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Abstract. A core–envelope model for superdense matter distribution with the feature
– core consisting of anisotropic fluid distribution and envelope with isotropic fluid dis-
tribution is reported on the background of pseudospheroidal space-time. The physical
plausibility of the model is examined analytically and numerically.
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1. Introduction

Theoretical investigations of Ruderman [1] and Canuto [2] on compact stars having
densities much higher than nuclear densities led to the conclusion that matter may
be anisotropic at the central region of the distribution. Maharaj and Maartens [3]
have obtained models of spherical anisotropic distributions with constant density.
Gokhroo and Mehra [4] have extended this model to include anisotropic distribu-
tions with variable density. Recently, Dev and Gleiser [5] have given a number of
exact solutions for various forms of the equation of state connecting the radial and
tangential pressures.

When matter density of spherical objects is much higher than nuclear density, it
is difficult to have a definite description of matter in the form of an equation of state.
The uncertainty about the equation of state of matter beyond nuclear regime led to
the consideration of a complementary approach [6–8], called core–envelope models.
In this approach, a relativistic stellar configuration is made up of two regions: a
core, surrounded by an envelope – containing matter distribution with different
physical features. A detailed analysis of such models have been discussed by Hartle
[8], and Iyer and Vishveshwara [9]. Core–envelope models with both pressure and
density being continuous along the core boundary have been given by Negi, Pande
and Durgapal [10]. A common feature of the core–envelope models discussed in
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literature is that their core and envelope regions contain distributions of perfect
fluid in equilibrium. In this paper we have considered core–envelope models with
the feature – core consisting of fluid distribution with anisotropic pressure and
envelope consisting of fluid with isotropic pressure.

2. Space-time metric and field equations

We begin with a static spherically symmetric distribution of matter in equilibrium
with space-time metric given by

ds2 = −
1 +K r2

R2

1 + r2

R2

dr2 − r2dθ2 − r2 sin2 θdφ2 + eν(r)dt2, (1)

where K and R are geometric parameters.
The t = constant sections of this space-time have the geometry of a 3-

pseudospheroid with Cartesian equation:

w2

b2
− x2 + y2 + z2

R2
= 1, (2)

immersed in a four-dimensional Euclidean space with metric:

dσ2 = dx2 + dy2 + dz2 + dw2. (3)

The geometric parameters K, R and b are related by

K = 1 +
b2

R2
> 1. (4)

This can be easily seen by introducing transformations:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, w = b

√

1 +
r2

R2
. (5)

The space-time metric (1) is regular everywhere as K > 1. When K = 1, the three
space of metric (1) is flat, and when K = 0 it degenerates into open hyperboloid.
It has been found that the space-time metric (1) is suitable to describe spherical
distributions of superdense matter in equilibrium which are stable under radial
pulsations [11].

The Einstein’s field equation is

Rij −
1

2
Rgij = −

8πG

c2
Tij , (6)

where gij , Rij and R are the metric tensor, Ricci tensor and scalar curvature
respectively; and Tij is the energy–momentum tensor. Following [3], the energy–
momentum tensor is given by

Tij =
(

ρ+
p

c2

)

uiuj −
( p

c2

)

gij + πij , uiu
i = 1, (7)
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where ρ, p and ui respectively denote matter density, isotropic pressure, and unit
four-velocity vector. The anisotropic stress tensor is given by

πij =
√
3

(

S

c2

)[

cicj −
1

3
(uiuj − gij)

]

. (8)

For radially symmetric anisotropic fluid distribution of matter, S = S(r) denotes
the magnitude of the anisotropic stress tensor and

ci =
(

−e−λ/2, 0, 0, 0
)

(9)

is a space-like radial vector. For equilibrium models

u =
(

0, 0, 0, eν/2
)

. (10)

The energy–momentum tensor (7) has non-vanishing components

T 1
1 = − 1

c2

(

p+
2S√
3

)

, T 2
2 = T 3

3 = − 1

c2

(

p− S√
3

)

, T 4
4 = ρ. (11)

The pressure along the radial direction

pr = p+
2S√
3

(12)

will be different from the pressure along the tangential direction

p⊥ = p− S√
3
. (13)

The magnitude of anisotropic stress tensor is given by

S =
pr − p⊥√

3
. (14)

The field equation corresponding to metric (1) is given by a set of three equations:

8πG

c4

(

p+
2S√
3

)

=

[(

1 +
r2

R2

)

ν′

2
− K − 1

R2

](

1 +K
r2

R2

)−1

, (15)

8πG

c4
S = −

(

ν′′

2
+
ν′2

4
− ν′

2r

)(

1 +
r2

R2

)(

1 +K
r2

R2

)−1

+
(K − 1) r

R2

×
(

ν′

2
+

1

r

)(

1 +K
r2

R2

)−2

− (K − 1)

