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Abstract−−−−An analytic expression is derived for closed-loop output behavior under a multiloop PID control. Based
on the analytic expression obtained, optimization problems are formulated to assess 1) best achievable quadratic per-
formance using multiloop PID control, 2) best achievable quadratic performance on key process variables while
maintaining reasonable performance on other less critical process variables, 3) achievable performance improvement
with decouplers, and 4) effects of loop pairing on achievable performance. It is shown through a simulated example
that individual loop performance as well as the overall multiloop PID control performance can be assessed by using
the proposed method.
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INTRODUCTION

Control loop performance monitoring technology has received
increasing attention over the past decade in both academia and in-
dustry. In this technology, minimum variance control has played a
very important role as a benchmark performance measure in vari-
ous feedback/feedforward control systems [Harris, 1989; Desborough
and Harris, 1992, 1993; Harris et al., 1996; Huang et al., 1997; Ko
and Edgar, 2000, 2001a, b]. Detailed review and survey of litera-
ture in this area can be found in Qin [1998] and Harris and Seppala
[2001]. However, virtually no progress has been reported in the liter-
ature for multiloop feedback control systems despite the fact that it
is one of the commonly used control structures in process industries.

In multiloop control systems difficulties arise in controlling pro-
cess variables due to process interactions. When severe process in-
teractions exist, even the best-tuned multiloop controller may not
provide satisfactory control performance. Hence the assessment of
best achievable performance in a multiloop control system has sig-
nificant practical importance in control system redesign and perfor-
mance monitoring. The necessity of assessing the best achievable
multiloop control performance has also been reported in the litera-
ture [Kozub, 1996; Qin, 1998].

When the control performance is measured by the l∞-norm of
the output signal, Sourlas et al. [1994] have developed a methodol-
ogy to quantify the best performance achievable by low order de-
centralized controllers such as PI and PID controllers. However, as
noted by Stanfelj et al. [1993], the most commonly used measure
of performance is the variance of key process variables due to its
direct relationship to process performance and profit.

In this paper, an analytic expression is derived for closed-loop
output behavior under multiloop PID control. Based on the ana-
lytic expression derived, an optimization approach is proposed for
the assessment of best achievable performance in multiloop PID

control system when the control performance is measured by 
put variance. Also discussed are several extensions of the prop
method to some important issues in multiloop PID control syste

PROBLEM FOURMULATOIN

Consider the following multivariable system with n inputs and
outputs represented by a linear time-invariant process with add
disturbance at the output:

(1)

where H(q−1) and N(q−1) are the process and the disturbance tra
fer function matrices, respectively; yt, ut and at are process output,
input and white noise vectors of appropriate dimensions. The 
crete multiloop PID controller transfer function C(q−1) has the fol-
lowing diagonal form:

(2)

where , (i=1, 2, …, n), and k1, i, k2, i, k3, i

are PID controller tuning parameters of the ith loop. The quadratic
performance measure of the output variable to be minimized is

(3)

where Q is a positive-definite output weighting matrix.
The closed-loop output is then given by yt=GCL(q

−1)·at, where
GCL(q

−1)≡[I+H(q−1)C(q−1)]−1N(q−1) is the closed-loop transfer func
tion matrix from at to yt. One way of obtaining closed-loop impuls
response and the corresponding quadratic cost function is to
form long division on each element of the matrix transfer funct
GCL(q

−1) after solving for the inversion of matrix polynomial. Thi
method becomes non-trivial and requires numerous polynomial 
nipulations and greater computation time as the number of lo
increases.

Another way of obtaining the quadratic cost function in Eq. (
is to calculate the complex contour integral given below.

yt  = H q
− 1( )ut + N q

− 1( )at

C q
− 1( )  = diag c1 q

− 1( ) c2 q
− 1( ) … cn q

− 1( ), , ,{ }

ci q− 1( ) = 
k1 i, + k2 i, q

− 1+ k3 i, q
− 2

1− q
− 1

------------------------------------------

J = E yt
TQyt( )

J = E yt
TQyt( ) = trace Q E ytyt

T( )⋅[ ]
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(4)

where  denotes a counter-clockwise integral along the unit circle
in the complex plane; Σa represents the covariance matrix of the
noise vector at. Practically speaking, the evaluation of the cost func-
tion J should be carried out numerically; for example, with the scheme
suggested by Åström [1970]. This method also has a drawback in
that it requires matrix polynomial inversion. Moreover, it does not
give the closed-loop impulse response.

In the next section, an alternative and more convenient way of
obtaining the closed-loop impulse response and the corresponding
quadratic cost function is developed as an explicit function of mul-
tiloop PID tuning parameters.

