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Abstract. A two-dimensional instability analysis for a magneto-keplerian
disk flow around a compact object is presented here. Using the eigenvalue
technique, linearly coupled perturbed equations have been numerically
solved within the local approximation. It is concluded that Kelvin-
Helmholtz, magnetosonic (fast and slow) and resistive electromagnetic
modes exist. However, only the magnetosonic mode can destabilise the
disk structure. Further, we discuss the properties of different modes as a
function of disk parameters and plot the eigenmode structures for different
physical quantities. 
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1. Introduction 
 
As is well known, the accretion disk models have been very popular in the context
of radiation emission and energetics associated with high energy astrophysical sources.
In this context there have been several studies of the dynamics of disks mostly without
the electromagnetic fields while some have considered self consistent electromagnetic
fields for plasma disks (Prasanna 1991 and references therein). Recently, we (Tripathy
et al. 1990) have considered the equilibrium structure of a plasma disk around a
compact object including the gravitational field of the central source and have solved
the MHD equations self-consistently. From the turning point behaviour observed in
the pressure profiles it was conjectured that there could exist plasma instabilities at
the inner edge of such disks. This was the point of investigation in a subsequent
paper (Tripathy et al. 1993, hereinafter referred to as paper I) wherein we considered
one-dimensional radial perturbation analysis under local approximation. This had
revealed the existence of Kelvin-Helmholtz (KH), resistive-electromagnetic (RE) and
magnetosonic (MS) modes. However, only the magnetosonic mode is found to be
unstable and it was concluded that only this mode could destabilise the disk structure.

The present study is an extension of the above work which includes the perturbation
in azimuthal direction also. From this two-dimensional perturbation analysis we find
that the magnetosonic mode is still unstable and the other two modes are stable.
However, the finite azimuthal perturbation causes the excitation of the slow magneto-
sonic (SMS) mode which was absent in the case of the purely radial perturbation.
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Using numerical techniques, we have also studied the propagation characteristics of
fast and slow magnetosonic modes and their growth rates as a function of different
plasma parameters. 

The plan of the paper is as follows. The formalism and the general description of
the eigenvalue technique are outlined in section 2. Section 3 outlines the basic
perturbation equations and the results are discussed in section 4. Finally, section 5
summarises the conclusions. 

 
 

2. Formalism
 

In this section, we carry out a detailed stability analysis of the equilibrium
configuration given by Tripathy et al. (1990). The basic linear perturbation equations
for this problem are already given in paper I (Equations 2.1 to 2.15). Following the
Standard normal mode analysis, the general time dependent perturbations are written
as 

(2.1)
 
where n is the meridional mode number, m is the azimuthal mode number signifying
the number of azimuthal crests around a circumference of radius r, ν is the frequency
which may be complex and ψ(r) is the amplitude of the perturbation which is also
complex. For the sake of simplicity and for an analytical understanding of the nature
of the instabilities, the stability analysis is performed at the θ = π/2 plane. Since, the
plasma motion at the inner boundary in the equilibrium configuration was found to
be primarily along the. azimuthal direction, we further assume the flow to be along
the azimuthal direction only (Vφ  ≠ 0; Vr, Vθ = 0). 
 
 

2.1 Eigenvalue Techniques
 

The numerical method to solve any given set of equations by the method of eigenvalue
techniques consists of converting the system of linearised equations into the form of
an algebraic matrix eigenvalue problem (Simonutti 1976) 
 

(Ar + iAi)X = λ (Br + iBi)X, (2.2)
 

where A  and Β are complex square matrices of finite dimension n  and its elements are
defined in terms of the independent variables of the problem. X  is a column vector
of dimension n and is a scalar and each of these quantities may be complex. It is
well known that the eigenvalue will represent the dependant variable of the dispersion
relation and the elements of the eigenvector will represent the selected dynamic
variables of the system. With this formulation it is possible to directly determine the
solutions of the dispersion relation by calculating the eigenvalue and the eigenvectors.
The eigenvectors contain information concerning the nature of the dynamic variables
i.e. polarizations etc. for each mode of oscillations. 

To obtain the eigenvalues and eigenvectors of the complex matrix numerically, we
use the routines from the EISPAK package (Smith et al. 1974). However, this package
contains subroutines which solve an eigenvalue problem of the type
 

(Ar + iAi)X = λ (B)X, (2.3)

~
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where the matrix Β is real. In order to achieve this, we assume the time dependence
of the perturbation to be vt instead of ivt where ν is still the complex frequency. With
this new notation, positive vr, the real part of ν indicates growing solution and implies
the system to be unstable. Similarly vi,·, the imaginary part of the frequency represents
the dispersion characteristics of the wave. 
 
