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Abstract−−−−An inverse problem is solved to obtain the particle concentration profile in suspension under pressure-
driven flow with electrical impedance tomography (EIT). The finite element method (FEM) is employed in the forward
problem and the regularized Newton-Raphson iterative method is used in the inverse problem. Different FEM meshes
are used in the forward and the inverse problem not to commit inverse crime. To avoid post-calibration of measurement
data, the complete electrode model is introduced. For the evaluation of the robustness of the reconstruction algorithm,
several testing cases with measurement error are considered. The proposed algorithm can be used to reconstruct the
particle concentration in suspension.
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INTRODUCTION

The processing of suspension is important in manufacturing of
many products such as composite materials, food, paper, and per-
sonal care products. Since the particle volume-fraction distribution
in suspension has an effect on many rheological properties such as
relative viscosity, the information on the particle concentration is
essential for understanding the industrial process. Hence, the parti-
cle-volume fraction distribution in suspensions has attracted many
researchers interest for a long time. Gadala-Maria and Acrivos [1980]
observed a decrease of the suspension viscosity in a Couette rhe-
ometer due to the change of particle concentration distribution driven
by the shear. Later, Leighton and Acrivos [1987] showed experi-
mentally and theoretically that the particles migrate from the higher
shear region (inner wall) to the lower one (outer wall) in a Couette
rheometer and this migration causes a decrease in the apparent vis-
cosity. Using nuclear magnetic resonance (NMR) imaging, Abotte
et al. [1991] found that particles migrate away from the inner cyl-
inder toward the outer wall under the low shear rate in a Couette
rheometer. Many other studies on particle migration under shear
have been conducted by using NMR images [Chow et al., 1994;
Mondy et al., 1994; Corbett et al., 1995] and laser Doppler veloci-
metry (LDV) [Koh et al., 1994; Lyon and Leal, 1998]. Based on
the experimental findings, the first theoretical model for the parti-
cle migration under shear was proposed by Leighton and Acrivos
[1987]. By extending their model, Phillips et al. [1992] proposed a
new constitutive equation, which can describe the actual particle
concentration profile. This model predicted the experimental results
of particle concentration profile under the Couette and Poiseuille
flows quite well.

Recently, EIT technique has been employed to investigate two-
phase flow phenomena [Reinecke et al., 1988; Butler and Bonne-

case, 1999], because it is relatively inexpensive and has good
resolution even though it has relatively poor spatial resolution w
respect to NMR or X-ray CT. Unlike the X-ray CT, the current do
not cross the electrodes on the boundary of the system, i.e., the cur-
rent distribution is a function of impedance distribution inside t
system. Because of this fact, the inverse Fourier transform, like
used in other technique, cannot be used in EIT. Then, EIT requ
a more sophisticated image reconstruction algorithm than other
aging techniques such as X-ray CT. The data acquisition time 
the spatial resolution of EIT system reach a few ms and 5%, res
tively [Ovacik and Jones, 1998].

In the present study, a new online-monitoring algorithm to vis
alize shear-induced particle migration in the pressure-driven f
by the nonintrusive EIT technique is proposed. To overcome 
post-calibration of measurement data, a complete electrode m
is employed, and to avoid a so-called inverse crime, node-ba
FEM is used to get the synthetic measurement data, and elem
base FEM is used in the reconstruction algorithm. And, to enha
the computational efficiency, different meshes are used in the forw
and inverse problems; the Jacobian is calculated by employing
sensitivity method. In order to show the robustness of the propo
reconstruction algorithm, we test several artificial particle conc
tration distributions.

THEORETICAL BACKGROUND OF EIT SYSTEM

The relationship between the dimensionless conductivity σd and
volume fraction cv of nonconducting suspension particles such 
plastic bead and gaseous bubble is given as [Meredith and To
1961]

(1)

where σd=σ/σ0 is the ratio of the conductivity of suspension to th
of pure liquid. By using the above equation, the conductivities 

cv = 
24 − 63 + 448σd + 64σd

2( )1 2⁄

2 8 + σd( )
--------------------------------------------------------------
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converted into the particle concentrations. In this study, we intro-
duce EIT technique to obtain the particle concentration distribution
in suspension.

