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A b s t r a c t - T h e  present paper is concerned with the motion of fluid layer between two parallel 
concentric circular plates, when the inertia of fluid is not negligible. We consider the two specific 
problems to examine the inertia effects; one in which an incompressible Newtonian fluid is injected 
into the gap through the hole located at the  center of each plate and the other in which two parallel 
plates rotate coaxially with arbitrary angular velocities. The method of solution is an asymptotic expan- 
sion which is usually employed for the thin-film lubrication problem in the limit of small but finite 
Reynolds number based on the gap height. The asymptotic solutions for the two problems considered 
here provide the inertia-induced secondary flow patterns, which in turn determine the inertia contri- 
butions to the flow parameters such as the pressure drop, injection flow rate, and torque required 
to sustain the rotation of each plate. 

INTRODUCTION 

In this paper, we consider the motion of thin fluid 
layer between two parallel plane surfaces for the thin- 
film lubrication limit in which the gap height between 
the plates is small compared to their dimension in 
the flow direction. In particular, we examine the two 
specific problems; one in which an incompressible 
Newtonian fluid is injected to the gap between two 
concentric disks through the hole located at ~Lhe center 
of each disk and the other in which the thin-fluid layer 
is set in motion owing to the rotating disks (see Fig- 
ures 1 and 2). The radial flow between the two parallel 
disks, which is driven by the pressure drop along the 
gap can be modeled as a radial source flow Eli .  This 
type of flow is of practical significance in the field 
of polymer processing such as plastic molding and re- 
levant to some aspects of the centrifugal compressor 
diffusers and the hydrostatic air bearing. The configu- 
ration of flow between rotating disks arises in many 
applications, including lubrication and polymer proces- 
sing, and it is also relevant to rheometry design for 
measurement  of rheological properties. 

Although the flow configuration considered here is 
simple, it is not possible to solve exactly (except by 
numerical method) when the inertia of intervening 

*To whom all correspondence should be addressed. 

fluid is not neghgible. Raal El] obtained numerical 
result for radial source flow between parallel disks 
from a finite-difference solution of the full Navier-Sto- 

kes equation with a discretization procedure based 
on the method of Allen and Southwell [2].  As pointed 
out by Bird, Stewart and Lightfoot E3], without inertia 
the velocity profile in the gap is radial and parabolic 

and the average radial velocity decreases radially as 
r i. When the fluid inertia is not negligible, however, 
Raal showed that the inertia of the intervening fluid 
creates separation and reverse flow with reattachment 
further downstream. The problem for steady :motion 
of a viscous fluid confined between two coaxial disks 
can be reduced to the solution of a coupled set of 
ordinary differenlial equations using a similarity trans- 
formation developed by von Karman [43. This solu- 
tion is also not yet given analytically owing to the non- 
linear terms arising from fluid inertia [5]. 

The vast majority of existing analytical solutions 
have been for thin-fluid layer where the Reynolds num- 
ber based on the gap height is sufficiently small for 
all inertia effects to be neglected, the so-called lubri- 
cation limit E6-8]. However, even in the lubrication 
limit (i.e., small but finite Reynolds number  limit, 0 
< R e ( I )  the inertia of fluid was shown to produce 
a weak secondaw motion which has a velocity compo- 
nent  perpendicular to the disks. The inertia-induced 
secondary flow leads to change in flow characteristics. 
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Fig. 1, Schematic description for the radial so-ree flow 
between two parallel disks. 
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Fig. 2. Schematic description for the flow between two 
coaxially rotating disks. 

