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Abstract. We study the exact solutions of the cascade three-level atom interacting with a single
mode classical and quantized fieldwith different initial conditions ofthe atom. For the semiclassical
model, it is found that if the atom is initially in the middle level, the time-dependent populations of
the upper and lower levels are always equal. This dynamical symmetry exhibited by the classical
field is spoiled on quantization of the field mode. To reveal this non-classical effect, a Euler matrix
formalism is developed to solve the dressed states of the cascade Jaynes–Cummings model (JCM).
Possible modification of such an effect on the collapse and revival phenomenon is also discussed by
taking the quantized field in a coherent state.

Keywords. Symmetry breaking; three-level JCM; Euler matrix; collapse revival.

PACS Nos 42.50.Ar; 42.50.Ct; 42.50.Dv

1. Introduction

Over the decades, studies of the population inversion of the two, three and multilevel sys-
tems have been proved to be an important tool to understand various fundamental aspects
of quantum optics [1,2]. Many interesting coherent phenomena are observed if the number
of involved levels exceeds two. In particular, the three-level system exhibits a rich class
of coherent phenomena such as two-photon coherence [3], double resonance process [4],
three-level super-radiance [5], coherent multistep photo-ionization [6], trilevel echoes [7],
STIRAP [8], resonance fluorescence [9], quantum jump [10], quantum zero effect [11] etc.
[12–16]. From these studies, it is intuitivelyclear that the atomic initial conditions of the
three-level system can generate diverse quantum optical effects which are not usually dis-
played by a two-level system [17–20]. The idea of the present investigation is to enunciate
the three-level system for various initial conditions while taking the field mode to be either
classical or quantized. In this paper the three-level system is modelled by the matrices
which are spin-one representation ofSU�2� group. A dressed-atom approach is devel-
oped where the Euler matrix is used to construct the dressed states. We discuss the time
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development of the probabilities both for the semiclassical model and the cascade JCM for
various initial conditions and point out the crucialchanges. Finally the collapse and revival
phenomenon is presented taking the quantized field initially in a coherent state.

The subsequent sections of the paper are organized as follows: To put our treatment in
proper perspective, in�2 we have derived the probabilities of three levels taking the field
as a classical field. The cascade JCM and its solution in the rotating wave approximation
(RWA) is presented in�3. In �4 we have numerically analysed the time-dependent atomic
populations and compared with the semiclassical situation by taking the quantized field
initially in a number state and in a coherent state. Finally, in conclusion, we highlight the
outcome of our paper and make some pertinent remarks.

2. The semiclassical model

The Hamiltonian to describe the semicalssical problem of a cascade three-level system
interacting with a single mode classical field is

� � h̄ω0Iz �
h̄ω1�

2
�I�e�iωt � I

�

eiωt�� (1)

whereIs represent the spin-one representation ofSU�2� matrices corresponding to the
cascade three-level system with equal energy gaps (¯hω0) between the states, namely,

I� �

�
� 0 1 0

0 0 1
0 0 0

�
� � (2a)

I
�

�

�
� 0 0 0

1 0 0
0 1 0

�
� � (2b)

Iz �

�
� 1 0 0

0 0 0
0 0 �1

�
� � (2c)

h̄ω1 is the interaction energy between the three-level system with the classical field mode
of frequency,ω, in RWA. Let the solution of the Schr¨odinger equation,

ih̄

�
∂ψ
∂ t

�
�� ψ� (3)

with Hamiltonian (1) is given by

ψ�t� �C��t�����C0�t��0�� C
�

�t����� (4)

whereC��t�, C0�t� andC
�

�t� are the time-dependent normalized amplitudes with the
eigenfunctions given by
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����
�
� 1

0
0

�
� � (5a)

�0��
�
� 0

1
0

�
� � (5b)

����
�
� 0

0
1

�
� � (5c)

