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The data needed to prioritize areas for biodiversity protection are records of biodiversity features – species, 
species assemblages, environmental classes – for each candidate area. Prioritizing areas means comparing 
candidate areas, so the data used to make such comparisons should be comparable in quality and quantity. 
Potential sources of suitable data include museums, herbariums and natural resource management agencies. 
Issues of data precision, accuracy and sampling bias in data sets from such sources are discussed and methods 
for treating data to minimize bias are reviewed. 
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1. Introduction 

Biodiversity priority areas include protected areas as 
defined by IUCN (1994) but could also include other 
areas, which may be important for off-reserve protection. 
Systematic methods for identifying biodiversity priority 
areas require two separate but interdependent activities: 
compiling good data on the distribution and abundance 
patterns of the features to be conserved, the biodiversity 
surrogates; and the development of appropriate pro-
cedures for using those data to determine priorities (see 
Margules et al 2002). Both are necessary but neither 
alone is sufficient. Biodiversity surrogates might be 
species, species assemblages such as vegetation or habitat 
types, environmental domains, or combinations of these. 
Data on the distribution patterns, abundance or spatial 
extent of features such as species and species assem-
blages can be compiled from collections of field records 
held in museums and herbariums, or they can be gathered 
from new surveys designed specifically for such pur-
poses. Environmental data can be compiled from maps 

and increasingly in electronic form from, for example, 
meteorological agencies. All available data have to be 
evaluated critically to assess the geographical and tem-
poral bias, as well as their suitability as biodiversity 
surrogates. In this paper we examine both the values and 
the limitations for systematic conservation planning of 
data sets derived from collections that already exist; what 
we call here ‘existing data’. The acquisition of new data 
is always desirable, but not always feasible given time 
and cost constraints so existing data are widely used. 
Appropriate methods for the design of surveys to collect 
new data have been developed by Gillison and Brewer 
(1985), and Austin and Heyligers (1989) and tested 
recently by Wessels et al (1998). 
 Existing data such as museum collections or published 
maps are often compiled from many different field collec-
tions. The details of sampling methods are often unreco-
verable and each collection might have its own peculiar 
biases. Field records are often taken from the places that 
the collector expected to find what he or she was looking for, 
or collected opportunistically. Records of koalas (Margules 
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and Austin 1994) and elapid snakes (Longmore 1986) in 
parts of Australia, for example, map the road network, 
and records of many trees in the Amazon map the river 
network (Williams et al 1996b). Figure 1 is a map of the 
records of tree species on the Yucatan Peninsula in 
Mexico, which clearly maps the road network. Given that 
prioritizing areas for biodiversity conservation using 
complementarity (Margules et al 2002) is essentially a 
matter of comparison, this spatial bias is significant. It is 
difficult to make valid comparisons when not all areas 
have records taken from them. The challenge in using 
existing data is to devise appropriate treatments so that 
the effects of these sampling biases are minimized. 
 The reality is that existing data sets are generally far 
from ideal. In the face of numerous and probably irrever-
sible planning and policy decisions affecting biodiversity 
every day, it is necessary to make full use of existing 
data. Nonetheless, it is also necessary to acknowledge 
their limitations and establish ideal data requirements, 
not only as an aspiration, but also because identifying the 
ideal helps to capitalize on the useful information content 
of existing data. 
 The values and limitations of existing data are con-
sidered here under four headings. First, the general form 
of data required for selecting biodiversity priority areas, 
including a discussion of areas and the biodiversity fea-
tures that characterize them. Second, the assumptions of 
the relationship of sample to ‘population’ (in the statis-
tical sense) required for the use of these data. Third, the 
kinds of data that already exist, and sources of those data. 
Fourth, how existing data can be assessed and, if necess-
ary, treated, so that they more nearly satisfy the assump-
tions required for a priority areas analysis. An important 

question is to establish when existing data should be 
rejected as being so strongly in violation of necessary 
assumptions as to be dangerously misleading. 

2. General form of data 

The basic data requirement is for an areas by features 
matrix (figure 1 of Margules et al 2002). This describes a 
circumscribed geographical space, within which bio-
diversity priorities are to be determined. Decisions have 
to be taken as to which areas to include, and which 
features to use to describe those areas. These decisions 
should be governed by a precise specification of the con-
servation goal, but they will inevitably also be constrai-
ned by the quality and quantity of any existing data, and 
the resources available for compiling, evaluating, and 
analysing those data, or for collecting new data. The geo-
graphical space may be the entire globe, regions of the 
globe, nations, regions, or biomes across nations, or parts 
of nations, states within nations, regions, or biomes within 
nations, and so on. The methods for analysing the data 
matrix and identifying biodiversity priority areas descr-
ibed by Margules et al (2002 and see also Pressey et al 
1993; Margules and Pressey 2000) are independent of 
scale. 

