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Abstract—An inverse problem is solved to obtain the particle concentration profile in suspension under pressure-
driven flow with electrical impedance tomography (EIT). The finite element method (FEM) is employed in the forward
problem and the regularized Newton-Raphson iterative method is used in the inverse problem. Different FEM meshes
are used in the forward and the inverse problem not to commit inverse crime. To avoid post-calibration of measurement
data, the complete electrode model is introduced. For the evaluation of the robustness of the reconstruction algorithm,
several testing cases with measurement error are considered. The proposed algorithm can be used to reconstruct the
particle concentration in suspension.

Key words: Particle Concentration, Electrical Impedance Tomography, Complete Electrode Model, Inverse Crime, Regular-
ization

INTRODUCTION case, 1999), because it is relatively inexpensive and has good time
resolution even though it has relatively poor spatial resolution with
The processing of suspension is important in manufacturing ofespect to NMR or X-ray CT. Unlike the X-ray CT, the current does
many products such as composite materials, food, paper, and patret cross the electrodes on the boundary of the syserie cur-
sonal care products. Since the particle volume-fraction distributionrent distribution is a function of impedance distribution inside the
in suspension has an effect on many rheological properties such agstem. Because of this fact, the inverse Fourier transform, like that
relative viscosity, the information on the particle concentration isused in other technique, cannot be used in EIT. Then, EIT requires
essential for understanding the industrial process. Hence, the part: more sophisticated image reconstruction algorithm than other im-
cle-volume fraction distribution in suspensions has attracted manyaging technigues such as X-ray CT. The data acquisition time and
researchers interest for a long time. Gadala-Maria and Acrivos [1980he spatial resolution of EIT system reach a few ms and 5%, respec-
observed a decrease of the suspension viscosity in a Couette rhdrely [Ovacik and Jones, 1998].
ometer due to the change of particle concentration distribution driven In the present study, a new online-monitoring algorithm to visu-
by the shear. Later, Leighton and Acrivos [1987] showed experi-alize shear-induced particle migration in the pressure-driven flow
mentally and theoretically that the particles migrate from the highetby the nonintrusive EIT technique is proposed. To overcome the
shear region (inner wall) to the lower one (outer wall) in a Couettepost-calibration of measurement data, a complete electrode model
rheometer and this migration causes a decrease in the apparent vis-employed, and to avoid a so-called inverse crime, node-based
cosity. Using nuclear magnetic resonance (NMR) imaging, AbotteFEM is used to get the synthetic measurement data, and element-
et al. [1991] found that particles migrate away from the inner cyl-base FEM is used in the reconstruction algorithm. And, to enhance
inder toward the outer wall under the low shear rate in a Couett¢he computational efficiency, different meshes are used in the forward
rheometer. Many other studies on particle migration under sheaand inverse problems; the Jacobian is calculated by employing the
have been conducted by using NMR images [Chow et al., 1994sensitivity method. In order to show the robustness of the proposed
Mondy et al., 1994; Corbett et al., 1995] and laser Doppler veloci+econstruction algorithm, we test several artificial particle concen-
metry (LDV) [Koh et al., 1994; Lyon and Leal, 1998]. Based on tration distributions.
the experimental findings, the first theoretical model for the parti-
cle migration under shear was proposed by Leighton and Acrivos THEORETICAL BACKGROUND OF EIT SYSTEM
[1987]. By extending their model, Phillips et al. [1992] proposed a
new constitutive equation, which can describe the actual particle The relationship between the dimensionless conduatiyiymd
concentration profile. This model predicted the experimental resultvolume fraction ¢of nonconducting suspension particles such as
of particle concentration profile under the Couette and Poiseuilleplastic bead and gaseous bubble is given as [Meredith and Tobias,
flows quite well. 1961]
Recently, EIT technique has been employed to investigate two- 24-(63+4480, +6402)"”

phase flow phenomena [Reinecke et al., 1988; Butler and Bonne- c, = 2(8+0) @)
d.

To whom correspondence should be addressed. whereg,=adig; is the ratio of the conductivity of suspension to that
E-mail: mckim@cheju.ac.kr of pure liquid. By using the above equation, the conductivities are
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Fig. 1. Schematic diagram of EIT system.

converted into the particle concentrations. In this study, we intro-
duce EIT technique to obtain the particle concentration distribution
in suspension.

In the EIT system an array of electrodes is attached on the bount
ary of an object. Small alternating currents are injected through thes
electrodes and the resulting voltages are measured. From these bou
ary measurement data the internal conductivity (or impedance) dis
tribution of the object, that is, the particle concentration distribu-
tion, can be obtained. A schematic diagram of the EIT system i
shown in Fig. 1.

