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An Analytic Expression for Closed-Loop Output Behavior under Multiloop PID Control
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Abstract—An analytic expression is derived for closed-loop output behavior under a multiloop PID control. Based
on the analytic expression obtained, optimization problems are formulated to assess 1) best achievable quadratic per-
formance using multiloop PID control, 2) best achievable quadratic performance on key process variables while
maintaining reasonable performance on other less critical process variables, 3) achievable performance improvement
with decouplers, and 4) effects of loop pairing on achievable performance. It is shown through a simulated example
that individual loop performance as well as the overall multiloop PID control performance can be assessed by using
the proposed method.
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INTRODUCTION control system when the control performance is measured by out-
put variance. Also discussed are several extensions of the proposed

Control loop performance monitoring technology has receivedmethod to some important issues in multiloop PID control system.
increasing attention over the past decade in both academia and in-
dustry. In this technology, minimum variance control has played a PROBLEM FOURMULATOIN
very important role as a benchmark performance measure in vari-
ous feedbackffeedforward control systems [Harris, 1989; Desborough Consider the following multivariable system with n inputs and n
and Harris, 1992, 1993; Harris et al., 1996; Huang et al., 1997; Kautputs represented by a linear time-invariant process with additive
and Edgar, 2000, 2001a, b]. Detailed review and survey of literadisturbance at the output:
ture in this area can be found in Qin [1998] and Harris and Seppala v =H(q )u, +N(g Ha )
[2001]. However, virtually no progress has been reported in the liter- " '
ature for multiloop feedback control systems despite the fact that vhere H(@") and N(q") are the process and the disturbance trans-
is one of the commonly used control structures in process industriesfer function matrices, respectively; y and aare process output,

In multiloop control systems difficulties arise in controlling pro- input and white noise vectors of appropriate dimensions. The dis-
cess variables due to process interactions. When severe processGfete multiloop PID controller transfer function Cfdhas the fol-
teractions exist, even the best-tuned multiloop controller may notowing diagonal form:

provide §atisfactory control pe.rformange. Hence the assessmen'F of c(q™) =diagf (q™),cx(@ ™), ... c(q ™)} @

best achievable performance in a multiloop control system has sig- ) )

nificant practical importance in control system redesign and perforg narec () _kutkaq 1j'k3,.9 ’ (=1, 2, ... n), and Kk, , k,

mance monitoring. The necessity of assessing the best achievable 1-q° o

multiloop control performance has also been reported in the literaare PID controller tuning parameters of thop. The quadratic

ture [Kozub, 1996; Qin, 1998]. performance measure of the output variable to be minimized is
When the control performance is measured by therm of J=E(y/Qy) @)

the output signal, Sourlas et al. [1994] have developed a methodol-

ogy to quantify the best performance achievable by low order deWhere Q is a positive-definite output weighting matrix.

centralized controllers such as Pl and PID controllers. However, as 1he closed-loop output is then given byGe.(q")-a where

noted by Stanfelj et al. [1993], the most commonly used measur&e(d)=[I+H(@™)C(")]"N(g™) is the closed-loop transfer func-

of performance is the variance of key process variables due to i{#on matrix from ato y. One way of obtaining closed-loop impulse

direct relationship to process performance and profit. response and the corresponding quadratic cost function is to per-
In this paper, an analytic expression is derived for closed-loodorm long division on each element of the matrix transfer function

output behavior under multiloop PID control. Based on the ana-Ce(d™) after solving for the inversion of matrix polynomial. This

lytic expression derived, an optimization approach is proposed fofmethod becomes non-trivial and requires numerous polynomial ma-

the assessment of best achievable performance in multioop PIfjiPulations and greater computation time as the number of loops
increases.

