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Enthalpy–entropy compensation is the name given to the correlation sometimes observed between the estimates 
of the enthalpy and entropy of a reaction obtained from temperature-dependence data. Although the mainly 
artefactual nature of this correlation has been known for many years, the subject enjoys periodical revivals, in 
part because of the frequent excellence of the correlation. As with other cases of impossibly good correlation 
between two biological variables, the explanation is that what purports to be two variables are very largely the 
same variable looked at in two different ways. 

[Cornish-Bowden A 2002 Enthalpy–entropy compensation: a phantom phenomenon; J. Biosci. 27 121–126] 

1. Introduction 

Enthalpy–entropy compensation enjoyed widespread 
popularity in the 1950s, even though it was soon shown 
(Exner 1964) to be largely derived from a statistical 
artefact of trying to extract two parameters from tempe-
rature-dependence data that could barely support one. 
Although it is now relatively rare in the literature, there 
have been occasional revivals: for example Gutfreund 
(1995) mentions it prominently in his book on biological 
kinetics, and it was the central theme in the book of 
Hochachka and Somero (1984) on biochemical adaptation. 
The basic observations are superficially straightforward 
and highly impressive: for example, the apparently 
excellent linear relationship between enthalpy and entropy 
of activation obtained by Johnson and Goldspink (1975) 
for the temperature dependences of the myofibrillar 
ATPases of various fishes, which provides the data for 
figure 7⋅5 of Gutfreund (1995). To avoid being misled 
into seeing a real biological relationship where none 
exists, it is therefore important to understand how the 
artefactual correlation arises. 
 First, however, it is important to emphasize that the 
major problem arises when the enthalpy and entropy 
values are estimated from the same temperature-

dependence data. In principle, they can be determined 
independently by calorimetry, i.e. by directly measuring 
the heat transfer rather than just inferring it. This is some-
times also done in practice, and so it must be understood 
that when enthalpy–entropy compensation is deduced 
from calorimetric data it cannot be easily dismissed as a 
statistical artefact. 
 In deducing compensation from temperature-dependence 
data the essential idea is simple: an enzyme is isolated 
from various sources, typically fishes that live at signi-
ficantly different temperatures, and for each enzyme the 
temperature dependence of a suitable kinetic parameter k 
is analysed by making Arrhenius plots of ln k against 
1000/T, where T is the temperature in kelvins. The slope 
and intercept of the resulting linear plot are then repro-
cessed in the light of transition-state theory (Gutfreund 
1995; Cornish-Bowden 1995) to yield estimates of the 
enthalpy ∆H‡ and entropy ∆S‡ of activation. Plotting ∆H‡ 
against ∆S‡ yields a “compensation plot”, typically a 
straight line whose slope has dimensions of temperature. 
The name refers to the idea that variations in ∆H‡ that 
accompany variations in the temperature at which each 
enzyme is normally active are “compensated for” by 
variations in ∆S‡. Significance is also sometimes attached 
to the fact that the slope of the plot, known as the 
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“compensation temperature,” is often found to be in the 
range at which most organisms live. 
 

2. Extrapolation of the Arrhenius plot 

An Arrhenius plot for an enzyme parameter typically has 
the appearance shown in the inset to figure 1, apparently 
a well defined straight line with well defined slope and 
intercepts. It is important to notice, however, that the 
origin is almost never shown explicitly on an Arrhenius 
plot. So far as the abscissa axis is concerned this is of no 
importance, because its location is arbitrarily dependent 
on the units in which k is expressed before converting it 
to its logarithm – if the day had been adopted as the SI 
unit of time instead of the second, this axis would be 
shifted by 11⋅4, but the physical reality would be 
unchanged. However, the location of the ordinate axis is 
not arbitrary, and the fact that it typically lies very  
far from the range of experimental data has important 
consequences. 
 To indicate what analysis of an Arrhenius plot in terms 
of the transition-state theory actually involves one must 
use a scale with which the ordinate axis can be shown 
explicitly, as in the main body of figure 1. It is then 
evident that estimating ∆S‡ by extrapolating the line to 
this axis – equivalent to extrapolating the value of k to 

