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EFFECT OF TEMPERATURE ON POLYMER MIGRATION 
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Abstract--ln this study, we investigated the temperalure gradient effect on the polymer dynamics in a 
flow field. To simplify our analysis, we adopted a two-bead harmonic dumbbell model, and found that there 
were significanl effects on the polymer migration not only due to the nonhomogeneity of the flow field, but 
also due to the temperature difference. 

INTRODUCTION 

Both the theoretical and experimental aspect of 
polymer migration in nonhomogeneous flow fields 
have b~mn widely published [1-8]. In studying a rhe- 
ological separation method for DNA molecules, Dill 
and Zimm [7] investigated the macromolecular migra- 
tion phenomenon it, :he nonhomogeneous flow set up 
in a DNA solution confined between rotating concen- 
tric cones. 

Shater et al. [8] also found that cross-streamline 
migration of DNA molecules occurs radially in a cir- 
cular Couette flow resulting from the geomet~/. Cross- 
streamline migration here implies that a suspended 
polymer molecule moves perpendicular to the stream- 
lines of the flow. Neglecting hydrodynamic interaction 
among the beads, Aubert et al. [1,2] showed that the 
migration is the result of viscous drag with the solvent 
and it occurs only when the flow is nonhomogeneous; 
that is, there exists some form of migration such that 
the polymer lags the flow along a single streamline in 
pressur~driven flow in a slit. In curvilinear flow, cross- 
streamline migration was also found to occur consider- 
ing hydrodynamic interaction. Sekhon et al. [3] sug- 
gested that the hydrodynamic interactions inside the 
polymer molecules are responsible for a new force, 
leading to another possibility for polymer migration 
even in the dilute solution limit and parallel flows. Us- 
ing the theory of Edwards and Freed [9], Jhon and 
Freed [5] recently developed a multiple scattering 
theory to more explicitly describe the concentration 
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dependence of migration of Rouse-Zimm type poly- 
mers, and also to extend previous theories with the in- 
clusion of complete hydrodynamic interactions. 

However, all of these previous works were studied 
under isothermal conditions. Our aim in this study is 
to extend the polymer migration in a temperature gra- 
dient field, and to derive the origin of the forces that 
produce a deviation in the trajectory of the polymer 
from the main stream. The migration of polymer mole- 
cules is characterized by computing ~ ,  defined by 

~ / ' c -  v (re, t ) ,  (1) 

where rc is the center of mass of polymer, ~c is the 
velocity of the center of mass. Eq. (1) considers the 
migration of the polymer from the unperturbed flow of 
the fluid. When ,~ :~: 0 and A is perpendicular to _V_V 
(rc, t ), polymer migration will occur across the stream- 
line. Therefore, to study other source of polymer 
migration besides the nonhomogeneity effect of the 
flow field, we will adopt the bead-spring elastic dumb- 
bell model in nonisothermal system of the flow. The 
theory developed here can be easily generalized for an 
n-bead chain, and we will come up with a qualitative 
solution. 

DEVELOPMENT 

Here, we choose a bead-spring model to describe 
the polymer for simplicity. It consists of two beads of 
equal mass connected by a linear spring as shown in 
Fig. 1. A force balance written for each bead of the 
dumbbell {eliminating acceleration terms} gives [10], 
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l[ % % ~  = [2-rl 
Z 

) 
Y 

X ~ 0  rl = (Xl,Yl,Zl) 
i- 2 = (x2,Y2,Z2) 
_r c = (XoYoZc) 

J~ R = (X,Y,Z) 

Fig. I.  Elast ic  dumbbel l ,  m a d e  up of two b e a d s  con- 

n ec t ed  by  a H o o k e a n  spr ing .  

0 = - ,;'~ (i', - v,) - kT,  ~ r .  ln lg +HR,  

0 = - ~', ,i', - v,) - kT,  ~ In ~" - HR. (2) 

"['he first term is the friction force with ~'as the friction 
coefficient. The second term represents Brownian mo- 
tion. g(r~,r>t) is the configurational distribution func- 
tion. The third term is the spring force, and H is the 
Hookean spring constant. The friction coefficient and 
the temperature of each bead are given as functions of 
position. Our treatment, which includes explicit posi- 
tion dependence, is more general than Bird et al. [10]. 
The coordinates of eq. (2) are transforrned into center 
of mass coordinates (r~) and internal coordinates (R) 
by the following procedure: 

�9 1 (i', + i ' ,  ) 

- OR 

+ lO tG - 1 
2ar~ / J  2- ~ R, (3) 

kT~ 
where we define A+ = V~(A 1 + A2), A_ = A2-A 1, ~ =- G 

and H ---v,. Simplifying eq. (3). we have the velocity 
of the ~enter of mass of the dumbbell. 