For example, the linear relationship between the pres- 
sure drop and the injection flow rate in the radial 
source flow [3] is no longer valid due to the inertia 
contribution at small but nonzero Reynolds number. 
For ~he flow between rotating disks, the torque re- 
quired to sustain the rotational motion is a linear func- 
tion of the angular velocity in the absence of fluid in- 
ertia [-5]. As we shall see shortly, the inertia or centri- 
fugal force generates a weak secondary flow which in 
turn yields a nonlinear contribution to the torque at O 
(Re~). In the present paper, we present an asymptotic 
resuk in the limit of small but finite Reynolds number 
based on the gap height, which is typical of lubrication- 
theory analysis [9-11]. In section 2, the radial source 
flow ~etween two parallel coaxial disks is considered 
for the two different cases; first, we determine the 
inertia contribution to the injection rate with the pres- 
sure drop fixed at a constant value and, in the other 
case, we examine the inlet-pressure variation induced 
by inertia with a fixed injection rate. Finally, in section 
3, we consider the flow due to coaxially rotating disks. 
with arbitrary angular velocities. The purpose of this 
section is to show that there are one-parameter famil- 
ies of solutions in the limit of small Reynolds number. 
The unique parameter classifying the solution families 
is shown to be the ratio of the angular velocities of 
the two coaxial disks. In addition, we also present the 
nonlinear relationship between the hydrodynamic tor- 
que on each disk and its" angular velocity from the 

inertia corrections to the lubrication approximation. 

RADIAL S O U R C E  F L O W  B E T W E E N  
P A R A L L E L  D I S K S  

1. F o r m u l a t i o n  of  the  P r o b l e m  
The present problem is concerned with the inertia 

effects in the steady radial source flow between two 
parallel disks. An incompressible Newtonian fluid with 
a constant viscosity p and a density p is injected to 
the hole of radius a at the center of each disk and 
then flows radially along the gap between the parallel 
disks with radius R. The separation distance 2b and 
the radius of the inlet hole a are assumed to be very 
small compared to the disk radius R. 

b a 
~- - -~<1  and K = ~ < I  (1) 

To solve this problem, we consider the velocity dis- 
tribution ~ =  (u, v, w) in the cylindrical coordinates (r, 
0, z). A schematic of the coordinate system is shown 
in Figure 1. Due to the axisymmetry of the geometry 
of the thin-film region, the velocity field generated 
in the gap will be axisymmetric, i.e., v = 0  and 0 / a 0 = 0  
everywhere. The coordinates may be considered to 
be nondimensionalized with respect to the characteri- 
stic variables; r , : R  (characteristic length scale in the 
r-coordinate) and z~=b (characteristic length scale in 
z-coordinate). It is not immediately obvious how to 
specify the characteristic pressure (or stress) and ve- 
|ocity. In fact, we shall see that the most appropriate 
choices for the characteristic pressure and velocity 
depend upon the condition of the problem. For the 
moment, we simply denote the characteristic velocity 
for motion in the radial direction as u,. By means of 
the continuity equation, the velocity component w is 
characterized by w,=euc.  Furthermore, since in the 
thin-film lubrication flow the dominant viscous force 
is always balanced by the pressure force, the charac- 
teristic scale for the pressure is shown to be related 
to the characteristic velocity uc by p ,=  ~u~R/b._,. All that 
remains for nondimensionalization of the problem is 
to specify either the characteristic velocity u,. or the 
characteristic pressure p, depending upon the condi- 
tion of the problem. In this section, we consider the 
inertia contributions for the two specific cases; one 
in which the pressure drop, AP, through the gap is 
fixed at a constant value AP0 and the other in which 
the injection rate Q remains unchanged, i.e.. O=O0 
at all times. In the former problem, the obvious choice 
for the characteristic pressure is pc=AP0 and thus 
u , - A P o b ~ / ~  and wc:-APoba/~R ~ . On the other hand, 
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in the latter case, the characteristic velocity u~ is spe- 
cified by u~ = Qo/Rb and it follows that p~= pQo/b 3 and 
w~ = Qc,/R ~- . 

Let us consider the continuity equation and Navier- 
Stokes equation in the nondimensionalized k,rm based 
on the characteristic variables mentioned above: 

1 O O,u)+Ow = 0  (2) 
r or 0z 

R e ( u - ~  +w OUc?z / I = -  OPor + 02~uOz 2 +0(~ ~) (3) 

Oz Or ', Or / aa ~ 

Here, the Reynolds number Re is defined by 

Re:: pu~b~ (5) 
uR 

which is very small (i.e., Re~, l )  in the thin-film lubri- 
cation limit, e<:l .  The boundary conditions to be satis- 
fied are no-slip condition on the surface of each disk, 
i.e., 

/~=0 at z = - + l  (6) 

