2

,,

F0 t( ) = 
1
V
---- q1  0

0  q2

θ = Wa1 Wb2[ ]
T

x = Wa4 Wb4[ ]
T
,, ,

c x y,( ) = x1 + 10y − 14
 − 10 − y

 + x2
1+ 2 10y − pK2×

1+ 10pK1 − y
 + 10y − pK2

------------------------------------------- = 0.

Fig. 4. Comparison of results between PI control (········) and NDP approach using NN (——) with respect to a step change in set point
(pH 6.3�7).

Fig. 5. Comparison of results between PI control (········) and NDP
approach using NN (——) with respect to multi-step set po-
int change (pH 7�8�5.5�7).
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R=1 and Q=1. For training of NN, the optimal control law described
in the previous section is used to generate the training data. The com-
parisons of the results between well-tuned PI control and NDP for
a step change in set point (effluent pH 6.3�7) are shown in Fig. 4.
The NDP is much better than PI control as shown Fig. 4. The case
of multiple step changes in set point and the disturbance case in feed
concentration (Wa1 change at 10 min) are depicted in Fig. 5 and 6,
respectively. From these results, the NDP method outperforms the
well-tuned PI control as expected. However, the weighting factor
of the one-stage-cost function on error has to be increased to get
rid of small steady-state offset. The small steady-state offset in NDP
method is caused from the numerical inaccuracy of the NN calcu-
lation. In order to overcome this difficulty, either more data around
the steady state should be used for training, or the weighting factor
for error in one-stage-cost has to be adjusted to emphasize the im-
portance of the error from set point.

2. Results using k-Nearest Neighbor Method
Alternatively, as a local approximator, the kNN method is also

applied. The kNN method does not require tedious training as in
NN approach and it is very simple to apply. Since the process of
our concern is relatively simple, a very good performance of NDP
method can be obtained even with only two points nearest neigh-
bor. The performance using kNN method shown in Fig. 7 is almost
same as the case using NN. This is because the model we used has
only two states and the nonlinearity is not very high. If the process
has very complicated nonlinear behavior with many states, the train-
ing of neural network is not trivial, and many computational issues
regarding training and Bellman iteration can be brought out.
3. Results with Restriction in ∆umax

In the cases of previous section, the simulation results are ob-
tained with no restriction in the size of control movement in one
sampling time (∆umax) even though there were the lower and upper

Fig. 6. Comparison of results between PI control (········) and NDP approach using NN (——) with respect to disturbance (15% decrease in
Wa1 at time=10 min).

Fig. 7. Comparison of results between NDP approaches using kNN (
��

) and NN (——) with respect to set point change (pH 6.3�7).
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limits of the control input size (0≤u≤0.025 l/sec). But if there is a
restriction in ∆umax, the NDP control strategy cannot handle the sit-
uation correctly. For example, for a step change in set point, NDP
method will calculate the additional amount of titrating stream in-
jection without considering the limitation of the control moves in
each sampling time and the response may oscillate and the perfor-
mance will be deteriorated. The NDP controller will increase the
control input to inject the needed amount of titrating stream to com-
pensate the difference in the holdups in CSTR assuming that it can
stop injecting immediately when needed. However, due to the limi-
tation of control input movement, it cannot decrease the titrating
stream to desired level in a sampling time. Thus, it results in over-
injection and the process will overshoot and oscillate to compen-
sate the over-injection of the titrating stream. The standard NDP
only tries to push the system to the new state as fast as possible under
given condition and not to moderate the amount of additional in-

jection considering the limitations and results in overshoot and os-
cillation. In order to prevent this shortcoming, the standard NDP
has to be modified to accommodate the situation. Thus, we suggest
that the recursive cost-to-go function calculation should be mod-
ified in the following way.

(14)

If p=1, Eq. (14) is same as Eq. (5) of original neuro-dynamic
approach and if p=∞, it becomes original dynamic programming
(DP). This modification increases computational burden to find the
optimal input at time step k, but this can prevent the performance
degradation due to the constraints on the input change. Fig. 8 shows
the performance of the new approach (∆umax=0.0025 l/sec) and the
overshoot can be reduced significantly in the new approach. Also,
the decrease in overshoot for the increase in p is observed. This ap-

Jk
*

 = φj + Jk + p
*

j = k

p + k

∑

Fig. 8. Comparison of results from MPC-like NDP approach using kNN with ∆umax restriction (in Eq. (14) p=1 (——) and p=4 (········)).

Fig. 9. Comparison of results between standard NDP approach (········, 2 states)and NDP approach with augmented states (——, 3 states)
when there is ∆umax restriction (In the case of NDP approach using kNN).
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proach is to incorporate the prediction capability as in Model Pre-
dictive Control (MPC) to prevent the performance deterioration due
to incorrect information of the process.

Another, yet better approach to resolve this sort of problem is to
incorporate the input as a state in the cost-to-go approximation. If
we add the information on input to the approximator in NDP al-
gorithm, then the NDP method with augmented states will con-
sider the value of input variable and calculate the required amount
of the injection based on the correct information on the process. In
Fig. 9, the performance of this approach is shown and the response
did not overshoot and provided an excellent performance. In MPC-
like approach, the NDP method resulted in a small overshoot even
with p=4. However, this approach provided better performance with
slight increase in computational burden which is almost negligible.
Furthermore, even for the disturbances, the NDP controller with
augmented states shows good results as in Fig. 10.

CONCLUSIONS

From the simulation of a pH neutralization process, the NDP meth-
od using either the global approximator (NN) or the local approxi-
mator (kNN) outperforms the well-tuned PI control. These results
are not surprising because NDP method uses much more informa-
tion and computation. However, if the process is quite complex,
this approach can achieve precise optimal control performance with-
out excessive online computational burden. In this study, the NDP
approach is applied to a chemical process of pH neutralization and
the possibility of applying DP concept even with short sampling
period to complex nonlinear chemical processes is verified. In terms
of offline preparation of NDP approach, the local approximators
such as kNN are preferred over global approximators in the light
of cost-to-go approximation. Also, the remedies for the cases of
limitation in input movement are suggested.
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NOMENCLATURE

E [·] : expected value
Fh : process model equation 
J : optimal cost-to-go function
Ka1, Ka2, Kw : equilibrium constant in Eq. (9)
Q : weighting factor of error in the one-stage-cost
R : weighting factor of input change in the one-stage-cost
V : reactor volume [ml]
W : concentration of reaction invariant [M]
h : sampling time
pH : pH value for stream
q : flow rate [ml/sec]
x(k) : n-dimensional state vector at time step k
xsp : set point of state
u(k) : m-dimensional input vector at time step k [l/sec]
∆u : input movement during one sampling time [l/sec]
∆umax : the maximum allowable input movement during one sam-

pling time [l/sec]

Greek Letters
φ : one-stage-cost
φN : final cost
θ : unknown parameter

Superscript
* : optimal value

Subscripts
a : hydrogen ion related reaction invariant
b : carbonic ion related reaction invariant
1 : feed stream

Fig. 10. Comparison of results between PI control (········) and NDP approach using kNN (——) with augmented states with respect to
disturbance (15% decrease in Wa1 at time=10 min).
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2 : buffer stream
3 : base stream
4 : effluent stream
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