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The sequencing of the Mycobacterium tuberculosis (MTB) H37Rv genome has facilitated deeper insights into the 
biology of MTB, yet the functions of many MTB proteins are unknown. We have used sensitive profile-based 
search procedures to assign functional and structural domains to infer functions of gene products encoded in 
MTB. These domain assignments have been made using a compendium of sequence and structural domain fami-
lies. Functions are predicted for 78% of the encoded gene products. For 69% of these, functions can be inferred 
by domain assignments. The functions for the rest are deduced from their homology to proteins of known func-
tion. Superfamily relationships between families of unknown and known structures have increased structural in-
formation by ~ 11%. Remote similarity detection methods have enabled domain assignments for 1325 ‘hypo-
thetical proteins’. The most populated families in MTB are involved in lipid metabolism, entry and survival of 
the bacillus in host. Interestingly, for 353 proteins, which we refer to as MTB-specific, no homologues have 
been identified. Numerous, previously unannotated, hypothetical proteins have been assigned domains and some of 
these could perhaps be the possible chemotherapeutic targets. MTB-specific proteins might include factors res-
ponsible for virulence. Importantly, these assignments could be valuable for experimental endeavors. The  
detailed results are publicly available at http://hodgkin.mbu.iisc.ernet.in/~dots. 

[Namboori S, Mhatre N, Sujatha S, Srinivasan N and Pandit S B 2004 Enhanced functional and structural domain assignments using remote 
similarity detection procedures for proteins encoded in the genome of Mycobacterium tuberculosis H37Rv; J. Biosci. 29 245–259] 

1. Introduction 

The fully sequenced genomes of a number of organisms 
provide an opportunity to understand the molecular basis 
of physiology, metabolism, regulation and evolution of 

these organisms. Such properties are mainly inferred from 
the functional characterization of the gene products en-
coded in the genome. Computational approaches for the 
prediction of functional features of gene products in geno-
mes rely on the availability of homologues that are  
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experimentally studied. Such prediction is of great signi-
ficance in pathogenic organisms, since function recogni-
tion in these organisms can enable identification of potential 
drug targets. There have been several attempts, using 
sophisticated homology search tools, to assign functions 
to gene products encoded in various genomes (see for 
example Rychlewski et al 1998; Pawlowski et al 1999; 
Hoersch et al 2000; Tatusov et al 2000; Pearl et al 2002; 
Meyer et al 2003). Despite developments in the field of 
function annotation using computational methods, the pro-
cess of function assignment is largely a manual, labour 
intensive endeavour. 
 Tuberculosis, caused by Mycobacterium tuberculosis, 
is well acknowledged as a chronic infectious disease widely 
distributed across various geographic regions and is res-
ponsible for millions of death each year. Moreover, its 
synergistic with HIV infection and emergence of multi-
drug resistant strains has made tuberculosis a global emer-
gency (Snider et al 1994). Sequenced genome of M. tuber-
culosis H37Rv (Cole et al 1998) offers an opportunity to 
use various computational and experimental tools, at the 
genomic scale, for understanding the organism and in 
combating the disease. The functional prediction of the 
gene products encoded in M. tuberculosis genome is a first 
step towards gaining insights into the physiology of the 
bacterium (Cole et al 1998). Apart from computational 
prediction (Strong et al 2003), experimental characteriza-
tion of gene products and application of methods like 
microarray have also contributed to the functional cha-
racterization of gene products in M. tuberculosis (Fisher 
et al 2002; Schroeder et al 2002). Since the computa-
tional prediction methods rely, mostly, on the availability 
of information in databases, functional prediction is an 
essentially ongoing process with continuous refinement 
of functional association of the gene products. The M. 
tuberculosis genome was annotated (Cole et al 1998; Müller 
et al 1999) and subsequently re-annotated (Camus et al 
2002). These functional predictions could be used as a 
guiding tool in order to direct the relatively lengthier, 
more difficult and expensive experimental methods for 
exploring protein functions. 
 The most commonly used method for functional pre-
diction of gene products is by identification of related well-
characterized homologues using sequence-based search pro-
cedures such as BLAST (Altschul et al 1990) and FASTA 
(Pearson and Lipman 1988). But, purely sequence-based 
search procedures might not be able to identify proteins 
with low sequence similarity. However, these distantly 
related proteins could often be identified with the use of 
three-dimensional (3-D) structural information (Murzin and 
Bateman 1997), as the structure is usually more conser-
ved than sequence during evolution (Chothia and Lesk 
1986; Chothia and Gerstein 1997). Therefore, use of struc-
tural information could potentially enhance the functional 

