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Abstract−−−−In this work, we propose a PID control strategy based on the genetic algorithm coupled with cubic spline
interpolation method for the control of pH processes. The control scheme proposed in the present work consists of
closed-loop identification based on the genetic algorithm and cubic spline method. First, we compute the parameters
(KC, τI, τD) of the PID controller using relay feedback and apply these parameters to control the pH Process. Then
approximate linear models corresponding to each pH range are obtained by the closed-loop identification based on
closed-loop operation data. The optimal parameters of the PID controller at each pH region are then computed by using
the genetic algorithm. From numerical simulations and control experiments we could achieve better control perfor-
mance compared to the conventional fixed gain PID control method.
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INTRODUCTION

PID (Proportional-Integral-Derivative) controllers are most widely
used in various operational fields. But it is well known that they
are not efficient in the control of nonlinear processes. In this work,
we propose a new gain scheduling PID control strategy based on
closed-loop identification and genetic tuning method coupled with
cubic spline interpolation method for the control of pH processes.
The pH process is a typical nonlinear chemical process and the con-
trol of the process has attracted concerns of many researchers.

Klatt and Engell [1996] proved experimentally that gain sched-
uling trajectory control is more efficient control strategy compared
to the PI control. In their experiments the pH region tested was 6-10
which can be approximated linearly. It was shown that gain sched-
uling based on fuzzy theory exhibits improved control performance
than conventional PID controllers and that the performance of a
well tuned PID controller is as good as that of a model predictive
control scheme especially in thermal control problems [Blanchett
et al., 2000]. Application of the artificial neural network to control
pH processes has been reported [Loh et al., 1995]. They divided
the system into static and dynamic parts and proved that the con-
troller shows good control performance for various external noise
variables. The authors designed a PID controller based on the artifi-
cial neural network and showed experimentally that the controller
gives good performance both for load change and set point change
to pH processes [Kwon and Yeo, 1999]. The pH control problem
based on the adaptive bilinear model predictive control has been
investigated both theoretically and experimentally [Kim et al., 2000].
Zhang [2001] constructed a nonlinear type controller that was cou-
pled with some local nonlinear controllers by using neural net-
works and fuzzy schemes. Control commands are obtained from

the union of local controllers based on the membership functio
the local linear models.

So far tuning of PID controllers has relied mainly on open-lo
analysis. But usually the open-loop test is prohibited in opera
plants and disturbances and noises may cause unexpected c
errors during closed-loop operations. The closed-loop identif
tion has attracted much attention [Van den Hof, 1997; Hjalmars
et al., 1996]. The reason may be that the plant is unstable, or that
to be controlled for production, economic, or safety reasons. M
over, the operation data can be directly used to identify the p
model without additional treatment. Ljung and McKelvey [199
investigated the subspace identification method which calcula
the state-space model from the closed-loop data. They propos
new closed-loop identification method that showed better per
mance than existing N4SID.

In the gain scheduling control scheme proposed in this work
PID controller parameters (KC, τI, τD) are first obtained from the
relay feedback. These preliminary controller parameters are empl
in the control of a pH process, and closed-loop operation da
collected. From the closed-loop identification we get approxim
linear models for each range of pH values. These linear model
used in the computation of optimum tuning parameters based
the genetic algorithm. These optimal tuning parameters are in
polated by the cubic spline method to be applied to the gain sc
uler.

pH NEUTRALIZATION PROCESS

The pH process is widely used in various areas such as the
tralization of industrial waste water, the treatment of boiler feed w
and cooling water in the cooling tower, and the maintenance of
desired pH level at various chemical reactions, coagulation and
cipitation processes. The pH process shows high nonlinearity 
ing the titration of strong acids by strong bases. In the contro
pH processes, very small values of controller gains are require
the neutralization of strong acid by strong base. On the other h
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the change in the compositions and concentrations of fluids flow-
ing into the reactor causes large changes in the process gain. For
this reason the use of conventional PID controllers requires very
small operational range to achieve acceptable control performance.

The model of the pH neutralization process used in this study
follows that proposed by McAvoy et al. [1972] as shown in Fig. 1.
Assumption of perfect mixing is general in the modeling of pH pro-
cesses. Material balances in the reactor can be given by

(1)

where Ca represents the concentration of the acid inlet stream, Cb

represents the concentration of base used in the neutralization, xa

and xb are the concentration of acid ion and base ion in the reactor,
respectively. Fa denotes the flow rate of acid inlet stream, Fb rep-
resents the flow rate of base used in the neutralization and V is the
volume of the reactor.