It is noteworthy that the solution for the velocity field 
cannot, however, be forced to satisfy any boundary 

conditions at the inlet and outlet edges (i.e.. r= ~ and 
1, respectively) without over-specifying ~. Since the 
thin-film lubrication approximation neglects the sec- 
ond-order derivative terms with respect to r, which 
are O(ge), in the equation of motion, a solution of lead- 
ing order in g no longer requires boundary conditions 
at both r=K and r = l .  Instead, we require only that 
the thin-film solution match with the solutions in the 
regions outside the thin-film F9, I0J. and this matching 
condition does not influence the form of the leading 
order solution in the thin-film region which we intend 
to determine in the present paper. 
2. Asympto t i c  S o l u t i o n s  

Let us then consider the small but nonzero inertial 
effects in which the governing equations and boundary 
conditions are (2)-(4) and (6). The case of Re=O is 
just the normal lubrication problem for parallel sur-- 
faces without inertia. For small but nonzero value of 
Re, on the other hand, we simply expect a solution 
in the form of a regular perturbation expansion in 
Re, i.e., 

=: ~,~ + Re~ +.." (71) 

P=Po+ReP1 + ' "  (8) 

in which the subscript i (=0,  1) denotes the level 
of approximation. 

The governing equations at each order can be obtain- 
ed by substituting the expansions (7) and (8) into the 
governing Eqs. (2)-(4) and boundary condition (6) and 

collecting terms of equal order in Re. Then, the govern- 
ing equation for the O(1) problem is simply given 
by 

OPo _ 02uo 
Or Oz 2 (9) 

with the boundary condition to be satisfied 

uc~=0 at z = +  ! (10) 

By noting that P0 is a function of r and independent 
ofz in the limit ol ~--~0, the O(1) solution can be obtain- 
ed by integrating (9) in terms of z and then applying 
boundary condition (10): 

1) ( 1 .  uo-  2 \ Or 

The unknown pressure gradient (aP,Jor) can be deter- 
mined from the fact that the volume flow rate Q(, is 
independent of r and constant. 

f +l 4nr OPo 
Qo = 2~r udz  - (12) 

1 3 or 

It thus follow that the pressure distribution is given 
by 

P 0 = -  3 Q0tnr (13) 
4 ~  

in which, for convenience, we take the pressure: at the 
outer edge of the disk as a reference pressure i.e., 
P(r= t)=P,~,=0. As pointed out by Bird et aL [33 the 
pressure distribution decreases logarithmically down- 
stream in the absence of the fluid inertia. Combining 
(12) and (13), the injection flow rate without fluid iner- 
tia can be related to the pressure drop AP,,[=-P;"- 
~',~t>0, where P~,"=P,(r=K) and P~;"'=PJr=I)] th- 
rough the gap: 

Oo-  4 ~ o  and OP[, _z~( ,  I (14) 
31n~ 8r InK r 

Then, the O(1) solution for the velocity distribution 
//0=(u0, 0, w0) is completed as: 

1 AP0 u 0 -  l (z  2 1) and w .=0  (15) 
21nK r 
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It can be noted that the velocity distribution is radial 
and has a parabolic profile. The magnitude of the ra- 
dial velocity decreases like r-1. This is identical to 
the result of Bird et al. in the limit Re-*O. 

We can predict inertia effects in the radial flow be- 
tween two parallel disks by considering O(Re) solution, 

which should satisfy 

1 ~? (ruO+ c?w~ = 0  (16) 
r Or Or 

,3uo OP1 (?2u 
u0" - + - -  (17) 

Or Or Oz 2 

Pl is also a function of r only due to the thin-filrn 
approximation. Using the O(t) solution given by (15), 

the differential Eq.(17) can be solved by satisfying 
the boundary, condition, u , = 0  at z =  -+ 1. The solution 

for the O(Re) radial velocity is 

2) ua: :~-  (z2-1) 