We now proceed to calculate the probability amplitudes of the three states. Substituting eq.
(4) into eq. (3) and equating the coefficients of���, �0� and��� from both sides we obtain

i
�

C��t� � ω0C��t��
ω1�

2
exp��iωt�C0�t�� (6a)

ih̄
�

C0�t� �
ω1�

2
exp�iωt�C��t��

ω1�
2

exp��iωt�C
�

�t�� (6b)

ih̄
�

C
�

�t� �
ω1�

2
exp�iωt�C0�t��ω0C�

�t�� (6c)

where the dot represents the derivative with respect to time.
Let the solutions of eqs (6a)–(6c) are of the following form:

C��t� � A�exp�is�t�� (7a)

C0�t� � A0exp�is0t�� (7b)

C
�

�t� � A
�

exp�is
�

t�� (7c)

whereAs are the time-independent constants to be determined. Plucking back eqs (7a)–
(7c) in eqs (6a)–(6c) we obtain

�s0�ω�ω0�A��
1�
2

ω1A0 � 0� (8a)

s0A0�
1�
2

ω�A��A
�

� � 0� (8b)

�s0�ω�ω0�A�

�
1�
2

ω1A0 � 0� (8c)

In deriving eqs (8a)–(8c), the time independence of the amplitudesA�, A
�

andA0 are
ensured by invoking the conditionss� � s0�ω and s

�

� s0 �ω. The solution of (8)
readily yields
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s0 � 0 (9a)

s0 �����ω�ω0�
2�ω2

1����Ω� (9b)

and we have three values ofs� ands
�

, namely,

s1
� ��ω� s2

� � Ω�ω� s3
� ��Ω�ω (10a)

s1
�

� ω� s2
�

� Ω�ω� s3
�

��Ω�ω� (10b)

Using (10), eqs (7) can be written as

C��t� � A1
�

exp��iωt��A2
�

exp�i�Ω�ω�t��A3
�

exp�i��Ω�ω�t� (11a)

C0�t� � A1
0�A2

0exp�iΩt��A3
0exp��iΩt� (11b)

C
�

�t� � A1
�

exp�iωt��A2
�

exp�i�Ω�ω�t��A3
�

exp�i��Ω�ω�t�� (11c)

whereAs are the constants to be calculated from the following initial conditions:

Case I: Let us consider att � 0, the atom is in the lower level, i.e.,C��0� � 0,C0�0� � 0,
C
�

�0� � 1. Using eqs (6) and (11), the time-dependent probabilities of the three levels are
given by

�C��t��2 � ω4
1

Ω4 sin4Ωt�2� (12a)

�C0�t��2 � ω2
1

2Ω4 �4�ω�ω0�
2sin4Ωt�2�Ω2sin2Ωt�� (12b)

�C
�

�t��2 � 1
Ω4 ��ω

2
1 sin2 Ωt�2�Ω2cosΩt�2��ω�ω0�

2Ω2sin2Ωt�� (12c)

Case II: If we choose the atom initially in the middle level, i.e.,C��0� � 0, C0�0� � 1,
C
�

�0� � 0, the correspondingprobabilities of the levels are given by

�C��t��2 � ω2
1

2Ω4 �4�ω�ω0�
2sin4Ωt�2�Ω2sin2Ωt� � �C

�

�t��2� (13a)

�C0�t��2 � 4�ω�ω0�
4

Ω4 sin4Ωt�2�
4�ω�ω0�

2

Ω2 sin2Ωt�2cosΩt �cos2Ωt�

(13b)

Here we note that, unlike the previous case, the probabilities of the upper and lower levels
are equal.

Case III: When the atom is initially in the upper level, i.e.,C��0� � 1,C0�0� � 0,C
�

�0� �
0, we obtain the following occupation probabilities in the three levels:
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�C��t��2 � 1
Ω4 ��ω

2
1 sin2 Ωt�2�Ω2cosΩt�2��ω�ω0�

2Ω2sin2Ωt�� (14a)

�C0�t��2 � ω2
1

2Ω4 �4�ω�ω0�
2sin4Ωt�2�Ω2sin2Ωt�� (14b)

�C
�

�t��2 � ω4
1

Ω4 sin4Ωt�2� (14c)

We note that the probability of the middle level for Case III is precisely identical to that
of Case I while those of the upper and lower levels are interchanged.