assignments (Gerstein 1998; Huynen et al 1998; Hegyi 
and Gerstein 1999; Kelley et al 2000). Also, prediction of 
the structure with relevant biochemical motifs can pro-
vide more detailed insights into the function of proteins 
than sequence comparisons alone (Fischer and Eisenberg 
1999; Orengo et al 1999; Fetrow et al 2001). Multiple 
sequence alignment of the homologues in a family is one 
of the methods, to obtain structurally/functionally impor-
tant positions. The information in these multiple sequence 
alignments can be converted into position specific scor-
ing matrices (PSSM) or profiles (Gribskov et al 1987). The 
use of profile-based search methods improves sensitivity 
of detection of remotely related homologues (Rychlewski 
et al 1998; Gribskov et al 1987; Bork and Gibson 1996; 
Altschul et al 1997; Pandit et al 2002). Hence, combined 
use of structure and profile-based method should enrich 
the functional assignments. The structural assignments 
for M. tuberculosis genome were attempted in the past by 
Müller et al (1999) and Buchan et al (2002). 
 Proteins can be viewed as a sequence of structural or 
functional domains. Similar domains can be clustered into 
sequence/functional families [as in Pfam (Sonnhammer  
et al 1997)] or structure families [as in SCOP (Murzin  
et al 1995)]. In our work, we have considered functional 
domains as the basis to infer the biological role of a pro-
tein. Since domains are relatively conserved regions in 
protein sequences, their identification and subsequent 
inference of function provides effective predictions. More-
over, domain combinations impart functional versatility 
to proteins. The use of BLAST search procedure in the 
initial step might identify homologue for only a part of 
the region shared between proteins, which could lead to 
less robust function prediction. In fact the approach fol-
lowed in this paper has been applied in several early  
papers in context of large-scale sequence data analysis 
(e.g. Lewis et al 2000; Li et al 2003). The biochemical 
function of proteins may be inferred from the association 
of gene products with structural or functional domains. In 
the present M. tuberculosis H37Rv genome analysis, we 
have applied a combination of approaches for identifying 
the functional/structural domains in its gene products. 
The structural domains are assigned using domain fami-
lies from the in-house PALI database (Balaji et al 2001), 
which is derived from SCOP. The functional domain  
assignments are based on families from Pfam. In the pro-
cess of domain association we have applied various sensitive 
profile-based search methods like IMPALA (Schaffer et al 
1999), HMMER 2.1 (Eddy 1998) and PSI-BLAST (Altschul 
et al 1997) with manual analysis of the results as the 
mainstay. With the present approach, it has been possible 
to identify a number of remotely related homologues with 
significant measure of reliability. The result is an enriched 
structural and functional prediction of the gene products 
encoded in M. tuberculosis genome. In addition, in order 
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to predict the gross functions of the gene products, we 
have drawn inference from the sequence of domains. 

2. Methods 

2.1 Databases 

The multiple sequence alignments of various protein  
domain families were obtained from Pfam (Version 7.2) 
(Sonnhammer et al 1997), which is a database of sequence-
based domain families, at the Sanger Center (http://www. 
sanger.ac.uk/Software/Pfam). The domain level organiza-
tion of Pfam database is extremely useful, but, many simi-
larities in the inter-domain regions, which are not deemed 
as domains, may go unnoticed in Pfam. This problem could 
be effectively addressed by following the principles as 
used in the construction of COG database (Tatusov et al 
2000). In order to simplify the integration of Pfam and 
COG, we take the proteins without any Pfam domain assign-
ments and search these in the non-redundant database 
(NRDB), thus using the basic feature of COG. The inte-
grated structure-sequence alignment corresponding to 
structural families, was obtained from the in-house PALI 
(Release 2.1) database (http://pauling.mbu.iisc.ernet.in/ 
~pali). The NRDB has been obtained from National Cen-
ter for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov/ 
blast/db). The hidden Markov model (HMM) profile library 
was taken from Pfam (http://www.sanger.ac.uk/Software/ 
Pfam). The M. tuberculosis H37Rv genome sequences were 
from NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/). 

2.2 Sequence analysis 

We have generated IMPALA (Schaffer et al 1999) search-
able profiles or PSSMs for the seed member alignments 
provided for all the families in Pfam. A family profile is 
generated using multiple sequence alignment, extracted 
from seed proteins in Pfam and one of the sequences in 
that family is an input for PSI-BLAST. In order to gene-
rate the profile, this ‘reference’ sequence is searched against 
a database of sequences present in the alignment input. 
As every hit in this search should result in picking-up of 
correct homologues the quality of the profile is assured. 
In case of PALI family profiles, multiple structure-based 
sequence alignments were used and PALI family sequ-
ences were enriched with homologues from Pfam or 
NRDB. The hmmpfam program from HMMER2.1 package 
(Eddy 1998) was used to match each sequence against the 
HMM profile library. All of these computations have been 
performed on linux systems and on a six-node linux cluster. 
 The association of gene product to functional/structural 
domain in each case was evaluated in terms of their sta-
tistical significance (e-value). The overview of methodo-