The phosphoric acid (H3PO4) and the sodium hydroxide (NaOH)
are used in the experiments. The phosphoric acid in water decom-
poses into a phosphoric ion and three hydrogen ions. At 298 K, dis-
sociation constants for each ion are given by

(2)

(3)

(4)

The equilibrium constant of water at the same temperature is Kw=
10−14. Reaction invariants can be written as

(5)

(6)

The equilibrium equation for ions from which pH is calculated
is given by

10−5pH+(Ka1+xb)×10−4pH+(Ka1xb+Ka1Ka2−Kw−Ka1xa)×10−3pH

10−5pH+(Ka1Ka2xb+Ka1Ka2Ka3−Ka1Kw−2Ka1Ka2xa)×10−4pH

10−5pH+(Ka1Ka2Ka3xb−Ka1Ka2Kw−3Ka1Ka2Ka3xa)×10−4pH−Ka1Ka2Ka3Kw=0(7)

at several pH regions.

CLOSED-LOOP IDENTIFICATION METHOD

In the use of the ultimate gain method the increase of the ga
reach the critical point might drive the system to the unstable
gion. The relay feedback method is introduced as a substitute
the ultimate gain method. This method is also called auto-tun
method. This method is widely used in most commercially av
able PID controllers.

First, a relay feedback signal generator replaces the contro
The output of the relay feedback signal generator is represente

(8)

where d is the output of the controller multiplied by 0.5, e is 
error and c is the output of the process. The ultimate gain Kcu is then
given by

(9)

where A is the amplitude of the process output. PID parameters
be easily determined by conventional tuning methods such as
Ziegler-Nichols method:

Kc=Kcu/1.7, τI=Pu/2.0, τD=Pu/8.0 (10)

where Pu is the ultimate period.
The identification of plant models has traditionally been done

the open-loop mode. The desire to minimize the production of
off-spec product during an open-loop identification test and the
stable open-loop dynamics of certain systems has increased the
to develop methodologies suitable for the system identification.

Open-loop identification techniques are not directly applica
to closed-loop data due to the correlation between process in
(i.e., controller outputs) and unmeasured disturbances. Base
Prediction Error Method (PEM), several closed-loop identificati

V
dxa

dt
------- = FaCa + Fa + Fb( )xa

V
dxb

dt
------- = FbCb + Fa + Fb( )xb

H3PO4 H
+

 + H2PO4
−
, Ka1↔

=  H+[ ] H2PO4
−[ ] H3PO4[ ]⁄  = 7.11 10− 3×

H2PO4
− H

+
 + HPO4

2−
, Ka2↔

=  H+[ ] HPO4
2−[ ] H2PO4

−[ ]⁄  = 6.34 10− 8×

HPO4
−2 H

+
 + PO4

3−
, Ka3↔ =  H+[ ] PO4

3−[ ] HPO4
2−[ ]⁄  = 4.2 10− 13×

xa = H3PO4[ ] + H2PO4
−[ ] + HPO4

2−[ ] + PO4
3−[ ]

xb = Na
+[ ]

m t( ) = 
d for e t( ) = − c t( ) 0>

− d for e t( ) = − c t( ) 0<



K cu = 
4d
πA
-------

Fig. 1. pH neutralization process.

Fig. 2. Titration curve (H3PO4/NaOH).
Korean J. Chem. Eng.(Vol. 21, No. 1)

Fig. 2 shows the titration curve obtained from the above modelmethods have been presented [Forssell and Ljung, 1999]: direct,
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indirect, joint input-output, and two-step methods.

1. Direct method: Data from the closed-loop test are treated as if
they were from open-loop operations. PEM is applied to the data
set ignoring the presence of the feedback. Only input U and output
Y are needed to perform the identification.

2. Indirect method: First, the closed-loop transfer function is ob-
tained by using the signal R1 and Y or R2 and Y since the external
injected signal will be uncorrelated with the noise in the output. Then,
the controller transfer function is used to extract the process trans-
fer function from the closed-loop transfer function (Fig. 3).

3. Joint input-output method: Closed-loop system is considered
as a black box with fictitious white noise signal. The external input
signal is considered as the input and the process input U and out-
put Y as the output. Since the newly defined input and output will
not be correlated, the joint model can be identified accurately.

4. Two-step method: The so-called sensitivity function is obtained
from the external signal R and the process input U. The noise free
process input is reconstructed from this sensitivity function and then
used with the process output to identify the process model.