In the EIT system an array of electrodes is attached on the bound-
ary of an object. Small alternating currents are injected through these
electrodes and the resulting voltages are measured. From these bound-
ary measurement data the internal conductivity (or impedance) dis-
tribution of the object, that is, the particle concentration distribu-
tion, can be obtained. A schematic diagram of the EIT system is
shown in Fig. 1.

In terms of mathematics, the EIT reconstruction problem is a non-
linear ill-posed inverse problem. The numerical algorithm, which
converts the boundary measurement data to the internal conductiv-
ity distribution, consists of iteratively solving the forward problem
and updating the conductivity distribution as determined by the for-
mulation of inverse problem. The forward problem of EIT calcu-
lates the boundary voltages by using the assumed conductivity dis-
tribution, and the inverse problem reconstructs the conductivity dis-
tribution by using the boundary voltage measurements. The details
of the forward and the inverse problems are discussed below.
1. Forward Problem

When the conductivity distribution σ and boundary current Il

through the l’th electrode are given, the electrical potential distribu-
tion u within the problem domain Ω is governed by the following
Laplace equation:

(2)

There are several models on the boundary conditions, such as con-
tinuum model, gap model, shunt model and complete electrode mod-
el [Vauhkonen, 1997]. Among these models, the complete elec-
trode model is the most realistic model that considers the shunt ef-
fect of the electrodes and the contact impedances between the elec-
trodes and suspension. In the complete electrode model, the bound-
ary conditions are

(3a)

(3b)

(3c)

where el is the l’th electrode, zl is the effective contact impedanc
between the l’th electrode and the object, Ul is the voltage on elec-
trode el, ν is the outward directed normal vector. In addition, t
following two conditions for the injected currents and the me
sured voltages are needed to ensure the uniqueness of the sol

(4a)

(4b)

In this study, we inject simple current patterns into 32 electro

∇ σ∇u( ) = 0, x Ω∈⋅

u + zlσ
∂u------  = Ul x el∈ , l  = 1, 2, …, L

σ∂u
∂ν
------dS = I l x el∈ , l  = 1, 2, …, L

el
∫

σ∂u
∂ν
------  = 0, x ∂Ω∈ \  

l = 1
L∪ el,

I l  = 0,
l = 1

L

∑

Ul  = 0.
l = 1

L

∑

Fig. 1. Schematic diagram of EIT system.

Fig. 2. FEM meshes. (a) mesh used in forward problem, (b) mesh
used in inverse problem. Locations and size of the electrodes
Korean J. Chem. Eng.(Vol. 21, No. 2)

∂ν are marked with darkened elements.
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simultaneously as follows:

(5)

where ζl=2πl/32. It is known that this current pattern called trigo-
nometric pattern is the best to distinguish a central circular inho-
mogeneity inside the homogeneous circular conductor. This model
has been shown to predict the measured voltages at the precision
of the measurement system [Sommersalo et al., 1992]. Therefore,
the complete electrode model does not need to be calibrated to the
experimental data to account for discrepancies between the experi-
mental measurements and the solution of the forward problem due
to the contact impedance and the geometrical mismatches of elec-
trodes position and width between experimental condition and FEM
meshes.

Since the above equation cannot be solved analytically for the
arbitrary conductivity distribution, a numerical method such as the
FEM method should be employed to obtain the solutions. The FEM
meshes shown in Fig. 2 are used in this study. As shown in this fig-
ure, to obtain boundary voltages accurately, the forward solver will
use finer mesh than the inverse solver. Furthermore, if the same mesh
and numerical scheme are used both in the simulation of the mea-
surement data and in the solution of the inverse problem, we may
commit a so-called inverse crime, where numerical errors may be
cancelled out inadvertently. To avoid inverse crime, not only differ-
ent FEM meshes as shown in Fig. 2 but also different FEM schemes
are used. The node-based FEM calculation is used to get the syn-
thetic boundary voltages which are assumed to be the experimental
data in the numerical simulation, and element-based FEM is em-
ployed in the reconstruction algorithm. In node-based calculation,
the continuous conductivity distribution is approximated as:

