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1. Introduction
 
This chapter summarizes the many fundamental contributions of Chandrasekhar to
the subject of hydromagnetics or magnetohydrodynamics (MHD) with particular
attention to the generation, static equilibrium, and dynamical stability-instability
of magnetic field in various idealized settings with conceptual application to astro-
nomical problems. His interest in MHD seems to have arisen first in connection
with the turbulence of electrically conducting fluid in the presence of a magnetic
field, sparked by Heisenberg's (1948a,b) formulation of an equation for the energy
spectrum function F(k) of statistically isotropic homogeneous hydrodynamic tur-
bulence. From there Chandrasekhar's attention moved to the nature of the magnetic
field along the spiral arm of the Galaxy (with E. Fermi), inferred from the polariza-
tion of starlight then recently discovered by Hall (1949) and Hiltner (1949, 1951).
The polarization implied a magnetic field along the galactic arm, which played a
key role in understanding the confinement of cosmic rays to the Galaxy. The de-
tection and measurement of the longitudinal Zeeman effect in the spectra of several
stars (Babcock and Babcock 1955) suggested the next phase of Chandrasekhar's
investigations, in which he explored the combined effects of magnetic field, internal
motion, and overall rotation on the figure of a star in stationary ( ∂/∂t = 0) equi-
librium. Chandrasekhar and his students did some of the first work in formulating
the quasi-linear field equations for the pressure, fluid velocity, and magnetic field
in axisymmetric gravitating bodies. From there his thinking turned to the gener-
ation of the magnetic fields of planets and stars by the convective motions of the
electrically conducting fluid in their interiors.

Now the outer atmosphere of planets, stars, and galaxies are so tenuous that in
most cases the atmospheres do not exert significant forces on the strong external
magnetic fields of these objects, so that the external magnetic field is “force-free”,
i.e., the Lorentz force, given by the divergence ∂Tij / ∂xj of the Maxwell stress
tensor T ij, is negligible. The special properties of these force-free fields provide a
particularly elegant mathematical formalism in the axisymmetric case.

Subsequently the challenging problem of laboratory plasmas confined in strong
magnetic fields attracted Chandrasekhar's interest and, with A. N. Kaufman and
K. M. Watson, he developed a perturbation solution to the collisionless Boltzmann
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equation in the strong field limit, applying the solution to the stability of the magnetic
pinch.

During this same period of time Chandrasekhar investigated the effect of mag-
netic field on the convective instability of an electrically conducting fluid in an
adverse temperature gradient. The question of the onset of convection is particu-
larly important in the theory of stellar interiors, because the strong magnetic fields
of some stars must surely have effects on the location and strength of the convection and 
the associated heat transport.

Chandrasekhar's interest in the effect of magnetic field on the dynamical stabil-
ity of a convective system led to investigations of the effect on the Rayleigh-Taylor
instability and the Kelvin Helmholtz instability. In the end he organized and com-
piled his results in a monumental tome entitled Hydrodynamic and Hydromagnetic
Stability (Chandrasekhar 1961).

It is interesting to note that Chandrasekhar's direct involvement in MHD spanned
a period of only twelve years, from about 1949 to 1961 when Hydrodynamic
and Hydromagnetic Stability was published. Chandrasekhar's research papers
are conveniently reprinted in organized form in six volumes (Selected Papers,
S. Chandrasekhar, University of Chicago Press, 1989) and his work on magneto-
hydrodynamics is contained in volumes 3 and 4, to which we give reference at
appropriate points, indicating the volume number, the paper number, and the page
number in sequence within parentheses. The diversity of Chandrasekhar's contri-
butions to MHD can be appreciated only from a detailed catalog of his publications.
The present article attempts to provide sufficient perspective and detail within a
reasonable span of pages to serve as an outline of the MHD papers in volumes 3
and 4.
 