R2

(

1 +K
r2

R2

)−1

, (16)

8πG

c2
ρ =

3(K − 1)

R2

(

1 +
K

3

r2

R2

)(

1 +K
r2

R2

)−2

. (17)
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Thus the ansatz of assigning pseudospheroidal geometry to the physical space of
interior space-time of relativistic fluid distribution comprising of core–envelope re-
gions of matter in equilibrium provides the density profile (17) which is positive
throughout the regions. Further, since

1

c2
dρ

dr
= −5K(5K − 1)

4πGR4

(

1 +
K

5

r2

R2

)(

1 +K
r2

R2

)−3

< 0, (18)

the matter density is decreasing radially outward.
We consider a star with anisotropic core having radial pressure pr and transverse

pressure p⊥. At the core boundary r = b, the two pressures coincide and the
envelope contains isotropic fluid distribution. The radial pressure decreases in the
enveloping region and it becomes zero at the surface, say r = a, where a is the
radius of the star under consideration.

We consider the core up to radius r = b, throughout which S(r) 6= 0. The radius
of the star is taken as a and we divide it into two parts:

(i) 0 ≤ r ≤ b as the core of the star described by an anisotropic fluid distribution.

(ii) b ≤ r ≤ a as the outer envelope of the core which can be described by an
isotropic fluid distribution.

3. The core of the star

The core of the star model is characterized by the anisotropic distribution of matter.
Therefore throughout the core region 0 ≤ r ≤ b, the radial pressure pr is different
from the tangential pressure p⊥ and hence S(r) 6= 0. To obtain a solution for (16),
we introduce new variables z and ψ defined by

z =

√

1 +
r2

R2
, ψ =

eν/2

(1−K +Kz2)
1/4

(19)

in terms of which eq. (16) assumes the form

d2ψ

dz2
+

[

2K (2K − 1)
(

1−K +Kz2
)

− 5K2z2

4 (1−K +Kz2)
2

+
8
√
3πGR2S

(

1−K +Kz2
)

c4 (z2 − 1)

]

ψ = 0. (20)

Since the nature of the anisotropy parameter S is not known precisely in superdense
matter distribution it is not possible to solve eq. (20). So we have the freedom to
make ad hoc assumptions on S which facilitate integration of (20) without sacrificing
simplicity and regularity of S throughout its region of validity.

We prescribe the anisotropy parameter as

S = −
c4
(

z2 − 1
) [

2K (2K − 1)
(

1−K +Kz2
)

− 5K2z2
]

32πG
√
3R2 (1−K +Kz2)

3 . (21)
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We note from eq. (21) that S vanishes for z = 1 and hence regular at the origin. It
also vanishes at

z =

√

(K − 1) (2K − 1)

2K (K − 1.75)
. (22)

In fact, this property of S facilitates the construction of core–envelope models with
anisotropic core and isotropic envelope.

The prescription of S that is given by (21) reduces the coefficient of ψ in (20) to
zero and the resulting equation admits the general solution

ψ = Cz +D, (23a)

where C and D are constants of integration, leading to the simple solution

eν/2 =

(

1 +K
r2

R2

)1/4
(

C

√

1 +
r2

R2
+D

)

. (23b)

The space-time metric of the core region 0 ≤ r ≤ b is explicitly written as

ds2 = −
1 +K r2

R2

1 + r2

R2

dr2 − r2dθ2 − r2 sin2 θ dφ2

+

√

1 +K
r2

R2

(

C

√

1 +
r2

R2
+D

)2

dt2. (24)

The radial pressure pr and anisotropy parameter S(r) are now given by

8πG

c4
pr =

C
√

1 + r2

R2

[

3 + 2K
(

r2

R2

)

+K (2−K) r2

R2

]

+D
[

1 +K (2−K) r2

R2

]

R2
(

1 +K r2

R2

)2
(

C
√

1 + r2

R2 +D

) , (25)

8πG

c4

√
3S = −

(

r2

R2

) [

2K (2K − 1)
(

1 +K r2

R2

)

− 5K2
(

1 + r2

R2

)]

4R2
(

1 +K r2

R2

)3 . (26)

If we take K = 2, the matter density ρ, radial pressure pr and the anisotropy
parameter S(r) take the simple form

8πG

c2
ρ =

(

3 + 2 r2

R2

)

R2
(

1 + 2 r2

R2

)2 , (27)

8πG

c4
pr =

C
√

1 + r2

R2

(

3 + 4 r2

R2

)

+D

R2
(

1 + 2 r2

R2

)2
(

C
√

1 + r2

R2 +D

) , (28)

Pramana – J. Phys., Vol. 64, No. 1, January 2005 9



Ramesh Tikekar and V O Thomas

8π
√
3G

c4
S =

(

r2

R2

)(

2− r2

R2

)

R2
(

1 + 2 r2

R2

)3 . (29)

The anisotropic parameter given by (29) has the following desired features:

(i) S(r) vanishes at the centre, ensuring the regularity of the distribution.

