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Abstract. Two classes of models of driven disordered systems that exhibit history-
dependent dynamics are discussed. The first class incorporates local inertia in the dy-
namics via nonmonotonic stress transfer between adjacent degrees of freedom. The second
class allows for proliferation of topological defects due to the interplay of strong disorder
and drive. In mean field theory both models exhibit a tricritical point as a function of dis-
order strength. At weak disorder depinning is continuous and the sliding state is unique.
At strong disorder depinning is discontinuous and hysteretic.
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1. Introduction

Nonequilibrium depinning transitions from static to moving states underlie the
physics of a wide range of phenomena, from fracture propagation in heterogeneous
solids to flux flow in type-II superconductors [1]. One class of models, overdamped
elastic media pulled by a uniform force, has been studied extensively. These exhibit
a nonequilibrium phase transition from a pinned to a sliding state at a critical value
FT of the driving force. This nonequilibrium transition displays universal critical
behavior as in equilibrium continuous transitions, with the medium’s mean velocity
v acting as an order parameter [2,3]. In overdamped elastic media, the sliding state
is unique and no hysteresis can occur [4].

The elastic medium model is often inadequate to describe real physical systems
that exhibit plastic response on various scales. Plasticity, used here in a loose sense,
may arise in systems with an underlying periodic structure, such as vortex lattices
or charge density waves, for strong disorder. This yields large deformations of the
driven medium with the proliferation of topological defects, which are continuously
generated and healed by the interplay of drive, disorder and interactions [5–7]. In
other situations, such as crack propagation in heterogeneous solids [8], and the
motion of a helium-4 droplet contact line on a rough surface [9], the dissipative
elastic medium model is made inadequate by the presence of inertial effects or other
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nonlocal stress propagation mechanisms. In both cases the depinning transition
may become discontinuous and sometime hysteretic.

Several coarse-grained models of driven extended systems that can lead to
history-dependent dynamics have been proposed in the literature [1,10–13]. Here
we examine two classes of such models. In the first class of models the displace-
ment of the driven medium from some undeformed reference configuration remains
single-valued, as appropriate for systems without topological defects, but the elas-
tic interactions are modified by assuming local underdamped dynamics. This is
modeled via a linear stress–strain relation, where the stress transfer between dis-
placements of different parts of the manifold is nonmonotonic in time. Models of
this type have been used to incorporate the effect of inertia or elastic stress over-
shoot in crack propagation in solids [13,14]. A related model was proposed by us
[12,15,16] as an effective description of topological defects in the driven system.
Below we show that the presence of topological defects in a solid can be described
as a viscous force that allows a moving portion of the medium to overshoot a
static configuration before relaxing back to it, so that these two models are iden-
tical. In the second class of models topological defects are explicitly allowed by
removing the constraint that displacements be single-valued [10,17]. We consider
a simple realization of this type of models proposed some time ago in the con-
text of charge density waves, where the scalar displacement describes the phase of
the electronic condensate and the system only exhibits one-dimensional periodicity
along the direction of motion. It is obtained by assuming a nonlinear coupling
among neighboring displacements that incorporates the crucial feature that the
displacement becomes undefined at the location where the amplitude of the order
parameter collapses. This is incorporated in the model as an instantaneous jump
of the displacement or phase of an amount equal to its period, known as phase
slip.

The two classes of models exhibit remarkably similar behavior in the mean-field
limit, where the interaction are assumed to have infinite range. As a function of
disorder strength, they both have a tricritical point separating continuous depinning
transitions from discontinuous depinning transitions. Depinning is continuous at
weak disorder with mean-field critical exponents that are identical to those obtained
for a dissipative elastic medium. Above a critical disordered strength, depinning
becomes discontinuous and hysteretic. The origin of the hysteresis is, however,
different in the two models, as discussed below. Preliminary numerical work also
suggests that differences may arise in finite dimensions.