2.1 Areas 

The areas in the matrix are the priority area candidates. 
They may be mapped as irregular polygons, such as 
catchments, habitat remnants, or units of tenure, or as 
regular polygons, such as grid cells. They may cover the 
entire geographic space or, as in the case of habitat 
remnants in cropland for example, only part of the space. 
They may vary in size or be uniform in size. 
 Variation in size does not affect the priority area 
selection procedures because those methods depend on 
the identity of the features present, not on their density or 
on how big is the area in which they occur. Most mea-
sures of diversity are intimately linked up with area 
extent because they are properties of spatially defined 
sets of objects. For example, species richness within a 
habitat is positively correlated with size of areas in the 
well-known species-area relationship. In the absence of 
any other information, richness has been used as a 
measure of biodiversity value. However, summarizing 
data as counts of the number of features, such as species, 
loses the identity of those features, and thus makes it 
impossible to use complementarity. As Higgs and Usher 
(1980) first noted, it is the number of species in common 
(or, more appropriately, the number of species not shared 
by two areas) which should determine relative value for 
biodiversity protection. The more species that are res-

 
Figure 1. A map of field records of tree species on the 
Yucatan Peninsula, Mexico. These records map the road net-
work. The map is courtesy of Guillermo Ibarra Manríquez and 
Rafael Durán. 
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tricted to an area, the higher its value. A related problem 
is that areas of richness for different groups do not 
necessarily coincide (Prendergast et al 1993; Williams 
and Gaston 1994, 1998; Prendergast and Eversham 
1997). Thus, selecting rich areas is often inefficient and 
may miss many species (Pressey and Nicholls 1989), 
particularly those that have small range sizes and occur  
in relatively species-poor assemblages (Williams et al 
1996a). 
 Standardized regular grids may make comparisons bet-
ween data sets more meaningful and data sets themselves 
less subject to change if political boundaries change, 
particularly at broader spatial scales. Because measures 
of diversity are correlated with areal extent, near-equal-
area grid systems have been used in many studies. They 
include a rectangular grid based on intervals of 2° lati-
tude (McAllister et al 1994) and a hexagonal grid (White 
et al 1992) used as a basis for the Gap Analysis program 
in the United States (Scott et al 1993). Another popular 
grid system is based on the Universal Transverse Mer-
cator (UTM) projection, though a substantial proportion 
of the grid cells are not equal in area. It is used for the 
European Invertebrate Survey (EIS) (Leclercq 1979; Pek-
karinen et al 1981) and for Atlas Florae Europaeae (Jalas 
and Suominen 1972–1994). Summaries of regional 
patterns of bumblebees world-wide (Williams and Gaston 
1998) used a cylindrical equal area projection with mini-
mum shape distortion at latitudes 46° north and south 
(Maling 1974), where bumblebee records are particularly 
numerous (figure 2). The bumblebee grid was calculated 
from intervals of 10° longitude and appears on this 

projection as equal-area squares (ca 611,000 km2). The 
area of the Earth’s land surface within each cell still 
varies greatly, as does the proportion of different kinds of 
habitat. 
 Nevertheless, variation in the size of areas does have 
some important implications. Smaller areas may have 
smaller populations of the target taxa and this may cause 
serious management problems. The area selection process 
can address this problem in two ways (and see Gaston et 
al 2002). One is to ensure that areas in the matrix are 
sufficiently large in the first place. Unfortunately, this 
may not always be possible, for example with fragmented 
habitat, in which case another option is to run a priority 
areas analysis regardless of area size, and then adjust the 
boundaries of any small areas chosen for management or 
acquisition purposes after analysis (e.g. Bedward et al 
1992). Area boundaries have to be as flexible as possible. 
Areas in the matrix are units to work with, not objects 
that are fixed in size forever more. 
 The size of areas used in the selection process may not 
correspond to the size of areas actually acquired and 
managed. A lack of spatial correspondence between the 
two can cause three problems. First, when selection areas 
are much larger than management areas it may not be 
possible to manage all the features of a chosen priority 
area. A finer resolution of the spatial distribution patterns 
of the features will be required at the management or 
acquisition stage. Second, when selection areas are similar 
in size to management areas but do not correspond pre-
cisely; different features may be found in management 
areas, thus impeding the selection goal. Third, if selec-
tion areas are smaller than management areas the total 
complement of features found in a management area will 
be divided among several selection areas, making it diffi-
cult, at the selection stage, to know when the conserva-
tion goal has been achieved. 
 Analyses could be repeated at progressively finer spatial 
scales. In this way, areas might be analysed at a broad 
scale, using grid cells or administrative areas, without 
aiming to identify specific local conservation areas. Once 
a priority region at this broad scale has been identified, 
more geographically restricted, higher resolution analyses 
could be conducted using realistic land management 
units. 
 

