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van der Waals Interaction Energies between Non-Planar Bodies
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Abstract—The van der Waals interaction energies between non-planar geometries are obtained without the assumption
that the distance between two non-planar bodies is much smaller than radii of the non-planar bodies. Based on atom-
to-body van der Waals energies, we calculate body-to-body van der Waals interaction energies for several non-planar
geometries. Using the continuum approach, we discuss the van der Waals interactions in two-dimensional carbon
nanotubes and;Omolecules.
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INTRODUCTION Carbon Nanotubes

For two non-polar molecules separated by a distance 2 A. 1007
there always exists a long-range interaction, which is generally know
as the van der Waals interaction or the London dispersion interac
tion. Forces due to the van der Waals interaction play an importar .
role in various phenomena such as adhesion, adsorption, surfac & -
tension, transport in porous media, wetting, etc. [Israelachvili, 1973 %
Hough and White, 1980; Adamczyk and van de Ven, 1981; Chan(
and Wang, 1996; Bhattacharjee and Sharma, 1996, 1997; Gu ar
Li, 2002]. Recently, the van der Waals interaction in nanoscale mat
erials such as carbon nanotubes and nanowires has been stud
due to the wide variety of potential applications of nanoscale mat
erials [Henrard et al., 1999; Qian et al., 2001; Mendelev et al., 200z
Boustimi et al., 2002, 2003; Ulbricht et al., 2003]. ‘

Carbon nanotubes (CNTSs), discovered by lijima [1991], posses!
remarkable electrical, mechanical, and thermal properties [Yakob °
son et al., 1996; Wildoer et al., 1998; Odom et al., 1998; Yu et al.Fig. 1. A high-resolution electron micrograph showing raft-like
2000]. For example, CNTs are 100 times stronger and 6 times light- bundles of single-walled carbon nanotubes [Qin and lijima,
er than steel. They are composed of two-dimensional hexagonal ring 1997].
structures formed by rolling up graphene sheets. Morphologically,

a single-walled carbon nanotube (SWCNT) can be idealized as the distance between two non-planar bodies is much smaller than
single rolled-up sheet of graphite, and a multi-walled carbon nanoradii of the non-planar bodies [Israelachvili, 1991]. This assump-
tube (MWCNT) as one containing many such co-axial tubes of varytion is no longer valid at the nanoscale. Gu and Li [1999] calculated
ing diameter. At normal conditions, CNTs exist in bundle form (or the van der Waals interaction between a spherical particle and a cyl-
rope) in which each CNT is tied by the van der Waals interactionjnder in terms of the ratio of the separation distance to the radius of
and are randomly oriented as shown in Fig. 1. the sphere. However, they assumed that all of the molecules on a

The van der Waals interaction is also a key issue in understandhin circular disk of the sphere, parallel to the cylinder, are at the
ing the mechanics of &(buckminister fullerene) and that of flow same distance away from the cylinder surface.
of water molecules through CNTs [Qian et al., 2001; Hummer et In this paper, the van der Waals interaction energies between non-
al., 2001]. It is very important in nanoscale CNT mechanics to ex-planar geometries are obtained without using the above assump-
actly estimate the van der Waals interactions between non-plandions. We first calculate the atom-to-cylindrical body interaction
bodies like cylindrical CNTs and sphericg} @olecules. energies using the attractive term of the Lennard-Jones potential.

In calculating the van der Waals interaction energies betweerThe body-to-body interaction energies for several non-planar geom-
non-planar bodies, the following assumption has been normally usedtries are then obtained by using the atom-to-body interaction en-

ergies. In a similar way, we discuss the van der Waals interaction
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van der Waals Energies of Non-planner Bodies 495

If we consider an atom or a molecule at positj@nd an atom
or a molecule at positianthat are sufficiently close together, there
exists a long-range intermolecular interaction acting between thes
two atoms. The Lennard-Jones potential is commonly recommenc
ed for non-polar molecules such as methane [Hirschfelder et al
1954]:
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where § is the distance between the two atoms or the two mole-

cules. The parametessand o represent the collision diameter and ) ‘ / @/ /

well depth, respectively, which can be determined by using the sec N

ond virial coefficient and viscosity measurements [Hirschfelder et

al., 1954]. Thef term describes attractive forces known as disper- (a) (b)

sion forces (London forces or induced dipole-induced dipole forces'Fig. 2.van der Waals interactions (a) between an atom and a cy-
[Israelachvili, 1991]. The ¥ contribution represents short-range re- linder, and (b) between an atom inside a hollow cylinder
pulsive forces. and the hollow cylinder. The shadowed areas indicate planes