However, the methods described above require a priori knowl-
edge on the plant order and time delay. The identifiability can be
guaranteed under mild conditions. The newly developed, so-called
the open-loop subspace identification method has been proven to
be a better alternative to the traditional parametric methods. This is
especially true for high-order multivariable systems, for which it is
very difficult to find a useful parameterization among all possible
candidates.

The subspace identification method has its origin in classical state-
space realization theory developed in the 60’s. It uses the powerful
tools such as Singular Value Decomposition (SVD) and QR fac-
torization. No nonlinear search is performed nor is a canonical pa-
rameterization used. The advantages of the subspace identification
method can be summarized as follows:

1. No prior model set assumption: In subspace identification algo-
rithms, we use full state space models and the only “parameter” is
the order of the system, which can be obtained by inspection of cer-
tain singular values. When using the traditional PEM method, a mod-
el set is needed and what one gets from the identification is, in fact,
only the best model in this particular model set.

2. Numerical Efficiency: This method is not iterative and so there
are no convergence problems. By using the always numerically re-
liable SVD, numerical robustness of the identification procedure
can be guaranteed. By using QR factorization, the efficiency can
be greatly improved.

3. Model reduction: Complex models can describe a system more
accurately, but, at the same time, they are more difficult to apply.

What we try to find is the simplest model that can describe the 
tem fairly well. In the subspace identification, the reduced mo
can be obtained directly, without having to be constructed from
high order model.

There are many different algorithms in the subspace identifica
field, such as N4SID [Van Overschee and Moor, 1994], MOE
[Verhaegen and Dewilde, 1992] and CVA [Larimore, 1990].

Recently, Ljung and McKelvey [1996] investigated the subspa
identification method which calculates the state-space model 
(11)] from the closed-loop data.

x(t+1)=Ax(t)+Bu(t)+Ke(t) (11)

y(t)=Cx(t)+Du(t)+e(t) (12)

We can summarize the basic steps of subspace identificatio
follows:

1. Estimate states x(k), k=0, 1, 2, …, j−1 from measured pro-
cess inputs and outputs.

2. Estimate the system matrices (A, B, C, D, K) from the e
mated states using one of the following methods:

Method 1:
i) Using LS (Least Squares) method, estimate C and D from

(12). The residual is e(k), k=0, 1, 2, …, j−2.
ii) Using LS method, estimate A, B and K for the Eq. (11) (no

that we know the residual e(k) from the previous step).
Method 2:
i) Using LS method, estimate A, B, C and D and residuals ρ1=K

[e(0) e(1) … e(j−2)] and by ρ2=K[e(0) e(1) … e(j−2)]

(13)

ii) From the residuals, estimate K by

(14)

In the above steps, we decide the state by SVD. The future
puts are given by the following equation with future inputs and no
being set to zero:

, i=0, 1, 2, …, i−1 (15)

If the test data sets are gathered from open-loop tests, we a
the LS method to Eq. (15). The solutions are unbiased since the
cess inputs are uncorrelated with process noise terms. But, i
process input is a function of the process noise as in the closed
test, the solution for CAiHm

y, CAiHm
u, CAi−mB and D would be biased.

Therefore, subspace identification methods for the open-loop 
give biased estimation results regardless of the accuracy of 
step. This is the main problem in the subspace identification m
od for the closed-loop system.

x k  + 1( )
y k( )

 = 
A B

C D
 

x k( )
u k( )

 + 
Ke k( )
e k( )

K  = ρ1ρ2
T ρ2ρ2

T[ ] − 1

y k  + i( ) = CA
i
Hm

y
y k  − m( )  + CA

i
Hm

u
u k − m( )

m= 1

nb

∑
m= 1

na

∑

+ CAi − mBu k + m − 1( ) + Du k + i( )
m= 1

i

∑

+ CAi − mKe k + m − 1( ) + e k + i( )
m= 1

i

∑

Fig. 3. Block diagram of a closed-loop system.
January, 2004
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Control of pH Processes Based on the Genetic Algorithm

We can assume D=0 for usual processes since almost all pro-
cesses have at least one delay between the process output and the
process input. Then, Eq. (15) becomes

, i=0, 1, 2, …, i−1 (16)

If i=0, Eq. (16) becomes a high order ARX (Auto-Regressive
with exogenous) input model as

(17)

It should be noted that the process input u(k−1) is a function of the
past process outputs y(k−m), m=1, 2, …, na for usual feedback
controllers and that the process inputs u(k−m), m=1, 2, …, nb are
uncorrelated with e(k). Therefore, if we apply LS method to the
ARX model given by Eq. (17), we obtain unbiased estimates of Py,
Pu for and CHm

y.