ANALYTIC EXPRESSION FOR THE CLOSED-LOOP 
OUTPUT BEHAVIOR

Consider the multivariable system in Eq. (1) that is rewritten by
using the impulse response forms as follows:

(5)

where Hi and Ni are the impulse response coefficients of the pro-
cess and the disturbances, respectively, and m is the largest number
of time intervals for an output to reach a steady-state threshold. When
the set point is held at zero, the output from the multiloop PID con-
troller becomes

(6)

Substituting Eq. (6) into (5) results in the following relation:

(7)

where Si(i=1, 2, …, m) represents the step response coefficients of
the process model. If we define Si, j as the matrix that has the same
jth column with Si and has zeros elsewhere, Eq. (7) can be rewrit-
ten as:

(8)

To obtain an output expression under a multiloop PID control, we
first compute the closed-loop output behavior for a single load dis-
turbance driven by a white noise ao, which is introduced to the sys-
tem at t=0. Then, we apply the principle of superposition to obtain
a general expression for the closed-loop output behavior.

When the white noise ao is introduced at t=0, the future closed-
loop outputs over a finite-horizon p are related to the tuning param-

(9)

where

and

Eq. (9) can be rewritten in a compact form as:

(10)

The relation in Eq. (10) gives an explicit expression for the clos
loop output behavior when a single load disturbance is introdu
to the system. When the load disturbance is generated by a s
of white noise occurring at every sampling instant, the closed-l
output yt at sampling time t can be obtained, by the principle of 
perposition, as

(11a)

where

(11b)

In deriving Eq. (11), it is assumed that the closed-loop output
turns to its set point within the given horizon p, and hence Yi=0

= trace Q
1

2πi
-------- GCL z( )ΣaGCL

T z
− 1( )dz

z
-----∫°⋅

= trace
1

2πi
-------- GCL

T z
− 1( )QGCL z( )dz

z
-----∫° 

  Σa⋅

∫°

yt  = Hiq
− iut + Niq

− iat
i = 0

∞

∑
i = 1

m

∑

ut  = − 
1

1− q
− 1

-------------- diag k1 1, k1 2, … k1 n,, , ,( ) + diag k2 1, k2 2, … k2 n,, , ,( )q− 1[

+ diag k3 1, k3 2, … k3 n,, , ,( )q− 2] yt⋅

yt  = − Si
i = 1

m

∑ diag k1 1, k1 2, … k1 n,, , ,( ) + diag k2 1, k2 2, … k2 n,, , ,( )q− 1[⋅

+ diag k3 1, k3 2, … k3 n,, , ,( )q− 2] q
− iyt  + Niq

− iat
i = 0

∞

∑⋅

yt  = − Si j, k1 j,  + k2 j, q
− 1+ k3 j, q

− 2( ) q
− iyt⋅

i = 1

m

∑  + Niq
− iat

i = 0

∞

∑
j = 1

n

∑

yo

y1

...
yp

 = − Gjk1 j,  + Gjk2 j,  + Gjk3 j,( )

yo

y1

...
yp

 + 

No

N1

...
Np

ao⋅⋅
j = 1

n

∑ ~ ~~

Gj  = 

0 ...

S1 j, 0 0
S2 j, S1 j, 0
...

...
...

...
Sp j, Sp − 1 j,

... S1 j, 0

Gj  = 

0 ...

0 0 0
S1 j, 0 0

S2 j, S1 j, 0 0
...

...
...

...
...

Sp − 1 j, Sp − 2 j,
... S1 j, 0 0

,, ~

Gj  = 

0 ...

0 0 0
0 0 0

S1 j, 0 0 0

S2 j, S1 j, 0 0 0
... ... ... ... ... ...

Sp − 2 j, Sp − 3 j,
... S1 j, 0 0 0

.
~~

y  = I  + Gjk1 j,  + Gjk2 j,  + Gjk3 j,( )
j = 1

n

∑
− 1

Nao⋅~ ~~

where y = 

yo

y1

...
yp

, and N = 

No

N1

...
Np

.

yt  = Y iat − i
i = 0

p

∑

Yo

Y1

...
Yp

 = I  + Gjk1 j,  + Gjk2 j,  + Gjk3 j,( )
j = 1

n

∑
− 1

N⋅~ ~~
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eters in the following way. (i>p). For unstable or excessively sluggish systems, the expression
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in Eq. (11) will only give a truncated output response up to lag p. It
is also worth noting that the inverse operation in Eq. (11b) is greatly
simplified, since the matrix being inverted has a special lower tri-
angular structure.

The quadratic performance measure defined in Eq. (3) can now
be evaluated by substituting the output expression in Eq. (11) into
Eq. (3), and it is given by

(12)

where  is the (p+1)-block diagonal matrix of Q. The quadratic
cost function is now expressed as an explicit function of multiloop
PID tuning parameters in Eq. (12), and it provides a more conve-
nient way of evaluating the quadratic cost function over the previ-
ous approaches, especially when the number of loops involved in
the system increases. For n×n processes, there are 3n adjustable
tuning parameters for the multiloop PID controllers. By minimiz-
ing the quadratic cost function with respect to these tuning parame-
ters, the best achievable multiloop PID control performance can be
found.