 
2. Turbulence 
 
Heisenberg's (1948a,b) heuristic formulation of statistically isotropic homogeneous
hydrodynamic turbulence reproduced the basic results of Kolmogoroff (1941a,b)
in terms of the energy spectrum function F(k). Heisenberg (1948a,b) constructed
a simple nonlinear integral equation for F(k) based on the physical mixing length
concept of eddy viscosity. Analytical solution provided the form of F(k) for
statistically steady conditions. The result yielded the inertial range F(k) ~ k-5/3

extending from the small wave number ko, at which the motion is driven, down 
to the viscous cutoff at the large wave number ks ~ k0 N 3/4 R where NR is the
characteristic Reynolds number at the large scale k-1

0. For k >> ks Heisenberg’s
equations provided the tail F(k) ~ k –7, whereas in the real world the cutoff beyond 
ks is more abrupt. Nonetheless, there was a general feeling of optimism that the
old and important problem of hydrodynamic turbulence was at last giving way to
solution. The specter of intermittency etc. had not yet come to haunt the theoretical
development. 

Chandrasekhar was as intrigued as anyone and showed in 1949 (3, 24, 395)
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how Heisenberg's integral equation for statistically stationary turbulence could be
reduced to a linear first order differential equation and one quadrature by a suitable
choice of variables. He used k3F(k) for the dependent variable and the square of
the total vorticity ∫ok  dk k2 F(k) for the independent variable. He went on to treat
the more difficult time-dependent free decay of an initial turbulent state. 

The next paper (3, 25, 409) picks up on the symmetry of the dynamical terms in 
the MHD equations to interchanging the velocity υj and the reduced magnetic field
bj = Bj /(4πρ)½ in an incompressible fluid. The symmetry is vividly displayed in
terms of the Elsasser variables 

 
for which the momentum and induction equations take the form

 
The quantity Ρ represents the total pressure 

 
Chandrasekhar proceeded to apply the theory of invariants (Robertson 1940 and (3,
29, 442)) exploited earlier by Batchelor (1950) in connection with hydrodynamic
turbulence, to the form of the double and triple correlations of υj and bj. He
worked out the relations between the scalar functions (coefficients) in the invariant
forms for the correlations, obtaining the generalization of the hydrodynamic Von 
Karman-Howarth equation to MHD, and two additional relations. 

The symmetry of the MHD equations in υj and bj is complemented by identical
forms of the induction equation

 
and the vorticity equation in hydrodynamics,

 
where ω= ∇× ν. This raises the question of whether there is a useful analogy
between b and ω. Chandrasekhar explored the relation by writing b = ∇× a in 
terms of the vector potential a. Then any analogy between ω and b appears as an 
analogy between v and a. Again the application of the theory of invariants provided
forms for the double and triple correlations as well as equations relating the various
scalar coefficients. But in neither formulation does one obtain enough equations
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to close the system without introducing additional and arbitrary assumptions. The
failure to close is a result of the well known fact that the nonlinear terms in the
MHD equations, like the hydrodynamic equations, provide the nth order correlation
in terms of the (n + l)th order correlations, indicating that there is physics in the
equations of (n + l)th order that is not contained up to nth order.

Chandrasekhar went on to show that MHD turbulence permits the construction
of expressions analogous to the Lotsiansky invariant of hydrodynamic turbulence,
based on similar assumptions as to the asymptotic rate of decline of correlations in
uj and in bj between positions separated by large distance r.

In stationary MHD turbulence, sustained by the continual addition of kinetic
energy at large scales, the scalar coefficients satisfy simpler relations and a direct
analogy to the vorticity correlation < ω j (r) ω j (r + ζ) > is established.

So the double and triple correlations in MHD turbulence are interrelated much
as in hydrodynamic turbulence. But, as already noted, the mathematics does not
provide a closed system. Some physically motivated form of truncation of the
equations is necessary. 

We know much more about hydrodynamic and MHD turbulence now, 45 years
later, thanks to the work of many the oreticians(cf. Kraichnan 1965), but a compre-
hensive deductive dynamical theory of turbulence still eludes the best efforts.
 