(18)

(19)

The elements of the first column in Eq. (19) can easily be obtained
from Eq. (18). Subsequent steps for the state estimation and the sys-
tem matrix estimation are exactly the same with those of previous
subspace identification methods for open-loop test. Those methods
do not require knowledge on the order and the time delay of the
process.

In order to adapt the method to a nonlinear pH control process,
we first perform control of the pH process at broad range of pH us-
ing a conventional PID controller to get closed-loop data. In this
case large control errors might result due to the nonlinearity of the
process. The overall pH region is inherently nonlinear, but the nar-
row region can be approximated as linear. We can divide the data
according to pertinent pH regions and calculate parameters of the
linear state space model through closed-loop identification.

GENETIC TUNING METHOD

The genetic algorithm has been investigated and employed espe-
cially in optimization studies for more than 30 years. The main ad-
vantage of the use of the genetic algorithm in optimizations lies in
improved possibility of finding the global optimum [Goldberg, 1989;
Kim et al., 2001]. As the objective function in the optimization, both

Error) are widely used. The ITAE criterion can be effectively us
when the errors persist for long time periods. In the pH control p
cess, frequent change of the magnitude of errors with respect to 
rather than persistence of errors, make the control problem very 
plicated. In the optimization of the present study, the ISE was c
sen as the objective function to achieve minimal control errors:

(20)

subject to KC, low<KC<KC, upper

subject to τI, low<τI<τI,upper

subject to τD, low<τD<τD,upper

Tuning parameters (KC, τI, τD) for the PID controller are obtained
by the genetic optimization consisting of selection, mutation a
crossover operations.

Optimization methods based on the gradient information s
as QP (Quadratic Programming) and SQP (Sequential Quad
Programming) etc. often reach to local minimum depending on
choice of initial values. For this reason GA is our choice for the 
timization. In the solution of an optimization problem by using t
GA the key steps to be followed can be summarized as:

1. A chromosomal representation of solution to the problem.
2. Creation of an initial population of solutions.
3. Evaluation of a function that plays the role of the environme

rating solution in terms of their “fitness”.
4. Choice of a set of operators used to manipulate the ge

composition of the population.
5. Determination of parameter values used in GA (populat

size, probabilities of applying genetic operators).

First, a population of individuals is created. In its simplest fo
each individual in the population consists of a string of binary dig
which may also be referred to as bits. Chromosomes are bit stri
lists of 0’s and 1’s. There are a variety of techniques for mapp
bit strings to different problem domains. The initial population 
individuals is generated randomly within certain boundaries. E
individual is run in the current environment to determine its effe
tiveness which is assigned a numerical evaluation of its merit b
fitness function. The fitness function determines how each g
(bit) of an individual will be interpreted.

There are many properties of the evaluation function that enha
and hinder GA performance. Therefore, each structure is evalu
according to specific domain criteria and assigned a measure of r
or “utility”. All the individuals in the population have been evalu
ated and their fitnesses are used as the basis for selection, wh
determined by the standard deviation. Selection probabilities
then computed for each structure based on its utility, with prop
tionally higher probabilities assigned to higher utility structure. 
a result, selection is implemented by eliminating low-fitness in
viduals from the population and inheritance is implemented by m
ing multiple copies of high-fitness individuals.

Genetic operations such as mutation, crossover and inver
are applied probabilistically to the selected individuals to produc
new population (or generation) of individuals. Crossover takes 
selected current generation structures, splits the string at the 

y k + i( )  = CA
i
Hm

y
y k − m( )  + CA

i
Hm

u
u k − m( )

m= 1

nb

∑
m= 1

na

∑

+ CAi − mBu k + m − 1( )
m= 1

i

∑

+ CAi − mKe k + m − 1( ) + e k + i( )
m= 1

i

∑

y k( )  = CHm
y
y k − m( )  + CHm

u
u k − m( ) + e k( )

m= 1

nb

∑
m= 1

na

∑

ŷ k( )  = Pyy k − m( )  + Puu k − m( )
m= 1

nb

∑
m= 1

na

∑

y k k( ) y k  + 1 k + 1( ) ... ŷ k + j  − 1 k + j  − 1( )
y k + 1 k( ) y k  + 2 k + 1( ) ... ŷ k + j k  + j  − 1( )
y k + 2 k( ) y k  + 3 k + 1( ) ... ŷ k + j  + 1 k + j  − 1( )