logy used for domain assignments is shown in figure 1. 
The e-value cutoff for extracting the reliable domain asso-
ciations, using IMPALA, was 1 × 10–5. This e-value cut-off 
has been extrapolated from the one reported by Schaffer 
et al (1999) as well as based on the benchmarking (N S 
Mhatre, B Anand and N Srinivasan, unpublished results) 
using the database of structure-based sequence alignments 
of similarly folded proteins. The work of Rost et al 
(2003), Devos and Valencia (2001) and Thornton (2001) 
cautions regarding errors in functional annotation that may 
arise when purely automated homology detection methods 
are used for assignment. Hence, in the current annotation 
we use a very strict e-value (1 × 10–5) which admittedly 
misses several valid connections but has the advantage of 
avoiding false positives very effectively (S Namboori, N 
Srinivasan and S B Pandit, unpublished results). More-
over, our annotation procedure involves manual interven-
tion at various stages in order to avoid, as far as possible, 
mistakes in homology detection. In case of HMMER hits, 
an e-value significant than 1 × 10–2 was used to associate 
domain families. For the purpose of Pfam domain assign-
ments, results from both HMMER and IMPALA were 
compared. Domains recognized by HMMER were consi-
dered over IMPALA, in cases where both the search meth-
ods were able to identify domains in same gene products. 
The domains assigned by IMPALA were taken into con-
sideration if (i) a gene product was uniquely assigned a 
domain by IMPALA but not by HMMER and (ii) a new 
domain was identified in an unassigned region of the 
gene product, which has already been associated with some 
domain by HMMER. For domain boundaries, the definition 
as per HMMER was predominantly considered. Thus, the 
Pfam domain assignments are a combination of HMMER 
and IMPALA results, as described above. The structural 
domain assignments, using PALI, identified in unassig-
ned gene products were considered for merging with 
Pfam assignments. Importantly, the domain assignments 
have been manually curated so as to minimize the possi-
bility of false-positives. 
 Subsequent to functional/structural domain identifica-
tion, all the sequences were subjected to TMHMM2⋅0 
(Sonnhammer et al 1998) in order to assign transmem-
brane helical regions to the gene products. Next, the sequ-
ences were queried using SEG (Wootton and Federhen 1993) 
program to obtain the low-complexity regions (LCRs). 
 The gene products with no functional/structural domain 
assignments were searched against NRDB using PSI-
BLAST (Altschul et al 1997) with an e-value cut-off of 
10–4 and threshold inclusion value of 10–4 for 15 rounds 
of iterations. The results were considered from converged 
round or from 15th round, whichever was earlier. At the 
convergence round it is ensured that the query sequence 
is ranked at the top of the list of hits. The other criteria 
used for considering hit was 60% of query coverage for 
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the aligned region to eliminate short insignificant regions 
of alignment. The NRDB search resulted in homologue 
identification for the gene products that could not be  
assigned any of functional/structural domains. Thus, even 
for these gene products a probable function could be sug-
gested. Again, the PSI-BLAST results were manually cura-
ted to eliminate false positives. 
 We are interested in particularly analysing the hits cor-
responding to remote relationship with a known domain 
family. Those domain assignments that showed low sequ-
ence identity were analysed further. To evaluate the low 
sequence identity assignments, MALIGN (Johnson et al 

1993) or hmmalign (Eddy 1998) was used to align the myco-
bacterial protein to its homologous sequences, extracted 
from Pfam or PALI. Those gene products with best pair-
wise sequence identity of less than or equal to 30%, were 
considered as remotely related domains. 
 

3. Results and discussion 

The M. tuberculosis H37Rv genome has 3918 gene pro-
ducts. We have been able to associate functions for ~ 78% 
of the gene products encoded in the genome. It was either 

 
Figure 1. Overview of methodology used in the analysis. 
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by functional/structural domain assignment (~ 69%) or 
by similarity to a protein (in NRDB) of known function 
(~ 9%) (figure 2). Compared to the work of function asso-
ciation for M. tuberculosis protein by Camus et al (2002) 
(function annotation for 52% of the genome) and Buchan 
et al (2002) (assignment for 36% of the gene products), a 
higher number of gene products could be assigned func-
tion/structure in the present analysis. For ~ 9% of the gene 
products, search against NRDB could not identify homo-
logues in any other organisms except in MTB itself (fig-
ure 2). About 3% of gene products were related with 
proteins, referred to as ‘conserved hypothetical protein’ 
from various organisms. We could not associate func-
tions for ~ 10% of gene products since the NRDB search 
of these resulted in poor query coverage and/or insignifi-
cant e-values. The transmembrane and low complexity 
regions are identified in ~ 74% of total gene products as 
described in §2. Many of these occur in combination with 
functional/structural domains. The results of the analysis 
are made available at http://hodgkin.mbu.iisc.ernet.in/~dots. 