"To whom correspondence should be addressed. Another way of obtaining the quadratic cost function in Eq. (3)

E '”?a": edga.r@Ch'.a'Utean'ed“ ._is to calculate the complex contour integral given below.
This paper is dedicated to Professor Hyun-Ku Rhee on the occasion

of his retirement from Seoul National University. J=E(y/Qy,) =tracd Q& w)]
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=trac{ %fGCL(Z)ZanL(Zj)%Z} Yo Yo N,
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1 ) == (Gk,; *Gk,; tGks)) + (&, ©)
=tracd F=GL (2 )QCu () T @ | TR TR
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Wheref denotes a counter-clockwise integral along the unit circle
in the complex planez, represents the covariance matrix of the Where
noise vector,aPractically speaking, the evaluation of the cost func-

tion J should be carried out numerically; for example, with the scheme 0 - 0
suggested by Astrém [1970]. This method also has a drawback in 0 0 0
that it requires matrix polynomial inversion. Moreover, it does not _ Sy O 0 = _| s 0 o0
give the closed-loop impulse response. 171Sy Sy 0 G = SZVJ s 0 o0 ’
In the next section, an alternative and more convenient way of : N :" :1"
obtaining the closed-loop impulse response and the corresponding Si S v Sy, O S,,. 1 S,,. ] s 00
L -1 2 ]

guadratic cost function is developed as an explicit function of mul-
tiloop PID tuning parameters.

and
ANALYTIC EXPRESSION FOR THE CLOSED-LOOP - ;
OUTPUT BEHAVIOR 0
0 0 0
Consider the multivariable system in Eq. (1) that is rewritten by~ _ 0 0 o0
using the impulse response forms as follows: G = S, 0 0 0
mo e S, S, 0 0 0
y‘:;H.q u‘+ZON.q a (@) 5 Coe e e
_SP’Z,] Sp’3,j S1,J 0 0 O_

where Hand N are the impulse response coefficients of the pro-
cess and the disturbances, respectively, and m is the largest numheg (9) can be rewritten in a compact form as:
of time intervals for an output to reach a steady-state threshold. When
the set point is held at zero, the output from the multiloop PID con-

-1

troller becomes vy +21(ij1,, +Gk,; +Gk,)) | [Na, (10)
P4
1 . . _
ut:_ 71[d|aq k1,11k1,21 -"1k1,n) +d|aq I&,lik2,21"‘1k2,n)q '
l_q Yo N,
+di 2 _
dlaq I%,11k3,21"‘1k3,n)q ]@t (6) Where—y= y1 , and N= Nl .
Substituting Eg. (6) into (5) results in the following relation: y N
P P
P = . . -1
Y= 213 [diag(k.1.Kyz - ki) *diag(k u Koz .- Kz0)0 The relation in Eq. (10) gives an explicit expression for the closed-
, P loop output behavior when a single load disturbance is introduced
*tdiag(k 1 Kszn - Ken)d C10G Y, +IZON.q a ™ to the system. When the load disturbance is generated by a series

of white noise occurring at every sampling instant, the closed-loop
where i=1, 2, ..., m) represents the step response coefficients obutput y at sampling time t can be obtained, by the principle of su-
the process model. If we defing &s the matrix that has the same perposition, as

jth column with Sand has zeros elsewhere, Eq. (7) can be rewrit-
P

ten as: y, = ZOY'a‘" (11a)
Yi :_Zl led(km +k2,1q71+k3,1q72) IR +Z{)N.q"a (8 where
1= 1= 1=
To obtain an output expression under a multiloop PID control, we | Yo o
first compute the closed-loop output behavior for a single load dis- | Y. {, + i(G k, +Gk, +Gk,)| 0 (11b)
. . . . .. 17 1 g 1773
turbance driven by a white noisgwahich is introduced to the sys- : 5!

tem at t=0. Then, we apply the principle of superposition to obtain | Y
a general expression for the closed-loop output behavior.