EXTENSIONS

The multiloop PID control performance assessment procedure
proposed in the previous section is capable of providing performance
benchmarks for each individual output variable as well as the over-
all performance bound. It is demonstrated in this section that the
proposed method can also be readily extended to some important
performance assessment issues such as (1) plant-wide variability
analysis, (2) achievable performance improvement with decouplers,
and (3) effects of controller pairing on achievable performance.
1. Plant-wide Variability Analysis

As mentioned by Qin [1998], it is desirable to transfer variabil-
ity from key process output variables to other output variables that
are less critical in process operations in multiloop control systems.
In this case, one important question is “What is the lowest achiev-
able variance of the key process variable under the constraint that
the variances of other less critical variables are bounded by some
prescribed values?” The answer to this question can be obtained
by solving an optimization problem where the cost function is the
variance of key process variable and the optimization is subject to
variance inequality constraints on other less critical process variables.
2. Achievable Performance Improvement with Decouplers

Multiloop control systems often exhibit adverse loop interactions
and cause the achievable multiloop control performance to be un-
acceptable. When severe loop interactions occur, one might want
to implement decouplers to compensate for the effect of loop inter-
actions brought about by cross-coupling of the process variables.
The calculation of the potential performance improvement with de-

couplers is helpful in designing control systems, and it can be qu
tified as demonstrated in the example section below.
3. Effects of Loop Pairing on Achievable Performance

When the best achievable multiloop control performance is un
ceptably poor with a given pairing of controlled and manipula
variables, one can consider different loop pairings. A more eff
tive controller pairing could result in a big improvement in achie
able multiloop control performance. The extent of such impro
ment in achievable multiloop control performance can also be
sessed by using the process transfer function matrix for a new 
troller pairing.

AN EXAMPLE

Consider the following 2×2 multivariable process used by Hua
et al. [1997].

(13)

We assume that the process transfer function above is known 
previous identification experiments. The disturbance sequence e
ing at the process output was generated from the disturbance 
el below:

(14)

where at is a two-dimensional normally distributed white noise wi
Σa=I. A multiloop PID controller was implemented to reject th
disturbance, and its settings are given by

Closed-loop simulations were performed with this multiloop co
troller, and two thousand multivariate observations were collec
from the simulation for the performance assessment of the inst
multiloop PID controller. Multivariate time-series analysis was th
carried out on the closed-loop outputs, and a disturbance mod

 was identified from the following relation.

The quadratic performance measure in this example is J=E(yt
Tyt),

i.e., equal weighting on each output variable.
Fig. 1 shows results of multiloop PID performance benchm

estimates (circled symbol) along with theoretical ones (solid li
as a function of the process model parameter K12. In this plot, the
multivariable minimum variance performance bounds are also dr
for comparison. As the interaction increases (i.e., as K12 increases),
Fig. 1 shows that the achievable multiloop PID performance d
riorates gradually, while that of multivariable minimum varianc
control remains almost unchanged due to its perfect interaction c
pensation.

The closed-loop performance using the installed multiloop P

J = E yt
TQyt( )

= trace Yi
TQYi

i = 0

p

∑
 
 
 

Σa⋅

= trace N
T

I  + Gj
Tk1 j,  + Gj

Tk2 j,  + Gj
Tk3 j,( )

j = 1

n

∑
 
 
 

− 1

Q
~ ~~

 I  + Gjk1 j,  + Gjk2 j,  + Gjk3 j,( )
j = 1

n

∑
 
 
 

− 1

N Σa⋅× ~ ~~

Q
H q

− 1( )  = 

q
− 1

1− 0.4q
− 1

---------------------- K12q
− 2

1− 0.1q
− 1

----------------------

0.3q
− 1

1− 0.1q
− 1

---------------------- q
− 2

1− 0.8q
− 1

----------------------

N q− 1( )  = 
1 − 0.6

0.5 1 
 
  1− q

− 1 0

0 1− q
− 1 

 
 

− 1

at⋅

C q− 1( )  = diag
1− 0.9q

− 1 + 0.1q
− 2

1− q
− 1

----------------------------------------- 0.21− 0.2q
− 1+ 0.01q

− 2

1− q
− 1

----------------------------------------------------, 
 ~

N̂
q− 1( )