3. Cascade Jaynes–Cummings model

Here we consider the cascade three-level system interacting with a single mode quantized
field. The cascade JCM system in the rotating wave approximation [17,18] is described by
the Hamiltonian

H � h̄ω�a†a� Iz���∆Iz �gh̄�I�a� I
�

a†��� (15)

wherea† anda are the creation and annihilation operators,g the coupling constant and
∆� h̄�w0�w� the detuning frequency. It is easy to check that both diagonal and interaction
parts of the Hamiltonian commute with each other. The eigenfunction of this Hamiltonian
is given by

�ψn�t���
∞

∑
n�0

�Cn�1
�

�t��n�1����Cn
0�t��n�0��Cn�1

�
�t��n�1����� (16)

We note that the Hamiltonian couples the atom-field states�n�1���, �n�0� and�n�1���,
wheren represents the number of photons of the field. The interaction part of the Hamil-
tonian (15) can also be written in the matrix form

H �

�
� �∆ gh̄

�
n�1 0

gh̄
�

n�1 0 gh̄
�

n
0 gh̄

�
n ∆

�
� � (17)

At resonance (∆� 0), the eigenvalues of the Hamiltonian are given byλ� � gh̄
�

2n�1,
λ0 � 0 andλ

�

��gh̄
�

2n�1 with the corresponding dressed eigenstates�
� �n�1�
�n�2�
�n�3�

�
�� T

�
� �n�1���

�n�0�
�n�1���

�
� � (18)

In eq. (18), the dressed states are constructed by rotating the bare states with the Euler
matrix T parametrized as

T �

�
� α11 α12 α13

α21 α22 α23
α31 α32 α33

�
� � (19)
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where

α11 � cosψ cosφ�cosθ sinφsinψ�
α12 � cosψ sinφ�cosθ cosφsinψ�
α13 � sinψ sinθ�
α21 ��sinψ cosφ�cosθ sinφcosψ�
α22 ��sinψ sinφ�cosθ cosφcosψ�
α23 � cosψ sinθ�
α31 � sinθ sinφ�
α32 ��sinθ cosφ�
α33 � cosθ�

The evaluation of its various elements is presented in the appendix and here we quote the
results as follows:

α11 �

�
n�1
4n�2

� α12 �
1�
2
� α13 �

�
n

4n�2
�

α21 ��
�

n
2n�1

� α22 � 0� α23 �

�
n�1
2n�1

�

α31 �

�
n�1
4n�2

� α32 �� 1�
2
� α33 �

�
n

4n�2
� (20)

The time-dependent probability amplitudes of the three levels are given by
�
� Cn�1

�

�t�
Cn

0�t�
Cn�1
� �t�

�
�� T�1

�
� e�iΩnt 0 0

0 1 0
0 0 eiΩnt

�
�T

�
� Cn�1

�

�0�
Cn

0�0�
Cn�1
� �0�

�
� � (21)

whereΩn � g
�

2n�1. In the following we consider different initial condition of the atom
with the quantized field in a number state�n�.
Case IV: Here we consider that the atom is initially polarized in the lower level and the
combined atom-field state is�n�1���, i.e.,Cn�1

� �0� � 0, Cn
0�0� � 0, Cn�1

�

�0� � 1. Using
eqs (20) and (21) the time-dependent atomic population of the three levels are given by

��Cn�1
�

�t�
��2 � 4n�n�1�

�2n�1�2 sin4Ωnt�2� (22a)

�Cn
0�t��2 �

�n�1�
�2n�1�

sin2Ωnt� (22b)

��Cn�1
�

�t�
��2 � 1�4

�
n�n�1�
�2n�1�2 �

�n�1�2

�2n�1�2 cos2Ωnt�2

�
sin2 Ωnt�2� (22c)

Case V: At t � 0 when the atom is in the middle level and the combined atom-field state is
�n�0�, i.e.,Cn�1

