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Abstract−−−−The van der Waals interaction energies between non-planar geometries are obtained without the assumption
that the distance between two non-planar bodies is much smaller than radii of the non-planar bodies. Based on atom-
to-body van der Waals energies, we calculate body-to-body van der Waals interaction energies for several non-planar
geometries. Using the continuum approach, we discuss the van der Waals interactions in two-dimensional carbon
nanotubes and C60 molecules.
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INTRODUCTION

For two non-polar molecules separated by a distance 2 Å. 100 Å,
there always exists a long-range interaction, which is generally known
as the van der Waals interaction or the London dispersion interac-
tion. Forces due to the van der Waals interaction play an important
role in various phenomena such as adhesion, adsorption, surface
tension, transport in porous media, wetting, etc. [Israelachvili, 1973;
Hough and White, 1980; Adamczyk and van de Ven, 1981; Chang
and Wang, 1996; Bhattacharjee and Sharma, 1996, 1997; Gu and
Li, 2002]. Recently, the van der Waals interaction in nanoscale mat-
erials such as carbon nanotubes and nanowires has been studied
due to the wide variety of potential applications of nanoscale mat-
erials [Henrard et al., 1999; Qian et al., 2001; Mendelev et al., 2002;
Boustimi et al., 2002, 2003; Ulbricht et al., 2003].

Carbon nanotubes (CNTs), discovered by Iijima [1991], possess
remarkable electrical, mechanical, and thermal properties [Yakob-
son et al., 1996; Wildoer et al., 1998; Odom et al., 1998; Yu et al.,
2000]. For example, CNTs are 100 times stronger and 6 times light-
er than steel. They are composed of two-dimensional hexagonal ring
structures formed by rolling up graphene sheets. Morphologically,
a single-walled carbon nanotube (SWCNT) can be idealized as a
single rolled-up sheet of graphite, and a multi-walled carbon nano-
tube (MWCNT) as one containing many such co-axial tubes of vary-
ing diameter. At normal conditions, CNTs exist in bundle form (or
rope) in which each CNT is tied by the van der Waals interaction,
and are randomly oriented as shown in Fig. 1.

The van der Waals interaction is also a key issue in understand-
ing the mechanics of C60 (buckminister fullerene) and that of flow
of water molecules through CNTs [Qian et al., 2001; Hummer et
al., 2001]. It is very important in nanoscale CNT mechanics to ex-
actly estimate the van der Waals interactions between non-planar
bodies like cylindrical CNTs and spherical C60 molecules.

In calculating the van der Waals interaction energies between
non-planar bodies, the following assumption has been normally used:

the distance between two non-planar bodies is much smaller 
radii of the non-planar bodies [Israelachvili, 1991]. This assum
tion is no longer valid at the nanoscale. Gu and Li [1999] calcula
the van der Waals interaction between a spherical particle and a
inder in terms of the ratio of the separation distance to the radiu
the sphere. However, they assumed that all of the molecules 
thin circular disk of the sphere, parallel to the cylinder, are at 
same distance away from the cylinder surface.

In this paper, the van der Waals interaction energies between 
planar geometries are obtained without using the above assu
tions. We first calculate the atom-to-cylindrical body interactio
energies using the attractive term of the Lennard-Jones pote
The body-to-body interaction energies for several non-planar ge
etries are then obtained by using the atom-to-body interaction
ergies. In a similar way, we discuss the van der Waals interac
energies for two-dimensional cylindrical carbon nanotubes and sp
ical C60 molecules.

THEORY

Fig. 1. A high-resolution electron micrograph showing raft-like
bundles of single-walled carbon nanotubes [Qin and Iijima,
1997].
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If we consider an atom or a molecule at position r i and an atom
or a molecule at position r j that are sufficiently close together, there
exists a long-range intermolecular interaction acting between these
two atoms. The Lennard-Jones potential is commonly recommend-
ed for non-polar molecules such as methane [Hirschfelder et al.,
1954]:

(1)

where rij is the distance between the two atoms or the two mole-
cules. The parameters ε and σ represent the collision diameter and
well depth, respectively, which can be determined by using the sec-
ond virial coefficient and viscosity measurements [Hirschfelder et
al., 1954]. The r−6 term describes attractive forces known as disper-
sion forces (London forces or induced dipole-induced dipole forces)
[Israelachvili, 1991]. The r−12 contribution represents short-range re-
pulsive forces.