N̂ q− 1( )  = I  + H q− 1( )C q− 1( )[ ] GCL q− 1( )⋅~
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controller is shown in Fig. 2 in terms of overall and individual per-
formance indices. The performance indices in this case are defined
as the ratio of the output variance (or quadratic cost function) of
the installed multiloop PID controller to the multiloop PID bench-

mark performance. It is seen from this figure that the output v
iance of variable 1 deteriorates with the increased interaction, w
that of variable 2 remains relatively constant as K12 increases.
1. Plant-wide Variability Analysis

Assume that we are mainly interested in the variance reduc
of variable 2 while keeping the variance of variable 1 less than
equal to 3.0. We wish to obtain the best achievable performanc
variable 2 under the condition E(y1

2)≤3. This task is easily handled
by choosing the cost function as E(y2

2) and adding the inequality
constraint E(y1

2)≤3 to the optimization problem. When K12=5, the
constrained optimization resulted in an improvement in achieva
output variance of variable 2 from 7.30 to 5.98, while the varian
of variable 1 increased from 1.64 to 3.0.
2. Achievable Performance Improvement with Decouplers

Again consider the case where K12=5, which is the case with con-
siderable process interactions. It can be seen from the inspecti
the process model in Eq. (13) that the effect of (1, 2) elemen
process transfer function can be completely eliminated using an e
decoupler I12=−5(q−1−0.4q−2)/(1−0.1q−1), while the effect of (2, 1)
element is best eliminated by using a decoupler I21=−0.03 (1−0.8q−1)/
(1−0.1q−1). The causal decoupler I21 cannot remove the cross-cou
pling term entirely, but it results in a term 0.3q−1 in the (2,1) element
of the process transfer function matrix. The effective process tr
fer function with the decouplers above becomes

where Hij is the (i, j) element of the process transfer function m
trix. Achievable performance improvement with decouplers can t
be obtained by replacing the process transfer function with 
and optimizing the corresponding cost function. Table 1 shows
potential improvement in both overall and individual performan
measures by incorporating decouplers into the multiloop con
system.
3. Effects of Loop-pairing on Achievable Performance

Consider the following discretized process transfer function (ba
on a continuous model used by Gagnepain and Seborg [1982]

H q
− 1( )  = 

H11+ H12I21 H12 + H11I12

H21+ H22I21 H22 + H21I12

 = 
H11+ H12I21 0

0.3q
− 1 H22 + H21I12

~

H q− 1( )~

H q
− 1( )  = 

− 0.190q
− 2

1− 0.905q
− 1

---------------------------- 0.948q
− 2

1− 0.368q
− 1

----------------------------

0.948q
− 2

1− 0.368q
− 1

---------------------------- 0.190q
− 2

1− 0.905q
− 1

----------------------------

Fig. 1. Achievable performance bounds with increased process in-
teractions.

Fig. 2. Performance assessment of the installed multiloop PID con-
troller.

Table 1. Potential performance improvement with decouplers

Quadratic performance measure Output variance of variable 1 Output variance of variab

Without decouplers 8.94 1.64 7.30
With decouplers (%reduction) 7.13 (20.2%) 1.55 (5.5%) 5.58 (23.6%)

Table 2. Effects of different controller pairing

Controller pairing Overall performance measure Performance measure of variable 1 Performance measure of var

1-1/2-2 14.57 7.30 7.27
1-2/2-1 06.78 3.26 3.52
January, 2004
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With this process model, the relative gain array analysis indi-
cates that 1-1/2-2 pairing is favorable with the relative gain λ11=
0.64. However, the diagonal time constants in the process transfer
function matrix are significantly larger than off-diagonal time con-
stants. Thus there exists a conflict between steady-state and dynamic
considerations.

Let us assume that the stochastic load disturbance model given
in Eq. (14) was identified. We want to assess the best achievable
performance for each controller pairing with the current disturbance
characteristics. Table 2 shows the effects of different controller pair-
ing on achievable performance. From this table, we can see that 1-
2/2-1 pairing is potentially advantageous over 1-1/2-2 pairing, and the
variability in the process outputs can be reduced significantly by
employing the 1-2/2-1 configuration. This result coincides with that
of Gagnepain and Seborg [1982], where deterministic step changes
were used in evaluating the performance of each control configu-
ration.

CONCLUSIONS

In this paper, an optimization approach for the estimation of best
achievable quadratic performance under a multiloop PID controller
was suggested. To evaluate the quadratic cost function, an analytic
expression was derived for the closed-loop impulse response under
a multiloop PID control. The proposed performance assessment
procedure utilizes the knowledge on a process model and finds the
best achievable performance under a multiloop PID control scheme.
The proposed method was then extended to some important per-
formance assessment issues such as (1) plant-wide variability anal-
ysis, (2) achievable performance improvement with decouplers, and
(3) effects of controller pairing on achievable performance. A simu-
lated example was employed to quantify the effects of process inter-
actions on achievable multiloop PID control performance and the
changes in individual loop performance.
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