3.1 Overall statistics of genome-wide coverage of  
functional/structural domains 

We could assign a total of 3763 functional/structural  
domains to 2693 (~ 69%) proteins out of 3918 proteins 
encoded in the genome of M. tuberculosis (figure 3). The 
amino acids coverage by these assignments is ~ 50%. Such 
functional/structural domain assignments would indicate 
probable biochemical functions for the assigned proteins, 
which are useful for function prediction. Using PSI-BLAST 
search against NRDB for the rest of gene products, we 

could associate probable functions for about ~ 9%. Thus, 
a possible function could be suggested for a total of 3049 
proteins (figure 3). 
 The association of gene products with structure can 
give valuable insights, since structural information pro-
vides molecular detail of the function of a protein. The 
structural domain assignment will also help in prioritiz-
ing the target for TB structural genomics consortium by 
indicating gene products with no structural predictions. A 
total of 3763 domains associated with gene products be-
long to 1141 domain families of Pfam or PALI. Out of 
1141 domain families 76 of the structural (PALI) domain 
families could be identified only by using PALI profiles. 
These 76 PALI families are present in 124 gene products 
with 128 domains assigned to them. Thus, use of PALI 
profiles has helped in enriching the domain assignments. 
 With a view of extending the structural information for 
assigned domains, we tried relating families with unknown 
structures to known structural families, as in SUPFAM 
database which was developed by us earlier (Pandit et al 
2002). The SUPFAM database relates two or more homo-
logous protein families, of either known or unknown struc-
ture, with use of structure-based sequence alignment. 
Integrating the relationships derived in SUPFAM we could 
provide structural information for an additional ~ 11% of 
domain families (figure 4). These family assignments 
would increase known structural content in the genome. 
A total of 1065 Pfam families are assigned in M. tubercu-
losis genome, of which 567 Pfam families have structural 
information present as in Pfam flat files. From the 498 
Pfam families with no structural information, 121 fami-
lies could be related to a family of known structure in 
SUPFAM. There are now 764 families (~ 67%) with struc-
tural information known directly or indirectly through 
relationships present in SUPFAM (figure 4). These 764 
unique families with structural information are present in 
2498 domains and would provide further insights into 
their functions. 
 As we were interested in identification of remotely rela-
ted members with the use of profile based methods, we 
searched for remote homologues (sequence identity < = 
30%), using procedures as discussed in §2. Interestingly, 
with the profile-based methods we could identify 223 
domain associations as being remotely related and most 
of them were identified using PALI profiles. This sug-
gests that the integrated structure-sequence based profiles 
(from PALI) have enhanced the domain assignments by 
identifying a number of remotely related gene products. 
 

3.2 Most common families in M. tuberculosis 

With the objective of identifying most frequently occur-
ring functional domain family in M. tuberculosis we asses-

 
Figure 2. Pie-chart showing the overall percentage distribu-
tion of assignments for M. tuberculosis gene products. 
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sed the frequency of occurrence of Pfam families. The ten 
most frequent Pfam families, with their functions, are 
listed in table 1. 
 Furthermore, we analysed these ten most frequently 
occurring Pfam families with respect to the M. tuberculo-
sis biology. Among all the Pfam families in M. tubercu-
losis, the pentapeptide repeats family is the top most 
occurring family. The suggested role for this family is in 
binding of the mycobacterium to host cell receptors 
(Doran et al 1992). The PE and PPE families are among 
the next most frequently occurring Pfam families. PE and 
PPE names signify the characteristic Pro-Glu (positions 
8, 9) and Pro-Pro-Glu (positions 8–10) motifs, respec-

tively, in the conserved N-terminal domains of the pro-
tein (Cole 1999). Moreover, PE and PPE family members 
show preponderance of glycine, while PPE members are 
rich in asparagine. The PE family is observed to occur in 
combination with phosphoglycerate mutase (PGAM) and 
NHL repeats (figure 5a). PGAM is known to play a role 
in glycolysis and gluconeogenesis and NHL repeats are 
involved in protein-protein interaction. Some gene pro-
ducts also contain transmembrane helices in combination 
with PE domain. The PPE domain occurs either in com-
bination with pentapeptide repeats or with transmembra-
nous helical regions (figure 5b). Although no functional 
evidence is available for these two families, the presence 

 
Figure 3. Schematic representation of the results showing various assignments (structural/functional 
domain, transmembrane and LCR) in M. tuberculosis. The numbers of gene products corresponding to 
various assignments are indicated. 
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of transmembrane helices indicates localization on cell 
surface and so, a possible role in antigenicity cannot be 
ruled out. 
 The short chain dehydrogenase/reductases (SDR) family 
is a member of oxidoreductase class of enzymes (Opper-
mann et al 2003). The members of this class have different 
substrate specificities. They are known to act on substrate 
such as steroids, prostaglandins, aliphatic alcohols etc. The 
SDR family members could be important in M. tubercu-
losis pathogenesis, driving the balance to higher levels of 
glucocorticoid steroids through importation and inactiva-
tion of host sex steroids. This elicits an inappropriate and 

ineffective T helper 2 (Th2) response as compared to a 
protective T helper 1 (Th1) immune response in the host 
(Gamieldien et al 2002). 
 The members of bacterial transcriptional regulator 
(tetR) family are involved in transcription regulation of a 
membrane-associated protein that exports the antibiotic 
out of the bacterial cell before it can attach to the ribo-
somes and inhibit polypeptide elongation (Kisker et al 
1995). These could be involved in conferring resistance 
to bacterium against various antibiotics. The next com-
monly occurring ABC (ATP binding cassette) transporter 
family, found in eukaryotes and prokaryotes, constitutes 

Table 1. Frequently occurring top ten Pfam families with the total number of domains observed for each. 
   