(ii) S(r) increases with r in the neighbourhood of the centre, reaches a maximum
value, and subsequently decreases as r increases.

(iii) The form of S(r) is suitable to describe anisotropic matter distribution in the
core region for which both radial and tangential pressures become equal at a
suitably chosen core boundary r = b =

√
2R, where S(r) vanishes.

4. The envelope of the star

The envelope of the star model is characterized by the isotropic distribution of
matter. Hence throughout the enveloping region b ≤ r ≤ a, the radial pressure pr

equals the tangential pressure p⊥ and hence S(r) = 0 in this region. Then eq. (16)
reduces to

−
(

ν′′

2
+
ν′2

4
− ν′

2r

)(

1 +
r2

R2

)(

1 +K
r2

R2

)

+
(K − 1) r

R2

(

ν′

2
+

1

r

)

− (K − 1)

R2

(

1 +K
r2

R2

)

= 0. (30)

If we choose variables z and F defined by

z =

√

1 +
r2

R2
, F = eν/2, (31)

eq. (30) takes the form

(

1−K +Kz2
) d2F

dz2
−KzdF

dz
+K (K − 1)F = 0. (32)

Equation (32) admits closed form solution for all values of K. In particular, when
K = 2, it takes the form

F = eν/2 = A

√

1 +
r2

R2
+B

[
√

1 +
r2

R2
L(r)− 1√

2

√

1 + 2
r2

R2

]

, (33)

where A and B are constants of integration and

L(r) =

√

1 +
r2

R2
ln

(

√
2

√

1 +
r2

R2
+

√

1 + 2
r2

R2

)

. (34)

The space-time metric of the enveloping region b ≤ r ≤ a is explicitly given by
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ds2 = −
1 + 2 r2

R2

1 + r2

R2

dr2 − r2dθ2 − r2 sin2 θdφ2

+

{

A

√

1 +
r2

R2
+B

[
√

1 +
r2

R2
L(r)− 1√

2

√

1 + 2
r2

R2

]}2

dt2.

(35)

The density and isotropic pressure of the distribution are given by

8πG

c2
ρ =

3 + 2 r2

R2

R2
(

1 + 2 r2

R2

)2 , (36)

8πG

c4
p =

A
√

1 + r2

R2 +B

[

√

1 + r2

R2L(r) +
1√
2

√

1 + 2 r2

R2

]

R2
(

1 + 2 r2

R2

)

{

A
√

1 + r2

R2 +B

[

√

1 + r2

R2L(r)− 1√
2

√

1 + 2 r2

R2

]} . (37)

The constants A and B appearing in (35) and (37) are to be determined by matching
(35) with the Schwarzchild exterior metric

ds2 = −
(

1− 2m

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 +

(

1− 2m

r

)

dt2 (38)

across the boundary r = a of the star, where p(r) = 0. The constants A and B
have expressions:

A =

√

1 + a2

R2L(a) +
1√
2

√

1 + 2 a2

R2

√
2
√

1 + 2 a2

R2

, (39)

B = −

√

1 + a2

R2

√
2
√

1 + 2 a2

R2

. (40)

Though we can obtain core–envelope models for any value of K, we have considered
the particular case K = 2 for two reasons. Firstly, we found in §3 that a simple
form for pr is possible for K = 2. Secondly, the isotropic fluid distribution with
space-time metric (35) has been studied extensively by Tikekar and Thomas [11]
and found that such space-times are suitable to represent superdense spherical
distributions of matter stable under radial pulsations.

5. Physical plausibility

The core–envelope model obtained for K = 2 is a physically viable model if it
complies with the following requirements in the core and enveloping regions.
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(i) ρ > 0, dρ
dr < 0 for 0 ≤ r ≤ a,

(ii) pr > 0, p⊥ > 0, dpr

dr < 0 for 0 ≤ r ≤ b,

(iii) ρ− pr − 2p⊥ ≥ 0 for 0 ≤ r ≤ b,

(iv) 1
c2

dpr

dρ < 1, 1
c2

dp⊥
dρ < 1 for 0 ≤ r ≤ b,

(v) p > 0, 1
c2

dp
dρ < 1 and ρ− 3p > 0 for b ≤ r ≤ a.

The expressions (27) and (18) clearly indicate the fulfillment of (i). The perfect
fluid in the enveloping region is chosen to comply with the demands of (v) [11].

We expect the fulfillment of the following conditions at the boundary r = b
separating the core from the enveloping region.