infinite temperature – involves an extrapolation of typi-
cally 8–20 times the range of the data. In figure 1, as in 
the experiments of Johnson and Goldspink (1975), the 
temperature range was 273–291 K (0–18°C), corres-
ponding to a range of 3⋅44–3⋅66 K–1 in 1000/T : the 
extrapolation is thus more than 15 times the range of the 
data. Even if the experimental range were as wide as 
273–318 K (0–45°C) the extrapolation would still be 
seven times greater than the range of experimental 
1000/T values. 
 To put this in terms more familiar to most biochemists, 
the extrapolation is similar to what would be involved in 
trying to estimate the limiting rate V of an enzyme from a 
Lineweaver–Burk plot of data in which the entire range 
of substrate concentrations extended from 0⋅083Km to 
0⋅089Km. (The parallel is not exact, however, because the 
location of the abscissa axis in an Arrhenius plot is 
arbitrary, as noted above, whereas in a Lineweaver–Burk 
plot it is not arbitrary.) Although badly designed experi-
ments with inappropriate ranges of substrate concentrations 
are often used as the basis for published Lineweaver–
Burk plots, it would be hard to find an example of one 
even remotely as badly designed as this! 
 One thing follows immediately from this analysis: 
even if a typical Arrhenius plot of biological data may be 
capable of giving a meaningful estimate of ∆H‡, which is 
derived solely from the slope, it cannot give more than a 

 
 
Figure 1. A typical Arrhenius plot of biological data. Notice that the data extend 
over a very narrow range of temperature (here 0–18°C), so that extrapolating to 
infinite temperature to obtain the thermodynamic activation parameters is a highly 
uncertain procedure. The inset shows a more conventional representation of the 
same data, where the truncated scales permit an entirely misleading impression 
that the points lie on a well-defined straight line. 
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rough idea, at best, of ∆S‡, because this requires know-
ledge of the ordinate intercept. However, although this 
warns us not to be too confident about attributing bio-
logical significance to observed variations in ∆S‡, it is not 
obvious at first sight that it will generate a spurious 
correlation between ∆H‡ and ∆S‡. To understand this it is 
useful to examine a more detailed example. 
 

3. Random temperature dependences 

Figure 2a shows 100 points distributed at random in a 
space with the Arrhenius activation energy Ea as one 
dimension and ln k18°, the logarithm of the value of the 
parameter k at 18°C, as the other. The values of Ea are 
uniformly distributed in the range 25–160 kJ mol–1, and 
those of ln k18° are uniformly distributed over a range of 
2⋅3 (so that the values of k18° extend over a ten-fold 
range). It is obvious from inspection that there is no 
relationship between the values of Ea and ln k18°, as any 
appropriate statistical test would confirm. Suppose now 
that a set of k values is generated at temperatures in the 
range 0–18°C for each of the 100 combinations of the 
two Arrhenius parameters. The data shown in figure 1 
were one such set and are typical of the level of scatter 

assumed through out. In general the conditions (range of 
temperatures, parameter values, numbers of observations 
in each experiment) in this simulation corresponds roughly 
with the data of Johnson and Goldspink (1975), but this 
is not important for the conclusions that follow, which 
would be essentially the same for any reasonable assump-
tions. The main difference is that whereas Johnson and 
Goldspink (1975) considered data for seven fishes the 
simulation here considers a much larger number of para-
meter combinations to eliminate the danger of spurious 
conclusions due to a small sample. 
 Each of the Arrhenius plots generated in this way can 
be analysed by fitting it to a straight line and estimating 
the slope – Ea/R, where R is the gas constant, and intercept 
ln A is on the ordinate. From this it is a simple matter to 
calculate ∆H‡ = Ea – RT and ∆S‡ = R ln (ANAh/RT) – R, 
where NA is the Avogadro constant and h is Plank’s con-
stant, using the fact that RT/NAh has a value of 6⋅25 × 
1012 s–1 at 300 K. As the original parameter values (figure 
2a) were uncorrelated, we might expect a corresponding 
random scatter of points in the compensation plot, but in 
reality the result is an excellent straight-line “relation-
ship” (figure 2b), with a slope of 290 K (17°C), very 
close to the temperature at which the original ln k18° 
values were defined. 