When the white noise, & introduced at t=0, the future closed- In deriving Eq. (11), it is assumed that the closed-loop output re-
loop outputs over a finite-horizon p are related to the tuning paramturns to its set point within the given horizon p, and hene8 Y
eters in the following way. (i>p). For unstable or excessively sluggish systems, the expression

p
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in Eq. (11) will only give a truncated output response up to.llig p  couplers is helpful in designing control systems, and it can be quan-

is also worth noting that the inverse operation in Eq. (11b) is greatlytified as demonstrated in the example section below.

simplified, since the matrix being inverted has a special lower tri-3. Effects of Loop Pairing on Achievable Performance

angular structure. When the best achievable multiloop control performance is unac-
The quadratic performance measure defined in Eq. (3) can noweptably poor with a given pairing of controlled and manipulated

be evaluated by substituting the output expression in Eq. (11) intwariables, one can consider different loop pairings. A more effec-

Eq. (3), and it is given by tive controller pairing could result in a big improvement in achiev-
able multiloop control performance. The extent of such improve-
J=E(Y/Qy) ment in achievable multioop control performance can also be as-
O 0 sessed by using the process transfer function matrix for a new con-
qrac{% YITQY%L} troller pairing.

-1
O . . = oo AN EXAMPLE
:trac{ I\Tg +5 (Gky; +Glky, +Gfk3,1)% Q
j=1

Consider the following 2x2 multivariable process used by Huang

-1

O =n ~ = [0O—
X[ +Y (Gky, +*Gky; +G ks )0 N [za:| 12) et al. [1997].
a i a
— : : . q’ Kig*
whereQ is the (p+1)-block diagonal matrix of Q. The quadratic | 1-04q* 1-0.1q"
cost function is now expressed as an explicit function of multiloop H(a ) 0.3q" = (13)

PID tuning parameters in Eq. (12), and it provides a more conve-
nient way of evaluating the quadratic cost function over the previ-

ous approaches, especially when the number of loops involved i
the system increases. For nxn processes, there are 3n adjust /g assume that the process transfer function above is known from
prewous identification experiments. The disturbance sequence enter-

tuning parameters for the multiloop PID controllers. By minimiz- .
ng at the process output was generated from the disturbance mod-
ing the quadratic cost function with respect to these tuning parame

1-0.1q* 1-0.8q"

ters, the best achievable multiloop PID control performance can beI below:
found. 1
07 -0.6901-¢ 0
N(qY) =0 1 O.Gml q 0 71D a (14)
EXTENSIONS 0.5 1000 1-q'H

where gis a two-dimensional normally distributed white noise with
.=I. A multiloop PID controller was implemented to reject the
sturbance, and its settings are given by

The multiloop PID control performance assessment procedur
proposed in the previous section is capable of providing pen‘ormancgI
benchmarks for each individual output variable as well as the over-
all performance bound. It is demonstrated in this section that the
proposed method can also be readily extended to some important
performance assessment issues such as (1) plant-wide variability

analysis, (2) achievable performance improvement with decouplers, Closed-loop simulations were performed with this multiloop con-
and (3) effects of controller pairing on achievable performance.  troller, and two thousand multivariate observations were collected

1. Plant-wide Variability Analysis from the simulation for the performance assessment of the installed
As mentioned by Qin [1998], it is desirable to transfer variabil- multiloop PID controller. Multivariate time-series analysis was then

ity from key process output variables to other output variables thagaTied out on the closed-loop outputs, and a disturbance Rodel

are less critical in process operations in multiloop control systems(d ") was identified from the following relation.

In this case, one important question |§ ‘What is the lowest aghlev R =[1 +H(q ) E( )] B (g

able variance of the key process variable under the constraint that

the variances of other less critical variables are bounded by somghe quadratic performance measure in this example is YFE(y

prescribed values?” The answer to this question can be obtainek, equal weighting on each output variable.

by solving an optimization problem where the cost function is the Fig. 1 shows results of multiloop PID performance benchmark

variance of key process variable and the optimization is subject t@stimates (circled symbol) along with theoretical ones (solid line)

variance inequality constraints on other less critical process variablegs a function of the process model parametedrKthis plot, the

2. Achievable Performance Improvement with Decouplers multivariable minimum variance performance bounds are also drawn
Multiloop control systems often exhibit adverse loop interactionsfor comparison. As the interaction increases (i.e.,.am¢feases),

and cause the achievable multiloop control performance to be urfig. 1 shows that the achievable multiloop PID performance dete-

acceptable. When severe loop interactions occur, one might wamtorates gradually, while that of multivariable minimum variance

to implement decouplers to compensate for the effect of loop intereontrol remains almost unchanged due to its perfect interaction com-

actions brought about by cross-coupling of the process variablepensation.

