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Abstract-The dynamic behavior of dispersion-type tubular reactors, referred to as finite and truncated models 
depending on the boundary condition representations at the reactor exit, was investigated through numerical simu- 
lations. It was found that the dynamic behavior of the two models can be identical or different depending on how 
the Pdclet number changes. 
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INTRODUCTION 

In modeling dispersion-type tubular reactors, either steady- 
state or dynamic, a well-established and popularly used model 
is one with the gradient boundary condition at the exit set 
to zero: dc/da = 0. On the other hand, another model, not of- 
ten used, is one with the gradient set to zero at infinity and 
the solution is truncated at the real reactor exit. 

For steady-state cases, the difference in the behavior of the 
two models has been compared extensively with various values 
of Pdclet number (Pe) and Damk6hler number (Da) [Chang 
et al., 1982]. A comparison of dynamic behavior, on the oth- 
er hand, has not yet appeared in the literature. We investigate 
and compare the dynamic behavior of the two models. For 
brevity, we shall call one model a finite model and the other 
a truncated model. 

FINITE TUBULAR REACTOR MODEL 

A well-known general mathematical description of axial dis- 
persion-type tubular reactors is given in dimensionless form 
by the following partial differential equation: 

3c 1 32c 3c 
~t - Pe ffz 2 i~z f(c). (1) 

(2) Initial condition: c(z, 0)--g(z) 

Boundary conditions: 

I ~c 
at the entrance (z=0) Pe ffz 

1 ~ - 0  at the exit (z=l) Pe ~z 

- -  - -  - c(0, 0 = -h(t) O) 

(4) 

where c(z, t) is the reactant concentration at position z and 
time t; f(c) the reaction rate term; g(z) the initial concentration 
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distribution in the reactor; and h(t) the feed concentration to 
the reactor at the inlet. 

The analytical solution to this widely used and well-known 
model when f(c)=Da-c (the first-order reaction) is given in 
Godsalve and Chang [1980] as 

c(z ' t )=exp[-~z-(~-~e +Da) t] " ~,exp[- p ~ t  1 

2~  co~atz ) + Pe sin(c~z) 

c~ + -~ -  + Pe 

' f ( p ~  Pc_4_ )z] } + or, f0h('r) exp + + Da d*" (5) 

where the eigenvalue o, is the k ~ positive root of the transcen- 
dental equation: 

P e . a  tan a = - -  (6) 
t;t o- - Pe 2 

4 

TRUNCATED TUBULAR REACTOR MODEL 

Although the overwhelming majority of researchers and 
engineers in the past have used the f'mite dispersion-type tu- 
bular reactor model, some researchers have had reservations 
about using the exit boundary condition stated above. The main 
reason seems to be that the reactant going through the reac- 
tor cannot see the reactor exit in advance and adjust its con- 
centration gradient to be exactly zero at the exit. 

An alternative approach then is to imp#he the conomtration 
gradient reaches equilibrium (dc/dz---0 or c=0) only at the 
end of an infinitely long reactor. Since a tubular reactor is 
of a finite length, the concentration obtained is ~ at the 
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real reactor exit. For this case, the reactor model in dimen- 
sionless form becomes 

3c 1 ~ ~c - f(c). 
3t Pc ~Z 2 ~Z 

Initial condition: c(z, O)=g(z) 

Boundary conditions: 

(7) 

(8) 

1 3c at the entrance (z=0) ~e  ~ - C(0, t) =-h(t) (9) 

1 3 c = 0  (10) at the exit (z=,,) p-~- ~ -  

The difference of this model from the former one is the 
position (z---~) of the exit boundary condition. For this mod- 
el with f(c)=Da - c, the analytical solution is rather com- 
plicated, but presented again in Godsalve and Chang [1980] 
a s  

+ 2 exp (Pe z) ['G2(z, t-z)h('r)dz (11) 

where 

I+ 1 {' ~ I G~(z,t, 0: exp ( z -  0 - ~  ~ xp - 

+ exp I -  Pe(z4t ~)2 ] )  - -~-exp I -~ t  + -~(z + 01 

o+t_o=,+[_/++o+_o] 
{ 1 .  P/'~"e F Pe'z2 l 

 Texp L- 4 ( t - z ) ]  

Pe exp Pez + P e ( t -  z) 4124  1 
[ q  Pe + ~ ] }  (13) erfc z 40 - 'r) 

and ~, z are dummy auxiliary variables for position and time, 
respectively. 

METHODS FOR THE NUMERICAL EVALUATION 

Computationally, the numerical evaluation of the analytical 
solutions for both models is u n n ~ y  involved and there- 
fore extremely unattractive. As we see in the analytical solu- 
tion of the finite model, Eq. (5), although the expression ap- 
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pears to be neat, the real task of evaluating a suffioent number 
(sometimes 3000) of eigenvalues consumes a great deal of com- 
puting time, depending on the values of Pe [Choe and Chang, 
1995]. Furthermore, for the truncated model, the analytical so- 
lution Eq. (11) involves a complicated evaluation of the erfc 
function. Thus, a numerical evaluation of the analytical solu- 
tions of both models is not very practical. 

