
Sādhan āVol. 29, Part 4, August 2004, pp. 381–387. © Printed in India

Stokes flow past a swarm of porous circular cylinders with
Happel and Kuwabara boundary conditions
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Abstract. The problem of creeping flow past a swarm of porous circular cylinders
with Happel and Kuwabara boundary conditions is investigated. The Brinkman
equation for the flow inside the porous cylinder and the Stokes equation outside
the porous cylinder in their stream function formulations are used. The force expe-
rienced by each porous circular cylinder in a cell is evaluated. Explicit expressions
of stream functions are obtained for both the inside and outside flow fields. The
earlier results reported by Happel and Kuwabara for flow past a solid cylinder in
Happel’s and Kuwabara’s cell model, have been deduced. Analytical expressions
for the velocity components, pressure, vorticity and stress- tensor are also obtained.

Keywords. Particle-in-cell model; modified Bessel functions; stress; vorticity;
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1. Introduction

Flow through a swarm of porous particles arises in many important processes such as flow in
sand beds, in petroleum reservoir rocks, in aloxite materials, in flow sedimentation etc. (Qin
& Kaloni 1993). These problems can be easily solved by using the cell model technique.
In this technique, it is assumed that each particle is surrounded by a fluid envelope (or cell)
and all the disturbances due to each particle are confined to the envelope (Happel & Brenner
1983). The fluid envelope is assumed to contain the same volumetric proportion of fluid to
solid as exists in the entire assemblage.

Happel (1959) and Kuwabara (1959) proposed a cell model in which two concentric cylin-
ders serve as the model for fluid moving through an assemblage of circular cylinders. These
authors solved the problem when the inner cylinder is solid with respective boundary con-
ditions on the cell surface. The Happel model assumes uniform velocity condition and no
tangential stress at the cell surface, whereas, the Kuwabara model assumes vanishing of vor-
ticity in place of no tangential stress. An analytical study of the steady incompressible flow
past a circular cylinder embedded in a porous medium based on the Brinkman model has
been reported by Pop & Cheng (1992).

In the present work, we shall extend the idea of Datta & Deo (2002) for flow past a swarm
of porous circular cylinders with Happel and Kuwabara boundary conditions. The Brinkman
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equation (Brinkman 1947) for the flow inside the porous cylinder and the Stokes equation
outside the porous cylinder in their stream function formulations are used. As boundary
conditions, continuity of velocity and surface stresses at the porous cylinders are employed. On
the cell surface, Happel and Kuwabara boundary conditions are used. The force experienced
by each porous circular cylinder in a cell is evaluated. The earlier results reported by Happel
(1959) and Kuwabara (1959), for flow past a solid cylinder in their cell models, have been
deduced.

2. Mathematical formulations

The governing equations for the steady slow motion of fluids relative to assemblage of porous
circular cylinders must be written for two regions: For the outside region of porous cylinders,
namely (1), we assume that flow are governed by Stokes equation (Happel & Brenner 1983)

µ(1)∇2v(1) − gradp(1) = 0, div v(1) = 0. (1)

For the inside region (2), occupied by the porous cylinder, we use the Brinkman’s equation
(Zlatanovski 1999)

∇2 v2) −K2v(2) = (1/µ(2)) gradp(2), div v(2) = 0. (2)

Here,K2 = β/k with β = µ(1)/µ(2), µ(1) the viscosity of fluid,µ(2) denotes the effective
viscosity of porous medium,k being the permeability of porous medium. The viscosity
coefficientsµ(1) andµ(2) are, in general, different. For high porosity material, it is assumed
thatµ(1) = µ(2). Also, the velocity vector and pressure in the two regions are denoted by
v(i) andp(i), i = 1,2. It may be noted that herep(1) is not the total but the thermodynamic
pressure alone.

The stream function formulation of the above equations (1) and (2) in plane polar coordi-
nates(r, θ) is reduced to solve the following differential equations respectively:

∇4ψ(1) = ∇2(∇2ψ(1)) = 0, (3)

and

∇4 ψ(2) −K2 ∇2ψ(2) = ∇2(∇2 −K2)ψ(2) = 0, (4)

where the Laplacian

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
. (5)

The range ofr andθ in the above equations (3) and (4) are given below as:

0< r < ∞, 0 ≤ θ < 2π (6)

Further, the velocity components(v(i)r , v
(i)
θ ) and tangential and normal stresses can be

expressed (Langlois 1964) respectively as

v(i)r = (1/r)(∂ψ(i)/∂θ, v
(i)
θ = −(∂ψ(i)/∂r), (7)
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T
(i)
rθ = µ(i)

[
1

r2

∂2ψ(i)

∂θ2
+ 1

r

∂ψ(i)

∂r
− ∂2ψ(i)

∂r2

]
, (8)

T (i)rr = −p(i) + 2µ(i)

r

(
∂2ψ(i)

∂r∂θ
− 1

r

∂ψ(i)

∂θ

)
, i = 1, 2. (9)

Also, the pressure in both regions may be obtained by integrating the following relations (Pop
& Cheng 1992) respectively:

∂p(i)

∂r
= µ(i)

(
∇2v(i)r − v(i)r

r2
− 2

r2

∂v
(i)
θ

∂θ
− δ2iK

2v(i)r

)
(10)

and

1

r

∂p(i)

∂θ
= µ(i)

(
∇2v

(i)
θ − v

(i)
θ

r2
+ 2

r2

∂v(i)r

∂θ
− δ2iK

2v
(i)
θ

)
, i = 1, 2, (11)

whereδ2i = 0 wheni = 1 andδ2i = 1 wheni = 2.