   
 
Pfam Family 

Number 
of domains 

 
Function 

      
Pentapeptide repeats 241 Binding of mycobacterium to host cell receptor 
PE family  88 Highly GC-rich. Postulated role in antigenic variation and  

virulence of M. tuberculosis 
PPE family  66 Highly GC-rich. Postulated role in antigenic variation and 

virulence of M. tuberculosis 
Short chain dehydrogenase  61 NAD- or NADP-dependent oxidoreductases 
Bacterial regulatory proteins (tetR)  52 Transcription regulator 
ABC transporter  45 Translocation of compound across biological membranes 
PIN  44 Signalling function 
AMP-binding enzyme  44 Cellular metabolism 
Acyl-CoA dehydrogenase  37 Lipid-metabolism 
Abhydrolase  34 Catalytic domain found in wide range of enzymes 
      

 
Figure 4. Pie-chart showing the distribution of Pfam and PALI families, as identified in M. tuberculosis, 
with respect to their structural information. Some families (~ 11%) with unknown structures could be asso-
ciated with families of known structures using superfamily relationships. 
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a large superfamily of multi-subunit permeases that trans-
ports various molecules (ions, amino acids, peptides, anti-
biotics, polysaccharides and proteins) across biological 
membranes, with a relative specificity for a given sub-
strate (Higgins 1992; Ames 1993). The mycobacterial cell 
wall is characterized by a highly hydrophobic cell enve-
lope that acts as an effective permeability barrier to many 
compounds, hence numerous transporters would facilitate 
transport of various molecules. The PIN (PilT) domain 
family, another among the most commonly occurring fami-
lies, is probably involved in a signalling function. The 
PIN domain occurs commonly in archaea as compared to 
bacteria and eukaryotes, but Mycobacteria seem to be an 
exception (Makarova et al 1999). 
 The other highly occurring families viz. AMP-binding 
enzyme family, acyl-CoA dehydrogenase family, abhy-
drolase family are involved in fatty acid and lipid me-
tabolism. Our evaluation of the most frequently occurring 
families in M. tuberculosis, makes it apparent that gene 
products involved in lipid metabolism are present in size-
able numbers. This is not very surprising since M. tuber-
culosis cell envelope is known to be rich in lipids and is 
also one of the essential defenses for the organism. More-
over, since the cell wall structure of M. tuberculosis is 
complex, it might require a variety of transporters and 
permeases. 

3.3 Most abundant Pfam families in M. tuberculosis  
as compared to other prokaryotes 

We further analysed the most frequently represented Pfam 
families in M. tuberculosis by comparing the number of 
their occurrences with that in other prokaryotic genomes. 

This revealed a number of Pfam families that appeared to 
be most frequent in M. tuberculosis. A list of top fifteen 
families is tabulated in table 2. Of these, six families are 
among the top ten Pfam families, as described before. 
The mycobacterial cell wall is rich in lipids and hence 
most of the maximally occurring families are those invol-
ved in fatty acid metabolism or lipid biosynthesis. For 
example, Enoyl-CoA hydratase (ECH) catalyzes hydra-
tion step in fatty acid oxidation. Interestingly, one of the 
maximally occurring families, cytochrome p450, acts as 
terminal oxidase in p450-containing monooxygenase sys-
tems. They are involved in metabolism of a plethora of 
both exogenous and endogenous compounds such as ste-
roids and fatty acids. These could be involved in drug 
resistance by degradation of drugs. The MMPL family, 
which is integral membrane protein, is involved in lipid 
transport. The abundance of lipid related enzymes indi-
cate the significance of lipid metabolism in M. tuberculo-
sis in comparison to other prokaryotes. Some of the other 
unusually abundant families such as mycobacterial cell 
entry (mce) are involved in survival of bacterium in macro-
phages or in virulence and antigenicity of the organism 
(Arruda et al 1993). The importance of the maximally 
occurring family is underlined by the fact that these are 
either absent or present in low numbers in many other 
prokaryotic genomes. 
 

3.4 Transmembrane and LCR assignments 

Having assigned structural/functional domain, we sear-
ched various gene products for occurrence of transmem-
brane helical regions using TMHMM (Sonnhammer et al 

Table 2. Maximally occurring Pfam families in M. tuberculosis as  
compared to other prokaryotic genomes. 