The non-retarded van der Waals energy between two atoms or on which z=constant.
two molecules separated by a distance r has been generally esti-
mated by using the attractive term of the Lennard-Jones potential: oC

dg =-——L5 —dxdyd @3)
o) =S @ Dy T

. . ] o _ Inview of the pairwise additivity, the total interaction energy between
where C is the London dispersion force coefficient. Note that withhe atom and the cylinder can be estimated by the volume integra-
increasing r, the attractive force decays even faster thapproach- o of (3) over the cylinder. The length of A82./(2R-2)z . If

ing r’. This is referred to as the retardation effect [Israelachvili, 1991]. the cylinder is assumed to be infinitely long, the total interaction
In estimating the interaction energy between an atom and a Magnergy is

roscopic body or between two macroscopic bodies, we will assume
that the intermolecular potential is pairwise qdditive. This means g, R) =~ Il/f(zzzz - % dxdydz
that the total energy of an atom and a body is the sum of its pair Rl (P +y*+(z+d)’}
potentials with all of the molecules in the body--an assumption that
has been used by several authors [Hamaker, 1937; Mahanty and

2.
R E(d2+2dR+sR2)|m%[§—)—d+d§R F
Ninham, 1976; Israelachvili, 1991]. For condensed media this is

12d(d +2R)°[ O

not correct, because it ignores the influence of neighboring mate- —2R(d—2R)K[1—(d +2R)2J% @)
rial on the interaction potentials between the materials at any pair F 1o
of points.

In order to avoid the assumption of pairwise additivity, Lifshitz Here we have introduced the elliptic integrals of the first kind and
[1956] developed what we now refer to as Lifshitz theory by de-the second kind defined as [Abramowitz and Stegun, 1972]
scribing the interaction between bodies in the fluctuating electro- ) s
magnetic field created by the material. Dzyaloshinskii et al. [1961] K[m]=f," (1-msirf6) *de
generalized the Lifshitz theory, using the quantum field theory. Based E[m]= I: ?(1-msirf6)*do (5)
on the Lifshitz theory, one can calculate the Hamaker constants [Ham-
aker, 1937] used in expressing the van der Waals interaction enerdy the limit of d/R— 0, we have
between two bodies, or an atom and a body. More details are de-

2
scribed in the book of Israelachvili [1991]. Ijm K[l—%} =0
R >0
ATOM-TO-BODY INTERACTION ENERGY lim E[(d +2R)2} —2R ©)
o d
>0

Dia

1. Interaction between an Atom and a Cylinder
As shown in Fig. 2(a), an atom at a distance d away from the surThus, Ed. (4) reduces to

face of a cylinder of radius R interacts with the cylinder. The num- 10C

ber of molecules in an infinitesimal differential element located on ~ @(d) =~ o ™
a surface z=constant gsixdydz, wherep is the constant number
density of molecules in the cylinder. which is identical to the net energy between an atom and a planar

Since the distance between the atom and the differential elememsurface [Israelachvili, 1991]. At a very close distance, the curvature
is A/X? +y? +(z +d)?, the interaction energy between the atom andeffect on the interaction is negligible.
the differential element is, using (2), Using (4), we can calculate the interaction energy of an atom and
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496 E.-S. Oh

a hollow cylinder, whose inner and outer radii grardR,, respec-

tively. The interaction energy is expressed as
« L3
gd)=a(d, R)-a(d, R) ® “v"ﬂ

2. Interaction of an Atom inside a Hollow Cylinder R,

Now we consider the interaction energy of an atom inside a hol
low cylinder whose inner radius is R. A schematic diagram is given
in Fig. 2(b). Since the distance between the atom and the differer
tial element in the hollow cylinder igx* +y* +(z—d)’ , the inter-
action energy of the atom and the element is