(z 2 - 1 )  ( APo y (z,__4z2+ 11) (18:) 
120r ~ \ ~ /  

The unknown inertia correction to the pressure gra- 
dient oPt~Or depends on the eondition of the problem. 
As we mentioned earlier, we consider, in this section, 

two distinct cases; in the first case, the pressure differ- 
ence between inlet and outlet of the gap is fixed 
(equivalently, the inlet pressure is maintained con- 
stant) and, in the second case, the injection flow rate 

through the gap remains constant. 
We begin with the first case for the fixed pressure 

drop. In this case, the inertia contribution to the pres- 
sure gradient can be determined from the fact that 
the inertia correction to the injection flow rate is al- 

ways independent of r as a consequence of the overall 

material balance, i.e., 

OO _ 3 ~ '  2nruldz=O (19) 
3r 3r i 

By substituting u~ of (I8) into (19), we get 

OP, _ 6 ( APo 't '2 C, Ca: constant (20) 
t?r 35r ~\  In 1< / + r ' 

Now, we can determine the inertia correction to the 
pressure distribution, P~, by applying the boundary 
condition P~ = 0 at r =  K and 1, which is a consequence 
of the condition of a fixed pressure drop: 

h 1 
P~=35[ l-i~K I k - ~ +  K ~ lnKJ (21) 

Then. upon substituting (21) into (18), the inertia cor- 
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Fig. 3. Inertia contribution to the injection flow rate as 

a function of the geometric parameter K for AP0=  

1. 

rection to the radial velocity, Ua, is readily evaluated 

as: 

( AP0 ~2(z2-1) ( 3  ( 1 - K  ~) 7z4-28z2+5\  
u, : \ I~nK-K / - - ~ - - -  @-0 K 2 In K ~ )(22) 

In view of the continuity Eq. (16), the nonzero vertical 
component of the velocity wl is given by 

i ( AP0 )u z(z~- 1)~(z'-'-5) 
w~ = - V \~ -n  ~-, ~ (23) 

which is entirely due to the fluid inertia. 
The inertia correction to the injection flow rate can 

be determined from the known solution for the O(Re) 
radial velocity u~ of (22). The result is 

4~ (AP0 2 ( 1 - K  2) 
QL- 35 (In K) s K ~ (24) 

which is always positive for 0<K<I.  Thus, the inertia 

of the intervening fluid increases the injection rate. 
This is a consequence of the fact that in this flow 
configuration the fluid is actually decelerating like r 
as it travels downstream. But, the effect of inertia is 
to inhibit (or slow) the rate of deceleration, and the 
fluid velocity in the radial direction actually moves 
faster than it does without any inertia present. In Fi- 
gure 3, the inertia correction to the injection flow rate 
Qt is plotted as a function of the geometric parameter  
•. Given a fixed pressure drop AP0, the magnitude 
of the pressure gradient increases monotonically with 
K, as noted from (14), and so does the injection flow 
rate Q, in the absence of the fluid inertia. However, 
it can be seen that the inertia contribution Q~ exhibit 
a minimum at about K=0.25. This peculiar result is 
due to the fact that the convective inertia, udOuo/Or), 
in the equation of motion becomes very. large in both 

the asymptotic limits •--->0 and K ~ I :  
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Fig. 4. Streamlines for the secondary flow generated by 

fluid inertia in the radial source flow under the 

condition of a fixed pressure drop. 

1 
duo f K3(ln ~)2 as K---~0 

u 0 ~ -  ~ \ 1 
(In K) 2 as K-~I 

For the case of a constant pressure drop, the stream 
function for the secondary flow induced by fluid iner- 

tia is given as 

1 (zM~ 2 ( 1 -  ~:2). ,~ . . 
"I"t:= 70 (In K) a ~2 tz' - az) 

( APo ~ z(z ~-  17(z ~-  5) (25) 
+ \ In K / 840r 2 

In Figure 4, the streamlines for the inertia-induced 
secondary flow are plotted for K=0.I  and AP0 = 1. As 
shown in the figure, the streamlines near r~K are: 
not parallel to the disk and similar to those generated 
by a mass source located at the origin in the two paral- 

lel disks. 
Finally, let us turn to the second case of a constant 

injection flow rate (i.e.. Q=O0). It is obvious that the 
leading-order solution, (14) and (15), does not change; 
and remains valid. All that changes is inertia correc- 
tion tor the pressure distribution OPffOr in (18), which 
depends on the condition for the problem. Since the 

injection flow rate Q is unchanged and remains con- 
stant. Q=Q0, the inertia correction should satisfy the 
constraint, 

o,= f ~l 2nru~dz=O (26) 
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Fig. 5. Inertia correction to the pressure distribution as 
a function of r for K=0.1 and AP0= 1 : ease I, 

for a fixed pressure drop; case 11, for a fixed injec- 

tion rate. 