  
  
Pfam family Description 
    
PE Highly GC-rich. Postulated role in antigenic 

variation and virulence of M. tuberculosis 
PPE Highly GC-rich. Postulated role in antigenic 

variation and virulence of M. tuberculosis 
Short chain dehydrogenase NAD- or NADP-dependent oxidoreductases 
AMP-binding Cellular metabolism 
Bacterial regulatory proteins Transcription regulator 
Acyl-CoA dehydrogenase, C-terminal domain Fatty acid biosynthesis 
Acyl-CoA dehydrogenase, middle domain Fatty acid biosynthesis 
Mycobacterial cell entry related protein Colonization and survival in macrophages 
Enoyl-CoA hydratase/isomerase family Fatty acid oxidation 
Zinc-binding dehydrogenase NADP-dependent oxidoreductase 
Cytochrome P450 Metabolism of compounds like fatty acids 
MMPL Putative integral membrane proteins 
O-methyltransferase N-terminus Polyketide synthesis 
Luciferase-like monooxygenase Synthesis and degradation 

of various metabolites 
UPF0089 Uncharacterized protein family 
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1998). The presence of transmembrane region suggests 
possible localization of gene product to the membrane. 
Hence, this feature could be useful in possible function 
prediction. The transmembrane region could be identified 
in 786 gene products (figure 3). Of these, 417 are found 
to be present in combination with functional/structural 
domains. This suggests that they may be localized near 
membranes for their function. For 369 gene products no 
other domain except for transmembrane regions could be 
assigned. The PSI-BLAST search of these against NRDB 
resulted in identification of functional homologues for 24 
gene products. Hence, for 345 gene products we could 
only suggest that they are recruited at the membrane as 
receptors, antigens or as probable transporters, permeases 
etc. There were certain gene products with one trans-
membrane helix assigned towards N-terminus. Since it is 
difficult to distinguish reliably the signal peptides from 
transmembrane region, some of the gene products with 
single transmembrane segment could probably be secre-
ted soluble proteins. 
 LCRs are believed to be non-globular. They may cor-
respond to fibrous or disordered structures. Hence, charac-
terization of LCR in gene products would also be a useful 
parameter. We assigned LCR to 2861 gene products  

(figure 3). Of these, 2364 were found to be in combina-
tion with structural/functional domains. Rest of the 497 
gene products showed exclusive LCR assignments. 
Among the exclusively LCR assigned proteins, 215 gene 
products have functional homologues in NRDB, whereas 
183 gene products have homologues only in M. tubercu-
losis. Since these are not known to be functionally rele-
vant, LCRs could be given low priority in function 
annotation. 
 

3.5 Function predictions for hypothetical proteins  
in M. tuberculosis 

We investigated further for domain assignments in hypo-
thetical proteins so as to attribute probable functions to 
these proteins. Domains were assigned for 1325 gene 
products, which are annotated as hypothetical proteins in 
the genomic database. The entire list of hypothetical pro-
teins in the genome with domain assignments is given on 
our web site. Here we confine the discussion to a few of 
the interesting cases. 
 Two consecutive Universal stress protein (Usp) domains 
in hypothetical protein Rv2026c spanning the entire gene 
product were identified with e-values of 2⋅9 × 10–36 and 
3⋅3 × 10–40 respectively. Our prediction concurs with those 
reported in databases such as SMART (Letunic et al 2004). 
The expression of Usp is enhanced several-fold during 
various kinds of stress like heat-shock, nutrient starvation, 
cell-growth inhibition by inhibitors or DNA-damaging 
agents (Sousa and Mckay 2001). This particular protein 
may be involved in similar function. 
 Another hypothetical protein Rv3720 could be associ-
ated with cyclopropane-fatty-acyl-phospholipid synthase 
family or (cyclopropane mycolic acid synthase, CMAS) 
domain, with an e-value of 3 × 10–76. It could be specu-
lated that Rv3720 might be involved in mycolic acid bio-
synthesis, since CMAS family members are involved in 
the process of lipid biosynthesis (mycolic acid synthesis). 
Mycolic acids are long chain α-alkyl-β-hydroxy fatty acids 
unique to mycobacteria. These are involved in drug resis-
tance and survival in the hostile intracellular environment 
of the macrophage by the formation of an impermeable 
asymmetric lipid bilayer (Liu et al 1995). Since CMAS, 
which is known to occur in slow growing pathogens (George 
et al 1995), brings about mycolic acid cyclopropanation 
this particular hypothetical protein might play a crucial 
role in structural integrity of the cell-wall complex. Hence, 
this gene product could constitute a probable target for 
anti-tubercular drug-design. 
 Hypothetical protein Rv0170 was classified in mce pro-
tein family with an e-value of 1⋅1 × 10–53. This gene pro-
duct has a signal peptide, as predicted by SignalP (http:// 
www.cbs.dtu.dk/services/SignalP/), at its amino-terminal 