The non-retarded van der Waals energy between two atoms or
two molecules separated by a distance r has been generally esti-
mated by using the attractive term of the Lennard-Jones potential:

(2)

where C is the London dispersion force coefficient. Note that with
increasing r, the attractive force decays even faster than r−6, approach-
ing r−7. This is referred to as the retardation effect [Israelachvili, 1991].

In estimating the interaction energy between an atom and a mac-
roscopic body or between two macroscopic bodies, we will assume
that the intermolecular potential is pairwise additive. This means
that the total energy of an atom and a body is the sum of its pair
potentials with all of the molecules in the body--an assumption that
has been used by several authors [Hamaker, 1937; Mahanty and
Ninham, 1976; Israelachvili, 1991]. For condensed media this is
not correct, because it ignores the influence of neighboring mate-
rial on the interaction potentials between the materials at any pair
of points.

In order to avoid the assumption of pairwise additivity, Lifshitz
[1956] developed what we now refer to as Lifshitz theory by de-
scribing the interaction between bodies in the fluctuating electro-
magnetic field created by the material. Dzyaloshinskii et al. [1961]
generalized the Lifshitz theory, using the quantum field theory. Based
on the Lifshitz theory, one can calculate the Hamaker constants [Ham-
aker, 1937] used in expressing the van der Waals interaction energy
between two bodies, or an atom and a body. More details are de-
scribed in the book of Israelachvili [1991].

ATOM-TO-BODY INTERACTION ENERGY

1. Interaction between an Atom and a Cylinder
As shown in Fig. 2(a), an atom at a distance d away from the sur-

face of a cylinder of radius R interacts with the cylinder. The num-
ber of molecules in an infinitesimal differential element located on
a surface z=constant is ρdxdydz, where ρ is the constant number
density of molecules in the cylinder.

Since the distance between the atom and the differential element
is , the interaction energy between the atom and

(3)

In view of the pairwise additivity, the total interaction energy betwe
the atom and the cylinder can be estimated by the volume inte
tion of (3) over the cylinder. The length of AB is . If
the cylinder is assumed to be infinitely long, the total interact
energy is 

(4)

Here we have introduced the elliptic integrals of the first kind a
the second kind defined as [Abramowitz and Stegun, 1972]

(5)

In the limit of d/R�0, we have

(6)

Thus, Eq. (4) reduces to

(7)

which is identical to the net energy between an atom and a pl
surface [Israelachvili, 1991]. At a very close distance, the curva
effect on the interaction is negligible.

φ rij( ) = 4ε σ
ri j

----
 

 
 

12

 − 

σ
rij

----
 

 
 

6

φ r( ) = − 
C

r6
----

x2
 + y2

 + z + d( )2

dφc = − 
ρC

x2
 + y2

 + z + d( )2[ ]3
------------------------------------------dxdydz

2 2R − z( )z

φc d R,( ) = − 
ρC

x2
 + y2

 + z + d( )2{ }3
--------------------------------------------dxdydz

− ∞

∞
∫− 2R− z( )z

2R− z( )z∫0

2R∫

= − 
πρC

12d2 d + 2R( )3
-------------------------------- d2

 + 2dR + 8R2( )Im E
d + 2R( )2

d2
--------------------- 

 




− 2R d − 2R( )K 1− 
d + 2R( )2

d2
---------------------





K m[ ] 1− msin2θ( ) − 1 2⁄
dθ

0

π 2⁄∫≡

E m[ ] 1− msin2θ( )1 2⁄
dθ

0

π 2⁄∫≡

K 1− 
d + 2R( )2

d2
---------------------  = 0

d
R
--- 0→

lim

E
d + 2R( )2

d2
---------------------  = 

2R
d

-------i
d
R
--- 0→

lim

φc d( )  = − 
πρC

6d3
----------

Fig. 2. van der Waals interactions (a) between an atom and a cy-
linder, and (b) between an atom inside a hollow cylinder
and the hollow cylinder. The shadowed areas indicate planes
on which z=constant.
Korean J. Chem. Eng.(Vol. 21, No. 2)

the differential element is, using (2), Using (4), we can calculate the interaction energy of an atom and
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a hollow cylinder, whose inner and outer radii are Ri and Ro, respec-
tively. The interaction energy is expressed as 

φ(d)=φc(d, Ro)−φc(d, Ri) (8)

2. Interaction of an Atom inside a Hollow Cylinder
Now we consider the interaction energy of an atom inside a hol-

low cylinder whose inner radius is R. A schematic diagram is given
in Fig. 2(b). Since the distance between the atom and the differen-
tial element in the hollow cylinder is , the inter-
action energy of the atom and the element is 

(9)

With the pairwise additivity assumption, the total interaction energy
of the atom and the hollow cylinder can be written as

(10)

where the hollow cylinder is assumed to be infinitely long and wide.
If the atom is located at the center of the cylinder, i.e., d=R, then

(10) reduces to

(11)

In the limit d/R�0, Eq. (10) reduces to (7), which is the interac-
tion energy between an atom and a planer surface.