- pC
dg, = I Sdxdydz ©9)

With the pairwise additivity assumption, the total interaction energy
of the atom and the hollow cylinder can be written as

WGP L[ 00 sl 08 L L[ 00 N

___mC 0O//—-=—
B 6d°(2R-d)°]] (R-d)R(d ~2dR+8R) Fig. 3. van der Waals interaction of a hollow cylinder and an em-
bedded solid cylinder.
(2R-d)* 04 + [4(d R)R}
ReDELlR(R d)} aR(a+2R)K| 1 |0 (10)

Thus, the total interaction energy per unit length becomes
where the hollow cylinder is assumed to be infinitely long and wide.
If the atom is located at the center of the cylinderd=R, then P, = ﬁj do, .
(10) reduces to

r; _m%(r R) +2(r-R)R, +8R2]

mEED: Rl” —2Ry(r— 3R1)K[ E:J::;EEW

__TtpC
@)= ac (11)

In the limit d/R—0, Eg. (10) reduces to (7), which is the interac-

tion energy between an atom and a planer surface. R R p O R FR o [ (15)
If the inner and outer radii of the hollow cylinder ar@fiR,, R.-R,/ U [R,-R/ U
the net interaction energy can be written as
in which
dd)=p(d, R)-@®@, R) (12
3,2 2|15 1.5 3,2 2/0.5,0.5
BODY-TO-BODY INTERACTION ENERGY iR = 92 et AGlk 237 ~4G s,

—2kG§:§(k2|2;Z" +2KGEHK e o

Based on the atom-to-body interaction energies, we will calcu-

late the body-to-body interaction energies for several non-planar +Im[477k,F,(=0.5,-0.5; 1; K)
geometries. In what follows, we will use the Hamaker constant A +872K3F,(-0.5,0.5 0.5 1, 1.5 K?)
defined as
~TCGI( KT ) +2mGE (Ko )} (16)
A=TEp0,C (13)

Here we have introduced two special functions; a generalized hy-
wherep, andp, are the number densities of molecules in bodies 1pergeometric series defined as [Gradshteyn and Ryzhik, 1965]
and 2, respectively.

1. Interaction between a Hollow Cylinder and an Embedded Fla a. . a- g =y @@ (@) 2"
Solid Cylinder P e B B D=3 (G GG (7

We first consider the interaction of a hollow cylinder interacting
with an embedded solid cylinder as depicted in Fig. 3. where ), is the Pochhammer symbol [Abramowitz and Stegun,

The distance between the differential element in the hollow cyl-1972]:
inder and the surface of the embedded cylinderfs.dn view of

(4), the interaction energy between the element and the embedded (1) =q(7+1)(1+2)...(r+n-1) _[(T*n) 18)
cylinder can be expressed as (7
dd, =@(r—R,, R)p.2rrdrdz (14 and Meijer's G function defined as [Gradshteyn and Ryzhik, 1965]
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2+(R,+d +R,)* —R?
ezarocos{r (Ri*d*R,) Rz}

21(R.+d +R)) @1

We now calculate the van der Waals energy for a more general

R ) ; .
: case when two cylinders are crossed at an anglee illustration

/ .

AR

tance d. First, we need to calculate Af® distance between the
differential element in the cylinder of radius &d the surface of
the cylinder of radius RSince BCis equal to EGBCis R+d+

v R,—rcod. Since DFis rsirdtarn, AB is (z-rsindtana)sina=zsinx
—rsin6cogr. Thus,

=
bH

—

AC =J(R,—rcosf+d +R,)> +(zsina -rsincosn)> -R,  (22)

From (4), the interaction energy between two crossed cylinders
can be expressed as

o (d) = [ a(AC,, Rl)pzrdrdedz
= - TZ
LT 12n(AC)(AC +2R)’ A
(AC' +2R1)

+2(AC)R1+8R1]ImEE[

i
-2R,(AC' —2R1)K[ %}E{i (23)

(b)

Fig. 4. van der Waals interactions (a) between two parallel cylin-
ders, and (b) between two cylinders crossed at an angie

G,T;;Ez a,...,a,0 L1 [l (B =9)[] -l (1-a; +s)
0l By....5,0 27'll G P [3J+s)