... ... ... ...

y k + i  − 1 k( ) y k + i k  + 1( ) ... ŷ k + i  + j  − 2 k +  j  − 1( )

= U1 U2[ ] Σ1 0

0 0

V1
T

V2
T

 = U1Σ1V1
T

min ISE = e t( )2dt
0

∞
∫

Korean J. Chem. Eng.(Vol. 21, No. 1)

ITAE (Integral of Time-Averaged Error) and ISE (Integral of Squared randomly determined point and then creates the new generation struc-
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tures by swapping the tail portion of the string. Mutation, on the
other hand, randomly changes a bit in a structure thereby introduc-
ing a new individual. This operation is assigned a very low per-
centage of action, causing it to function as a background operation.
By transforming the previous set of good individuals to a new one,
the operator generates a new set of individuals that have a better
than average chance of also being good. Each combination of genetic
operators, representation, and problem has it own characteristics.
Tuning of PID parameters by GA can be summarized as follows:

Step 1. Create the initial population for tuning parameters (KC,
τI, τD).

Step 2. Calculate ISE for step response using closed-loop con-
trol system about the approximated process model ( ).

Step 3. If the criteria are satisfied, stop computation. If not, go to
the next step.

Step 4. Select superior chromosomes that have low ISE value.
Step 5. Create the new population (KC, τI, τD) using crossover/

mutation.
Step 6. Compute the ISE value for the closed-loop control sys-

tem based on the results of step 5 and go to step 3.

The schematic diagram showing the GA tuning for the PID con-
troller is given in Fig. 4.

In the computation of parameters for the PID controller (KC, τI,
τD) to be used in the state space model, GA is used to minimize the
ISE (Integral of Squared Error), i.e., to minimize the discrepancy
between the process output and the set point. The reason we use

GA in this work lies in the fact that the optimization methods ba
on the information of gradients such as SQP (Successive Quad
Programming) can fail in the identification of the optimum value

Cubic spline is one interpolation method that connects each 
point in soft curved line. The optimum values of control param
ters (KC, τI, τD) for each interval pH region are obtained by usin
the cubic spline method to apply to the gain scheduler.

NUMERICAL SIMULATIONS

In the simulations MATLAB and SIMULINK were employed
for the pH control process. The sampling time was set to 5 sec
the time delay of sensor to 5 sec. Random noises of ±0.1% to pH
were assumed.

First, we applied the relay feedback signal in the range of pH
8, and then we obtained the ultimate gain and ultimate period f
which control parameters (KC, τI, τD) were calculated by Ziegler-
Nichols method. Next, we changed the set point by making us
the same control parameters as before. As can be seen in F
we have poor control performance because of the use of inap
priate control parameters. The good control performance for the
point of pH 7-8 is compared to the poor control results when 
set point lies in the region of 5 or 10.

The control data shown in Fig. 5 were classified according
the pH regions. The linear process models for each region were
tained by using the closed-loop identification method. For each lin
model we set up the PID controller and calculated the control

ĜP

Fig. 4. Flow diagram of GA tuning of the PID controller.

Fig. 5. The result of control by conventional PID controller.

Table 1. Optimal parameters of the PID controller at each pH re-
gion

pH≅4.0 KC=6.13 τI=48.900 τD=0.39
pH≅5.0 KC=4.85 τI=24.020 τD=1.01
pH≅6.0 KC=8.70 τI=105.67 τD=1.84
pH≅7.0 KC=8.71 τI=199.94 τD=2.23
pH≅8.0 KC=8.22 τI=200.21 τD=0.52
pH≅9.0 KC=6.57 τI=73.800 τD=1.63

0pH≅10.0 KC=4.02 τI=198.32 τD=1.05
January, 2004
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rameters from the minimization of ISE by GA. The numerical re-
sults are shown in Table 1.

The next step is the proper interpolation by the cubic spline to
obtain optimum control parameters for each pH region listed in Table
1. Fig. 6 shows the change of each parameter (KC, τI, τD) in the re-
gion of pH 4-10 and Fig. 7 shows the structure of the feedback con-
trol loop using a cubic spline interpolation for the gain scheduler.
The gain scheduler receives the current pH value as an input and
gives the optimum control parameters as outputs. These parameters
are then plugged into the PID controller. Fig. 8 depicts the results of
PID controls by using gain scheduling and shows better control per-
formance compared to the conventional PID controller (Fig. 5). We
can see that the PID control parameters at each pH region are prop-
erly changed.