In terms of mathematics, the EIT reconstruction problem is a non
linear ill-posed inverse problem. The numerical algorithm, which
converts the boundary measurement data to the internal conducti
ity distribution, consists of iteratively solving the forward problem
and updating the conductivity distribution as determined by the for-
mulation of inverse problem. The forward problem of EIT calcu-
lates the boundary voltages by using the assumed conductivity dis
tribution, and the inverse problem reconstructs the conductivity dis:
tribution by using the boundary voltage measurements. The detail
of the forward and the inverse problems are discussed below.

1. Forward Problem

When the conductivity distributioar and boundary current |
through thd'th electrode are givethe electrical potential distribu-
tion u within the problem domaif® is governed by the following
Laplace equation:

0Qodu) =0, xOQ 2

There are several models on the boundary conditions, such as cc
tinuum model, gap model, shunt model and complete electrode moc
el [Vauhkonen, 1997]. Among these models, the complete elec
trode model is the most realistic model that considers the shunt e
fect of the electrodes and the contact impedances between the el
trodes and suspension. In the complete electrode model, the boun
ary conditions are

u+zlag—‘lj =U, xUe, 1=1,2,...,L (3a)
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J’aag—‘u/dSZI, xOe, 1=1,2,.... L 3b)
ag—“j =0, x00Q\0 e, 30)

where eis thel'th electrode, zis the effective contact impedance

between théth electrode and the object, id the voltage on elec-

trode ¢ v is the outward directed normal vector. In addition, the
following two conditions for the injected currents and the mea-
sured voltages are needed to ensure the uniqueness of the solution:

(4a)

(4b)
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Fig. 2. FEM meshes. (a) mesh used in forward problem, (b) mesh
used in inverse problem. Locations and size of the electrodes
are marked with darkened elements.
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simultaneously as follows: mitted an inverse crime because they used the same FEM mesh and
numerical scheme in numerical experiments. In the present study, a
jk=Hlcos(K) 1=1,2,..., 32, k=1, 2,... 16 ©) complete electrode model which considers the contact impedances
Olesin(kg) 1=1, 2,...,32,k=1,2,... 15 between the electrodes and electrolyte and the effect of finite width

of electrodes is used, and the conductivity values of elements in
where=271/32. It is known that this current pattern called trigo- any ring are set to the same value to enforce the Symmetric con-
nometric pattern is the best to distinguish a central circular inhoductivity profile. So, the present forward model is more physically
mogeneity inside the homogeneous circular conductor. This modetealistic than that of Butler and Bonnecaze [1999].
has been shown to predict the measured voltages at the precisioninverse Problem
of the measurement system [Sommersalo et al., 1992]. Therefore, The inverse problem of EIT maps the boundary voltages from
the complete electrode model does not need to be calibrated to theal or artificial experiments to the impedance image. The regularized

experimental data to account for discrepancies between the expegibjective function may be chosen to minimize the squared error,
mental measurements and the solution of the forward problem due

to the contact impedance and the geometrical mismatches of elec- P(9=[V= U(@)]'IV-U(@)I+alR(o-0)'[R(o- )] ®)

trodes position and width between experimental condition and FEMyhereV is the vector of measured voltagip) is the calculated

meshes. boundary voltage vector that must be matched ® is the reg-
Since the above equation cannot be solved analytically for thejlarization matrixa is the regularization parameter asids the

arbitrary conductivity distribution, a numerical method such as theassumed conductivity vector. So, the iterative equation to update

FEM method should be employed to obtain the solutions. The FEMhe conductivity vector based on the above regularized object func-
meshes shown in Fig. 2 are used in this study. As shown in this figtion becomes

ure, to obtain boundary voltages accurately, the forward solver will o T . .
use finer mesh than the inverse solver. Furthermore, if the same mesh?" =0+(H+aR R {J (U(0)-V)-aR [R(-0)]}, ©