2.2 Features 

Features are used to characterize areas. The contribution 
of different areas to the overall goal of representing bio-
diversity is measured by the list, or the list and spatial 
extent or abundance, of the biodiversity features within 
those areas. Features may be taxa (or, in principle, the 
characters taxa represent), environmental variables, species 

 
Figure 2. Map of the world (excluding Antarctica) using a 
cylindrical equal-area projection, orthomorphic (minimum 
shape distortion) at 46° north and south (where bumblebee 
records are particularly plentiful). Intervals of 10° longitude 
(top of map) were used to calculate intervals of latitude (right 
of map) to provide equal-area grid cells of approximately 
611,000 km2. 
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assemblages, or environmental classes, or various com-
binations of these. All of these features are surrogates in 
the sense that they are supposed to stand in for overall 
biodiversity and are therefore abstractions of biodiversity 
to a greater or lesser extent. Running counter to the scale 
of precision, progressively higher levels have the advan-
tage of being more practical for measurement. Thus for 
sectoral analyses of small well-known taxa (e.g. fruit 
bats, Mickleburgh et al 1992) the more direct taxonomic 
measures may be feasible. However, for analyses of a 
larger portion of overall biodiversity, a more remote 
surrogate such as vegetation type or environmental 
diversity, or some combination of biotic and environ-
mental measures is likely to be the best practical solution 
(Margules and Pressey 2000; Nix et al 2000). Higher 
scales also integrate ecological functions, including the 
processes that help maintain ecosystem viability (Mc-
Kenzie et al 1989). 
 
 

3. Assumptions in the use of data 

3.1 Spatial consistency 

All biological data sets are (better or worse) samples of 
the geographical space they were taken from and inevit-
ably incorporate some degree of spatial bias. Yet, setting 
biodiversity priorities means comparing areas with one 
another, and valid comparisons cannot be made unless 
the same relationship between sample and population  
can be assumed to hold for all areas being compared. 
This is a universal problem in land use planning and 
decision-making, and is especially acute in biodiversity 
planning because the relevant information is expensive to 
acquire. 
 Often, field observations or samples are taken in an 
opportunistic way. The taxa recorded are the ones of 
interest to the collector, and the field sites where they 
were looked for are in places where she or he might 
expect to find those taxa, or are conveniently accessible. 
Sample sites with records tend to be subsets of sites 
where the species actually occur and there are usually 
few, if any, records of where they were looked for but not 
found; that is, sites with recorded absences (Margules 
and Austin 1994). One way to improve the consistency of 
coverage of existing data sets is to model the wider 
spatial distribution patterns of taxa or assemblages recor-
ded during surveys or collecting expeditions. Some common 
spatial modelling techniques, which utilize environmental 
variables as predictors, are described below. However, if 
spatial models are to be used to improve existing data 
sets, the degree of bias, both geographical and environ-
mental, needs to be determined. 