(6)

Here, ϕ(x, y) is the basis function, σn is the conductivity at node n
and N is the number of nodes. However, in element-based calcula-
tion the conductivity distribution is parameterized such that

(7)

where χe is the characteristic function whose values is 1 at the e-th
element and 0 at other elements, σe is the conductivity at e-th ele-
ment and E is the number of elements. The details on the numeri-
cal solution of the forward problem have been discussed in our pre-
vious work [Kim et al., 2003]. Most previous researchers approxi-
mated the conductivity distribution as Eq. (7) throughout their works.
So, they may have committed an inverse crime.

Butler and Bonnecaze [1999] adopted the EIT for the visualiza-
tion of the particle shear migration. They assumed the particle con-
centration within the element was constant and the conductivity val-
ues of the elements in any ring were the same. Since they used the
shunt and point electrode model, to account the contact impedance
and the finite electrode width effect, the measurement data should
be calibrated based on the relationship between preliminary experi-
ment data and the synthetic measurements from the forward solu-
tion for a homogeneous conductivity. And they might have com-

mitted an inverse crime because they used the same FEM mes
numerical scheme in numerical experiments. In the present stu
complete electrode model which considers the contact impeda
between the electrodes and electrolyte and the effect of finite w
of electrodes is used, and the conductivity values of elemen
any ring are set to the same value to enforce the symmetric 
ductivity profile. So, the present forward model is more physica
realistic than that of Butler and Bonnecaze [1999].
2. Inverse Problem

The inverse problem of EIT maps the boundary voltages fr
real or artificial experiments to the impedance image. The regular
objective function may be chosen to minimize the squared erro

Φ(σ)=[V−U(σ)]T[V−U(σ)]+α[R(σ−σ*)]T[R(σ−σ*)] (8)

where V is the vector of measured voltage, U(σ) is the calculated
boundary voltage vector that must be matched to V, R is the reg-
ularization matrix, α is the regularization parameter and σ* is the
assumed conductivity vector. So, the iterative equation to up
the conductivity vector based on the above regularized object f
tion becomes

σk+1=σk+(H+αRTR)−1{JT(U(σ)−V)−αRT[R(σk−σ*)]}, (9)

where H=U'' is the Hessian matrix and is approximated as the squ
of the Jacobian for the computational efficiency. The effect of r
ularization methods on the quality of reconstructed images is 
cussed in Kim et al. [2001] for the gas-liquid two-phase flow situ
tion. In the present problem, the conductivity is constrained to b
function of radial position and can be smooth. From this prior 
formation on particle concentration distribution, the first-order d
ference regularization is employed. In this regularization meth
the regularization matrix R is chosen to be |Rσ|≈|∇σ|, and σ* is set
to 0. In this case, the gradient of the conductivity of the e-th 
ment can be approximated as the differences between the co
tivity of e-th element and those of the nearest neighbor elem
that share the face of the finite element. A large regularization
rameter forces the conductivity distribution to be constant.

In the present case, the particle concentration shows axial s
metric characteristics, so the conductivity values of element in 
ring of Fig. 2(a) are set to the same value, and the elements in
ring were grouped into one pseudo-element. The Jacobian and
ularization matrices for these pseudo-elements are transformed

JG=GJ (10)

RG=GTRG (11)

where G=(G1, G2, … GG)∈ℜN×NG, Gi=(0, 0, …, 0, 1, 1, …, 1, 0, 0,
…, 0)T∈ℜN×1 where 1’s are located at the columns where the e
ments are grouped into the i-th annular, and NG is the numbe
pseudo-elements. So, the iterative equation to update the con
tivity vector for the pseudo-element becomes