 

2.2 Basic Equations
 
We consider small perturbations of any physical quantity Ψ as Ψ = ψ + ψ , where ψ
is the equilibrium part and ψ is the generic perturbation such that ψ/ψ     1. Expressing
the time dependent perturbations as 
 

(2.4)
 

the basic linearised equations can be represented as follows: 
 

(2.5)
 
 

(2.6)
 
 (2.7)

 
(2.8) 

 
 (2.9) 

 

(2.10)  
 
 
 
 (2.11) 

 
(2.12) 

 
 

(2.13) 
 
 (2.14) 

 
(2.15) 

 

(2.16)  
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(2.17) 
 
 

(2.18) 
 
As for the energy equation, we use the adiabatic law (paper I) 
 

(2.19) 
 
 
Here the notations have their usual meanings. 
 
 

3. Local analysis 
 

The approach of local analysis which is a well-established procedure in the studies
of plasma instabilities assumes the wavelength (λ.) of the perturbation to be small
compared to the scale size of the equilibrium inhomogeneity in the system. For
 

example, if one assumes the scale size to be the pressure scale length 
 

then the local approximation demands that kLp         1, where k is the radial wave
number and implies that the space variation of the amplitude of the perturbation
over its scale length is negligible. In addition, a local analysis allows one to Fourier
transform the perturbed variables even in the direction of inhomogeneity (Rognlien
& Weinstock 1974). Thus the perturbed quantities along the radial direction can be
expressed as ψ(r) = ψ exp [ikr]. As a result the differential Equations (2.5) to (2.18
are transformed into the algebraic eauations which are to be solved by appropriate
 

method. Defining the dimensionless variables, 
 

 
                                                                                                  the linearised perturbation 
 

equations in dimensionless form are written as 
 

(3.1) 
 

(3.2)  
 

(3.3)  
 

(3.4) 
 

(3.5)  
 

(3.6) 
 

≫ 

~ ~
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(3.7) 
 
 

(3.8) 
 
 
 (3.9) 

 
 (3.10)

 

Here VA and CS represent the normalised Alfven and sound speeds respectively and
the hat denotes the normalised quantities. In subsequent analysis, as there is no more
ambiguity the hat over the quantities are dropped. 
 
 

4. Results and discussions
 
In order to check the consistency of the results with that obtained in paper I by the
method of complex roots, the set of linearised equations are solved again by the
eigenvalue formalism. These are obtained by setting m = 0 in Equations (3.1 –3.10).
As mentioned earlier, we use the numerical routines from the EISPAK package (Smith
et al. 1974). Below we first describe the results of this analysis briefly and in the next
section we discuss the results of the two-dimensional analysis. 
 
 

4.1 One-dimensional Analysis
 
As mentioned in paper I for purely radial perturbations, the perturbed magnetic field
along the radial direction (Br) and the perturbed velocity along the meridional
direction (Vθ) are zero. This reduces the number of equations as well as the number
of variables by two. The remaining eight equations constitute an eigenvalue problem.
However, for better numerical results, the Equations (3.2) and (3.6) are grouped
together. The remaining six equations form another group. These two sets are then
solved separately as two different eigenvalue problems. The numerical computations
of the total sets show the presence of two stable and one unstable mode. From the 
study of the eigenvalues with different physical parameters the three different modes
are indentified as K-H, magnetosonic and RE modes. Since the value of ωr for
magnetosonic mode is positive, it is concluded that only the magnetosonic mode is
unstable. As a comparison, the growth rate of the magnetosonic mode obtained by
two different methods as outlined above is plotted in Fig. 1. It can be clearly seen
that the results obtained by the eigenvalue formalism match very well with the
calculations carried out in paper I by the method of finding the complex roots. The
added advantage of this method is to obtain the eigenvectors of different modes.
Fig. 2 represents the eigenmode structure of the MS mode. The mode structures as
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Figure 1. Comparison of the normalised growth rate for the magnetosonic mode by two
different methods viz. (a) method of finding complex roots (solid line) (b) eigenvalue techniques
(- - )  

 

Figure 2. Eigenmode structures of the magnetosonic mode for purely radial perturbation
obtained by using the eigenvalue technique. 
 
 

a function of k give the distribution of energy over the possible wavelengths and from
this figure, it is clear that the energy is distributed over the long wavelengths.
 