19

2. Interaction between Two Cylinders

For two parallel cylinders separated by a distance d as shown i
Fig. 4(a), we can calculate the interaction energy using (4). Any
point in the shadowed area of the illustration is separated by a dis d
tance R, from the surface of the cylinder of radius &nce the ‘
number of molecules per unit length in the shadowed gog2tidr, .
the interaction energy between two parallel cylinders with a sepa ? 1‘2:4 - l

ration distance d becomes i w \ /

—»
~
@
~

+d+2R, Td+2R,

Pc(d) = Rt d @(r ~Ry,Ry)(p,26r)dr = R:+d

ABL R4 (r—
677(r—R1)2(r+R)3{[(r R)*+2(r-R)R.+8R] o

m@;[(r Ry’ F—ZRl(r 3R1)K[ _(r+Ry? }Ed (20) Fig. 5. van der Waals interactions (6_1) between a cylind_er _and a
(r-Ry’ (r-Ry)? sphere, and (b) between a cylinder and a sphere inside the

cylinder. The shadowed areas indicate the intersections of
where a cylinder of radius r and the sphere.

Korean J. Chem. Eng.(Vol. 21, No. 2)
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where the length of the cylinder of radiussassumed to bé.2 o,
Based on the assumption that the distance between two cylir e
ders is much smaller than theradii of the cylinders, Israelachvili [1991]
has given theoretical expressions on the interaction energies for tw 100 (a)
parallel and crossed cylinders. In fact, the interaction energies ca
culated by (20) and (23) are equal to those calculated by his result
when d<<Rand d<<R ]
3. Interaction between a Sphere and a Cylinder
In order to calculate the interaction between a cylinder and a sphe! 0.01
as shown in Fig. 5(a), we first determine the intersection S of a cyl ’
inder of radius r and a sphere of radiysAR of the points on S
are at the same distanedy from the sur- face of the cylinder of 0.001 001 01 1 10 d
radius R. S can be determined by solving the following equations '
simultaneously:
yAZ=F (24)
10
Xy (-t =R (25)
where t is the center-to-center distance, i.e., 01
t=R+d+R (26) 0.001
The corresponding solutions for x and y are 7
0.0
X =#JRE—1? +22t -t (27)
y =t -2 (28) ol
and the intersection is given as [Kaplan, 1991]
B _ — — rdy 0.001
S=4[x(Ddl=4f JR-r'+2zt-t* [1+ 2
-t)’ -R? (r—t)* -
=sr/(r+1y -R’ [(f t) } [ } 29 0.0000001
e ey I el o (29) p
where dl is the arc length element around the surface of the cylin- 0.001 0.01 0.1 1 10
der. Fig. 6. van der Waals interaction energy of a sphere of radius,R

Since all of the molecules in the element volume Sdr are at a dis-
tance R, from the surface of the cylinder, using (4), we can ex-
press the interaction energy of the sphere and the cylinder as

O, (d) =[ "~ a(r R, R)p.Sdr=[ "~

- 2Ar/(r +)> R’ EJE[(r -1’ -R }

3m(r —R.)’(r *R)’0 L(r +t)° -

calculated by Hamaker [1937], regardless of the distance between

and a cylinder of radius R: (a) R/R=100, (b) R/R=1, and

(c) R/R=0.01, where d=d/R.. Here the solid line repre-
sents the energy calculated using (30), and the dot line de-
notes the energy calculated by Gu and Li [1999]. For refer-
ence, the energy between the sphere and a flat surface cal-
culated by Hamaker [1937] is shown as the wide dot line.

[(r 07 :|Dx Hr? +7R§)|m%[(f _Rc)ZJD the sphere and the cylinder. That is, the curvature effect of the cyl-

(r+Rr)*H

4R, 10
(r+Rc)2}%'D'r =0

(r+t)*-

—2(r—3RC)RCK[—

inder on the interaction energy is negligible and thus their assump-
tion is valid. As RR,decreases, the curvature effect plays a very

important role in the van der Waals interaction energy. However,
Gu and Li's model does not capture the curvature effect of the cyl-

The interaction energies calculated by using (30) for three differ-inder at a relatively small distance d*.