 
3. Galactic magnetic field 
 
In the late forties the origin of cosmic rays was a problem of central interest
beginning with their identification as (largely) protons by Schein, Jesse, and Wollan
(1941). This led to the question of whether cosmic rays are a local phenomenon
confined to the solar system by the dipole magnetic field of the Sun, or a non-local
phenomenon presumably galactic in extent. Ideas of local confinement were based 
on a hypothetical highly symmetric solar magnetic dipole with a strength of 50
gauss at the poles of the Sun, suggested by the early work of Hale (1913). A
dipole field declining as r –3 extrapolates from 50 gauss at the surface of the Sun
to 5 × 10–6 gauss at 1 a.u, with 4 × 107 gauss cm beyond. This is sufficient to
deflect a proton of 6 GeV through 180°, from which it follows that a solar dipole
field might, in principle, temporarily trap protons of 6 GeV, but not much more.
On the other hand, it is observed that cosmic rays arrive at the surface of Earth
at the geomagnetic equator, after having penetrated through 108 gauss cm in the
geomagnetic field. Such particles, with energies in excess of 10 Ge V, would not
be trapped by the solar magnetic dipole. There was no observed break at 6 GeV in
the energy spectrum of the cosmic rays. The cosmic ray intensely varied smoothly
with geomagnetic latitude from the equator to the poles. So it appeared that cosmic
rays are a galactic phenomenon. 

Hiltner’s (1949, 1951) studies of the polarization of starlight indicated a mag-
netic field of at least several microgauss along the local spiral arm. Unfortunately,
it was not possible to deduce the strength of the galactic field from the observed
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polarization without having the precise composition and structure of the spinning
interstellar dust grains that provide the polarization. However, Fermi (1949) sug-
gested that cosmic rays are accelerated primarily by bouncing back and forth along
the galactic field between reflections from moving magnetic gas clouds. So the
structure and dynamics of the galactic magnetic field thrust itself upon the physics
community as an important question. In the paper (3, 34, 529) Enrico Fermi and
Chandrasekhar addressed the problem of the field strength from the observed dy-
namical properties of the galactic arm. The polarization studies (Hiltner 1949,
1951) suggested that the rms deflection of the magnetic field is about 0.2 radians.
This deflection is presumably dynamical, representing transverse Alfvén waves
for which the magnetic amplitude ∆Β is related to the transverse amplitude ν by
ΔB=±(4πρ) ½ v for an interstellar gas density ρ ~2 × 10-24gm/cm. An rms
isotropic turbulent velocity of 5 km/sec suggested 5/√3   ≅ 3 km/sec in the direc-
tion transverse to the mean field and to the line of sight, from which they obtained
an estimate Β ~ 7 × 10–6 gauss. 

An alternative value was constructed by estimating the total pressure necessary
to support the spiral arm against gravitational collapse. Representing the spiral arm
by a circular cylinder of radius R and uniform total mean density ρt , they showed
that the total pressure on the axis of the cylinder would be πGPPtR

2 where G is the
gravitational constant. Then, if half of the total pressure is kinetic, equal to    ρv2

and the other half magnetic, equal to B2/8π , they obtained 6 × 10 –6 gauss, in good
agreement with the dynamical result of 7 × 10–6 gauss.

These estimates are about twice the estimates today. The more detailed obser-
vational studies since that time suggest that ∆B is more nearly equal to Β than to
the 0.2B assumed in their paper, and the spiral arm is better approximated by a 
ribbon than a circular cylinder, with a half thickness of 100 pc rather than a radius
of 250 pc. 