The calculation of the potential performance improvement with de- The closed-loop performance using the installed multiloop PID

=, - . —-0.9q*+0.1g% 0.21-0.2q *+0.01qg*
Cla) =diaghf =032 SEE020 Z000
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18 T T T T T T T T T p mark performance. It is seen from this figure that the output var-
0 PID Benchmark Estimates iance of variable 1 deteriorates with the increased interaction, while

] — Theoretical PID Benchmark 4 that of variable 2 remains relatively constant gsri€reases.

44} MV Benchmark Estimates | 1. Plant-wide Variability Analysis

Assume that we are mainly interested in the variance reduction
of variable 2 while keeping the variance of variable 1 less than or
equal to 3.0. We wish to obtain the best achievable performance in
variable 2 under the condition Efg3. This task is easily handled
by choosing the cost function as (@ nd adding the inequality
constraint E(§)<3 to the optimization problem. When,K5, the
constrained optimization resulted in an improvement in achievable
output variance of variable 2 from 7.30 to 5.98, while the variance
of variable 1 increased from 1.64 to 3.0.

) ) ) , ) ) ) ) ) 2. Achievable Performance Improvement with Decouplers
0o 1 2 3 4 5 6 7 & 9 10 Again consider the case wherg36, which is the case with con-
Ky, siderable process interactions. It can be seen from the inspection of
the process model in Eq. (13) that the effect of (1, 2) element of
Fig. 1. Achievable performance bounds with increased process in-  process transfer function can be completely eliminated using an exact

Cost Function

teractions. decoupler b=—5(q *-0.4g/(1-0.1g"), while the effect of (2, 1)
element is best eliminated by using a decoupterd.03 (+0.8G")/
i g g T " T T T y — (1-0.1g"%. The causal decouple; tannot remove the cross-cou-
10} Symbols: Estimates . pling term entirely, but it results in a term 0:3q the (2,1) element

of the process transfer function matrix. The effective process trans-
fer function with the decouplers above becomes

of Lines: Theoretical

T 1 ﬁ(q’l) :|: HytHpl Hyp tHy 1z:| =|: HytHl 0
6 Varlable 1 L PP o PPY YR o PR o PHL PP O.3q’1 H,, ¥+H,.l 4,

where H is the (i, j) element of the process transfer function ma-
trix. Achievable performance improvement with decouplers can then
be obtained by replacing the process transfer functiorHgith’)

P and optimizing the corresponding cost function. Table 1 shows the

Performance Index

i ————— e potential improvement in both overall and individual performance
0 . . . . . , Variable 2 measures by incorporating decouplers into the multiloop control
0 1 2 3 4 5 6 7 8 9 10 System_

Ky, 3. Effects of Loop-pairing on Achievable Performance

Consider the following discretized process transfer function (based

Fig. 2. Performance assessment of the installed multioop PID con- ; >
on a continuous model used by Gagnepain and Seborg [1982)):

troller.

-0.1909° 0.948q°
1-0.905G" 1-0.368q"
0.948q>  0.190qG*
1-0.368G" 1-0.905q"

controller is shown in Fig. 2 in terms of overall and individual per- .
formance indices. The performance indices in this case are defined H@™" =
as the ratio of the output variance (or quadratic cost function) of

the installed multiloop PID controller to the multiloop PID bench-

Table 1. Potential performance improvement with decouplers

Quadratic performance measure  Output variance of variable 1~ Output variance of variable 2

Without decouplers 8.94 1.64 7.30
With decouplers (%reduction) 7.13 (20.2%) 1.55 (5.5%) 5.58 (23.6%)