A simple and straightforward shortcut to solve Eqs. (1)-(4) 
and Eqs. (7)-(10) numerically is by the Crank-Nicolson meth- 
od [Mitchell and Gdffiths, 1980]. For the finite model when 
the central difference for the spatial derivative with suitable 
space and time increments (Az=0.005, At=0.005) is used, the 
dynamic solutions for f(c)=Da.c, g(z)=0, and the unit step 
change in the inlet concentration, h(t)=l (t>O), are obtained 
as solid lines shown in Fig. 1 for Pe=-100 and Fig. 2 for Pe 
=1, each with Da=0.1 and 1. Solid lines in Fig. 3 show the 
effect of the values of Pe (Pe=100 and 0.1) when Da--O.1 
for the finite model. This numerical approach is much more 
convenient than the evaluation of the analytical solution of 
Eq. (5) with the calculation of eigenvalues from the transcen- 
dental equation in Eq. (6). 

Unlike the finite model, the mmcated model as given above 
is not malleable to yield easy numerical solutions because of 
the boundary condition at infinity ( z ~ ) .  This situation, how- 
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Fig. 1. The exit concentration response to the unit step change 
ha the inlet concentration for Pe=100 with Da=0.1 and 1. 
--: Finite model, .--: Truncated model 
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Fig. 2. ~ne exit concentration response to the unit step chan~e 
in the inlet concentration for Pe=l with Da=0.1 and 1. 
--: Finite model, ---: Truncated model 
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Fig. 3. q['ne exit emmentralion r t s ~ m e  to the unit step change 
in the inlet concentration for Da--O.l with Pe=-lO0 and 
0.1. 
--:  Finite model, .--: Truncated model 

ever, can be alleviated by proposing the following coordinate 
transformation: 

z= y (0<z___oo r 0~y_<2). (14) 
2 -y '  

This transformation not only eliminates the difficulty of the in- 
finity boundary condition but also is amenable to the sWaight- 
forward Crank-Nicolson method. With this transformation, Eqs. 
(7)-(10) become: 

3 c _  1 r (2_~_~]bZc_ 1 ( 2 - y ) 3  
Ot Pe L 4 JOy 2 Pe 2 2 J~gy 

- f(c). (15) 

Initial condition: c(y, 0)=g(y) (16) 

Boundary conditions: 

at the entrance (y=0) 2 3c Pe ~ c(0,t)=-h(t) (17) 

at the exit (y=2) 1 3c _ 0 (18) 
Pe0y 

With this transformation, the truncated real reactor exit is 
now at y=l which coincides conveniently with z=l. When 
the central difference for the spatial derivative with suitable 
space and time increments (Az=0.005, at=0.005) is used, dy- 
namic solutions for f(c)=Da.c, g(z)=0, and a step change in 
the inlet concentration, h(t)=l (t>0), are obtained as dotted 
lines shown in Fig. 1 for Pe=100 and Fig. 2 for Pe=-l, with 
Da=0.1 and 1, respectively. Dotted lines in Fig. 3 show the 
effect of the values of Pe (Pe=-100 and 0.1) when Da--O.1 
for the truncated model. 

Besides the Crank-Nicolson method, the method of lines 
[Schiesser, 1991] by means of a DSS/2 package [Schiesser, 
1985] for double checking, produced the same solutions. For 
the method of lines, the Runge-Kutta-Niesse method was used 
for the time domain integration, the three point centered dif- 
ference approximation was chosen for the second order spa- 
tial derivatives, and the four-point biased-upwind difference ap- 
proximation was used for the first order spatial derivatives of 
both models [Choe et al., 1995]. 

RESULTS AND DISCUSSION 

Figs. 1, 2 and 3 show the dynamic behavior for various val- 
ues of Pe and Da, where we can compare the dynamic behav- 
ior of the two models. Solid lines are the solutions of the fin- 
ite model and dotted lines are the solutions of the truncated 
model. 

Figs. 1 and 2 show the dynamic behavior of the finite and 
the mmcated models for Pe=100 and 1, respectively, with vary- 
ing values of Da (Da=O.1 and 1). Fig. 1 shows that when 
the dispersion is not significant (Pe=100), the two models 
have almost identical dynamic behavior independent of the 
reaction rate (the values of Da). Fig. 2 shows that when the 
dispersion becomes significant (Pe=l), the dynamic behavior of 
the two models diverges from each other. We see the truncat- 
ed model always gives lower dynamic concentration profiles 
than the finite model and their final steady states are different. 

Fig. 3 shows the dynamic behavior when Da=O.1 with Pe 
=100 and 0.1. Again we see that for large values of Pe (Pe= 
100) the dynamic behavior of the two models coincides. For 
smaller values of Pe (Pe=0.1), however, the difference in the 
dynamic behavior is significant. 

The choice of the dynamic model depends on the circum- 
stance of the problems posed and may be left to the discretion 
and judgment of the researcher, bearing in mind the difference 
in the dynamic behavior depends on the parameters. For ex- 
ample, when Pe is large, it makes no difference between 
the two models; when Pe is small, there is a significant dif- 
ference in dynamic behavior between the two models. 

The same technique above can be used for nonlinear reac- 
tion problems. The transformation proposed will alleviate the 
difficulty imposed by the boundary condition at infinity. 
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NOMENCLATURE 

c : the reactant concentration 
Da : DamkOhler number 
f : the reaction rate term 
g : the initial concentration distribution in the reactor 
h : the feed concentration to the reactor at the inlet 
Pe : Pdclet number 
y : transformed position for z 
z : position 
t : time 

: dummy auxiliary variable for position 
z : dummy auxiliary variable for time 
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