 
Figure 5. The domain combination observed for (a) PE family 
and (b) PPE family. 
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that could target the protein to the host cell. M. tuber-
culosis might produce such factors, which promote its 
entry into the mammalian cells (Flesselles et al 1999). It 
was suggested to be important in survival and coloniza-
tion of M. tuberculosis within macrophages (Arruda et al 
1993). This hypothetical protein might help the tubercle 
bacilli to gain entry into the host macrophage. 
 Hypothetical protein Rv1922 was assigned a β-lacta-
mase domain with an e-value of 2 × 10–08. β-lactamase 
catalyzes the opening and hydrolysis of β-lactam ring of 
β-lactam antibiotics such as penicillins and thus renders 
these ineffective. It was shown that M. tuberculosis makes 
at least four penicillin-binding proteins (PBPs) that bind 
ampicillin and other β-lactams at clinically relevant anti-
biotic concentration (Chambers et al 1995). The outer 
cellular structures of tubercle bacillus do not represent 
any major permeability barrier for β-lactams (Chambers 
et al 1995; Mishra and Kasik 1970). Therefore, the pro-
duction of β-lactamase by the bacillus seems to be the 
major resistance mechanism towards β-lactams (Voladri 
et al 1998). This hypothetical protein Rv1922 could serve 
as a possible target for drug-design for the design of  
β-lactamase inhibitors. 
 A 2-dehydro-3-deoxy-galactarate (DDG) aldolase struc-
tural domain was predicted in the hypothetical protein 
Rv3075c with an e-value of 8 × 10–20. It catalyzes the 
reversible aldol cleavage of DDG to pyruvate and tartronic 
semialdehyde (Izard and Blackwell 2000). The enzyme is 
part of the catabolic pathway for D-glutarate/galactarate 
utilization in Escherichia coli (Hubbard et al 1998). Aldo-
lases have been proven effective in biotransformations 
and synthesis of novel antibiotics (Wagner et al 1995). 
The catalytic residues (figure 6a) shown mapped on the 
3-D structure (figure 6b), corresponding to the pdb entry 
1dxe (Izard and Blackwell 2000), are conserved in hypo-
thetical protein Rv3075c. Thus, it is possible that Rv3075c 
could be involved in a similar biochemical function and 
could serve as a probable drug target. 
 

3.6 Function association for proteins using  
domain combination 

Apart from function prediction using functional domain 
assignments we have used domain combination to predict 
the function. We have discussed few of the interesting 
cases below. 
 The hypothetical protein Rv0385 exhibits a domain 
combination of globin, FAD-binding and NAD-binding 
(figure 7a) with e-values 3⋅8 × 10–17, 5⋅6 × 10–31 and 2⋅4 × 
10–06 respectively. Globin plays an essential role in bind-
ing and transport of oxygen. FAD functions as the elec-
tron carrier from NADPH2 to the ferric heme prosthetic 

group. The flavohaemoglobin family, with similar domain 
architecture, includes proteins such as O2-carrying haemo-
globins and associated flavin-containing methemoglobin 
reductases (Zhu and Riggs 1992; Hardison 1996). One of 
the functions ascribed to bacterial flavohaemoglobin is 
nitric-oxide detoxification (Gardner et al 1998). Occurrence 
of such a domain combination in Rv0385 of M. tubercu-
losis suggests that this protein might play an important 
role in survival of bacterium by protecting it against oxi-
dative damage. 
 Interestingly, Rv2434c has three transmembrane-spann-
ing regions followed by mechanosensitive (MS) ion chan-
nel domain (at an e-value of 3⋅1 × 10–58) and a cyclic 
nucleotide monophosphate (cNMP) binding domain (at 
an e-value of 1⋅3 × 10–18) as shown in figure 7b. This 
agrees with the data reported by SMART (Letunic et al 
2004). The MS ion channels have ability to transduce 
mechanical strain into electrochemical response enabling 
cells to respond to variety of mechanical stimuli (Chang 
et al 1998; Martinac and Kloda 2003). Cyclic NMP bind-
ing domains are present in various signal transducing pro-
teins such as kinases, wherein they are involved in 
binding of cyclic nucleotides such as adenosine 3,5′-cyclic 
monophosphate (cAMP) and guanosine 3′,5′-cyclic mono-
phosphate (cGMP) that act as second messenger in signall-
ing pathways. The ion channels along with cNMP binding 
domain, referred to as cyclic-nucleotide gated channels, 
are present in eukaryotes (Finn et al 1996). The binding 
of cyclic-nucleotide in these ion channels is known to 
either regulate or modulate the activity of them (Finn et al 
1996). The combination of MS channel domain and cNMP 
binding domain suggests that Rv2434c is a probable ion 
channel with dual regulation, either by mechanical  
stimuli or by cNMP binding. M. tuberculosis genome is 
known to possess a large number of putative cyclases 
(McCue et al 2000), which suggests a role for cNMP in a 
variety of signalling events and hence the modulation/ 
regulation of MS ion channel by them is quite likely. 
 In Rv1318c we could assign five transmembrane regions 
followed by HAMP domain (at an e-value of 9⋅7 × 10–11) 
and adenylyl/guanylyl cyclase domain (at an e-value of 
6⋅3 × 10–16) as shown in figure 7c. The HAMP domain is 
found in histidine kinases, methyl-accepting proteins, adeny-
late cyclases and other prokaryotic signalling proteins. It 
is probably involved in regulating the phosphorylation or 
methylation of homodimeric receptors by transmitting con-
formational changes in periplasmic domains to cytoplas-
mic signalling kinase and methyl-acceptor domains (Aravind 
and Ponting 1999). The adenylate cyclase and guanylate 
cyclase members in the family catalyze the formation of 
cAMP and cGMP respectively, which act as second mes-
sengers in downstream signalling events. The presence of 
HAMP domain with cyclase suggests a similar regulation 
of cyclase activity by HAMP domain in Rv1318c. 
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3.7 M. tuberculosis-specific proteins 