� �0� � 0,Cn
0�0� � 1,Cn�1

�

�0� � 0, we find

��Cn�1
�

�t�
��2 � n

�2n�1�
sin2Ωnt� (23a)
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�Cn
0�t��2 � cos2 Ωnt (23b)

��Cn�1
�

�t�
��2 � �n�1�

�2n�1�
sin2Ωnt� (23c)

Case VI: Cn�1
� �0� � 1,Cn

0�0� � 0,Cn�1
�

�0� � 0.
If the atom is initially in the upper level and the atom-field state is�n�1���, i.e.,Cn�1

� �0��
1,Cn

0�0� � 0,Cn�1
�

�0� � 0 we obtain the following probabilities:

��Cn�1
� �t�

��2 � 1�4

�
n�n�1�
�2n�1�2 �

n2

�2n�1�2 cos2Ωnt�2

�
sin2 Ωnt�2� (24a)

�Cn
0�t��2 �

n
�2n�1�

sin2Ωnt� (24b)

��Cn�1
�

�t�
��2 � 4n�n�1�

�2n�1�2 sin4Ωnt�2� (24c)

Finally we note that, at resonance, for large value ofn the probabilities of Case IV, V and VI
are identical to Case I, II and III, respectively indicating the validity of the correspondence
principle.

4. Numerical results

To explore the physical content, we now proceed to analyse the probabilities of the semi-
classical model and the cascade JCM numerically.

For the classical field at resonance, the time evolution of the probabilities�C��t��2 (solid
line), �C0�t��2 (dashed line) and�C

�

�t��2 (dotted line) corresponding to Case I, II and III,
respectively are shown in figure 1. We note that for the cases with atom initially in the
lower and upper level, which are displayed infigure 1a and 1c respectively, the probabili-
ties�C��t��2 and�C

�

�t��2 can attain a maximum value equal to unity while�C0�t��2 cannot.
If we compare these two figures, the time-dependent populations of the lower and upper
levels are different by a phase lag corresponding to the initial condition of population. This
clearly shows that the probabilities oscillate between the levels��� and��� alternatively at
a Rabi frequency ofνI � ω1�2π. On the contrary, the plot of Case II where the atom is ini-
tially in the middle level depicted in figure 1b shows that the system oscillates with a Rabi
frequency ofνII � ω1�π such that the probabilities of��� and��� states are always equal.
When the atom is initially in the middle level, the exactly sinusoidal resonant field interacts
with the atom in such a way that the upper and lower levels are dynamically treated on an
equal footing. This dynamically symmetrical distribution of population between the upper
and lower levels is possible because of the classical field.

For quantized field we consider the time evolution of the probabilities in two different
situations of initial condition of the field: (a) when the field is in a number state and (b)
when the field is in a coherent state.
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Figure 1. The time evolution of the probabilities of the semiclassical model corre-
sponding to Cases I, II and III. The symmetric pattern of evolution is evident from
figures 1a and 1c which are in opposite phase.
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Figure 2. The time evolution of the probabilities of the cascade JCM corresponding
to Cases IV, V and VI. Figures 2a and 2c depict that the symmetry exhibited by the
semiclassical model is spoiled on quantization of the field mode.

(a) For the cascade JCM, the probabilities of Case IV, V and VI are plotted in figure 2
when the field is in a number state withn � 1 and g� 0�1. In figure 2a we note that for
Case IV, i.e., when the atom is initially in the lower level, the Rabi frequency of oscilla-
tion is νn

I � Ωn�2π. However, unlike Case I of the semiclassical model, the probabilities
�Cn�1
�

�t��2 never become unity. On the other hand, figure 2b illustrates the probabilities of
Case V, i.e., when the atom is initially in the middle level, where the system oscillates with
a Rabi frequencyνn

II � Ωn�π and once again, in contrast with the corresponding semiclas-
sical situation in Case II, the probabilities of the upper and lower level are not equal. The
probabilities of Case VI, i.e., when the atom is initially in the upper level, depicted in figure
2c shows that although it possesses the same Rabi frequencyνn

I , the pattern of oscillation
is not out of phase of Case IV. To compare with one can look back the semiclassical inter-
action where we have shown that in Case I the pattern of oscillation of upper (lower) level
population is precisely identical to the lower (upper) level population of Case III.