 
Figure 2. (a) A random scatter of 100 points, with ln k18° uniformly distributed in the 
range 2⋅3 ± 1⋅15 and Ea uniformly distributed in the range 30–160 kJ/mol. (b) Each of the 
points in (a) was used to provide the true parameter values for simulating a temperature 
dependence with 19 observations in the range 0–18°C, normally distributed errors with 
standard deviation 0⋅05 being added to the calculated ln k values. The conditions were 
chosen to correspond roughly to those of the experiments of Johnson and Goldspink 
(1975). The resulting Arrhenius plots were then analysed to estimate the thermodynamic 
activation parameters, which were used to produce the compensation plot shown. The 
inset shows seven points, well spaced but otherwise selected at random from the original 
100, plotted in the same way. This plot is unlabelled for clarity, but the range of values 
plotted in each axis was the same as in the main plot. 
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 Where does the excellent correlation in figure 2a come 
from? Clearly it cannot reflect any biological relation 
between the actual parameter values, which, as seen in 
figure 2b, were unrelated. Moreover, a correlation as 
good as that in figure 2b ought to give rise to con-
siderable suspicion, regardless of what sort of data are 
plotted, because few if any relationships between bio-
logical variables are as exact as this, and it is especially 
noteworthy that the quality of the transformed data 
appears to be much better than that of the primary data in 
the Arrhenius plots (of which figure 1 shows a typical 
example). 
 In general, an impossibly good correlation between 
two biological variables normally means that what purport 
to be two variables are, apart from a trivial amount of 
variation in a minor dimension, the same variable looked 
at in two different ways. So it proves in the present case. 
Consider, for example, the effect of displacing one of the 
experimental points in the Arrhenius plot by a small 
amount. The primary effect will be a small error in the 
slope accompanied by a negligible error in the coordi-
nates of the centroid. In effect, therefore, we can expect 
the line to be rotated slightly around the centroid, which 
means in practice that an error of ε in the estimate of Ea 
will translate to an error of ,/Tε  where T  is the tempe-
rature at the centroid, in the estimate of the intercept on 
the ordinate (figure 3). To the extent, therefore, that the 
observed variations in ∆S‡ primarily reflect experimental 
error we ought to expect a plot of ∆H‡ against ∆S‡ to 
have a slope of .T  
 All of this suggests that the excellent correlation often 
observed between ∆S‡ and ∆H‡ mainly reflects the fact 
that both thermodynamic parameters are in reality two 
measures of the same thing, and that measuring a com-

pensation temperature is just a rather indirect way of 
measuring the average temperature at which the experi-
ments were carried out. As this temperature will often be 
in a range that the experimenter expects to have some 
biological significance, it is not surprising if the com-
pensation temperature turns out to have a biologically 
suggestive value. 

4. Non-artefactual aspects 

It may be argued that even though the artefactual com-
ponent in entropy–enthalpy compensation is very large it 
does not account for 100% of the effect. After all, the  
ln k18° values in figure 2a are not distributed over an 
infinite range but confined to one decade in the values of 
k18°. Thus the almost perfect correlation between ∆H‡ and 
∆S‡ values can be interpreted as evidence that all of the 
enzymes have k values within an order of magnitude of 
one another at 18°C: this is a biological statement, not a 
statistical one. However, although the correlation deterio-
rates when the range of ln k18° values is increased, it 
deteriorates very slowly, and is still quite good by the 
standards of most biological correlations when the k18° 
values are spread over six orders of magnitude (figure 4), 
and could still be described as excellent for three orders 
of magnitude (not shown). It follows, therefore, that even 
a very good correlation between ∆H‡ and ∆S‡ values tells 
us no more than that the k values do not differ from one 
another by more than a factor of 1000 at 18°C. To say 
this in the real world, however, is to say nothing, because 

 
Figure 3. Origin of the correlation between entropy and 
enthalpy of activation. If the slope of an Arrhenius plot is 
decreased by an error ε while maintaining the ordinate value 
constant at some temperature   (typically a temperature near 
the mean of those considered experimentally) then the rotation 
of the line will produce an error    in the intercept on the 
ordinate. 
 