If the inner and outer radii of the hollow cylinder are Ri and Ro,
the net interaction energy can be written as

φ(d)=φh(d, Ri)−φh(d, Ro) (12)

BODY-TO-BODY INTERACTION ENERGY

Based on the atom-to-body interaction energies, we will calcu-
late the body-to-body interaction energies for several non-planar
geometries. In what follows, we will use the Hamaker constant A
defined as

A≡π2ρ1ρ2C (13)

where ρ1 and ρ2 are the number densities of molecules in bodies 1
and 2, respectively.
1. Interaction between a Hollow Cylinder and an Embedded
Solid Cylinder

We first consider the interaction of a hollow cylinder interacting
with an embedded solid cylinder as depicted in Fig. 3.

The distance between the differential element in the hollow cyl-
inder and the surface of the embedded cylinder is r−R1. In view of
(4), the interaction energy between the element and the embedded
cylinder can be expressed as

dΦ =φ (r−R , R)ρ 2πrdrdz (14)

Thus, the total interaction energy per unit length becomes

(15)

in which 

(16)

Here we have introduced two special functions; a generalized
pergeometric series defined as [Gradshteyn and Ryzhik, 1965

(17)

where (τ)n is the Pochhammer symbol [Abramowitz and Stegu
1972]:

(18)

and Meijer’s G function defined as [Gradshteyn and Ryzhik, 19
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Fig. 3. van der Waals interaction of a hollow cylinder and an em-
bedded solid cylinder.
March, 2004
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(19)

2. Interaction between Two Cylinders
For two parallel cylinders separated by a distance d as shown in

Fig. 4(a), we can calculate the interaction energy using (4). Any
point in the shadowed area of the illustration is separated by a dis-
tance r−R1 from the surface of the cylinder of radius R1. Since the
number of molecules per unit length in the shadowed area is ρ22θrdr,
the interaction energy between two parallel cylinders with a sepa-
ration distance d becomes

(20)

where

(21)

We now calculate the van der Waals energy for a more gen
case when two cylinders are crossed at an angle α. The illustration
is shown in Fig. 4(b). The crossed cylinders are separated by a
tance d. First, we need to calculate AC', the distance between the
differential element in the cylinder of radius R2 and the surface of
the cylinder of radius R1. Since BC is equal to EG, BC is R1+d+
R2−rcosθ. Since DF is rsinθ/tanα, AB is (z−rsinθ/tanα)sinα=zsinα
−rsinθcosα. Thus,

(22)

From (4), the interaction energy between two crossed cylind
can be expressed as

(23)
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Fig. 4. van der Waals interactions (a) between two parallel cylin-
ders, and (b) between two cylinders crossed at an angle αααα.

Fig. 5. van der Waals interactions (a) between a cylinder and a
sphere, and (b) between a cylinder and a sphere inside the
cylinder. The shadowed areas indicate the intersections of
a cylinder of radius r and the sphere.
Korean J. Chem. Eng.(Vol. 21, No. 2)
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where the length of the cylinder of radius R2 is assumed to be 2l.
Based on the assumption that the distance between two cylin-

ders is much smaller than theradii of the cylinders, Israelachvili [1991]
has given theoretical expressions on the interaction energies for two
parallel and crossed cylinders. In fact, the interaction energies cal-
culated by (20) and (23) are equal to those calculated by his results,
when d<<R1 and d<<R2.
3. Interaction between a Sphere and a Cylinder

In order to calculate the interaction between a cylinder and a sphere
as shown in Fig. 5(a), we first determine the intersection S of a cyl-
inder of radius r and a sphere of radius Rs. All of the points on S
are at the same distance r−Rc from the sur- face of the cylinder of
radius Rc. S can be determined by solving the following equations
simultaneously:

y2+z2=r2 (24)

x2+y2+(z− t)2=Rs
2 (25)

where t is the center-to-center distance, i.e.,

t≡Rs+d+Rc (26)

The corresponding solutions for x and y are

(27)

(28)

and the intersection is given as [Kaplan, 1991]

(29)

where dl is the arc length element around the surface of the cylin-
der.