ent radii of the cylinder are compared with previous results given

In a similar way, we calculate the interaction energy between a
by Gu and Li [1999]. This is shown in Fig. 6. It should be noted cylinder and a sphere inside the cylinder as shown in Fig. 5(b). We

that they assumed that all of the molecules on a thin circular diskise the interaction energy of an atom inside a hollow cyliptter

of the sphere, parallel to the cylinder, are at the same distance awd) from (10). The total intersection can be expressed as (29) by re-

from the cylinder surface. At a relatively big cylindefR=100, placing

the interaction energies obtained by both our and Gu and Li’s anal-

yses are equal to the energy between the sphere and a flat surface=R -d-R, (31)
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In the case ofR,, we have the interaction as
O (d) =[ v @(R. ~r,R)p.Sdr=[ "~

ﬁw 4Ary(r +t)’ - %E[(r —t)? - }

R 3n(r —R)%(r +R.)°O L(r +t)* -

(=t (r+R)
K[(r e RZ}DX[WR (r+7R)Re AR J

_ar)(r - k| - AR
+R(r —3R)(r RC)K[ (r—Rc)z}%dr 32)

When t<R, in r range of 0: (Rt), we will have a negative value

499

atom and a two-dimensional carbon nanotube, and between a car-
bon atom and a two-dimensiong}@olecule. Based on these, we
calculate the interaction energies for several cases of CNT geome-
tries.

1.van der Waals Interaction between a Carbon Atom and a
SWCNT/C,,

In Fig. 7, we illustrate three cases: a carbon atom outside a
SWCNT, a carbon atom inside a SWCNT, and a carbon atom out-
side a G molecule. In order to calculate the interactions, we inte-
grate (2) over the surface S:

od) =[f, - (34

of the intersection calculated by (29) and (31). Therefore, the inter-

action energy becomes

@ (d) =[. ™ @(R. ~1,R)pJSdr
= @R.~1,R)p(~S)dr . “ @(R.~1,R)p.Sdr (33)

wherep? is the surface mass density, the number of carbon atoms
in the unit surface area.
In the case of Fig. 7(a), we have

_pene Cc (©
@d.R)=[[_. R.dzdo
DISCUSSION ON THE VAN DER WAALS S [(d+R)* +RY ~2(d *R)R.cosf +27
(9)
INTERACTION ENERGIES IN CARBON NANOTUBES __ (3:71p R (d2 +2dR +2R()E[ 4R((zj +R‘)}
2d*(d+2R)*'O d
In this section, we discuss interaction energies which might exist 4R(d*+R)10
in two-dimensional carbon nanotubes agghilecules. They are —(d +2R‘)2K[#}D (35)
two-dimensional in the sense that the carbon atoms reside only in d 0
an interface between two phases. Thus, the surface integral of (2 din th f Fia. 7(b h
should be used to calculate the van der Waals interactions in CNTE ¢ N (€ case ot Fig. (b), we have
First, we calculate the van der Waals energies between a carbon . C @
@R =["[" - — —0'”Rdzdf
[(R,—d)*+R; —2(R —d)R,cos9 +Z°]
___Cmp'R 2 [4R(d —R‘)J
=—————(d" —2dR +2R)E
2¢(d-2R)' D4( R *+2R)) 7
4R(d -R)70
~(d —2R)2K[—R‘(d2 )J% (36)

()

Fig. 7. van der Waals interactions of (a) a carbon atom outside a
SWCNT, (b) a carbon atom inside a SWCNT, and (c) a
carbon atom outside a G, molecule. The distances r for
(a), (b), and (c) are
J(d+R)* +R; —2(d +R)Rcos8+7,
J(R=d)*+R{=2(R,~d)R.cosB+7’,
-R)’,

and /X +y*+(z—d

The interaction energy between a carbon atom ang,a C
molecule shown in Fig. 7(c) can be written as

= - c ©
@d,R) =[f, R TE—— ds 37)
where
KAyAZ=RE (38)

For a smooth function H[x, y, z=f(X, y)] defined on S, the double
integral of H over S can be expressed as a double integral in the
xy-plane [Kaplan, 1991]:

[JH ds=[[,HIxy,f(x,y)] [1+ %ZE +%2Ed"dy

where is the projection of S on the xy-plane. Using (38), (39), and
the change of variable [Kaplan, 1991], Eq. (37) becomes