 

4.2 Two-dimensional Analysis
 

Having checked the consistency of the eigenvalue technique as outlined above, we
next carry out the two-dimensional perturbation analysis using the same subroutines.
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As explained in paper I and again outlined above, we separate the complete set of
Equations (3.1–3.10) into two groups and solve them separately in order to obtain
better numerical results. Thus, Equations (3.2), (3.4) and (3.6) constitute one eigenvalue
problem while the remaining seven equations with seven variables from the second
eigenvalue problem. 

The study of the first problem in the framework of the eigenvalue analysis reveals
the existence of RE mode with complex ω and is purely electromagnetic in nature.
This mode propagates radially inward and its eigenvalue becomes purely real for
higher m values (m  2). However, this mode is found to be stable within our
assumptions. However, we conjecture that the mode may be modified if the finite
thickness of the accretion disk is taken into account. A similar result was reported
by Miura & Pritchett (1982). 

The analyses of the second set of equations by the method of the eigenvalue
techniques reveal the existence of three basic modes viz. Kelvin-Helmholtz and fast
 

 

Figure 3. (a) The normalised growth rate (dashed line) and the normalised dispersion curve
(solid line) for purely azimuthal perturbation (k =0) for fast magnetosonic wave, (b) Normalised
growth rate and (c) Normalised dispersion curve of the same mode with m as a parameter,
m = 0 (solid line), m = 1 (dashed line), m = 2 (- - ). 
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and slow magnetosonic modes. However only the magnetosonic modes were found
to be unstable by its positive growth rates. The presence of the slow magnetosonic
mode in this particular two-dimensional analysis clearly manifests the importance of
the inclusion of the perturbations along the azimuthal direction. 

The growth rates and dispersion curves of these two modes as a function of m and
k are given in Figs. 3 and 4. The phase velocity calculation of slow and fast magneto-
sonic modes show the direction of propagation of these waves and it is found that
the waves propagate in directions opposite to each other. For purely azimuthal
perturbation (k = 0) the slow mode propagates along the flow while the fast one
propagates in a direction opposite to the plasma flow. However, the rates at which
FMS grows is higher than SMS. The effect of higher m-mode numbers on these
instabilities can be clearly seen from these figures and it is concluded that higher m
values enhance the growth rates of the magnetosonic modes. The figures further
reveal that these waves with a purely azimuthal propagation achieve asymptotically
constant growth rate for higher m values. Thus we can stress that the addition of 
perturbation along the azimuthal direction introduces a stabilizing effect into the

 
Figure 4. (a) The normalised growth rate and (b) Normalised dispersion curve for a purely
azimuthal (k = 0) slow magnetosonic mode, (c) Normalised growth rate and (d) Normalised
dispersion curve of the mode with m as a parameter, m = 1 (solid line), m = 2 (dashed line).
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system. This nature of the growth rate is in qualitative agreement with the work of
Miura & Pritchett (1982) where they find that the growth rate is reduced due to the
stabilizing effects of the finite value of kz, where kz is the perturbation along the z
direction in cylindrical coordinate system. The investigation of the dispersion
characteristics of these modes reveal that the FMS modes are non-dispersive along
the radial direction (Fig. 3c) but dispersive in azimuthal direction (Fig 3a). Contrary
to this, the SMS modes are weakly dispersive along radial direction (Fig.4d) and
non-dispersive in azimuthal direction (Fig. 4b). 

We have also analysed the properties of these two magnetosonic modes as a
function of disk parameters viz. Alfven velocity VA, sound speed Cs and azimuthal
velocity vφ . The growth rates of these instabilities are found to be higher for subsonic
(Fig. 5) and sub-Alfvenic (Fig. 6) plasma flows. The analysis further demonstrates that
the fast (slow) mode depends on VA(CS) and the instability is switched off for zero
value of these parameters. However, these modes are weakly dependent on the value
 

 
Figure 5. (a) The normalised growth rate and (b) Normalised dispersion curve of the fast
magnetosonic mode for different sound speed for m = 1. Figures (c) and (d) respectively represent
the same curves for SMS mode. In all these figures Cs (normalised) = 0.4394 is represented by
 thes olid line and C s (normalised) = 0.7 is represented by the dashed line.
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Figure 6. (a) The normalised growth rate and (b) Normalised dispersion curve for different
Alfven velocity VA for FMS mode. Figures (c) and (d) respectively represent the same curves
for SMS mode. All these curves are plotted with m = 1, VA = 0.942 (solid line) and VA = 0.5
(dashed line). 
 

of Vφ (Fig. 7) and exist even for a static case (Vφ = 0). In addition MS modes are
found to be independent of the finite conductivity of the fluid. 