Since all of the molecules in the element volume Sdr are at a dis-
tance r−Rc from the surface of the cylinder, using (4), we can ex-
press the interaction energy of the sphere and the cylinder as

(30)

The interaction energies calculated by using (30) for three differ-
ent radii of the cylinder are compared with previous results given
by Gu and Li [1999]. This is shown in Fig. 6. It should be noted
that they assumed that all of the molecules on a thin circular disk
of the sphere, parallel to the cylinder, are at the same distance away
from the cylinder surface. At a relatively big cylinder Rc/Rs=100,
the interaction energies obtained by both our and Gu and Li’s anal-
yses are equal to the energy between the sphere and a flat surface

calculated by Hamaker [1937], regardless of the distance betw
the sphere and the cylinder. That is, the curvature effect of the
inder on the interaction energy is negligible and thus their assu
tion is valid. As Rc/Rs decreases, the curvature effect plays a ve
important role in the van der Waals interaction energy. Howe
Gu and Li’s model does not capture the curvature effect of the 
inder at a relatively small distance d*.

In a similar way, we calculate the interaction energy betwee
cylinder and a sphere inside the cylinder as shown in Fig. 5(b).
use the interaction energy of an atom inside a hollow cylinder φh(d,
R) from (10). The total intersection can be expressed as (29) b
placing

t≡Rc−d−Rs (31)
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
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Fig. 6. van der Waals interaction energy of a sphere of radius Rs

and a cylinder of radius Rc: (a) Rc/Rs=100, (b) Rc/Rs=1, and
(c) Rc/Rs=0.01, where d*=d/Rs. Here the solid line repre-
sents the energy calculated using (30), and the dot line de
notes the energy calculated by Gu and Li [1999]. For refer-
ence, the energy between the sphere and a flat surface ca
culated by Hamaker [1937] is shown as the wide dot line.
March, 2004
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In the case of t≥Rs, we have the interaction as

(32)

When t<Rs, in r range of 0: (Rs−t), we will have a negative value
of the intersection calculated by (29) and (31). Therefore, the inter-
action energy becomes

(33)

DISCUSSION ON THE VAN DER WAALS
INTERACTION ENERGIES IN CARBON NANOTUBES

In this section, we discuss interaction energies which might exist
in two-dimensional carbon nanotubes and C60 molecules. They are
two-dimensional in the sense that the carbon atoms reside only in
an interface between two phases. Thus, the surface integral of (2)
should be used to calculate the van der Waals interactions in CNTs.
First, we calculate the van der Waals energies between a carbon

atom and a two-dimensional carbon nanotube, and between a
bon atom and a two-dimensional C60 molecule. Based on these, w
calculate the interaction energies for several cases of CNT geo
tries.
1. van der Waals Interaction between a Carbon Atom and a
SWCNT/C60

In Fig. 7, we illustrate three cases: a carbon atom outsid
SWCNT, a carbon atom inside a SWCNT, and a carbon atom 
side a C60 molecule. In order to calculate the interactions, we in
grate (2) over the surface S:

(34)

where ρ(σ) is the surface mass density, the number of carbon at
in the unit surface area.

In the case of Fig. 7(a), we have

(35)

and in the case of Fig. 7(b), we have 

(36)

The interaction energy between a carbon atom and a 60

molecule shown in Fig. 7(c) can be written as

(37)

where

x2+y2+z2=Rf
2 (38)

For a smooth function H[x, y, z=f(x, y)] defined on S, the doub
integral of H over S can be expressed as a double integral in
xy-plane [Kaplan, 1991]:

(39)

where Σ is the projection of S on the xy-plane. Using (38), (39), a
the change of variable [Kaplan, 1991], Eq. (37) becomes
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Fig. 7. van der Waals interactions of (a) a carbon atom outside a
SWCNT, (b) a carbon atom inside a SWCNT, and (c) a
carbon atom outside a C60 molecule. The distances r for
(a), (b), and (c) are

 and 
d  ++++ R t( )2

 ++++ Rt
2

 −−−− 2 d ++++ Rt( )R tcosθθθθ ++++ z2,
Rt −−−− d( )2 ++++ R t

2 −−−− 2 Rt −−−− d( )R tcosθθθθ ++++ z2, x2 ++++ y2 ++++ z−−−− d(
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(40)