It thus follows from (18) that 

OPl __ a l ( ~Po ~ 2 3~ (_~n~P~_)2(1) 
Or 35 r ln• ] and P~= 1 -  i (27) 

In Figure 5, tile inertia correction to the pressure 
distribution is plotted as a function of r for •=0.1 
and APo= 1, Also included for comparison is the iner- 
tia contribution to the pressure for the preceding case 
of a fixed pressure drop. It can be easily seen from 
the figure that the inertia correction is negative every- 
where in the present case of a fixed injection flow 
rate, and the pressure gradient associated with the 
inertia-induced secondary flow is positive, which is 
a source of reverse flow, as we shall see shortly. On 

the other hand, in the foregoing case of a fixed pres- 
sure drop the inertia contribution to the pressure is 
positive everywhere and possesses a maximum r =  
@2~K2 In K/K 2 -  1. Further, the positive pressure gra- 

dient near r=K  associated with fluid inertia causes 
the secondary flow to exhibit the non-parallel stream- 
lines near the inlet region, and the positive pressure 
gradient downstream results in the positive correction 
to the injection flow rate with no recirculating flow, 
as are seen in Figure 3 and 4. It is worth pointing 
out that since the inertia correction to the inlet pres- 
sure is negative under  the condition of a fixed flow 
rate, the overall pressure drop is smaller than it would 
be without any inertia present. Thus, in the presence 
of the fluid inertia, the same flow rate can be achieved 
with less power consumption. 

The inertia contribution to the velocity distribution 
can be easily determined from (18) and the continuity 
Eq. (16) : 

( zkPi, ~t 2 i (z ~-1)(724 28z 2+5) 
u, - \  I ~ - K  .,' 7 840 (28) 
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Fig. 6. Streamlines for the secondary flow generated by 

fluid inertia in the radial source flow under the 

condition of a fixed injection rate. 

[ APo '~2 1 z(z 2-1)2(z 2 -  5) 
w ' =  - / ,  l-i~-K: r 4- 420 (29) 

It is noteworthy that although the radial component 
u~ is different from the previous result, the z-compo- 
nent w~ is the same as in the previous case. Finally, 
the stream function of the inertia-induced secondary 
flow for the case of a constant flow rate can be deter- 
mined as follows: 

W1 = rZ \ In K / 840 (30) 

In Figure 6, the streamlines of the secondary flow 

induced by fluid inertia are plotted for K=0.1 and 
AP0 = 1. It can be noted from Figures 4 and 6 that 
the secondary flow pattern for the case of a fixed flow 

rate is quite different from that for the preceding case 
of a fixed pressure drop. The secondary flow with 
a fixed injection rate exhibits recirculating stream- 

lines, which is qualitatively similar to the numerical 
result [1]. As noted earlier, reverse flo~ is caused 
primarily by the positive value of inertia corrections 

to the pressure gradient, oPt~Or in (27). 

F L O W  B E T W E E N  TWO COAXIALLY 
R O T A T I N G  D I S K S  

1. F o r m a t i o n  of  P r o b l e m  
Lel us first consider the governing equations and 

the boundary, conditions for the flow between two co-- 

axially rotating disks, as shown in Figure 2. As in the 
preceding examples in section 2, we take a cylindrical 
coordinate system (r, O, z), in which the disks occupy 
the planes z = 0  and z = H  and are coaxially rotating 
with angular velocities ~ and ~z, respectively. 