Table 2. Effects of different controller pairing

Controller pairing Overall performance measure  Performance measure of variable 1~ Performance measure of variable 2

1-1/2-2 14.57 7.30 7.27
1-2/2-1 6.78 3.26 3.52
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With this process model, the relative gain array analysis indi-Desborough, L. and Harris, T. J., “Performance Assessment Measures
cates that 1-1/2-2 pairing is favorable with the relative gamn for Univariate Feedback ControlZan. J. Chem. Eng/0, 1186
0.64. However, the diagonal time constants in the process transfer (1992).
function matrix are significantly larger than off-diagonal time con- Desborough, L. and Harris, T. J., “Performance Assessment Measures
stants. Thus there exists a conflict between steady-state and dynamic for Univariate Feedforward/Feedback Cont@#n. J. Chem. Eng.
considerations. 71, 605 (1993).

Let us assume that the stochastic load disturbance model giveBagnepain, J.-P. and Seborg, D. E., “Analysis of Process Interactions
in Eq. (14) was identified. We want to assess the best achievable with Applications to Multiloop Control System Designil. Eng.
performance for each controller pairing with the current disturbance Chem. Proc. Des. De1, 5 (1982).
characteristics. Table 2 shows the effects of different controller pairHarris, T. J., “Assessment of Control Loop Performarafl. J. Chem.
ing on achievable performance. From this table, we can see that 1- Eng, 67, 856 (1989).

2/2-1 pairing is potentially advantageous over 1-1/2-2 pairing, and thélarris, T. J., Boudreau, F. and MacGregor, J. F., “Performance Assess-
variability in the process outputs can be reduced significantly by ment of Multivariable Feedback Controlless{itomatica32, 1505
employing the 1-2/2-1 configuration. This result coincides with that  (1996).

of Gagnepain and Seborg [1982], where deterministic step changédarris, T. J. and Seppala, C. T., “Recent Developments in Controller
were used in evaluating the performance of each control configu- Performance Monitoring and Assessment Techniques, Chemical

ration. Process Control V. B. Rawlings, B. Ogunnaike and J. Eaton, eds.,
208 (2001).
CONCLUSIONS Huang, B., Shah, S. L. and Kwok, E. K., “Good, Bad or Optimal? Per-

formance Assessment of Multivariable Proceséaesdmatica33,
In this paper, an optimization approach for the estimation of best 1175 (1997).

achievable quadratic performance under a multiloop PID controlleiKo, B.-S. and Edgar, T. F., “Performance Assessment of Cascade Con-
was suggested. To evaluate the quadratic cost function, an analytic trol Loops;AIChE J, 46, 281 (2000).
expression was derived for the closed-loop impulse response undé&o, B.-S. and Edgar, T. F., “Performance Assessment of Multivariable
a multloop PID control. The proposed performance assessment Feedback Control Systemalitomatica37, 899 (2001a).
procedure utilizes the knowledge on a process model and finds thi€o, B.-S. and Edgar, T.F., “Performance Assessment of Constrained
best achievable performance under a multiloop PID control scheme. Model Predictive Control System&JChE J, 47, 1363 (2001b).
The proposed method was then extended to some important peikozub, D. J., “Controller Performance Monitoring and Diagnosis: Ex-
formance assessment issues such as (1) plant-wide variability anal- periences and Challenges; Chemical Process Control - CPC.V,
ysis, (2) achievable performance improvement with decouplers, and Kantor, C. E. Garcia and B. C. Carnahan, eds., 83 (1996).
(3) effects of controller pairing on achievable performance. A simu-Qin, S. J., “Control Performance Monitoring - A Review and Assess-
lated example was employed to quantify the effects of process inter- ment;Comput. Chem. End3, 173 (1998).
actions on achievable multiloop PID control performance and theSourlas, D., Edgar, T. F. and Manousiouthakis, V., “Best Achievable

changes in individual loop performance. Low Order Decentralized Performance] Proc. American Control
Conference, Baltimore, Maryland, 3364 (1994).
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nosing Process Control Performance: The Single-Loop Cuake;
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