2. van der Waals Interaction in a MWCNT
Now let us calculate the van der Waals interaction energy in an

n-layer multi-walled carbon nanotube (MWCNT) shown in Fig. 8.
With the inner radius of Ri and the interlayer distance of d, the

mth layer is at a distance of Ri+(m−1)d from the center. The sur-
face cylinder of mth the layer interacts with the other surface cylin-
ders. When i<m, the interaction energy between the mth layer and
the ith layer Φmi can be obtained using (35), while (36) is used when
i>m. Thus, the interaction energy per unit surface area of the mth

layer becomes

(41)

In Fig. 9, we illustrate the van der Waals interaction energy fo
20-layer MWCNT whose inner radius Ri is 1.0 nm. We have also
taken d=0.34nm, which is the interlayer distance of graphite. At 
layers, the interaction energy stiffly increases as the layer incre
There is little change in the interaction energy at relatively high lay
and the energy approaches the van der Waals energy of graph
3. van der Waals Interaction between Two SWCNTs Crossed
at an Angle αααα

As shown in Fig. 1, CNTs are randomly oriented in a bundle
CNTs or in a polymer matrix. In understanding CNT mechanics
is important to exactly estimate the interaction between two cros
CNTs. We again use Fig. 4(b). Since all of the carbon atoms re
in the surface, the distance between the differential surface ele
and the surface of the other SWCNT is given as, by using (22)

(42)

From (35) and (42), we can express the interaction between
SWCNTs crossed at an angle α as

(43)

where

(44)

4. van der Waals Interaction between C60 Molecules and Car-
bon Nanotubes

Very recently, C60 molecules encapsulated in carbon nanotub
so-called peapods, have been discovered by Smith et al. [1998
studied due to their unique electronic properties [Vavro et al., 20
Hornbaker et al., 2002]. In the peapods, the van der Waals inte
tion may be a key factor to determine their structures, sizes, 
properties [Okada et al., 2001; Hodak and Girifalco, 2001; Ulbri
et al., 2003]. The existing interactions in the peapods are illustr
in Fig. 10: C60-C60 and C60-SWCNT.

From a molecular point of view, the van der Waals interactio
in the peapods have been studied by Lu et al. [1992] and Ulb
et al. [2003]. Girifalco and Hodak [Girifalco, 1991, 1992; Girifalc
et al., 2000; Hodak and Girifalco, 2002] have also obtained exp
sions for the interactions by using the double surface integral o
Lennard-Jones potential. In calculating the interaction, they used
smeared-out sphere approximation.

In this section, we calculate the van der Waals interactions in
peapods system without the assumption. For the C60-C60 system de-
picted in Fig. 10(a), the distance between the surface element 
the right-C60 and the surface of the left-C60 is −Rf,
where t=d+2Rf. Using (40), we can write the net interaction betwe
two C60 molecules as

+  − 
C

r2
 + − Rf

2
 − r2

 − Rf − d( )
2

[ ]
3

------------------------------------------------------------- Rf

Rf
2

 − r2
------------------ρ σ( )rdrdθ

0

Rf∫0

2π
∫

= − 
4Cπρ σ( )Rf

2 d2
 + 2dRf  + 2Rf

2( )
d4 d + 2Rf( )4

---------------------------------------------------------------

Φm = Φmi
i = 1 i m≠( )

n

∑

= ρ σ( ) φt m − i( )d Ri  + i − 1( )d,[ ]
i = 1

m− 1

∑




+ φi i  − m( )d Ri  + i − 1( )d,[ ]
i = m+ 1

n

∑




AC' = R2 − R2cosθ  + d + R1( )2
 + zsinα − R2sinθcosα( )2

 − R1

Φtt d( )  = φt AC' R1,( )ρ σ( )R2dθ zd
0

2π
∫− l

l∫

=  − 
A σ( )R1R2

2π AC'( )3
AC' + 2R1( )4

----------------------------------------------------
0

2π
∫− l

l∫

4 AC'( )2
 + 2 AC'( )R1+ 2R1

2[ ]E − 
4R1 AC' + R1( )

AC'( )2
---------------------------------





− AC' + 2R1( )2
K − 

4R1 AC' + R1( )
AC'( )2

---------------------------------



dθdz

A σ( ) Cπ2ρ σ( )2≡

x2
 + y2

 + z − t( )2

Φff d( )  = φf x2
 + y2

 + z − t( )2
 − Rf Rf,( )ρ σ( )ds

S∫∫

Fig. 8. Schematic of an n layer multi-walled carbon nanotube.