In any case, their effort established the correct order of magnitude, which was
more than enough to confine the galactic cosmic rays. The cyclotron radius of a 10
GeV proton moving perpendicular to a magnetic field of 3 × 10–6 gauss is 1013 cm
or slightly less than 1 a.u., to be compared with the half thickness of the field, of
the order of 100 pc = 3 × 1020 cm = 2 × 107 a.u. To put it differently, a field
of 3 × 10–6 gauss in a gaseous galactic disk of half thickness 100 pc represents
1015 gauss cm whereas the deflection of a 10 GeV proton through 180° requires
only 3 × 107 gauss cm. From the large-scale dynamical point of view, the cosmic
rays, which form a tenuous relativistic gas, exert a pressure of about 0.5 × 10–12 
dynes/cm2, comparable to the pressure of a magnetic field of about 3 – 4 × 10–6 
gauss. 

Fermi and Chandrasekhar wrote a companion paper (3, 35, 532) on the effect
of strong magnetic fields within a star. They used the scalar viral equation

 
 
where I is the trace of the moment of inertia tensor, Τ is the total internal kinetic
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energy, U is the internal thermal energy, and γ is the ratio of specific heats. The
total magnetic energy is denoted by Μ and the total gravitational energy is Ω The
net expansive effect of T, U, and Μ is obvious here, noting that neither the internal
motions Τ nor the magnetic field Μ is statistically isotropic. The only negative
term on the right-hand side of the scalar viral equation is the gravitational potential
energy Ω. They note in passing that equilibrium, obtained by equating the right-
hand side to zero, limits the rms field to 1 – 2 × 108 gauss within a main sequence
star, but no more than a few kilogauss for some expanded giant stars. Then treating
radial pulsations they pointed out the unbounded increase of the period as the rms
field approaches this limiting value. They speculate that such strong magnetic fields
may account for the long oscillation periods of some of the giant magnetic stars.

Now, the magnetic fields inside most main sequence stars are nowhere near the
theoretical critical values of the order of 108 gauss or more. Magnetic buoyancy
would bring any such fields to the surface in 107 years or less, even if so strong a
primordial magnetic field were compressed into the star in the first place. In fact we
know from the recent work of Boruta (1996) that the field in the deep interior of the
Sun is no more than about 30 gauss. This limit is based on the resistive decay time
of 1010 years for the basic dipole mode and the fact that there is no fixed dipole in
excess of about 5 gauss showing at the surface of the Sun. For in order to confine a
dipole field to the interior, it is necessary to superpose higher order radial modes of
the dipole. Yet the higher order radial modes decay with periods of 2 × 109 years
or less. Since the Sun is about 4.5 × 109 years old, the higher order modes would
have decayed away by now, exposing the basic dipole to observation at the surface.

However, Chandrasekhar and Fermi pointed out some newly discovered young
giant magnetic stars showing an rms surface field of 2000 gauss and a theoretical
maximum internal rms magnetic field of about 3000 gauss. Clearly the magnetic
field has a profound influence on the form and behavior of such stars. 

They went on in the paper to treat the equilibrium and pulsations of a circular
cylinder of self gravitating fluid of infinite electrical conductivity in which there is a 
uniform magnetic field parallel to the axis of the cylinder. The effect of the magnetic 
field is to stabilize the equilibrium, increasing both the minimum wavelength and 
the growth time of instability. 

They showed how the magnetic stresses cause the otherwise spherical form of a 
star to become oblate in the presence of a dipole magnetic field. Finally, they noted 
that the criterion for the onset of Jean's gravitational instability is unaffected by 
the presence of a uniform magnetic field, because the unstable mode representing 
motion parallel to the field is unaffected. 

The next paper (3, 36, 561), with Nelson Limber, picks up on the pulsation 
of a star in which a large-scale magnetic field is embedded. They use the time 
dependent scalar viral equation again, obtaining an approximate expression σ2 I = 
—(3γ — 4)(Ω +M) for the frequency σ of the oscillations. The moment of inertia 
I is 4π ∫ dr r4 ρ(r). The result shows that σ is real and the star is stable only so 
long as Μ <| Ω |, recalling that Ω < 0. The period of oscillation 2π/σ increases
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without limit as Μ increases toward | Ω |, as noted in the previous paper with
Fermi. 