3. Solution of the problem with Happel boundary conditions

In the mathematical model, we assume that all the porous circular cylinders have the same
radius and are randomly and homogeneously distributed parallel to each other. Let us suppose
that flow with uniform velocityU is perpendicular to each stationary porous circular cylinder.
The porous medium is assumed to be homogeneous and isotropic. We take the model to
consist of a hypothetical circular cylinder of radiusb, termed cell surface, enclosing and
concentric with the porous circular cylinder. The radius of the cell surface can be determined
by the assumption that it contains the same volumetric proportion of fluid to porous cylinder
as exists in the entire assemblage. Therefore, ifa is the radius of each porous cylinder, then
the radiusb of the cell surface is given by

πa2/πb2 = γ, (12)

whereγ is the volume fraction of porous cylinders in the fluid medium.
The boundary conditions of our model may be expressed as below.

3.1 On the porous cylinder(r = a)

The continuity of velocity and surface stresses across the surface of porous cylinder implies
that

v(1)r (a, θ) = v(2)r (a, θ), (13)

v
(1)
θ (a, θ) = v

(2)
θ (a, θ), (14)

T
(1)
rθ (a, θ) = T

(2)
rθ (a, θ), (15)

T (1)rr (a, θ) = T (2)rr (a, θ). (16)
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3.2 On the cell surface(r = b), Happel conditions

The continuity of normal component of velocity implies:

v(1)r = U cosθ for r = b. (17)

The vanishing of tangential stress implies:

1

r2

∂2ψ(1)

∂θ2
+ 1

r

∂ψ(1)

∂r
− ∂2ψ(1)

∂r2
= 0, for r = b. (18)

A suitable solution of Stokes equation (3) as (Happel & Brenner 1983) can be written in the
form

ψ(1)(r, θ) = {
A(1)r + B(1)r3 + C(1)(1/r)+D(1)r ln(r/a)

}
sinθ. (19)

A particular solution of Brinkman’s equation (4) (Pop & Cheng 1992) may be expressed
as

ψ(2)(r, θ) = (
A(2)r + B(2)(1/r)+ C(2)I1(Kr)+D(2)K1(Kr)

)
sinθ. (20)

Here,I1(Kr) andK1(Kr) are the modified Bessel functions of order one of the first and
second kinds respectively.

Further more, the modified Bessel functionsK1(Kr) are singular atr = 0. The same is
true for the term multiplied byB(2). Thus, the regular solution inside the circular cylinder
takes the form

ψ(2)(r, θ) = (
A(2)r + C(2)I1(Kr)

)
sinθ, (21)

The arbitrary constantsA(1), B(1), C(1), D(1), A(2) andC(2) in (19) and (21) can be deter-
mined from the boundary conditions (13))–(18). Here, for sake of simplicity, we give below
these constants for the particular case whenβ = 1, i.e.,µ(1) = µ(2). Thus,

A(1) = U −D(1) ln l, (22)

B(1) = −K2U [KaI1(Ka)− 2I2(Ka)]/11, (23)

C(1) = −a4l4B(1), (24)

D(1) = 2K2a2U [Ka(1 + l4)I1(Ka)− 4I2(Ka)]/11, (25)

A(2) = (1 − l4)a2B(1) −D(1) ln l + U − (1/a)C(2)I1(Ka), (26)

C(2) = −4Ka2U(1 − l4)/11, (27)

where,

11 =
[
(1 − l4)

{
K3a3I1(Ka)− 2(K2a2 + 4)I2(Ka)

}+ 2(K2a2 ln l + 4){
Ka(1 + l4)I1(Ka)− 4I2(Ka)

}
]
,

(28)

andl = b/a is a dimensionless parameter.
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Also, we have used above the following recurrence relations (Abramowitz & Stegun 1970):

aI ′
n(Ka)− nIn(Ka) = KaIn+1(Ka), (29)

aI ′
n(Ka)+ nIn(Ka) = KaIn−1(Ka), (30)

where primes denote differentiations with respect toa.
Further, the drag experienced by the porous cylinder in a cell may be calculated by using

the formula

F =
∫ 2π

0

(
T (1)rr cosθ − T

(1)
rθ sinθ

)
rdθ. (31)

Since,

T (1)rr = −4µ(1)
(
B(1)r − (D(1)/r)+ (C(1)/r3)

)
cosθ, (32)

T
(1)
rθ = −4µ(1)

(
B(1)r + (C(1)/r3)

)
sinθ, (33)

inserting (32) and (33) in (31) and integrating, we get

F = 4πµ(1)D(1)

= 8πµ(1)UK2a2[Ka(1 + l4)I1(Ka)− 4I2(Ka)]/11, (34)

where11 is given by (28).
Now, when permeabilityk → o, i.e.K → ∞, i.e. porous cylinder behaves like a solid

cylinder, then (34) reduces to,

F = 8πµ(1)U/[(2 ln l − 1)+ 2/(1 + l4)], (35)

which is a known result reported earlier by Happel (1959) for flow past a solid cylinder.