In view of the axisymmetry of the problem, the con- 
tinuity equation and the Navier-Stokes equation for 
the velocity distribution u'=(u, v, w) in (r, 0, z) can 
be expressed as: 

1 0 ( ru)+ Ow = 0  (31) 
r Or Oz 

Re(u OU +w OU _ ~ t = _  oP +02u +0(~2) (32) 
\ Or c?z r / or Oz 2 

Re(u c?v + uv + w Ov "~ O~v +O(~ 2) (33) 

in which the variables are nondimensionalized with 
respect to the characteristic variables:r ,=R, z,=II, 
u, = v, - ~z/i', w,:= g2zH, and p, gR~fl2/If z. The Rey- 
nolds number  in this problem is thus defined by Re= 
pflz/ar~/p which is very small but finite in the thin-film 
limit, e---~0. In addition, from the equation of motion 

in the z-direction and the axisymmetry of the problem, 
it can be easily shown that 

cl~P = 0 and 0~P = O(c ~) (34) 
O0 Oz 

and thus the pressure distribution may be considered 
to be a function of r only in the thin-film limit. 

The boundary conditions which must be satisfied 
by the solutions to the governing equations are as 
follows: 

u = w -  0, v = 13r at z = 0 (35) 

u - - w = 0 ,  v=:r at z = l  (36) 

We have now three equations relating the four un- 

known functions u, v, w and P, together with the bound- 
ary conditions (35) and (36), which contain two dimen- 
sionless parameters, Re and 13 g~/~2. Thus, in order 
to determine the unique solution to the problem, we 
need one more equation supplemented to (31)-(33). 
This is the overall mass balance which can be written 

as 

f l 2~rudz :O  (37) 

2. A s y m p t o t i c  S o l u t i o n  
Following the preceding analysis in section 2, we 

can determine the solution to this problem as an asymp- 
totic series. (7) and (8). The governing equations for 
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the leading-order terms, /~0, P0 in (7) and (8), can be 
obtained by simply taking the limit Re--~O in the gov- 
erning equations and the boundary conditions, (31)-(37). 
The solution of the leading order problem is straight- 
forward and simply given as: 

uo := wo-  0 and v~ = (1 - !3)rz + [3r (38) 

P,, = 0  (39) 

which is identical to the result of the rheometry flow 
between two coaxially rotating disks without any iner- 
tia present [5]. 

The governing equations for the first inertia correc- 

tions can be obtained as: 

1 0 (ruO+ Ow~ = 0  (4(I) 
r Or ~z 

v~_ 02u, OP~ 
(41.) 

r Oz 2 Or 

O2vl = 0 (42) 
Oz 2 

with the boundary, conditions 

u~=v~=u,~=O at z = 0  (43) 

ul=v~-wl=O at z = l  (44) 

together with the overall mass balance 

f l  2nruMz=O (45) 

After some algebra, the first inertia contribution to 
the velocity and pressure distributions carl be expres- 
sed as follows: 

rz(z-  1) 
Ul [ 5 ( 1 -  [3)2z~ + 5(3[~ + 1)(1 - [~)z 

60 
- (6[3 + 4 ) ( 1 -  [3)] (46) 

v l = 0 (4'7) 

z2(z- 1Y 
wl= E(1-  !3)~z + ( 1 -  [3)(313 + 2)] (48) 

30 

9 p-- 

P, = ~ [ 3 ( 1  - !3)2+ 1013~ (49) 

From the velocity distribution induced by fluid inertia, 
the stream function of the secondary flow can be ob- 

tained as 

raz~-(z - 1)2 
W~- 60 [(1 - [3)2z + (1 - [3)(3~ + 2)] (50) 

In Figure 7 and 8, the streamlines of the secondary 
flow are plotted for !3= 1/2 and [3 - 1 ,  respectively. 
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r 

Fig. 7. Streamlines of the secondary flow generated by 
fluid inertia in the flow between coaxially rotating 
disks for the parameter [3= 1/2. 
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Fig. 8. Streamlines of the seconda~ flow generated by 
fluid inertia in the flow between coaxially rotating 
disks for the parameter [ 3 = -  1. 