We were left with 359 completely unassigned gene pro-
ducts for which no functional/structural domain, trans-
membrane and LCR assignments could be made (figure 3). 
These were subjected to PSI-BLAST analysis against 

NRDB. We could find functional homologues for 117 gene 
products and could suggest a possible function for them. 
Another 131 proteins have homologues termed as ‘conserved 
hypothetical proteins’ from other organisms. The function 
for these could be derived, once the experimental charac-
terization of at least one of the homologues is available. 

 

 
Figure 6. (a) Multiple sequence alignment of M. tuberculosis hypothetical protein Rv3075c (gi1781138),
and its homologues from E. coli (gi10120730), S. typhimurium (gi16766547) and R. metallidurans (gi 
22978372). The functional residues are highlighted in bold and marked by an asterix (*) underneath. (b) 
The 3-dimensional fold of 2-dehydro-3-deoxy-galactarate (DDG) aldolase (Izard and Blackwell 2000)
which is predicted to be homologous to hypothetical protein Rv3075c. The side-chains of critical resi-
dues of DDG aldolase, which are conserved in hypothetical protein Rv3075c are shown. The figure has 
been produced using Setor (Evans 1993). 
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 Interestingly, 111 gene products showed no homolo-
gues except in M. tuberculosis. Another set of gene pro-
ducts, which were assigned transmembrane helices and 
LCRs alone, consisted of 242 proteins that had homo-
logues in M. tuberculosis. These form the set of 353 
(111 + 242) proteins, which we refer to as M. tubercu-
losis specific gene products (figure 3). These might house 
some gene products, which might behave as virulence 
factors or play a role in uncharacterized pathways. Thus, 
prioritizing the experimental characterization of these 
would provide useful insights into the pathogenesis of the 
bacterium. 
 

3.8 Web resource 

 
M. tuberculosis functional/structural domain, transmem-
brane and LCR assignments are made publicly available 
for the use of scientific community on a web site. The 
data provides both Pfam and PALI domain assignments. 
The list of hypothetical proteins with domain assignments 
and M. tuberculosis-specific proteins are also provided. 
The list of proteins having functional homologues, identi-
fied using PSI-BLAST, is furnished. The web interface of 
‘DoTs’ has search option for key words, gene identifier 
(gi code) or Rv number in the database. The site can be 
accessed at http://hodgkin.mbu.iisc.ernet.in/~dots. 

4. Conclusions 

The current functional/structural domain assignments have 
successfully assigned putative functions for ~ 69% of gene 
products, based on the known biochemical role of protein 
domain families. Exploring such structural and functional 
predictions for the M. tuberculosis genome has helped in 
enriching the functional information of the proteins enco-
ded in the genome. In addition, protein domain architec-
ture would help in inferring the probable biological role 
of the entire gene product. Another ~ 9% of proteins are 
related with homologues of known functions. Furthermore, 
using the relationships derived from SUPFAM we could 
provide structural information for an additional ~ 11% of 
domain families. These associations enhance the struc-
tural information of the genome. The structural domain 
association could help in prioritizing the target for struc-
tural genomics efforts. 
 The function predictions will be useful for experimen-
tal endeavours wherein work on the gene products with-
out any associated function could be given preference. 
Moreover, some of the proteins might be promising tar-
gets for chemotherapeutic intervention. The gene pro-
ducts, which could not be associated with any function/ 
structure (M. tuberculosis specific), could also form the 
priority list for structural or functional genomics efforts. 
These proteins might house some factors important for 
the virulence or persistence of M. tuberculosis. Ultimately, 

 
 
 
 
Figure 7. (a) The domain organization shown for hypothetical protein Rv0385. (b) The domain archi-
tecture for hypothetical protein Rv2434c. (c) The domain combination for hypothetical protein Rv1318c. 
 



J. Biosci. | Vol. 29 | No. 3 | September 2004

Domain assignments of proteins in M. tuberculosis 

 

257 

any large-scale genome function/structure prediction is, 
essentially, a continuous process as the knowledge on 
protein domains, based on structural and other experi-
mental work, accumulates. We will be in the process of 
continuous update of the structure and function informa-
tion for the proteins of M. tuberculosis. The function  
assignment for M. tuberculosis is also made available on 
the web site, which would undergo regular updates. 
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