2. Two classes of models: Viscous and phase slip couplings

We restrict ourselves to the dynamics of a scalar field describing deformations along
the direction of mean motion and discretize space, denoting by ui(t) the displace-
ment of the i-degree of freedom from some undeformed reference configuration, at
time t. We stress that all models discussed are coarse-grained, with ui represent-
ing the displacement of a region pinned collectively by disorder. The microscopic
dynamics is always assumed to be overdamped, but velocity-dependent couplings
can arise upon coarse-graining. The equation of motion in the laboratory frame is
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written by balancing all the forces acting on each segment of the driven medium as
[18]

∂tui = σα({ui}, t) + F + fp(i, ui) , (1)

where time has been scaled so that the friction coefficient is unity, F is the external
driving force, fp is the pinning force, and σα represents the stress due to interactions
with the neighbors. The label α will be used below to identify two ways of modeling
the coupling. For driven periodic manifolds, such as vortex lattices or charge density
waves, the pinning force is periodic in the displacement ui, with 0 ≤ ui ≤ 1, and can
be written as fp(i, ui) = hiY (ui − γi), where Y (u) is a periodic function specified
below, hi are random forces with distribution ρi(h), and γi are random phases
chosen independently and uniformly in [0, 1).

First, we consider a class of models with single-valued displacements ui and a
linear stress–strain relation of the general form,

σα({ui}, t) =
∫ t

−∞
dt′

1
Z

∑

〈j〉
Jα

ij(t− t′)
[
uj(t′)− ui(t′)

]
, (2)

where the sum is over the Z sites j that are nearest neighbors of i. A suitable
choice of the stress-transfer or memory function, Jα

ij(t), yields various models de-
scribed in the literature. The familiar elastic model is obtained by assuming in-
stantaneous stress transfer, i.e., JE

ij(t) = Kδ(t), with K an elastic constant. More
generically, all monotonic models, defined as those with Jij(t) ≥ 0, for all i, j, t,
exhibit a continuous depinning transition with universal critical behavior and a
unique sliding state [1]. The choice JV

ij = η∂tδ(t) yields purely viscous stresses, i.e.,
σV = η

∑
〈j〉

[
u̇j(t)− u̇i(t)

]
, provided we identify vi = u̇i ≡ ∂tui with the local flow

velocity of the medium. In this case depinning always occurs at F = 0 for pinning
force distributions without a finite lower bound, but there is a critical point above
which the system can switch discontinuously and hysteretically between a macro-
scopic slow moving state and a fast moving state [12,15]. We recently considered
models where the stress transfer function is taken to have the form appropriate
for a viscoelastic fluid, that responds elastically on short time-scales and flows vis-
cously at long times [12]. This viscoelastic coupling was proposed as an effective
way of describing the local slip due to dislocations generated at the boundaries be-
tween coarse-grained degrees of freedom. The connection between the viscoelastic
model and the presence of free dislocations in the medium was made more pre-
cise in ref. [19] where it was shown that the equations describing the dynamics of
equilibrium deformations of a two-dimensional lattice with a finite concentration
nd of free annealed dislocations can be recast in the form of the phenomenological
equations of a viscoelastic fluid introduced many years ago by Maxwell [20]. In
a scalar version of the equations of viscoelasticity, local compressional stresses are
written in the form given in eq. (2), with

JVE
ij (t) = K∞δ(t)− K∞ −K0

τ
e−t/τ , (3)

where K∞ and K0 are the high and low frequency compressional moduli, respec-
tively, and τ ∼ (nd)−1 is the microscopic relaxation time [19]. Shear stresses have
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a similar form, with shear moduli replacing compressional ones and G0 = 0 as a
fluid has no zero-frequency elastic restoring forces in response to shear stresses.
The nonzero long-wavelength compressional elasticity (K0 6= 0) is associated with
density conservation and plays a crucial role in controlling the physics of depinning
in driven lattices. For this reason in our scalar model we assume a coupling of the
form (3) in all directions. On time-scales t short compared to τ , the contribution
to the stress coming from the second term in eq. (3) is negligible compared to the
first term and σVE reduces to the stress of an elastic solid, given by