—rf - C ) |14 00200, EJa_ZD
AR [x2+y2+(f<x,y)—Rf—d)21p T ox0" oY

—T R _ C Rf
Y

Korean J. Chem. Eng.(Vol. 21, No. 2)
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In Fig. 9, we illustrate the van der Waals interaction energy for a
20-layer MWCNT whose inner radius iR 1.0 nm. We have also
taken d=0.34 nm, which is the interlayer distance of graphite. At low
layers, the interaction energy stiffly increases as the layer increases.
There is little change in the interaction energy at relatively high layers
and the energy approaches the van der Waals energy of graphite.
3.van der Waals Interaction between Two SWCNTs Crossed
at an Anglea

As shown in Fig. 1, CNTs are randomly oriented in a bundle of
CNTs or in a polymer matrix. In understanding CNT mechanics, it

/ is important to exactly estimate the interaction between two crossed
mth wd CNTs. We again use Fig. 4(b). Since all of the carbon atoms reside
k in the surface, the distance between the differential surface element
nth/ and the surface of the other SWCNT is given as, by using (22)
Fig. 8. Schematic of an n layer multi-walled carbon nanotube. AC' =\/(R, ~R,co¥ +d +R,)’ +(zsina ~R,sinfcos)* R, (42)

From (35) and (42), we can express the interaction between two

+ J,En J;z _ C _ R Srdrdo SWCNTSs crossed at an anglas
[P +(~JR* -’ -R,—d) ] JR? -1 o,(d) :r J'Zn(q(A_CI R,)0“R,d6dz
__4Crp"Ri(d +2dR +2R) @) T T e
d'(d+2R)" et B

2mAC)’(AC' +2R))"

2.van der Waals Interaction in a MWCNT O L

Now let us calculate the van der Waals interaction energy in an A[(AC)’ +2(AC)R, +2R] E[
n-layer multi-walled carbon nanotube (MWCNT) shown in Fig. 8. b

With the inner radius of Rand the interlayer distance of d, the
m" layer is at a distance of#m-1)d from the center. The sur-
face cylinder of fithe layer interacts with the other surface cylin-
ders. When i<m, the interaction energy between thiayer and where
the I layer®,, can be obtained using (35), while (36) is used when
i>m. Thus, the interaction energy per unit surface area of‘the m
layer becomes

(ACY
_4R(AC'+R)

-(AC' +2R1)2K[ AT

} Ed 6dz @3)
a

AP=Crtp? (44

4, van der Waals Interaction between ¢ Molecules and Car-

o bon Nanotubes
@, _,=1,,m,¢m‘ Very recently, G molecules encapsulated in carbon nanotubes,
(-t so-called peapods, have been discovered by Smith et al. [1998] and
= P(G)DZ1 @l(m=i)d,R +(i-1)d] studied due to their unique electronic properties [Vavro et al., 2002;
nD' 0 Hornbaker et al., 2002]. In the peapods, the van der Waals interac-
+ _Zqu[(i -m)d,R +(i—1)d]% (41) tion may be a key factor to determine their structures, sizes, and

properties [Okada et al., 2001; Hodak and Girifalco, 2001; Ulbricht
et al., 2003]. The existing interactions in the peapods are illustrated

0.0027 in Fig. 10: GGy, and G-SWCNT.
oo0ss | From a molecular point of view, the van der Waals interactions
in the peapods have been studied by Lu et al. [1992] and Ulbricht
— 00023 et al. [2003]. Girifalco and Hodak [Girifalco, 1991, 1992; Girifalco
< et al., 2000; Hodak and Girifalco, 2002] have also obtained expres-
B 0.0021 sions for the interactions by using the double surface integral of the
© I 00018 Lennard-Jones potential. In calculating the interaction, they used the
smeared-out sphere approximation.
0.0017 In this section, we calculate the van der Waals interactions in the
0.0015 ‘ peapods system without the assumption. For a€Lsystem de-
’ 3 5 7 9 11 13 15 picted in Fig. 10(a), the distance between the surface element ds in
m the right-G, and the surface of the left@ +/x° +y* +(z —1)*-R,