and numerical scheme are used both in the simulation of the megyhereH=U" is the Hessian matrix and is approximated as the square
surement data and in the solution of the inverse problem, we magf the Jacobian for the computational efficiency. The effect of reg-
commit a so-called inverse crime, where numerical errors may bejlarization methods on the quality of reconstructed images is dis-
cancelled out inadvertently. To avoid inverse crime, not only differ- cussed in Kim et al. [2001] for the gas-liquid two-phase flow situa-
ent FEM meshes as shown in Fig. 2 but also different FEM schemegon. In the present problem, the conductivity is constrained to be a
are used. The node-based FEM calculation is used to get the Syfimction of radial position and can be smooth. From this prior in-
thetic boundary voltages which are assumed to be the experiment@rmation on particle concentration distribution, the first-order dif-
data in the numerical simulation, and element-based FEM is emference regularization is employed. In this regularization method,
ployed in the reconstruction algorithm. In node-based calculationthe regularization matriR is chosen to b&p}=|Jal, andd' is set

the continuous conductivity distribution is approximated as: to 0. In this case, the gradient of the conductivity of the e-th ele-
N ment can be approximated as the differences between the conduc-
o=y 9(x,y)0,. (6) tivity of e-th element and those of the nearest neighbor elements
n=1

that share the face of the finite element. A large regularization pa-
Here,@(x, y) is the basis functiom, is the conductivity at node n  rameter forces the conductivity distribution to be constant.
and N is the number of nodes. However, in element-based calcula- In the present case, the particle concentration shows axial sym-

tion the conductivity distribution is parameterized such that metric characteristics, so the conductivity values of element in any
. ring of Fig. 2(a) are set to the same value, and the elements in any
Z OuXer W) ring were grouped into one pseudo-element. The Jacobian and reg-

ularization matrices for these pseudo-elements are transformed as
wherey, is the characteristic function whose values is 1 at the e-th
element and 0 at other elememtsis the conductivity at e-th ele-
ment and E is the number of elements. The details on the numeri- R,=G'RG (11)
cal solution of the forward problem have been discussed in our pre-
P PrvhereG=(G,, G, ... G)0O"*®, G=(0,0, ...,0, 1,1, ..., 1,0, 0,

\r/rg':es dvgékcg(nlgsjftfv?t;/ d?gtgglnzﬂ:ztspéevg;?]qrr%ieif&ife?\)/%?;sl- , 000" where 1's are located at the columns where the ele-
d g ments are grouped into the i-th annular, and NG is the number of

So, they may have committed an inverse crime.
Butler and Bonnecaze [1999] adopted the EIT for the Vlsuahza_pseudo -elements. So, the iterative equation to update the conduc-
tivity vector for the pseudo-element becomes

tion of the particle shear migration. They assumed the particle con-
centration within the element was constant and the conductivity val- g =g+QiJs+aR.R) {IL(U(0)-V)-aRIRdS, 12

ues of the elements in any ring were the same. Since they used thc?1 . .
shunt and point electrode model, to account the contact |mpedance ere; is the conduciivity vector for the pseudo-element. The
nitial guess for the conductivity distribution is chosen in the follow-

and the finite electrode width effect, the measurement data shou I% wav. Itis assumed that the boundary voliages are decomposed as
be calibrated based on the relationship between preliminary experi- g way. v 9 P

ment data and the synthetic measurements from the forward solu-
tion for a homogeneous conductivity. And they might have com-

J,=GJ (10)

U(0)=ZU(0). 13)
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where g, is an arbitrarily chosen constant conductivity. And, the

.. L . 0.8 - Original distribution
best .hom(.)genec.)us conductiviy that minimizes the following 7| Reconstructed distribution with 0o error
functional is obtained by least-square method. o7k Reconstructed distribution with 0.1% error
’ -—--- Reconstructed distribution with 0.5% error
)
v -2u()| (14) ol ]

In the iteration of the inverse problem, we have to solve the for-
ward problem in order to obtain the boundary voltages and the Je
cobian matrix. Much of computation time is consumed in calculat-
ing the Jacobian matrix. So, to calculate the Jacobian matrix is on
of key factors in the performance of the reconstruction algorithm.
The standard finite difference method was employed in most of the
previous works. However, by considering the ease of programming
and computational speed, we used the sensitivity method based «
the Geselowitzs theorem. In our experience, our algorithm base
on the sensitivity method is more than 10 times faster than the starg.
dard method. And, furthermore by reordering of matrix product,
we increased the calculation speed of the Jacobian matrix based on
the sensitivity method more than 10 times. So, the speed of the pres-
ent algorithm to calculate the Jacobian matrix is about 100 times
faster than the conventional standard finite difference method, whicl
was used in most of the previous studies [Yorkey et al., 1987; Butle
and Bonnecaze, 1999].

In the sensitivity method, the element of the Jacobian matrix is -
calculated as

Conductivity [Q'm™]

1

0.2
0.0
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where yand y are the voltage distribution when tfte andkth
current patterns are used, respectively. The integral of the abov
equation is calculated in FEM formulation of Eq. (1) as a part of
the forward problem.