3.2 Data precision and accuracy 

 
Errors come in many forms. Misidentification of both 
attributes and areas may be common (e.g. species or 
areas may have been misidentified, or the same name 
may be shared by two or more species or areas, or may 
have changed over time). Some assessment of the accu-
racy of existing data sets is essential, and this is likely to 
be a time-consuming and tedious process. A thorough 
treatment of data standards is beyond the scope of this 
paper. However, it is possible to minimize errors by 
checking new data for consistency with existing data and 
implementing routines for detecting unexpected outliers. 
 In Australia, the Environmental Resources Information 
Network (ERIN) has developed a number of such proce-
dures and routines (Chapman and Busby 1994). All names 
are checked against a master file as they are loaded into 
the database. Records that do not match are returned to 
the custodian of the data for checking. Non-current 
names, when they are recognized, are changed to current 
names, and any remaining unrecognized names that 
cannot be resolved are flagged to indicate a taxonomic 
problem. The option exists, then, to exclude these from 
future analyses. 
 Checking geographic locations is more problematic. 
ERIN adopted the innovative method of detecting out-
liers using climate profiles modelled for each species. 
Field records are matched with climatic attributes genera-
ted with the BIOCLIM software (Busby 1986; Nix 1986; 
Busby 1991; and see below). Any records that lie on or 
beyond the margins of the climatic profile are queried 
and re-checked. 
 Errors of omission are inevitable. Usually, it has to be 
assumed that the broader patterns detected in data sets are 
not artefacts, but represent real patterns that are suffi-
ciently robust to show through the effects of confounding 
factors. 

3.3 Sampling bias 

The effort used to record attributes in the field varies 
with different collections and is another major source of 
bias (Rich 1997). The relationship between number of 
species recorded and sampling effort, the species-dis-
covery curve, generally increases steeply at first, but with 
progressively larger samples becomes less steep as new 
discoveries become less frequent (Magurran 1988; Colwell 
and Coddington 1994). However, with movement of 
individuals and populations, species’ ranges shift con-
tinuously so that there may be no asymptote to an abso-
lute fixed value for local species number. Consequently, 
any count has to be measured relative to sampling effort. 
An extreme example was given by Grinnell (1922, 
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p. 375), who calculated that by sampling just within 
California, every species of North American bird could 
be recorded over a period of 410 years. 
 Ideally, sampling effort should be perfectly uniform, 
so that all recorded variations in distribution or abun-
dance patterns are real, and not an artefact of variation in 
sampling effort. This is especially important if the num-
ber of samples is small and so falls on the first, steep, 
part of the species-discovery curve. Species of small 
body size, low density or low apparency to collecting 
methods (e.g. organisms that burrow deep in the soil) are 
especially likely to be missed. Sampling can also be 
confounded by differences between species in seasonal 
(phenological) or daily (diurnal) patterns of migration, 
activity, or apparency. In order to minimize this effect; 
Gibbons et al (1993) used mean counts from time-limited 
sub-samples (2 km × 2 km squares) for estimating the 
number of British birds in 10 km × 10 km squares. Poten-
tial sources of bias due to characteristics of taxa should 
be taken into account when choosing biodiversity surro-
gates from among existing data sets. Choosing taxa that 
are less susceptible to sampling variation can help 
minimize this bias. 
 The assumption of uniform sampling effort is almost 
always violated to a greater or lesser extent. In practice, 
the multitude of possible contingent variables cannot be 
adequately controlled for in surveys, particularly in volun-
tary recording schemes. This problem is compounded in 
compilations of existing data. Therefore, some adjust-
ment for variation in sampling effort is almost always 
desirable when dealing with existing data sets. 
 

3.4 Turnover in space and time 

Field records from surveys and collecting expeditions are 
‘snap-shots’ in time. Many existing data sets were recor-
ded over one brief time period. Compilations of data 
recorded at different times can increase the temporal 
range of records, but records taken at different times may 
not necessarily have been taken from the same place. 
Compilations from point records to broader mapping 
units such as grid cells may also obscure spatial turnover. 
These two factors compound at least three related pro-
blems of estimating distribution patterns: spatial hetero-
geneity, or species turnover, at a fine scale may be 
masked when occupancy is recorded at a broader spatial 
scale; field records may include vagrants as well as 
breeding populations; and patterns of occupancy, even 
for breeding populations, may change with time. 
 Distributions of species, populations, and assemblages 
may be dynamic on a range of time scales. The imme-
diate need for priority areas selection is to estimate the 
current distribution patterns, not historical patterns. Never-

theless, information on historical and predicted future 
distributions, where available, should be used in priority 
setting because distribution patterns do change with 
environmental variation, both seasonally and over longer 
time periods. Even in the short term, occupancy of an 
area by a population may be both discontinuous in time 
and dependent on the security of other suitable areas 
(Hanski 1994; Gaston et al 2002). This may depend at 
least in part on certain kinds and levels of disturbance, 
such as fire, flood, tree fall, etc. Very mobile species, 
such as some fish and birds, may breed in one area but 
depend for their survival on distant feeding and over-
wintering grounds. 
 The viability of populations within any given area can 
be regarded as a management problem rather than a data 
selection problem. Indeed it has to be, if sets of presence 
data are to be used for biodiversity priority setting. How-
ever, in choosing and treating existing data sets, temporal 
bias and the dynamics of populations should be borne in 
mind. At the very least, breeding and non-breeding records 
should be distinguished whenever possible (Williams 
et al 1996a). 
 