σVE({ui}, t ¿ τ) ≈ K∞
Z

∑

〈j〉
[uj(t)− ui(t)] . (4)

Conversely, for t À τ , one can expand the relative displacements for t′ ∼ t, and

σVE({ui}, t À τ) ≈ K

Z

∑

〈j〉
[uj(t)− ui(t)] +

η

Z

∑

〈j〉
[u̇j(t)− u̇i(t)] , (5)

with K = K0 and η = (K∞−K0)τ . The model of driven depinning studied below is
obtained from eq. (1) with the simplified form given in eq. (5) for the stress–strain
relation

∂tui =
K

Z

∑

〈j〉
[uj(t)− ui(t)] +

η

Z

∑

〈j〉
[u̇j(t)− u̇i(t)] + F + fp(i, ui) , (6)

and will be referred to as viscous/elastic model (VE). The presence of dislocations
generated by disorder is incorporated in a mean-field-type approximation as a local
inertial response of the driven system embodied by the viscous coupling of strength
η ∼ 1/nd. This model assumes a fixed number of topological defects and does
not describe the creation and annihilation of dislocations due to the interplay of
drive, disorder and interactions. Furthermore, in a driven disordered solid unbound,
dislocations can be pinned by disorder and do not equilibrate with the lattice. The
resulting dynamics cannot be described as a locally underdamped response of the
systems. The model given in eq. (6) may be used to describe some of the effects of
topological defects near depinning, but becomes inapplicable at large driving forces
where dislocations recombine as the lattice reorders.

Before studying the dynamics of the VE model, it is useful to discuss its relation-
ship to other models studied in the literature. In particular, the form of the stress
transfer function given in eq. (5) is the same as that used recently by Fisher and
Schwarz to incorporate the effect of stress overshoot on propagation of cracks in
heterogeneous solids [13,14], although the random pinning force considered there is
not periodic. These authors consider an automaton model where time is discrete.
It is straightforward, to define an automaton version of our VE model, where both
the displacement ui and time are discrete. The displacement takes integer values
and the automaton is updated according to the rule

ui(t + 1) = ui + Θ(Fi(ui)) ,

vi(t + 1) = Θ(Fi(ui)) , (7)
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where vi can have values 0 and 1 and Fi(ui) is the total force at site i given by

Fi(ui) =
K

Z

∑

〈j〉

[
uj(t)− ui(t)

]
+

η

Z(1 + η)

∑

〈j〉
vj(t) + F + f̃p(i) . (8)

The pinning force f̃p(i) becomes a random number chosen uniformly from an inter-
val [0, h0] [21]. The automaton can be obtained in the limit of very deep periodic
pinning wells, when the dynamics is dominated by discrete events corresponding to
jumps of the displacement from one well to the next. As long as v ¿ 1, where 1 is
the artificial upper limit of the mean velocity in the discrete model, the automaton
dynamics mimics the continuous time dynamics reasonably well. The automaton
version of the viscoelastic model given in eqs (7) and (8) is identical to its dynam-
ics of the model of crack propagation with stress overshoot studied by Schwarz
and Fisher, provided the strength M of the stress overshoot is identified with the
combination η/(1 + η). The two models differ in the type of pinning considered
as the random force fp(i, ui) used in refs [13,14] which is not periodic. By es-
tablishing the connection between these two models we have shown that distinct
physical mechanisms (inertia, nonlocal stress propagation, unbound topological de-
fects) play a role in different physical systems that can be described generically
by a coarse-grained model that includes a coupling to local velocities of the driven
manifold.