Fig. 9. van der Waals interaction energy in a 20-layer multi-walled
carbon nanotubes with respect to layers. Here we have used
A(σσσσ)≡≡≡≡Cππππ 2ρρρρ(σσσσ)2. The dotted line indicates the van der Waals
energy in graphite.
March, 2004
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(45)

In view of (39) and the change of variables, this becomes

(46)

This is identical to the result given in the paper of Girifalco [1992
As seen in Fig. 10(b), the distance between the surface elem

ds in a C60 molecule and the surface of a SWCNT is −
Rt, where t=d+Rt+Rf. Thus, the interaction energy between the C60

molecule and the SWCNT can be written as, by using (35) and 

(47)

For a C60 molecule encapsulated in a SWCNT as shown in F
10(c), the interaction can be expressed as

(48)

where φi is in (36) and t=Rt−(d+Rf).
For these cases, the van der Waals energies calculated from

given by Girifalco et al. [2000] are listed in Table 1. For some
the systems, the interaction energies are equal to those calculate
merically by using Eqs. (7) and (10) in the paper of Girifalco et
[2000].

Note that for each system the surface Hamaker constant de
in (44) is slightly different from the graphene-graphene system [G
falco et al., 2000; Hodak and Girifalco, 2001].

CONCLUSIONS

For the van der Waals interaction energies of several non-pl
bodies, we have obtained simple analytic expressions without as

=  − 
4Cπρ σ( )2Rf

2 x2
 + y2

 + z − t( )2
 + Rf

2[ ]
x2

 + y2
 + z − t( )2

 − Rf
2[ ]4

----------------------------------------------------------------------------ds
S∫∫

Φff d( ) = − 
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2 x2
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Fig. 10. van der Waals interactions in peapods: (a) the interaction
between two C60 molecules, (b) the interaction between a
C60 molecule and a SWCNT, and (c) the interaction be-
tween an encapsulated C60 molecule and a SWCNT.

Table 1. van der Waals interaction energies in a peapods system

System Radius (Rf, Rt)
a
 Å Equil. spacing (d)a Å Energy (Φ/A(σ)) Å−2 Energy (Φ/A(σ)) Å−2

C60-C60 3.55 2.950 −0.0155b −0.0155f

C60-(10, 10) tube 3.55, 6.785 2.945 −0.0329c −0.0329g

Encap. C60-(10, 10) tube 3.55, 6.785 3.235 −0.2030d -

(10, 10)-(10, 10) tube 6.785 3.154

−0.0069e −0.0069g

−0.0076e -

−0.0086e -
aGiven by Girifalco et al. [2000].
bCalculated using (46).
cCalculated using (47).
dCalculated using (48).
eCalculated using (43).
fCalculated using an expression given by Girifalco [1992].
g

α  = 0

α  = 45o

α  = 90o





Korean J. Chem. Eng.(Vol. 21, No. 2)

Calculated using expressions given by Girifalco et al. [2000].
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ing that the distance between non-planar bodies is much smaller
than the radii of the non-planar bodies. Thus, one can easily com-
pute the interaction energies between non-planar bodies without a
complicated numerical integration tool. Also, the results could be
applied to nanoscale non-planar materials like nanowires.

From the continuum approach, we have also obtained the van
der Waals interaction energies between carbon atoms and two-di-
mensional carbon nanotubes including C60 molecules. Based on these,
we calculated the interaction energy for multi-walled carbon nano-
tubes. In the MWCNT, the interaction energy quickly approaches
that of graphite as the number of layers increases. We also obtained
the interaction energy between two SWCNTs crossed by an angle.
For the peapods system, where C60 molecules are encapsulated in
carbon nanotubes, we have computed the van der Waals interac-
tion energies using the magnitude for an equilibrium spacing given
by Girifalco et al. [2000].

NOMENCLATURE

A : Hamaker constant defined by (13)
A(σ) : surface Hamaker constant defined by (44)
C : London dispersion force coefficient
d : distance between an atom and a body or between two bod-

ies
ds : differential surface element

pFq : generalized hypergeometric series defined as (17)
: Meijer’s G function defined as (19)

R : radius
S : intersection between a cylinder of radius r and a sphere of

radius RS or surface of carbon nanotubes
t : center-to-center distance

Greek Letters
α : angle between two crossed cylinders
ρ : constant number density of a body
ρ(σ) : constant number of carbon atoms in unit surface area
φ : interaction energy between an atom and a non-planar body
Φ : interaction energy between two non-planar bodies
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