T

T/ε

 
Figure 4. Enthalpy–entropy compensation with a million-fold 
range of k18° values. The points were obtained exactly as in 
figure 2b, except that the range of ln k18° was 2⋅3 ± 6⋅9, corres-
ponding to six orders of magnitude in the range of k18°. 
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it is unlikely that an experimenter would select for study 
(or even detect) an enzyme with activity less than 0⋅1% 
of that of the more active enzymes considered. 
 Despite all this, comparison of figure 2b with figure 1 
of Johnson and Goldspink (1975) or its representation as 
figure 7⋅5 of Gutfreund (1995) may lead to the observa-
tion that the simulated data do shown some deviations 
from a straight line, whereas the actual data for myo-
fibrillar ATPase were, as far as the unaided eye can 
detect, perfect. This is probably mainly a small-sample 
effect, as a plot of seven well spaced but otherwise 
randomly selected points from the 100 in figure 2b yield 
a plot in which almost no deviation from linearity is 
evident (see the inset in figure 2b). 
 In fact, the values given by Johnson and Goldspink 
(1975) for Vmax are spread over only a 2⋅3-fold at 18°C 
(assuming that the value of 0⋅045 µmol mg–1 min–1 given 
for Tipalia nigra is a typographical error for 0⋅45 µmol 
mg–1 min–1), not a ten-fold range. As they did not record 
the molecular masses of the different enzymes one cannot 
convert this to a range of k18°, but it is not unreasonable 
to guess that the seven enzymes had similar molecular 
masses, in which case the k18° values also spanned about 
a 2⋅3-fold range, and one could perhaps persuade oneself 
that the compensation plot demonstrated this. 
 The question then arises as to what biological inter-
pretation one could put on an exact compensation at a 
particular temperature if such a compensation truly exis-
ted. Curiously, this point appears not to have been con-
sidered in any depth. What possible biological advantage 
would it be to Tipalia grahami, which spends its life in 
tropical hot springs at 25–38°C, and to Notothenia rossii, 
which lives in Antarctic waters at 0–2°C, to have the 
same myofibrillar ATPase activity at 18°C, a temperature 
that neither fish ever experiences in normal circum-
stances? What conceivable selective pressure, therefore, 
could have produced the virtually perfect compensation 
that the thermodynamic data suggest to the Panglossian 
observer? It seems best, therefore, not to be too assiduous 
in trying to explain any residual correlation that remains 
after statistical artefacts have been allowed for. 
 The story, however, does not end here, because even 
on the Panglossian interpretation the data do not show 
that all of the fishes have optimized myofibrillar ATPase 
activities. Arrhenius plots over a wider range of tempera-
tures than 0–18°C show a discontinuity at 18⋅5°C 
(Johnson and Goldspink 1975), and it was “to overcome 
[this and other] complications” that only data in the lower 
range were used for the thermodynamic comparison. One 
may rephrase the above question, therefore: of what 
possible interest it can be to T. grahami if its myofibrillar 
ATPase has any particular activity when extracted from 
the fish and cooled to the other side of a discontinuity? 
And if the modern fish does not care, why should its 

ancestors have been favoured by evolution if their myo-
fibrillar ATPases tended towards a particular activity  
at 18°C? 

5. Discussion 

Gutfreund and Chock (1991) remarked in another context 
that “this is not Voltaire’s best of all possible worlds, it is 
the best world we have got.” This is true, of course, and 
it should not be forgotten, but it should not blind us to the 
existence of genuine optimization principles in bioche-
mistry, several of which have been carefully documented 
by Meléndez-Hevia (1993). Even in temperature depen-
dence studies there may be genuinely interesting (albeit 
imperfect) correlations that can easily be overlooked in 
an excessive zeal to find perfect but meaningless com-
pensation effects. Consider, for example, the Arrhenius 
activation energies and the temperatures at which the 
various fishes live that are given in table 1 of Johnson 
and Goldspink (1975). Although not plotted by these 
authors, these values do appear to be genuinely cor-
related, as may be seen in figure 5. One can imagine 
various possible explanations, not necessarily directly 
related to evolution: for example, an increased activation 
energy might follow naturally from having a protein 
structure stable at a higher temperature. But that is not 
the main point here, which is that genuine but imperfect 
correlations are biologically more interesting than mean-
ingless perfect ones. 
 Recently Sharp (2001) made a more detailed analysis 
of several supposed cases of enthalpy–entropy compen-

 
Figure 5. Correlation of activation energy with environ-
mental temperature for seven fishes. The plot shows data for 
myofibrillar ATPase from table 1 of Johnson and Goldspink 
(1975). In the case of Carassius carassius (a domestic fish) the 
width of the bar is arbitrary, the midpoint being the temperature 
of domestication. 
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sation in the recent literature. These included one derived 
from calorimetric data (Privalov and Gill 1988), in 
principle less susceptible to statistical artefacts than the 
more usual deduction of compensation from temperature-
dependence measurements. He concluded that all of the 
examples examined, including the one based on calori-
metric data, could be “shown to be better explained by 
other causes”. Unfortunately the history of the past half-
century suggests that this will need to be shown again 
and again until it finally becomes accepted that com-
pensation, if it is still postulated, needs far stronger 
evidence than is normally adduced. 
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