To understand the implications of such dynamical symmetry breaking qualitatively, var-
ious bounds on the probabilities aregiven (see table 1).

We note that for the semiclassical model, the symmetric evolution of the probabilities
results in identical bounds for Cases I and III as shown in table 1. On quantization of the
field mode, the bounds corresponding to Cases IV and VI are no longer similar although
those for Cases II and V remain the same. At resonance, for large values ofn, eqs (22)–
(24) of Cases IV, V and VI are precisely identical to eqs (12)–(14) of Case I, II and III,
respectively and we recover the same bounds of the semiclassical model.

(b) Finally, we consider that the atom is interacting with the quantized field mode in a
coherent state. The coherently averaged probabilities of Cases IV, V and VI are given by
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Table 1.

Case Semiclassical model Case Cascade JCM

0� �C
�

�t��2 � 1, 0� �Cn
�

�t��2 � 1,
I 0 � �C0�t��2 � 1, IV 0 � �Cn

0�t��
2
� 1,

0� �C��t��2 � 1 0� �Cn
��t��2 � 1

0� �C
�

�t��2 � 1, 0� �Cn
�

�t��2 � 1,
II 0 � �C0�t��2 � 1, V 0 � �Cn

0�t��
2 � 1,

0� �C��t��2 � 1 0� �Cn
��t��2 � 1

0� �C
�

�t��2 � 1, 0� �Cn
�

�t��2 � 1,
III 0 � �C0�t��2 � 1, VI 0 � �C0�t�n�2 � 1,

0� �C��t��2 � 1 0� �Cn
�

�t��2 � 1

�P��t���∑
n

Pn
��Cn�1
� �t�

��2� (25a)

�P0�t���∑
n

Pn �Cn
0�t��2� (25b)

�P
�

�t���∑
n

Pn
��Cn�1

�

�t�
��2� (25c)

wherePn � exp��n̄�n̄n�n! be the Poisson distribution function and ¯n be mean photon num-
ber. For all numerical purpose we chooseg � 0�1. We have studied extensively for various
values of ¯n. Figures are given only for ¯n � 50. Figures 3–5 display the numerical plots
of (25) where the collapse and revival of the Rabi oscillation is clearly evident. For low
n̄ and when the atom is in the middle level the symmetrical values of population of upper
and lower levels are not observed until ¯n is very high as given in the figures. However,
even if n̄ � 50, the numerical values of the time dependent populations of the upper and
lower level are not exactly equal although very close and becomes exactly equal in the limit
n̄ 	 ∞. We further note that, if the atom is initially polarized either in the upper or in the
lower level, it exhibits similar population oscillation, which is different from the case if it
is initially polarized in the middle level. Thereproduction of this result analogous to the
semiclassical model shows the proximity of the coherent state with large ¯n to the classical
field.

When the field is quantized, population oscillation depends on the occupation number,
n, of the field state, for example, cos�g

�
2n�1t�. For a statistical distribution of field

state, the spontaneous factor 1 plays a dominant role whenn is low. For an initial number
state of the field whenn is slightly higher than 1, the upper and lower levels of the atom are
not treated dynamically on an equal footing even when the atom is initially in the middle
level. This fine graining of the quantized distribution of photons over the number states