EXPERIMENTS

Fig. 9 shows the experimental equipment used in the present study.
In the experiment we used phosphoric acid and sodium hydroxide
as acid and base, respectively. Phosphoric acid was fed to the re-
actor with constant flow rate and NaOH was introduced to the re-
actor through the pump being controlled by the gain scheduling con-
troller. Concentrations of phosphoric acid and NaOH were Ca=0.02
mol/L and Cb=0.05 mol/L respectively. The flow rate of phospho-
ric acid was kept constant as Fa=0.1188 L/min while the range of
the flow rate of NaOH was Fb=0.0-0.2532 L/min.

In the experiment a PC with Pentium III processor (650 MHz)

Fig. 6. Changes of controller parameters (KC, ττττI , ττττD).

Fig. 7. Schematic of the PID control based on gain scheduling.

Fig. 8. The results of PID control using gain scheduling.
Korean J. Chem. Eng.(Vol. 21, No. 1)

was used and the control algorithm developed in the present workFig. 9. Experimental apparatus.
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was implemented by using SIMULINK of MATLAB. The vol-
ume of the reactor was 2 L and sampling time was set to 2 sec.

Fig. 10 shows the results of control experiments by the conven-
tional PID controller. The controller parameters were obtained by

using the ultimate gain method of Ziegler-Nichols based on the 
plitudes and ultimate periods at pH 7. The controller parame
were obtained by using the ultimate gain method of Ziegler-Nich

Fig. 10. Results of conventional PID control (ISE=921.52). Fig. 12. Changes of controller parameters (KC, ττττI , ττττD).

Fig. 13. Result of PID control using gain scheduling and GA (ISE=
January, 2004

Fig. 11. Results of PID control using gain scheduling (ISE=1776.55). 701.2).
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based on the amplitudes and ultimate periods at pH 7. Control errors
in experiments are indicated by ISE. The radical behavior of the
pump as shown in the Fig. 10 reflects the noise of the electrical signal
generated by the differential term (D) in PID parameters.

Fig. 11 represents the results of gain scheduling control experi-
ments based on the cubic spline interpolation of the PID parame-
ters obtained from the relay feedback. We can see the proper changes
in the PID controller parameters according to the changes in pH.
Even with the smooth behavior in the pump compared to the con-
ventional PID control (Fig. 10) the control performance is not sat-
isfactory. Fig. 12 shows the change of each parameter (KC, τI, τD)
in the region of pH 4-10 with GA tuning and Fig. 13 shows the ex-
perimental results of gain scheduling control coupled with GA. Ap-
proximate process models at each predefined pH region were ob-
tained first by the closed-loop identification method using the exper-
imental input-output data (Fig. 10) previously obtained. Then the
optimal parameters of the PID controller to be implemented were
computed by using GA. Optimal parameters were interpolated with
cubic spline method. In this case, we could obtain better control
performance (the ISE is 701.2) compared to previous cases. We
can see that the behavior of the pump was much stabilized.

CONCLUSIONS

A new control technique based on the genetic algorithm and the
closed-loop identification was developed and applied to control the
pH process experimentally. The control scheme proposed in the
present work consists of relay feedback followed by closed-loop
identification and gain scheduling based on the genetic algorithm
and the cubic spline method. First, we compute the parameters (KC,
τI, τD) of the PID controller using relay feedback and apply these
parameters in the gain scheduling control. Then approximate linear
models corresponding to each pH range are obtained by the closed-
loop identification based on previous input-output data. The opti-
mal parameters of the PID controller at each pH region are com-
puted by using the genetic algorithm based on previous models.
Interpolation of the parameters by the cubic spline method is then
followed. From numerical simulations and control experiments we
could achieve better control performance compared to the conven-
tional PID control method.
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NOMENCLATURE

C : concentration [mol/L]
Ca : concentration of input acid [mol/L]
Cb : concentration of base to titration [mol/L]

F : influent stream flow rate [L/min]
Fa : influent stream flow rate of acid [L/min]
Fb : influent stream flow rate of base L/min]
GA : genetic algorithm
KC : P parameter of PID controller
PID : proportional-integral-derivative controller
Pu : period of controller
t : time [min]
xa : reaction invariant of acid
xb : reaction invariant of base
V : volume of reactor [L]

Greek Letters
τI : I parameter of PID controller
τD : D parameter of PID controller
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