In the second class of models topological defects are explicitly allowed by re-
moving the constraint of single-valued displacements. At a strong pinning center,
deformations of the driven medium can be large and lead to the accumulation of a
large strain. When the distortion is released through a collapse of the amplitude
of the order parameter (i.e., the creation of a topological defect), the displacement
abruptly advances of an amount of order 1, while the amplitude quickly regener-
ates. This process is known as phase slippage in superconductors and superfluids.
On time-scales large compared to those of the microscopic dynamics, it can be de-
scribed approximately as a ‘phase slip’: an instantaneous (modulo 1) hop of the
displacement of an integer unit, modeled as a coupling periodic in the difference in
displacements between neighboring degrees of freedom

σPS({ui}, t) =
K

Z

∑

〈j〉
sin 2π

[
uj(t)− ui(t)

]
. (9)

If the relative displacements are small, this reduces to an elastic coupling of strength
K. This model has been studied before in the mean-field limit by Strogatz and col-
laborators for a sinusoidal pinning force [10]. In this case depinning is always
hysteretic in mean field. Very recently we were able to solve the model in mean
field for arbitrary pinning potential and show that more generically both contin-
uous and discontinuous depinning transitions are obtained as the parameter K is
varied [17].

Below we compare the behavior of these two classes of models: models where the
displacement remains single valued and deviations from elasticity are introduced
via local inertial couplings and models where the displacement ceases to be single
valued and topological defects can be generated for strong disorder.
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3. Mean-field solution

The mean-field approximation for the VE model is obtained in the limit of infinite-
range elastic and viscous interactions. Each displacement then couples to all others
only through the mean velocity, v = N−1

∑
i u̇i, and the mean displacement, u =

N−1
∑

i ui. We look for solutions moving with stationary velocity, so that u = vt.
Since all displacements ui are coupled, they can now be indexed by their disorder
parameters γ and h, rather than the spatial index i. The mean-field dynamics is
governed by the equation

(1 + η)u̇(h, γ) = K
(
vt− u

)
+ F + ηv + fp(u; h, γ). (10)

It is useful to first review the case η = 0, where eq. (10) reduces to the mean-
field theory of a driven elastic medium [3]. The mean-field velocity is determined
by the self-consistency condition 〈u(h, γ) − vt〉h,γ = 0, where the subscripts h, γ
indicate averages over the distribution of pinning strengths, ρ(h), and over the
uniformly-distributed phases, γ. For piecewise harmonic pinning, Y (u) = 1/2 −
u, for 0 ≤ u ≤ 1, no moving solution exists for F < FT =

〈
h2

2(K+h)

〉
h
. Just

above threshold the mean velocity has a universal dependence on the driving force,
with v ∼ (F − FT )β . In mean field the critical exponent β depends on the shape
of the pinning force: β = 1 for the discontinuous piecewise harmonic force and
β = 3/2 for generic smooth forces. Using a functional RG expansion in 4 − ε
dimensions, Narayan and Fisher [3] showed that the discontinuous force captures
a crucial intrinsic discontinuity of the large scale, low-frequency dynamics, giving
the general result β = 1 − ε/6 + O(ε2), in reasonable agreement with numerical
simulations in two and three dimensions [22,23]. For simplicity and to reflect the
‘jerkiness’ of the motion in finite-dimensional systems at low velocities, we use
piecewise harmonic pinning.

When η > 0, the nature of the depinning differs qualitatively from the η = 0 case
in that both unique and multi-valued solutions can exist depending on the values
of the parameters. The solution for general η can be found from that for η = 0 by
substituting the effective driving force G = F + ηv for F in the vη=0(F ) relation
and scaling the velocity down by 1+η. The linear transformation F = G−ηv then
gives the general v(F ) curve. The mean velocity in the sliding state is given by the
solution

F − FT = v
[
1−M(η, K)

]
+

〈
h2

K(K + h)[e(K+h)/(1+η)v − 1]