�n�� generates a complex interference between individual Rabi oscillation corresponding
to eachn and plays a role untiln is very large compared to 1 and effectively acts as a
classical field and thereby the semiclassical situation is satisfied. Note that for an initial
vacuum field, i.e.,n � 0 for the number state and ¯n � 0 for the coherent state, with the atom
initially in the middle level, it cannot go to the upper level at all and the population will
oscillate between the lower and middle levels with Rabi frequencyΩ0. This asymmetry
is still present when the field is in a coherentstate with a Poissonian photon distribution
with low average photon number, ¯n, which is generally not symmetric around ¯n. A Poisson
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Figure 3. The collapse and revival are shown for Case IV when the atom is initially in
the upper level. The time-dependent profiles of the upper and lower level populations
are similar in figures 3a and 3c.
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Figure 4. The collapse and revival for Case V are displayed when the atom is ini-
tially in the middle level. The time-dependent patterns of the upper and lower level
populations are similar in figures 4a and 4c as in the semiclassical cases of figure 1b.
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Figure 5. The collapse and revival for Case VI are shown when the atom is initially
polarized in the lower level. Similar to figures 1a and 1c of the semiclassical model,
figures 3 and 5 are closely alike.

distribution is almost symmetric, a Gaussian, around an ¯n if n̄ is very large which is the
case of a classical field. In that situation the upper and lower levels of the atom are treated
dynamically on an equal footing and maintains the symmetrical distribution of population
in upper and lower levels.

5. Conclusion

We conclude by recapitulating the essential content of our investigation. At the outset we
have sculpted the semiclassical model by choosing the spin-one representation ofSU�2�
group and have calculated the transition probabilities of the three levels. It is shown that at
resonance, if the atom is initially polarizedin the lower or in the upper level, the various
atomic populations oscillate quite differently when it is initially populated in the middle
level. When the atom is initiallypopulated in the middle level, the classical field interacts
in such a way that the populations of the upper and lower levels are always equal. This
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dynamically symmetrical populations of the upper and lower levels are destroyed due to
the quantization of the field. To show this quantum behavior, a dressed-atom approach is
presented to solve the cascade JCM. Finally we discuss the restoration of the symmetry
taking the quantized field in a coherent state with large average photon number, the closest
state to the classical state. Although the collapse and revival and some other non-classical
features are well-studied in the context of two-level systems, the above dynamical break-
ing of symmetry due to the quantization of the field has no two-level analog. We hope that
this dynamical behavior in the cascade three-level system should show its signature on the
time-dependent profile of the second-order coherence of the quantized field which will be
discussed elsewhere. The dressed-atom approach developed here may also find its appli-
cation in theV - andΛ-type three-level systems where the nature of the symmetry should
be different from the cascade system.

Appendix

At resonance, the interaction part of the Hamiltonian of the three-level system is given by

Hint �

�
� 0 g

�
n�1 0

g
�

n�1 0 g
�

n
0 g

�
n 0

�
� � (A1)

where the eigenvalues areλ� � g
�

2n�1, λ0 � 0 andλ
�

� �g
�

2n�1. The Euler ma-
trix T , diagonalizes the Hamiltonian asHD � T HintT�1, is given by eq. (19). Using the
trick �Hint�λ jI�
Xj�� 0, where
Xj� is the column matrix ofT�1, corresponding to the
eigenvalueλ� we have

�
� �g

�
2n�1 g

�
n�1 0

g
�

n�1 �g
�

2n�1 g
�

n
0 g

�
n �g

�
2n�1

�
�
�
� α11

α12
α13

�
�� 0� (A2)

These linear equations readily yield

α12 �

�
2n�1�

n
α13� α12 �

�
2n�1�
n�1

α11 and α11 �

�
n�1�

n
α13� (A3)

Using the normalization condition

α 2
11�α 2

12�α 2
13 � 1� (A4)

we get α11 �
	

�n�1���4n�2�, α12 �
	

�2n�1���4n�2� � 1�
�

2 and α13 �	
n��4n�2�. Similarly, corresponding to the eigenvaluesλ0 andλ

�

we can obtain other
elements ofT , namely,

α21 ��
�

n
2n�1

� α22 � 0 and α23 �

�
n�1
2n�1

� (A5)

α31 �

�
n�1
4n�2

� α32 �� 1�
2

and α33 �

�
n

4n�2
� (A6)
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One can now easily read off the Euler’s angles

sinθ �

�
3n�2
4n�2

� sinφ �

�
n�1
3n�2

and sinψ �

�
n

3n�2
� (A7)
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