4. Sources of existing data 

There are many organizations throughout the world hold-
ing data that can validly be used in an analysis of 
biodiversity priorities. Existing biological data can be 
extracted from collections in museums and herbariums, 
from various departments of government such as natural 
resource management agencies, and from non-govern-
ment organizations. Examples of these agencies include 
the World Conservation Monitoring Centre (WCMC), the 
Australian Environmental Resources Information Net-
work (ERIN), the UK Biological Records Centre (BRC), 
the British Trust for Ornithology (BTO), BirdLife Inter-
national, The Nature Conservancy (USA), the US Gap 
Analysis Project, etc. 
 Even before bias can be assessed and decisions taken 
either to proceed with existing data, model expected data 
(see below), collect new data, or reject the data, those 
data have to be extracted from a source. This is usually a 
time-consuming and labour-intensive first step in bio-
diversity priority area selection. There is no way to avoid 
this step and there are no short cuts, although, fortunately, 
digitized data sets are becoming more widely available. 
 Ready access to existing data sets is not always 
possible. Custodians may place restrictions on access to 
their data, or charge for the use of data. In some cases, 
access is restricted to protect the locations of rare or 
threatened species (e.g. Gibbons et al 1993). In other 
cases, custodians may wish to protect ownership for 
research purposes. Belbin et al (1994), in a review of 
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ERIN data holdings in Australia, recognized four cate-
gories of data access: unrestricted access, formal ack-
nowledgement required, permission required (selective or 
incomplete access), and confidential. They found that 
51% were restricted, confidential, or requiring permis-
sion, and 49% were unrestricted. 
 Environmental data are more widely available, more 
accessible, and generally exist in a more consistent form 
than most biological data. Environmental data alone can 
be used as surrogates for biodiversity and they are 
required for any formal modelling of wider distribution 
patterns of species or populations from the point records 
that field collections represent (see below). Environ-
mental data fall into the three broad categories of terrain, 
climate and substrate. Terrain refers to surface morpho-
logy and includes parameters such as elevation, slope, 
relief, and aspect. These parameters can be recorded from 
topographic maps if the resolution is sufficiently fine, but 
in most cases it will be more appropriate to interpolate 
them from Digital Elevation Models (DEMs). DEMs are 
not yet routinely available or as accurate as topographic 
maps. The construction of a DEM can be time-consuming 
and is technically demanding (Hutchinson 1991). How-
ever, DEMs allow consistent and repeatable interpolation 
across whole regions and should constitute the necessary 
first step in generating environmental surfaces (Hutchin-
son 1993). Climate data are available from national 
meteorological bureau(s), but may have to be digitized 
for spatial modelling. Climate data can be interpolated 
spatially with the aid of DEMs by fitting surfaces as 
smooth tri-variate functions of latitude, longitude, and 
elevation (Hutchinson 1995). Climate data can sometimes 
be augmented with data collected by forestry, conser-
vation, agriculture, and water resource agencies. Physical 
and chemical substrate data may be the most difficult to 
obtain. However, substrate mapping has been completed 
in a number of countries, regions, and biomes. For 
example, thematic maps of lithological substrate, soils, 
and landforms may be available. 
 Maps are a popular and efficient (measured both as 
information/ink ratio and speed of communication) way 
of summarizing and communicating existing data (Tufte 
1990). Two classes of map relevant to computer aided 
(GIS) mapping are referred to as vector maps and raster 
maps (Burrough 1986). The former defines areas by 
joining boundary points as polygons, often of irregular 
shape and size. The latter defines a regular array or grid 
of areas of similar shape and size. It has been claimed 
that vector maps allow data to be presented at any scale. 
However, they merely give the impression of lacking 
scale, which is limited, as always, by the number (resolu-
tion) and precision of data points. What is important is 
that data are registered with precision, either as ‘points’ 
with small errors, or on fine grids, so that they can be 

used subsequently in analyses at a broad range of spatial 
scales depending on the questions to be addressed. In this 
regard, there is no fundamental difference between vector 
maps and raster maps. 