0.55

0.4 0.6

SIMULATION RESULTS AND DISCUSSION Radial Position (t/R)

4. Computer simulation result for the conductivity profile

showing the minimum. The regularization parameter isa=
10°.

Unlike many other types of imaging techniques, making generalFlg'
statements about the limitations of imaging with EIT is difficult or
impossible. The resolution of the EIT system depends on various
variables, such as conductivity contrast and distribution, injected
current pattern, and the errors in current injection and voltage meaheoretically and experimentally. When the volume fraction is given,
surement. Therefore, to verify the appropriateness of EIT for thethe particle concentration distribution can be obtained analytically
present system, a series of simulations should be conducted. by the diffusion model [Phillips et al., 1992]. Based on the concen-

To investigate the effect of the conductivity distribution and the tration distribution by the diffusion model and Eg. (1), we obtain
measurement error level on the resolution of reconstructed imagéhe original conductivity distribution and then conduct a numerical
we consider several artificial conductivity distributions and obtain simulation to reconstruct it. The reconstructed particle concentra-
the synthetic boundary voltages by using the forward solver describetibn distribution forfe,[01=0.45 is summarized in Fig. 5.
earlier. And to test the robustness of our algorithm against the mea- Hampton et al. [1997] showed in their experiment employing
surement error, Gaussian random noise of zero mean is introducedMR that the particle concentration decreases suddenly near the
For the shear-induced particle migration in suspension, the corwall for a certain condition. To simulate this situation, we assumed
ductivity distribution can be expected to be continuous. The con-conductivity profiles as shown in Fig. 6 and reconstructed the con-
ductivity distribution of the first example shows a monotonic in- ductivity profile. As shown in Fig. 6, the reconstructed profile match-
crease from the center to the wall, as shown in Fig. 3. In the sees the original profile very well near the wall and the area-aver-
ond example of Fig. 4, the conductivity distribution shows a mini- aged conductivity value is reconstructed in the region where the
mum point. conductivity profile shows a sudden jump. Even though the present

As a third example, we consider a particle concentration distri-reconstruction algorithm is developed for a conductivity profile which
bution for a given volume fraction. The particle volume-fraction is smooth, it can be used for the situation showing a large disconti-
distribution under the pressure-driven flow has been investigateahuity. As shown in Figs. 3-6, the particle concentration distribution
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Fig. 5. Reconstructed result based on diffusion model [Phillips et

al., 1992] for the case of average volume fractidm,[] =0.45.

The regularization parameter isa=10°.
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Fig. 7. Root-mean-squared coductivity difference for the second
example system (see Fig. 4).
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Fig. 6. Computer simulation result for the conductivity profile
showing the jump neat the outer wall. The regularization
parameter is a=10".

Fig. 8. Root-mean-squared error for the second example (see Fig.
4).

For the second example systemvalues for the reconstructed con-

reconstructed by the EIT algorithm is quite reasonable except theluctivities are given in Fig. 7, whegeshows minimum atr=10°.
inner region, where the discrepancy may be large due to the loosgo, the regularization parameter is setrtd0°® in all the above
cause (the change of conductivity vector)-and-effect (the boundangxamples.
voltages) relationship. The small effective area and the distance from Since in real situations the original conductivity vector is unknown,
the electrodes weaken the cause-and-effect relationship. The recoinother words; cannot be calculated, the root-mean-squared error
structed images show that our algorithm reconstructs the origing{RMSE) defined as
distribution reasonably and also can treat the measurement errors -
within the level of 0.5%. g,= MLT(M

There are several methods for choosing in some sense optimal Vv
regularization parametess However, the different criteria will yield  is used as the convergence criterion for the inverse probleris If
results of different optimality. Since the true distribution in the sim- less than the predetermined small value, convergence is assumed
ulations was known, the regularization parameters were chosen iand the reconstruction algorithm is terminated. For the second ex-
such way that the root-mean-squared conductivity difference deample system, RMSE is given in Fig. 8, where RMSE decreases
fined as exponentially for the first two iterations, and becomes nearly a con-

——— stant value after the third iteration. Other examples also exhibit sim-
¢ = [(@29)(0,~0)
0,0,

ilar trends. Hence, the quality of the reconstructed image does not
had a minimum value, whete is the original conductivity vector.

an

(16)
improve after several iteration steps, and the maximum number of
iteration is set to 10.
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