σG
k+1=σG

k+(JG
TJG+αRG

TR)−1{JG
T(U(σ)−V)−αRG

TRσG
k}, (12)

where σG is the conductivity vector for the pseudo-element. T
initial guess for the conductivity distribution is chosen in the follow
ing way. It is assumed that the boundary voltages are decompos

(13)

I l
k

 = 
I0cos kζl( ) l  = 1, 2, …, 32, k = 1, 2, … 16

I0sin kζl( ) l  = 1, 2, …, 32, k = 1, 2, … 15



σ = ϕ x y,( )σn.
n = 1

N

∑

σ = σeχe,
e= 1

E

∑

Ul σ( ) σ
σr

-----Ul σr( ).≈
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where σr is an arbitrarily chosen constant conductivity. And, the
best homogeneous conductivity σ0 that minimizes the following
functional is obtained by least-square method.

(14)

In the iteration of the inverse problem, we have to solve the for-
ward problem in order to obtain the boundary voltages and the Ja-
cobian matrix. Much of computation time is consumed in calculat-
ing the Jacobian matrix. So, to calculate the Jacobian matrix is one
of key factors in the performance of the reconstruction algorithm.
The standard finite difference method was employed in most of the
previous works. However, by considering the ease of programming
and computational speed, we used the sensitivity method based on
the Geselowitzs theorem. In our experience, our algorithm based
on the sensitivity method is more than 10 times faster than the stan-
dard method. And, furthermore by reordering of matrix product,
we increased the calculation speed of the Jacobian matrix based on
the sensitivity method more than 10 times. So, the speed of the pres-
ent algorithm to calculate the Jacobian matrix is about 100 times
faster than the conventional standard finite difference method, which
was used in most of the previous studies [Yorkey et al., 1987; Butler
and Bonnecaze, 1999].

In the sensitivity method, the element of the Jacobian matrix is
calculated as

(15)

where ul and uk are the voltage distribution when the l’th and k’th
current patterns are used, respectively. The integral of the above
equation is calculated in FEM formulation of Eq. (1) as a part of
the forward problem.

SIMULATION RESULTS AND DISCUSSION

Unlike many other types of imaging techniques, making general
statements about the limitations of imaging with EIT is difficult or
impossible. The resolution of the EIT system depends on various
variables, such as conductivity contrast and distribution, injected
current pattern, and the errors in current injection and voltage mea-
surement. Therefore, to verify the appropriateness of EIT for the
present system, a series of simulations should be conducted.

To investigate the effect of the conductivity distribution and the
measurement error level on the resolution of reconstructed image,
we consider several artificial conductivity distributions and obtain
the synthetic boundary voltages by using the forward solver described
earlier. And to test the robustness of our algorithm against the mea-
surement error, Gaussian random noise of zero mean is introduced.
For the shear-induced particle migration in suspension, the con-
ductivity distribution can be expected to be continuous. The con-
ductivity distribution of the first example shows a monotonic in-
crease from the center to the wall, as shown in Fig. 3. In the sec-
ond example of Fig. 4, the conductivity distribution shows a mini-
mum point.

As a third example, we consider a particle concentration distri-
bution for a given volume fraction. The particle volume-fraction

theoretically and experimentally. When the volume fraction is giv
the particle concentration distribution can be obtained analytic
by the diffusion model [Phillips et al., 1992]. Based on the conc
tration distribution by the diffusion model and Eq. (1), we obta
the original conductivity distribution and then conduct a numeri
simulation to reconstruct it. The reconstructed particle concen
tion distribution for =0.45 is summarized in Fig. 5.

Hampton et al. [1997] showed in their experiment employ
NMR that the particle concentration decreases suddenly nea
wall for a certain condition. To simulate this situation, we assum
conductivity profiles as shown in Fig. 6 and reconstructed the c
ductivity profile. As shown in Fig.6, the reconstructed profile matc
es the original profile very well near the wall and the area-av
aged conductivity value is reconstructed in the region where
conductivity profile shows a sudden jump. Even though the pre
reconstruction algorithm is developed for a conductivity profile wh
is smooth, it can be used for the situation showing a large disc

V  − 
σ0

σr

-----U σr( ) .