5. Data treatments to reduce bias 

Extrapolation of feature richness (e.g. Sanders 1968; 
Hurlbert 1971; Margules et al 1987; Palmer 1990; 
Prendergast et al 1993; Colwell and Coddington 1994), 
procedures for smoothing feature richness across neigh-
bourhoods (e.g. Eversham et al 1992; Lawton et al 1994; 
Williams and Gaston 1998) and procedures for the 
treatment of spatial autocorrelation (e.g. Pearson and 
Carroll 1998) lose information on feature identity. 
Consequently, they are not suitable for use with the 
priority area selection methods described by Margules 
et al (2002). Fortunately, a number of analytical pro-
cedures which retain feature identity are available, to 
address the problems of spatial bias in existing data sets. 
An exhaustive review is beyond the scope of this paper. 
However, some of the more common methods are des-
cribed briefly below (with references to detailed 
examples of applications taken from Austin 1994 and 
Austin et al 1994). Many spatial modelling techniques 
require spatial models of environmental variables, 
commonly the predictors, to be constructed first. 
 Procedures for estimating wider spatial patterns from 
point records assume that each species occupies a unique 
niche (Hutchinson 1957), which may not be easily pre-
dicted from that of other species. Thus species distribu-
tion patterns are most accurately defined in multi-dimen-
sional environmental (niche) space, with the resultant 
spatial pattern showing high or dense populations in 
scattered locations representing the most favourable 
habitat, and lower, more sparse, populations in areas of 
less favourable habitat. Problems may arise with these 
models when organisms are restricted to just part of their 
potentially suitable habitat by barriers to dispersal and 
low dispersal abilities (e.g. vicariance model of bio-
geography: Nelson and Platnick 1981), or by non-equili-
brium dynamics of metapopulations. Plant species in the 
hyper-diverse Cape region, South Africa (Cowling 1992), 
and in south-western Western Australia, may be cases in 
point. Species may also be restricted to sub-optimal habi-
tat by practices such as land clearing, grazing, and altered 
fire regimes. It is usually difficult to measure the extent 
of such changes and incorporate them in spatial models. 

5.1 Heuristic models 

One of the more widely used spatial modelling tech-
niques is BIOCLIM (Nix 1986; Busby 1991). BIOCLIM 
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works by generating climatic indices for the locations of 
field records of species and then finding other locations 
with the same or similar indices, which thus map 
potential distribution patterns. The first step is to model 
monthly mean minimum and maximum temperature and 
precipitation for the entire region of interest. This is done 
by fitting a function of three independent variables, lati-
tude, longitude, and elevation, to climatic values measured 
at climate stations. The function is a tri-variate spline, 
with spatial interpolation made by use of a DEM (Hut-
chinson 1991, 1995). The next step is to derive climatic 
indices from these surfaces. The current published ver-
sion of BIOCLIM contains 16 indices (table 1, Busby 
1991). Other versions have been developed using a larger 
number of indices, including solar radiation. The climatic 
indices for sites at which a species (or other feature such 
as vegetation type) has been recorded can then be 
aggregated into a climatic profile for that species. This 
profile is expressed as the extremes, and the 5 and 95 
percentile values. If an unrecorded site falls within the 
climate profile of all 16 indices for a species, then that 
site has a potentially suitable climate for that species. 
 Because this method uses presence only data, it is 
restricted to estimating the geographic range of a species. 
It cannot predict absences within that range. Large areas 
may be included as potential occurrence space due to the 
presence of a single extreme observation (Walker and 
Cocks 1991; Carpenter et al 1993). Thus the method is 
limited to estimating potential distributions. There are no 
quantitative predictions or statistical tests and confidence 
limits. 
 On the other hand, presence only data are by far the 
most common form of existing biological field records. 

BIOCLIM is an innovative, technically sophisticated tool 
for adding value to existing data of this kind and reduc-
ing its inherent spatial bias. Published BIOCLIM applica-
tions include the spatial estimation of the distribution 
patterns of elapid snakes (Nix 1986), C3 and C4 grasses 
(Prendergast and Hattersley 1985), temperate rainforest 
tree species (Busby 1986; Hill et al 1988), weeds (Panetta 
and Dodd 1987), Eucalyptus trees (Williams 1991), and 
rainforest vertebrates (Nix and Switzer 1991). 
 HABITAT (Walker and Cocks 1991) is also an heuri-
stic method. It can work with a variety of environmental 
data, including climatic indices derived from BIOCLIM. 
In addition, it can use categorical attributes such as soil 
type and geological substrate. HABITAT is similar in 
concept to BIOCLIM in that it generates an ‘environ-
mental envelope’ from which potential distribution is 
determined. Unlike BIOCLIM, it treats the attributes as 
interdependent influences on potential distribution. It 
uses linear programming to describe the envelope occu-
pied as a function of the linear combination of the set of 
attributes. 
 Another heuristic method is DOMAIN (Carpenter et al 
1993), which differs from BIOCLIM in that it measures 
the climatic similarity between candidate sites and the 
nearest sites with records, using the Gower metric (Gower 
1971). A continuous function is generated so that degrees 
of similarity can be selected (Austin et al 1994). 
 