Fig. 9. van der Waals interaction energy in a 20-layer multi-walled where t=d+2RUsing (40), we can write the net interaction between

carbon nanotubes with respect to layers. Here we have used WO G molecules as

AP=CrPp?. The dotted line indicates the van der Waals — - ©
energy in graphite. @y(d) =[f (VX" Fy" +(z )" ~R,R)p"ds
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>
d —»
t
(@
Yy
ds
d e R, » dAR//,k ;
t X
«—— R, —»

N ~
(b)

Fig. 10. van der Waals interactions in peapods: (a) the interaction
between two G, molecules, (b) the interaction between a
Cs molecule and a SWCNT, and (c) the interaction be-
tween an encapsulated g molecule and a SWCNT.

_ACTp R Hy Hz — +R]
¢y +Hz =t R’

=Ils

(45)

In view of (39) and the change of variables, this becomes

(0)252 2+ 2+ — 2+ 2 2
,(d) =[] _4Cmp 2Rf[zx y 2(z tz)4 Rl Rf dxdy
: D+ +z-0)"-RT AR X" -y?
_pre _ACTD PRI HWRE-P -0 R [RE
_—[z Jz 2 [52_.2 2 214 2 2]’ r
[r+(WRi —r" —t) +Ri] Ri—r
o AT RICHC R 4R] (R
o [P+(-JRE-rP-t)-RY" AR
__16AR/(3d" +24d'R, +66 R +72dR +32R))
3d(d+2R)*(d +4R)’

rdrd@

(46)

Table 1. van der Waals interaction energies in a peapods system

This is identical to the result given in the paper of Girifalco [1992].
As seen in Fig. 10(b), the distance between the surface element

ds in a G, molecule and the surface of a SWCNTi€ +(z —t)* -

R, where t=d+R-R.. Thus, the interaction energy between the C

molecule and the SWCNT can be written as, by using (35) and (39)

Oy(d) =[, @WX* +(z~1)° ~R,R)p""ds
2
=" a(/rcog o +(/R -7 -1’ -R,R)p” /Rzifzrdrde
h
2
L' A(rcog8+(~JRE —r—t) R, R)p” |—R_rdrdo
0 Jo sz_rz

@7

For a G, molecule encapsulated in a SWCNT as shown in Fig.
10(c), the interaction can be expressed as

®.(d) =[f_@(R~/X*+(z ~1)*,R)p"ds
2
=" a(R/r'coge+(RE-r1)" R)p” /—Rff _rdrde
‘g
2
A (R ~/rcog6+(~JRI—7 1)’ R)p” |-R_rdrde
0 R’ -r

(48)

whereq is in (36) and t=R (d+R).

For these cases, the van der Waals energies calculated from data
given by Girifalco et al. [2000] are listed in Table 1. For some of
the systems, the interaction energies are equal to those calculated nu-
merically by using Egs. (7) and (10) in the paper of Girifalco et al.
[2000].

Note that for each system the surface Hamaker constant defined
in (44) is slightly different from the graphene-graphene system [Giri-
falco et al., 2000; Hodak and Girifalco, 2001].

CONCLUSIONS

For the van der Waals interaction energies of several non-planar
bodies, we have obtained simple analytic expressions without assum-

System Radius (RR)* A Equil. spacing (A  Energy (/A) A Energy (O/A®) A2
Cor-Coo 3.55 2.95 -0.0158 -0.015%
Ce-(10, 10) tube 3.55, 6.785 2.945 —-0.0329 —-0.0329
Encap. G-(10, 10) tube 3.55, 6.785 3.235 -0.2030 -

Ba =0 -0.0069 -0.0069
(10, 10)-(10, 10) tUb%a =45 6.785 3.154 -0.0076 -

da =90’ —0.0086 -

®Given by Girifalco et al. [2000].

Calculated using (46).

“Calculated using (47).

dCalculated using (48).

*Calculated using (43).

fCalculated using an expression given by Girifalco [1992].
9Calculated using expressions given by Girifalco et al. [2000].