It can be noted that the seconda~ flow pattern de- 
pends on the single parameter [3 and can be classified 
into three distinct families. When -2 /3<[3<1 ,  the ra- 
dial velocity will be inward near the bottom plate and 
outward near the top plate since the dominant centri- 
fugal force near the top plate swamps that generated 
by the bottom plate. On the uther hand, when [3< - 3/2 
or [~>1, which is the counterpart of the previous case 
of -2 /3<[3<1 ,  the bottom plate acts as a centrifugal 
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Fig. 9. Inertia-induced pressure distribution in the flow 

between coaxially rotating disks. 

fan and the secondary flow is in the opposite direction. 

When - 3 / 2 < [ 3 < - 2 / 3 ,  the centrifugal forces in the 
vicinity of the rotating plates are competitive each 
other and there is a plane between the gap on which 
the azimuthal component of the velocity vanishes. 
Thus the radial flow in the neighborhood of each disk 
will be outward. 

The inertia contribution to the pressure distribution, 
given by (49), is due solely to the fluid inertia (so 
that P ~ - 0  in the absence of the fluid inertia). As 
shown in Figure 9, the inertia-induced pressure distri- 

bution increases quadratically in r, and the resulting 
positive pressure gradient creates the recirculating 
secondary flow. It can be also seen that the inertia 
induced pressure possesses a minimum value at [3:= 

- 2/3. 

One of the quantities of potential significance to be 
determined is the inertia correction to the hydrody- 

namic torque acting on each disk to sustain the pre- 
scribed rotational motion. To do this, however, we must 
continue for one more step in the solution precedure 
in the expansions (7) and (8) since the first inertia 

correction to the azimuthal velocity component v, is 
zero and thus the corresponding correction to the tor- 

que vanishes. 

The second order solution can also be determined 
from the following governing equations 

1 a (ru2)+ aw,_ = 0  (5:l) 
r Or Oz 

32u2 _ OP2 (52) 
(~z ~ or 

Oz, o u ~vo c3vo c32v2 
u~ + - -  +w~ - (5:]) 

Or r Oz Oz z 

with the same forms of boundary conditions and over- 

all material balance as (43)-(45). The solution for the 
O(Re a) problem can be shown straightforwardly to be: 

u~ = w2 = 0 (54) 

r(1 - 13)z(z - 1) [-20(1 - 13)2z~ 
v~ = 6300 

+ 20(6[3 + 1)(1-13)z 4 
+ (237132 + 1613 43)z 3 (183132+ 12413 + 8)z 2 

+ (27132+ 1613- 8)z + (27132 + 1613- 8)J (55) 

P~=0  (56) 

Thus, the inertia-induced flow at O(Re ~) is purely azi- 
muthal and has no contribution to the pressure distri- 
bution. 

Finally, the hydrodynamic torques on the upper and 
lower disks can be easily calculated from the com- 
pleted solution V=vo+Re~v2 given by (38) and (55) 
and are as follows 

T , ,~  = (1-3-LI3) [ l + R e ;  (~, 27+~1613-813e )] (57) 

(1-13) I + R "  27132+1613-8 

As noted, the inertia contribution to the hydrodynamic 
torque appears at O(Re2). Thus, the torque required 
to sustain the angular motion is no longer a linear 
function of the angular velocity. Further, the hydrody- 
namic torque on each disk is not the same owing to 
the inertia effects. 

CONCLUSION 

Convective inertia effects in the motion of fluid lay- 

er between two parallel concentric circular plates 
have been studied using the standard method of as- 
ymptotic expansions. This analysis has led to the follow- 

ing conclusions: 
(1) Since the fluid is decelerating as it travels down- 

stream in the radial source flow between two parallel 
disks, the fluid inertia increases the flow rate through 
the gap under  the condition of a fixed pressure drop. 
The secondary flow pattern with a fixed flow rate 
exhibiting recirculating streamlines is quite different 
from that for the case of a fixed pressure drop, in 
which the secondary flow streamlines are nearly paral- 
lel to the primary flow. 

(2) In the flow between two coaxially rotating disks 
the secondary flow pattern depends on the single pa- 
rameter  [3 which is the ratio of the angular velocities 
of the two coaxial disks. The unique parameter [3 clas- 
sifies the solution into three distinct families. The iner- 
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tia contribution to the hydrodynamic torque appears 
at O(Re2). Because of the inertia effect, the hydrodynam- 
ic torques on the top and the bottom disks are not 
the same. 
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