5.2 Regression models 

Regression models are appropriate for data of the presence/ 
absence kind. That is, if a species (or community, assem-
blage) is recorded in the areas × features matrix as 
absent, it has been looked for in that area and not found. 
Regression models are statistical correlations of the 
observed presence or absence of a feature with variables 
which predict wider spatial distribution patterns. They 
use the same conceptual framework (broad scale distri-
bution controlled by environmental variables) as BIO-
CLIM and similar heuristic models. Environmental vari-
ables such as rainfall, temperature, lithological substrate, 
and aspect (to estimate solar radiation), are fitted to 
presence and absence records of features such as species 
recorded from field sites. The probability (along with 
confidence limits) of finding the feature at unrecorded 
sites is calculated for different combinations of these 
predictor variables from the parameters of the model. 
 The most commonly used regression models in eco-
logy and biogeography are Generalised Linear Models 
(GLM) (McCullagh and Nelder 1989; Crawley 1993; and 
see Austin et al 1990; Lindenmayer et al 1991a,b; and 
Nicholls 1989, 1991, for examples of ecological appli-
cations), and Generalised Additive Models (GAM) 

Table 1. The sixteen climate profile parameters employed in 
BIOCLIM Version 2⋅0 (from Busby 1991). 

  
  
Parameter Unit 
    
Annual mean temperature °C 
Minimum temperature of coolest month °C 
Maximum temperature of warmest month °C 
Annual temperature range (3–2) °C 
Mean temperature of coolest quarter °C 
Mean temperature of warmest quarter °C 
Mean temperature of wettest quarter °C 
Mean temperature of driest quarter °C 
Annual mean precipitation mm 
Precipitation of wettest month mm 
Precipitation of driest month mm 
Coefficient of variation of monthly precipitation – 
Precipitation of wettest quarter mm 
Precipitation of driest quarter mm 
Precipitation of coolest quarter mm 
Precipitation of warmest quarter mm 
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(Hastie and Tibshirani 1990; see Yee and Mitchell 1991 
for an ecological application). Austin and Meyers (1996) 
compared the performance of these two methods in 
predicting the distribution patterns of Eucalypts in south-
eastern Australia. They concluded that, while there was 
little to choose between them, and that application of 
ecological knowledge and experience in interpreting the 
models is essential for both, GAM had the technical 
advantage of greater flexibility in fitting response sur-
faces. 
 Almost all existing data sets in museums and herba-
riums are unsuitable for regression modelling because the 
lack of a record in any particular area does not neces-
sarily signify a real absence. Data sets have to be 
examined carefully for sampling bias before being sub-
jected to regression analysis. If new data are to be 
collected in a survey to assist with biodiversity priority 
setting, then the survey should be designed and con-
ducted in such a way that the records obtained can be 
spatially interpolated with regression models. 

5.3 Multivariate interpolation 

Multivariate clustering to define and map communities or 
assemblages is a tool that can be used to interpolate 

sparse data sets, but with some loss of detail. Many data 
sets throughout the world are sparse in their geographic 
coverage because they come from very large areas. The 
total number of records of many species may be too low 
for the species to be modelled individually with any con-
fidence. Information on co-occurrence is used to group 
sample sites (e.g. quadrats), or the species, and the result-
ing communities or assemblages can be mapped. Cluster-
ing is a tool for reducing complexity in large data sets for 
the practical purposes of description and communication. 
Anderberg (1973), Sneath and Sokal (1973) and Jongman 
et al (1987) are comprehensive standard texts. Faith 
(1991) reviewed pattern analysis methods for nature con-
servation, and Belbin (1987) provides an algorithm and 
an example of non-hierarchical clustering for very large 
data sets. 