(a) The space-time metric in the core region should smoothly match with the
space-time metric in the enveloping region.

(b) The anisotropy parameter S should vanish and the anisotropic pressure of
the fluid in the core region should continuously join with the pressure in the
enveloping region.

The vanishing of anisotropy parameter S(r) at r = b determines the radius of the

core b =
√
2R from eq. (29).

The conditions (a) and (b) determine the arbitrary constants C and D as

C = 5−(5/4)
{

2A+
[

2 ln
(√

5 +
√
6
)

+
√
7.5
]

B
}

, (41)

D = 5−(5/4)
{

3
√
3A+

[

3
√
3 ln

(√
5 +

√
6
)

− 8
√
2.5
]

B
}

, (42)

where A and B are given by (39) and (40), respectively.
Substituting for C and D in (28), we get

8πG

c4
pr =

(2A+ 5.827B) z
(

4z2 − 1
)

+ (5.196A− 4.624B)

R2 (2z2 − 1)
2
[(2A+ 5.827B) z + (5.196A− 4.624B)]

. (43)

Examining the positivity of radial pressure pr, tangential pressure p⊥
(

= pr −
√
3S
)

,
energy condition and causality requirements in general, it is highly tedious due to
the complexity of the expressions involved. However we have examined the above
requirements numerically for certain specific models of this class.

6. Discussion

The scheme given by Tikekar [12], for estimating the mass and size of the fluid
spheres on the background of spheroidal space-times can be used to determine the
mass and size of the fluid distribution consisting of core and envelope.

Following this scheme we choose ρ(a) = 2×1014 g cm−3 as the density of matter at
the boundary r = a of the configuration and introduce a density variation parameter
λ given by

12 Pramana – J. Phys., Vol. 64, No. 1, January 2005



Relativistic core–envelope model on pseudospheroidal space-time

Figure 1. The graphs of ρ̄ = κρ, p̄r = (κ/c2)pr and p̄⊥ = (κ/c2)p⊥ in the
core region, 1 ≤ z ≤

√
3, against z =

√

1 + (r2/R2), where κ = 8πG/c2.
These graphs are denoted by 1, 2 and 3 respectively.

λ =
ρ(a)

ρ(0)
=

1 + 2
3
a2

R2

(

1 + 2 a2

R2

)2 . (44)

Since ρ is a decreasing function of r, λ < 1.
Equation (44) determines the value of a2/R2 in terms of λ by the equation

a2

R2
=

1− 6λ+
√
24λ+ 1

12λ
. (45)

Equation (27) implies that the matter density at the centre is explicitly related
with the curvature parameter R as

8πρ(0) = 8π
ρ(a)

λ
=

3

R2
. (46)

Equation (46) determines R in terms of ρ(a) and λ. The size of the configuration
can be obtained from (45) in terms of surface density ρ(a) and density variation
parameter λ.
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Figure 2. The graphs of (1/c2)(dpr/dρ), (1/c
2)(dp⊥/dρ), and κ(ρ − (1/c2)

pr − (2/c2)p⊥) in the core region, 1 ≤ z ≤
√
3, against z =

√

1 + (r2/R2),
where κ = 8πG/c2. These graphs are denoted by 1, 2 and 3 respectively.

We choose λ = 0.05 and ρ(a) = 2×1014 g cm−3. Equation (46) then implies that
R = 6.347 km, a/R = 1.907 and a = 12.107 km. The core boundary is determined

using b =
√
2R. It follows that b = 8.82 km. The matter density at the core

boundary ρ(b) = 3.75 × 1014 g cm−3. The constants A, B, C and D appearing in
the metrics and that follow from (39), (40), (41) and (42) have values

A = 0.501, B = −0.184, C = −0.00936, D = 0.462.

In figure 1, we have graphically shown the variation of ρ̄ = κρ, p̄r = (κ/c2)pr

and p̄⊥ = (κ/c2)p⊥ in the core region against z =
√

1 + (r2/R2) and in fig-
ure 2, we have shown the variations of (1/c2)(dpr/dρ), (1/c2)(dp⊥/dρ) and

κ
(

ρ− (1/c2)pr − (2/c2)p⊥
)

against z =
√

1 + (r2/R2), where κ = 8πG/c2.
This analysis indicates the physical viability of the specific model of this class.

Accordingly, it is suggestive that this class is rich enough to describe physically
plausible core–envelope models with the following salient features:

(i) The core region contains a distribution of anisotropic fluid and is surrounded
by an envelope of perfect fluid at rest.
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(ii) The density profile is continuous throughout, even at the core boundary.

(iii) The radial and tangential pressures are continuous throughout the core region
and continuously join across the core boundary with isotropic pressure of the
fluid in the envelope.
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