1 O 1 3 1 
~ , = v + -  ~ r  - 7 r  Or, l n r  R. 

Again from eq. (2), we can have 

B=/,-~, 

_2.~+~RRlnu - 1 ~ 3  - -  _ 2-~: -o , r  l n l g -  2v+R" (5} 

The translation operator: t~) = exp[r .v ' ] f (g)  l ~,=0 
is adopted to express an arbitrary veloci~/ field in 
terms of a polynomial of the spatial coordinates. Using 
the equations, s = r~-  R/2 and r a =f~ + R/2, we can 
represent the velocity field at positions r 1 and r 2 as 

v ( r , ) = e x p [ ( !  _ ~_).R ~ " ] E ( L ' ) I , ' ~ . ,  and 

~ R 
v(b )  = e x p [ ( r ~ +  ~-  ) - ' 7 '  ]v ( r ' ,  I ,~=0. (6) 

We will calculate the migration velocity ,defined in 
eq. (1), where Nr~) = exp(r~<7')v(r')l~.: 0. Using the 
translation operator, the quantities A+ and A_ can be 
simplified as follows: 

A . = ~ I  [exp(r~._ v ' )+exp ( r , . . _  v ' ) J A ( r ' _  I1,.=o 

= e x p  ( r ~ . v ' ) c o s h  - v '  A ( r ' ) l  ,-.=0, 

and 

A = ...exl~ %- v '  ) - exp (r~. v '  )]A (r ' )  I ,0=o. 

= 2exp  ( r r  ( R  . v ' ) A ( r ' ) I  ,-.=0. (7) 

Substituting eq. (4) into the definition of z~, we obtain 

z~= 2exp  (re. v ) s i n h '  (~4 �9 ~ '  ) v (r ' )  I ~,_0 

~ 0  l n l g -  l n l F -  ~ v _ R ,  (8) 
2Orc 

The measurable quantity is the average of some quan- 
tity ~ over the internal coordinates. This average is 
denoted by angular brackets: < A > = / d g R A  lr 

< ~ >  = 2 < e x p  ( r ~ . ~ ' ) s i n h '  ( R  . ~ ' )  v ( r ' ) ,  ,~o>  

c 
1 
2 <~, R). 19, 

g can be conveniently expressed as the composite of 
two functions: 

IF=C (r~, t )  ~'(R, re, t ), (D) 

where C is the local dumbbell concentration 
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F 
C (r~, t ) = J d:'R r (R, r_~, t )_ (11) 

Using these definitions we can rearrange eq. (91) as 

< z ~ > =  ( V , , + V , ) C -  D 3 ~ - C  ' (12) 

wi th  

V ~= 2 (exp (r~. w '  ) s m h ' ( - ~  . ~ '  )v (r' ) [ ,~=o ]. 

> -  

and 

D= ~I 7 < G >. (I 3) 

By taking Taylor expansions of the averaged vaiues in 
eq. (13) and neglecting higher order terms, we ob- 
tained the following result (Details are given in the Ap- 
pendix). 

kT ' ~v v~-- i~v ( r ' )  I ,~.0, 

I , . , kT ]1 

and 

J [ k T v ' z { ~ ( r ' ) [ , , = 0 ]  (14) D: +8-g - �9 

R E S U L T  A N D  D I S C U S S I O N  

Clearly V y in eq. (13) is the general expression of 
polymer migration due to a nonhomogeneous flow 
field effect; V F is zero for homogeneous flows, while 
nonzero tot nonhomogeneous flow. A quadratic form 
of nonhomogeneity was well investigated by Aubert 
and Tirrell [1]. Considering the second order terms in 
Taylor sedes expansion for the velocity field, they ob- 

VF I < R R >  : ~ v v ,  where < R R >  is the dy- rained 
adic product of the end-to-end vector. Obviously, we 
can obtain the same result by only considering the sec- 
ond order expansion terms of the first term of eq. (9). 
D contains information about migration resulting from 
Fickian d ffusion and yields the same result in the case 
nt the free-draining limit [3]. VFaccounts for migration 
<i,lf to the temperature gradient, which is the new 
r~ l l~  of lhis paper. Thermal migration has nol been 
:,.~ viousl:/studied. 