〉

h

, (11)

where M(η, K) = (1 + η)
〈

h2

(K+h)2

〉
h
. For M(η, K) < 1 there is a unique sliding

solution with mean velocity near threshold given by

v ∼ (F − FT )β

1−M(η,K)
, (12)

with β = 1. The condition M(η,K) = 1 determines a critical line separating
unique from multi-valued solutions v(F ). The phase diagram in the (F, h0) plane
is shown in figure 1 for ρ(h) = δ(h− h0) (provided K 6= 0, the topology of the
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Figure 1. Mean-field solution of the VE model with a piecewise parabolic
pinning potential, ρ(h) = δ(h − h0) and η = 5. Left frame: phase diagram.
Here ‘coexistence’ refers to multistability of the solutions to the equations of
motion. Right frame: velocity versus drive for h0/K = 0.5 (blue), h0/K = 1
(red) and h0/K = 2 (black). Also shown for h0/K = 2 are the discontinuous
hysteretic jumps of the velocity obtained when F is ramped up and down
adiabatically.

phase diagram does not depend on the form of ρ(h)). There is a tricritical point
at (hc, Fc = FT ), with hc = K/(

√
1 + η − 1). For h0 < hc, a continuous depinning

transition at FT separates a stable pinned state [24] from a sliding state with unique
velocity given by eq. (12). In finite dimensions, we expect this transition to remain
in the same universality class as the depinning of an elastic medium (η = 0). This
is corroborated by numerical studies and analysis by Schwarz and Fisher [14] of
the related stress overshoot model (but with non-periodic pinning). For h0 > hc

the v(F ) curves are multivalued, which leads to hysteresis when F is ramped up
and down adiabatically. The hysteresis is easily understood as a consequence of
the global nature of the viscous coupling in mean field, where the driving force is
replaced by an effective drive F + ηv. Clearly this does not affect the static state
where v = 0, so that upon ramping up the driving force from the pinned state the
system always depins at F↑ = FT . When the force is ramped down from the sliding
state where v 6= 0, the system sees a larger effective drive F + ηv and repins at
the lower value F↓. It is important to appreciate the crucial role of a finite value
of K in eq. (6). When K = 0 each degree of freedom has its own velocity vi and
for any broad ρ(h) there are always some degrees of freedom that experience zero
pinning force, yielding no stable pinned phase at any F > 0 [12]. For finite long-
time elasticity, i.e., when K 6= 0, the elastic forces or particle conservation enforce
a uniform time-averaged velocity for all degrees of freedom and one obtains a stable
pinned phase for F < FT . Finally, we note that the VE model is also closely related
to a model of sliding CDWs that incorporates the coupling of the CDW to normal
carriers by adding a global velocity coupling [11,25] to the Fukuyama–Lee–Rice
model.
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We now turn to the phase slip model, where the stress is given by eq. (9). In
mean-field theory the nonequilibrium state can be described in terms of two order
parameters. The first is the coherence of the phases, measured by the amplitude r
of a complex order parameter defined by

reiψ =
1
N

N∑

i=1

ei2πui , (13)

with ψ a mean phase. In the absence of interactions among the phases or external
drive, ui are locked to the random phases γi and the state is incoherent, with
r = 0. In the opposite limit of very strong interactions we expect perfect coherence
of the static state, with all ui becoming equal to the mean phase and r → 1. The
second-order parameter is the average velocity of the system, given by

v =
1
N

N∑

i=1

u̇i(t). (14)

The mean velocity is the order parameter for the transition between static and
moving phases. In the sliding state ψ = vt. The mean-field equation of motion is

u̇(h, γ) = F −Kr sin(2πu− ψ) + hY (u− γ) , (15)

where the effective coupling is proportional to the coherence r. The self-consistency
condition for the mean-field theory is given by

reiψ =
∫ 1

0

dγ

∫
dhρ(h)ei2πu(h,γ) . (16)

In [17] we developed a general method for solving the mean-field equations (15)
and (16) for arbitrary pinning potential. The resulting phase diagram for a piece-
wise parabolic pinning potential is shown in figure 2. We see immediately that this
is richer than the phase diagram for the VE model, as now both disorder-driven
transitions between static coherent and incoherent phases as well as force-driven
transitions between static and moving phases can occur. Although, as shown in
[17], the detailed shape of the phase boundaries depends on the specific form of
the pinning potential in mean field, the types of phases and the schematic topology
of the phase diagram are general. At low driving forces both coherent (CS) and
incoherent (IS) static phases are stable. The transition from the coherent phase at
weak disorder to the incoherent phase at strong disorder is discontinuous for piece-
wise parabolic pinning. It also becomes hysteretic for most other pinning potentials
[17]. When the driving force is ramped up adiabatically from the coherent state, the
system depins continuously at F c