5.4 Computational methods 

There are at least three computer induction methods 
which may prove to be useful for modelling spatial dis-
tribution patterns of species or assemblages from presence/ 
absence data: decision trees, neural nets, and genetic 
algorithms. They differ from the methods above pri-
marily in that they are algorithms that are not easily 

 
Figure 3. Potential distributions of fifteen forest structural classes (Hilbert and van den Muyzenberg 1999) in the central Wet 
Tropics of Australia, modelled using an artificial neural network and estimates of two past climates. Note the great expansion of 
potential rainforest distributions in the warm wet climate of 5000 BP compared to the dry, open woodland and tall open forests that 
dominated at the last glacial maximum (c. 18000 BP). 
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described by specific mathematical functions. Lees 
(1994) and Austin et al (1994) provide introductory 
reviews. Decision trees are described by Breiman et al 
(1984). Data sets are split recursively into sub-sets so as 
to maximize the prediction of a dependent variable in a 
sub-set, creating a binary tree of decision rules. Examples 
of ecological and biogeographic applications can be 
found in Moore et al (1991), Stockwell et al (1990), and 
Walker and Cocks (1991). Neural nets are described by 
Rumelhart and McClelland (1986) and several intro-
ductory texts exist (e.g. Aleksander and Morton 1990; 
Caudill 1990). They are a form of artificial intelligence, 
which learns to predict a pattern from a training set. 
Useful properties of neural networks are that they do not 
assume any a priori distribution (Brown et al 1998), they 
are not seriously biased by outliers (Haung and Lippman 
1988), and they can approximate an arbitrary function to 
any desired degree of accuracy (Hecht–Nielson 1991). 
They have frequently been used to classify remotely 
sensed images (Fitzgerald and Lees 1993; Lees 1994) and 
have been applied to various other purposes in ecology 
(e.g. Paruelo and Tomasel 1997; Deadman and Gimblett 
1997). Hilbert and van den Muyzenberg (1999) used an 
artificial neural network to model the distributions of 
fifteen forest classes in a tropical landscape with 75% 
accuracy at a one hectare resolution. Using a variety of 
techniques (Hilbert and Ostendorf 2001), this model has 
been used to estimate the pre-clearing distribution of 
forest types, the distribution of rainforests from the last 
glacial maximum (c. 18000 BP) to the present, analyse 
the sensitivity of rainforests to climate change in the 
future (Hilbert et al 2001), the locations of Pleistocene 
rainforest refugia, and interglacial refugia of wet sclero-
phyll forests (Hilbert et al 2000). An example of 
modelled potential distributions of forest types in the 
drier climate of the late glacial maximum and the wetter 
climate of 5000 BP is shown in figure 3. Genetic algori-
thms are described by Holland (1992). They use the idea 
that evolution solves the problem of survival by 
constantly testing and re-testing the fitness of individuals 
through mutation and genetic recombination. Thus, they 
are essentially a minimization method that can be applied 
to any optimization problem. There are few ecological 
examples, but Stockwell and Noble (1992) describe the 
use of genetic algorithms to model animal distributions. 
 

5.5 Rejecting data 

Compilations of existing data that meet the assumptions 
required for a priority areas analysis can be used directly. 
Data that can be made to meet or approximate those assum-
ptions, as outlined above, can be used after treatment. 
However, the end value of any treatment of existing data 

will always be limited, especially if the data were collec-
ted for other purposes, such as taxonomic description. If 
existing data contain a strong bias of unknown direction, 
then no amount of treatment can remove it. For example, 
if sampling effort among areas is very uneven, an empi-
rical or statistical model relating field samples to enviro-
nmental variables is likely to be unrepresentative and 
misleading. Data, which still fail to meet the necessary 
assumptions, must be rejected. In that case, either the 
task at hand has to be abandoned, a different question has 
to be asked of the data, or new data have to be collected. 

6. Summary 

Existing data should be evaluated in the light of a pre-
cisely defined goal. For identifying biodiversity priority 
areas, the basic requirement is an areas × features matrix. 
Choices have to be made concerning which areas to 
include and which features (the biodiversity surrogates) 
to use to describe those areas. Existing data should then 
be examined to see if they are appropriate. The choice of 
features will generally be a compromise from among a 
range of possible biodiversity surrogates, because it is not 
possible to measure biodiversity directly. Many insti-
tutions throughout the world hold relevant data ref-
erenced to areas. However, these data were often collec-
ted for purposes other than biodiversity conservation 
planning. Treatment of compilations of existing data is 
likely to be necessary before they meet the assumptions 
required for a priority areas analysis. 
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