∂Ul
k

∂σn

--------- = ∇ul ∇uk,⋅Ωn
∫

cv〈 〉

Fig. 3. Computer simulation result for monotonically increasing
conductivity profile. The regularization parameter is αααα=
10−−−−6.

Fig. 4. Computer simulation result for the conductivity profile
showing the minimum. The regularization parameter is αααα=
10−−−−6.
Korean J. Chem. Eng.(Vol. 21, No. 2)

distribution under the pressure-driven flow has been investigatednuity. As shown in Figs. 3-6, the particle concentration distribution
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reconstructed by the EIT algorithm is quite reasonable except the
inner region, where the discrepancy may be large due to the loose
cause (the change of conductivity vector)-and-effect (the boundary
voltages) relationship. The small effective area and the distance from
the electrodes weaken the cause-and-effect relationship. The recon-
structed images show that our algorithm reconstructs the original
distribution reasonably and also can treat the measurement errors
within the level of 0.5%.

There are several methods for choosing in some sense optimal
regularization parameters α. However, the different criteria will yield
results of different optimality. Since the true distribution in the sim-
ulations was known, the regularization parameters were chosen in
such way that the root-mean-squared conductivity difference de-
fined as

(16)

had a minimum value, where σo is the original conductivity vector.

For the second example system, εi values for the reconstructed con
ductivities are given in Fig. 7, where εi shows minimum at α=10−6.
So, the regularization parameter is set to α=10−6 in all the above
examples.

Since in real situations the original conductivity vector is unknow
in other words εi cannot be calculated, the root-mean-squared e
(RMSE) defined as

(17)

is used as the convergence criterion for the inverse problem. If εv is
less than the predetermined small value, convergence is ass
and the reconstruction algorithm is terminated. For the second
ample system, RMSE is given in Fig. 8, where RMSE decrea
exponentially for the first two iterations, and becomes nearly a c
stant value after the third iteration. Other examples also exhibit s
ilar trends. Hence, the quality of the reconstructed image does
improve after several iteration steps, and the maximum numbe
iteration is set to 10.

εi  = 
σo − σ( )T σo − σ( )

σo
Tσo

--------------------------------------

εv = 
U  − V( )T U − V( )

VTV
--------------------------------------

Fig. 5. Reconstructed result based on diffusion model [Phillips et
al., 1992] for the case of average volume fraction =0.45.
The regularization parameter is αααα=10−−−−6.

cv〈 〉

Fig. 6. Computer simulation result for the conductivity profile
showing the jump neat the outer wall. The regularization
parameter is αααα=10−−−−6.

Fig. 7. Root-mean-squared coductivity difference for the second
example system (see Fig. 4).

Fig. 8. Root-mean-squared error for the second example (see Fig
4).
March, 2004
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CONCLUSION

A new EIT algorithm with complete electrode model and trigo-
nometric current pattern is proposed to obtain the particle concen-
tration profile in suspension under pressure-driven flow. Different
numerical schemes and FEM meshes were employed to avoid the
inverse crime. The robustness of the reconstruction algorithm was
verified with several illustrative examples. Considering the compu-
tational load and data acquisition time, the convergence rate and
the quality of reconstructed images, our algorithm is quite effective
compared to the previous ones and can be employed in an on-line
measurement system for monitoring the particle concentration in
suspension. Therefore, it is expected that the proposed algorithm
can be adopted in an on-line monitoring system for the process line
where the concentrated suspension plays an important role.
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NOMENCLATURE

cv : particle volume fraction
H : Hessian matrix
I : current [A]
J : Jacobian matrix
L : number of electrodes
R : regularization matrix
u : electrical potential [V]
U : calculated boundary voltage vector [V]
V : measured boundary voltage vector [V]

Greek Letters
α : regularization parameter
εi : root-mean-squared conductivity difference
εv : root-mean-squared global error
σ : conductivity [Ω−1m−1]
σd : dimensionless conductivity [-]
Φ : objective function [V2]
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