4. Kuwabara boundary conditions

Kuwabara (1959) assumes that on the cell surface vorticityω vanishes instead of no shearing
stress. In this case, we take the five boundary conditions (13)–(17) to be the same as in the
previous case but in place of the sixth boundary condition (18), Kuwabara boundary condition
is used. Thus, vanishing of vorticity on the cell surface implies that

∇2ψ(1) = 0 on r = b. (36)

Solving (13)–(17) with (36) we get the values of unknown constantsA(1), B(1), C(1), D(1), A(2)

andC(2) in (19) and (21) as

A(1) = U − (1/a2)C(1)l−2 −D(1)
(

ln l − (1/4)
)
, (37)

B(1) = −(1/4a2l2)D(1), (38)

C(1) = (a2/4l2)[Kal2I ′
2(Ka)C

(2) +D(1)], (39)

D(1) = −4UK2a2l2I1(Ka)/12, (40)

C(2) = 8al2(1 − l2)U/12, (41)

A(2) = (1/K2a4)[D(1)a2(4 + l−2)− 4C(1) − 2Ka2I2(Ka)C
(2)], (42)
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where,

12 =
[ {

4l2{K2a2(l2 − 1)− 4l2} −K2a2{(4 ln l − 1)l4 + 1}} I1(Ka)
−2Ka(l2 − 1){Ka(1 + l2)I1(Ka)+ (l2 − 2)I2(Ka)}

]
,

(43)

andl = b/a is a dimensionless parameter.
Further, the drag experienced by the porous cylinder in a cell can be evaluated and comes

out as

X = 4πµ(1)D(1)

= −16πµ(1)UK2a2l4I1(Ka)/12, (44)

where12 is given by (43).
Now, when permeabilityk → 0, i.e.,K → ∞, i.e., the porous cylinder behaves like a solid

cylinder, then (44) reduces to

X = 4πµ(1)U/[P + l−2 − (1/4)l−4], (45)

where,

P = ln l − (3/4). (46)

which is a known result reported earlier by Kuwabara (1959) for flow past a solid cylinder.

5. Velocity components, pressure, vorticity and stress tensor

Substituting the values ofψ(1)(r, θ) from (19) andψ(2)(r, θ) from (21) into (7), we obtain
the following expressions for the velocity components for the outside region (1) and inside
region (2) of porous cylinder respectively as

v(1)r = [
A(1) + B(1)r2 + C(1)(1/r2)+D(1) ln(r/a)

]
cosθ, (47)

v
(1)
θ = [

A(1) + 3B(1)r2 − C(1)(1/r2)+D(1){1 + ln(r/a)}] sinθ, (48)

v(2)r = [
A(2) + C(2)(I1(Kr)/r

]
cosθ, (49)

v
(2)
θ = − [A(2) + C(2)I ′

1(Kr)
]

sinθ, (50)

where the values of constantsA(1), B(1), C(1), D(1), A(2) andC(2) are given by (22)–(27) for
the case of the Happel boundary conditions and by (37)–(42) for the case of the Kuwabara
boundary conditions.

Using the above expression (47)–(50) of velocity components in (10) and (11) and inte-
grating the resulting equations, we get

p(1) = 2µ(1)
[
4B(1)r − (D(1)/r)

]
cosθ, (51)

p(2) = −µ(2)K2A(2)r cosθ, (52)

wherep(1) andp(2) are the pressures in the outside and inside regions respectively.
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The vorticityω(i) in both the regions can be expressed in terms of velocity components as

ω(i) = ∂v
(i)
θ

∂r
− 1

r

∂v(i)r

∂θ
+ v

(i)
θ

r

= −∇2ψ(i), i = 1, 2. (53)

Thus,

ω(1) = −2
[
4B(1)r +D(1)(1/r)

]
sinθ, (54)

ω(2) = −K2C(2)I1(Kr) sinθ. (55)

Components of the stress tensor for the outside region (1) are given by (32) and (33). Com-
ponents for the inside region (2) can be expressed by using (8) and (9) as given below,

T
(2)
rθ = −µ(2)KC(2)I ′

2(Kr) sinθ, (56)

T (2)rr = µ(2)K
[
KrA(2) + (2C(2)/r)I2(Kr)

]
cosθ. (57)
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