Korean J. Chem. Eng.(Vol. 21, No. 2)



502 E.-S. Oh

ing that the distance between non-planar bodies is much smaller Surface: Effects of the Inertial Force and the van der Waals Force}

than the radii of the non-planar bodies. Thus, one can easily com- Colloids and surfaces,A1l, 21 (1996).

pute the interaction energies between non-planar bodies without Bzyaloshinskii, I. E., Lifshitz, E. M. and Pitaevskii, L. P., “The General

complicated numerical integration tool. Also, the results could be Theory of van der Waals Force&v. Phys.10, 165 (1961).

applied to nanoscale non-planar materials like nanowires. Girifalco, L. A., “Interaction Potential forg&Molecules;J. Phys. Chem.
From the continuum approach, we have also obtained the van 95, 5370 (1991).

der Waals interaction energies between carbon atoms and two-diirifalco, L. A., “Molecular Properties of £in the Gas and Solid

mensional carbon nanotubes includigrilecules. Based on these, Phases). Phys. Chem96, 858 (1992).

we calculated the interaction energy for multi-walled carbon nano-Girifalco, L. A., Hodak, M. and Lee, R. S., “Carbon Nanotube, Bucky-

tubes. In the MWCNT, the interaction energy quickly approaches balls, Ropes, and a Universal Graphitic Poterfial/s. Rev. B52,

that of graphite as the number of layers increases. We also obtained 13104 (2000).

the interaction energy between two SWCNTSs crossed by an angl&radshteyn, I. S. and Ryzhik, 1. M., “Table of Integrals, Series, and Prod-

For the peapods system, whetg 1@olecules are encapsulated in ucts; Academic Press, New York (1965).

carbon nanotubes, we have computed the van der Waals interaGu, Y. and Li, D., “The van der Waals Interaction between a Spherical

tion energies using the magnitude for an equilibrium spacing given Particle and a Cylinded. Colloid Interface Sgi217, 60 (1999).

by Girifalco et al. [2000]. Gu, Y. and Li, D., “Deposition of Spherical Particles onto Cylindrical
Solid Surfacesy). Colloid Interface Sgi248 315 (2002).
NOMENCLATURE Hamaker, H. C., “The London-van der Waals Attraction between Spheri-
cal ParticlesPhysica4, 1058 (1937).
A :Hamaker constant defined by (13) Henrard, L., Hernandez, E., Bemier, P. and Rubio, A., “van der Waals
A©@ :surface Hamaker constant defined by (44) Interaction in Nanotube Bundles: Consequences on Vibrational
C :London dispersion force coefficient Modes;Phys. Rev. 50, R8521(1999).
d : distance between an atom and a body or between two bodHirschfelder, J. O., Curtiss, C. F. and Bird, R. B., “Molecular Theory of
ies Gases and Liquids; Wiley, New York (1954).
ds :differential surface element Hodak, M. and Girifalco, L. A., “Fullerenes Inside Carbon Nanotubes
JFq :generalized hypergeometric series defined as (17) and Multi-walled Carbon Nanotubes: Optimum and Maximum Sizes;
G, : Meijer’s G function defined as (19) Chem. Phys. Leff350, 405 (2001).
R :radius Hodak, M. and Girifalco, L. A., “Cohesive Properties of Fullerene-filled
S : intersection between a cylinder of radius r and a sphere of Nanotube RopesChem. Phys. Lef363, 93 (2002).
radius R or surface of carbon nanotubes Hornbaker, D. J., Kahng, S. J., Misra, S., Smith, B. W., Johnson, A. T.,
t : center-to-center distance Mele, E. J., Luzzi, D. E. and Yazdani, A., “Mapping the One-dimen-
sional Electronic States of Nanotube Peapod Struckeiesice295
Greek Letters 828 (2002).
a  :angle between two crossed cylinders Hough, D. B. and White, L. R., “The Calculation of Hamaker Constants
p  :constant number density of a body from Lifshitz Theory with Applications to Wetting PhenomeAdy.
P : constant number of carbon atoms in unit surface area Colloid Interface Scil4, 3 (1980).
@ :interaction energy between an atom and a non-planar bodyHummer, G., Rasaiah, J. C. and Noworyta, J. P., “Water Conduction
@ :interaction energy between two non-planar bodies through the Hydrophobic Channel of a Carbon NanotiMaglire
414 188 (2001).
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