We now turn to the discussion of the eigenmode structures of these instabilities.
Fig. 8 shows the amplitudes of perturbed electric, magnetic, velocity and density fields
as a function of m with the normalised parameters Vφ = 0.316, VA = 0.942 and CS = 0.4394.
The amplitude of density perturbation of these two instabilities has a broad maximum
which falls off monotonically with a higher mode number. However, the decreasing
rate is different for both the modes. It is worthwhile to note that for a given instability, 
the distribution of the amplitudes of all the fields and the corresponding growth rates
as a function of wave number have identical patterns. This matching is expected and
as a result we emphasize that the analysis is consistent. 

 
 

5. Conclusion
 
In this paper, we have carried out a two-dimensional stability analysis of a
magnetofluid at the inner edge of the accretion disk around a compact object. This
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Figure 7. (a) The normalised growth rate and (b) Normalised dispersion curve for different
azimuthal velocity Vφ for FMS mode. Figures (c) and (d) respectively represent the same curves
for SMS mode. All these curves are plotted with m = 1 and n = 1.5, (solid line), n = 1·0 (small
dashed line) and n = 0.1, (- * - *). Here n quantifies the azimuthal velocity V 2 = nGMRin/r. 

 
 
analysis, is based on the equilibrium solution presented by us (Tripathy et al. 1990).
The stability analysis is performed using the eigenvalue technique to solve the set of
linearised equations which are Fourier transformed in the inhomogeneous direction
under the local approximation. The technique was first applied to the one-dimensional
case (radial perturbation with m = 0) and it is concluded that the results agree quite
well with the results obtained earlier in paper I. In addition the method illustrated
the eigenmode structures of the unstable modes and revealed that the density
perturbation has the maximum amplitude for a given value of the wavelength. The
analysis further showed that the nature of the mode structures have the same pattern
as their growth rates and hence verified the consistency of the formalism. 

Next we analysed the stabilizing characteristics of the finite azimuthal mode
number. The analysis revealed that out of the possible four modes, two are unstable
and they are identified as fast and slow magnetosonic modes. A study of the growth
rates as a function of the azimuthal (m) and radial (k) wave number revealed that the
growth rates of these modes have higher values for higher m numbers and does not
 

φ
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Figure 8. The normalised eigenmode structures of (a) FMS Mode (b) SMS mode for purely
azimuthal mode (k = 0). 
 

change appreciably for higher k values. For a given set of disk parameters the
normalised growth rate of the slow mode is found to be smaller by two orders of
magnitude than the fast mode. In addition it is found that for purely azimuthal
propagation (k = 0) the growth rates of the magnetosonic modes are small and that
the eigenvalue and eigenmodes have a similar structure. 

The investigation carried out to analyse the effects of different parameters on these
two instabilities pointed out that the growth rate of the fast mode is significantly
affected by the disk parameters whereas that of the slow mode is unaffected. The
study also showed the differences in the propagation and dispersion characteristics
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of the magnetosonic modes. These two modes which propagate in opposite directions
have contrasting dispersive characteristics. The fast mode is non-dispersive along the
radial direction with resonance eigenvalue ωr ~ 0.25 and dispersive in azimuthal
direction whereas the slow wave is dispersive in radial direction and non-dispersive
in azimuthal direction. The resonant eigenvalue (real) of the slow mode is a sensitive
function of the plasma flow. Furthermore, the eigenmode structures have qualitatively
the same pattern as the corresponding growth rate and proves the consistency of the
calculation. Similar to the case of one-dimensional perturbation analysis, the
magnetosonic modes are found to be independent of conductivity. 

Although, our results qualitatively agree with the instability studies of earlier
investigations (Anzer & Börner 1980, 1983; Miura & Pritchett 1982; Pietrini &
Torricelli-Ciamponi 1989; Corbelli & Torricelli-Ciamponi 1990), we find that our
results have some quantitative differences. We attribute this to the following factors.
The basic difference lies in our geometry. We recall that our analysis started with
the study of dynamics and structure of equilibrium configurations in relativistic
formalism which adopted a spherical geometry. The same coordinate system is
retained for the stability analysis. The other point to be stressed is the self-consistent 
equilibrium solution which involved many physical parameters compared to the
equilibrium configuration adopted by others. Further, our equilibrium configurations
of magnetic and velocity fields have smooth profiles in contrast to the jump conditions
(either in velocity or density field) considered by the above authors. In addition, in
our analysis the wave propagates along the direction of the velocity shear in contrast
to the usual studies where the direction of propagation is taken transverse to the
shear direction. Inspite of these differences the results of our instability analysis for
purely azimuthal mode (k= 0) partially coincide with the other known results.
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