W }  ~ we consider V y in eq. (] 4), we can easily find 
'Hw-;i .;~ : temperature gradient. 

v ' f  (r')=v'~ (7" ( r ' ) ] =  [v'T]~' (T), 

kT kT (C) (~ ,  T ) .~' C (15) 
~--v,, (s H 

and V r is proportional to the direction of temperature 
gradient, and 

kT 
( T ) ) v '  T. {16/ 

Our present analysis is valid only for unbounded 
flows and dilute polymer solutions. We ignore the in- 
teractions between solid boundaries and the beads and 
the hydrodynamic interactions between the beads. For 
simplicity, even though we have chosen the dumbbeJl 
model, the results can be extended to the n-bead 
chain. We are currently carrying out numerical studies 
on concentration profile and higher order moments 
(e.g. second moments will give rheological equation of 
state). 

A p p e n d i x  A:  d e r i v a t i o n  o f  <z~ > 

]Each term of eq. (12)can be expanded by using the 
Taylor series expansion and by the definition of the 
average of some quantity as foltows: 

R 
<exp  ( r e - ~ ' ) s i n h  ( ? - ~ ' ) v ( r ' ) [ r ' = 0  > 

~ '  , 2m 
. (r~-v')" . ( 2  " v  ) :<Z 

-=o n ! ~ ,  (2m) !  v i r ' ) l r = o >  

= < ( l §  (r~rr " ~ ' v ' ) 4  . . . . . . .  ] 

[ ! ( R ~  R ] .  1 R R R 
2!L2 2 J  

E1 

> 

= 1 < R R >  " v " 7 ' v ( r ' ) [ ~ = o + l < r C R R >  

�9 ~ ' v ' v '  v ( r ' )  I r ...... 

=----I <RR> " ~ ' ~ ' v { r ' ) ] ~ = o  

=__1 k Z v , ~  v( r ' ) i e=o  
8 H - -  

' } {  l m  

( r ~ - v ' i "  ~ %'v')--- 
< G >  = < Z  - Z / . . . .  

,~=o n! ,~=~ (2m)! 

(A. 1) 

~ ( r '  [ \ 

= < ~ ( r ' ) t  ~ = o + r ~ - v ' ~ ( r ' l [  ~=o 
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+ ~-rcr~ " V ' V ' r  ( r ' ) l  ~=0 

+IRR " v'v'~ (r') I ~o+ ...... > 

1 =~(ro)+-~<aR> " v'v'~(r')l~_o 

1 ~__TT v , , #  (r,) i,,=0 (A. 2) 

R z t t  

< 
n! ==. (2m + 1 ) !  

~ ( r ' ) / e=o l  > 

0 [~ R,8  
=2<-- "~ (r ' )  t ~-ol>b'~ 

r ~ - - 

=< 8 , ~ U  "~ ( r ' ) l  e=o> ~', 

= v ' ~  ( r ' ) l  ~ 0  (A. 3) 

o n! ==o (2m + 1)! 

~(r')l~o]R> 
= < R R > - ~ " v  (r')  I ~'=o 

kT 
= - - v ' v  (r ' )  I ,-=o (A. 4) H 

Inserting equations (A. 1), (A.2), (A.3) and (A.4) into eq. 
(13), we can finally obtain eq. (14). 
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N O M E N C L A T ' J R E  

a : radius of bead 
A : arbi tral '  quantity 
A : - ( A I  ~-A~/2 
A. : A2-A I 

C : local dumbbell concentration 
H : spring constant 
k : Boltzmann's constant 
r : position vector 
r i : position vector of ith bead 
r~ : center-of-mass, = (r I + r2)/2 
R : internal configuration coordinate, = r 2 - r  1 
t : time 
T : absolute temperature 
v : fluid velocity 
v c : fluid velocity at the center of mass 
v,, : fluid velocity at the origin 

G r e e k  L e t t e r s  

~" : friction coefficient 
r/ : viscosity 
v : 1/~" 

: kT/~" 
~f : probability function 
g, : probability function (normalized with respect to 

internal coordinates) 
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