↑ to a unique sliding state and the coherence grows
smoothly towards unity. When the force is ramped up from the incoherent static
state, where r = 0, the system depins discontinuously at F i

↑ = Fsp, with Fsp = h0

the single particle threshold, given by the maximum pinning force. This is easily
understood from eq. (15) as when r = 0 the displacements can remain decoupled
even for finite values of K. At F i

↑ the coherence also jumps discontinuously to
a finite value, as shown in figure 3. When the force is ramped back down from the
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sliding state, the system repins at the lower force F↓, where the coherence also
jumps back to zero. The moving state is always coherent in mean field, although
incoherent sliding states should be possible in finite dimensions [26]. The origin of
the mean-field hysteresis observed when the system depins from a static incoherent
state is easily understood. When the force is ramped up each degree of freedom
depins essentially independently. Once the medium starts sliding, disorder becomes
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Figure 3. Coherence (right) and velocity (left) as functions of drive for
h0/K = 1 (red curves, showing the CS → CM continuous depinning) and
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curves are obtained by numerical integration of eq. (15) as F is ramped up
and then down.
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less important and the system becomes coherent and therefore much stiffer. Such a
system cannot easily adjust to disorder and therefore when the force is decreased,
it remains in a sliding state down to a lower force. This type of hysteresis is clearly
strongly enhanced in mean-field, where only states with zero or perfect coherence
are possible. Hysteresis has been observed in numerical simulations of the PS
model in three dimensions [27], although this work did not establish conclusively
that hysteresis survives in the limit of infinite system size. Preliminary work by us
[28] suggests that there is no hysteresis in infinite systems in three dimensions.

4. Conclusion

We have discussed the depinning transition of two classes of models that allow for
history-dependent response. In mean field theory both models exhibit a tricritical
point as a function of disorder strength. At weak disorder depinning is continuous
and the sliding state is unique. Above the tricritical point depinning is discontinu-
ous and hysteretic. Numerical studies of these models are currently under way to
establish how much of the mean field behavior survives in finite dimensions. Simu-
lations of the PS model in three dimensions suggest that the hysteresis disappears
for large system sizes [27–30]. In this model the hysteresis may indeed be an artifact
of the mean-field approximation that yields a sharp distinction between coherent
and incoherent static states. In finite dimensions this may be replaced by a smooth
growth of local coherence over a broad range of length scales, without discontinuous
jumps. The mean-field tricritical point may then become a strong crossover between
continuous depinning transitions characterized by (nonuniversal) exponents β < 1
at weak disorder to β > 1 at strong disorder [30]. Hysteresis seems more robust in
the VE model, or in general in models with local inertia. Preliminary numerical
simulations of an anisotropic version of the VE models in two dimensions indicate
a stubborn persistence of hysteresis with increasing system size even for relatively
weak disorder. In this case the existence of hysteresis may not be a good test of
the precise nature of the depinning transition [31].

Once local inertia or topological defects are introduced in the model, various de-
pinning scenarios are possible. The depinning may be discontinuous with hysteresis
(like an equilibrium first-order phase transition) or with hysteresis that vanishes in
the infinite system limit. Another possibility is that the transition in continuous and
critical, in the sense that it is possible to identify diverging correlation lengths as the
depinning threshold is approached adiabatically from above or from below. Finally,
as originally suggested by Ramanathan and Fisher [32] and more recently explored
by Maimon and Schwarz [31], even critical behavior with hysteresis that survives
in the infinite system limit is possible. Sorting out these various scenarios for the
models discussed will require more extensive numerical studies in finite dimensions.
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