The next several papers involve the MHD equations applied to a star, or other
body, with axisymmetry. That is to say, they treated the case in which the magnetic 
field and fluid motion are independent of azimuth φ measured around some linear 
axis of the star. The basic nature of the rotating star with a co-aligned magnetic 
field suggests this idealization as a fruitful starting point for the investigation. The 
simplification of the MHD equation from 3D to 2D is enormous, although the 
resulting quasi-linear equations are by no means elementary. So first a word about 
the general form of the reduction of the dynamical equations in the presence of an 
ignorable coordinate. The reduction begins by noting that with φ as the ignorable 
coordinate the axisymmetric solenoidal vector B can be decomposed into toroidal 
and poloidal components, each component represented by a single scalar function of 
ϖ and z (cylindrical polar coordinates, where v = (χ2 +y2)1/2 represents distance 
from the z – axis. In terms of the unit  vector eϖ eϕ , ez in the respective coordinate
directions, write
 

(1)

 
in terms of the scalar function T (ϖ, z) representing the toroidal or azimuthal mag- 
netic field and P(ϖ , z) representing the poloidal or meridional magnetic field. This 
form guarantees that ∇ B = 0, thereby reducing the numbers of independent func- 
tions from three to two. The essential point for static equilibrium of a gravitating 
sphere of uniform density is that the Lorentz force, i.e., ∂Tij /∂xj, is balanced by
the gradient of the pressure plus the gravitational potential. Hence the Lorentz force
(∇× B) × B/4π must have vanishing curl; 

 
In addition the azimuthal component of the Lorentz force must vanish because there 
is no gravitational or pressure force to oppose it. 

It is easy to show that 
 

 

(2)

 
where ∆5 represents the axisymmetric Laplacian in five dimensions, 
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Setting the ϕ −component equal to zero requires that 
 

(3) 
 
where F is an arbitrary function of its argument. Setting the ϖ component of the
curl of the Lorentz force equal to zero can be reduced to the Jacobian relation 
 

(4) 
 
This equation can be solved using the device that the Jacobian relation 
 
 

(5) 

 
defines the function G. This can be seen by writing out the Jacobian, which reduces 
to 

 
If we let x = ϖ2P (ϖ, z) and F = ϖ2T, this can be written 
 

(6) 
 
and it follows that 
 

(7) 

 
That is to say, G is determined directly from F (ϖ2 P) . The purpose of this
maneuver is to eliminate ϖ∂T2∂z between equations (4) and (5), with the result 
written in the form 

(8) 
The solution is 

(9) 

where Φ is an arbitrary function of its argument. This field equation for Ρ (ϖ1z) 
is a quasi linear elliptic partial differential equation. So the solutions throughout a 
volume V are uniquely determined by specification of some linear combination of 
P and ∇P on the surface S enclosing V (Courant and Hilbert 1962). 

This simple example serves to illustrate the general method for obtaining the 
field equations for magnetostatic equilibrium with axisymmetry, which Chan- 
drasekhar pursued at some length. For instance, the paper (3, 37, 565) with 
K. H. Prendergast works out the field equations and some simple examples of the 
most general axisymmetric magnetic field that permits static equilibrium of a star 
of uniform density. The paper (3, 39, 575) extends the formalism to include internal 
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fluid motion. The general conditions deduced in this way prescribe the conditions 
for hydrostatic equilibrium, the law of isorotation, etc. in a self-gravitating body 
of uniform density. The paper (3, 45, 632) goes on to apply the general variational 
principle developed by L. Woltjer to the axisymmetric case, thereby obtaining seven 
integrals of the field and fluid velocity instead of the four that Woltjer obtained in 
the general case. 

 
 

Chandrasekhar makes the important point that the special forms of the field 
and fluid required by the additional three constraining integrals are not likely to be 
realized in nature. Three of the seven integrals involve relations between poloidal 
and toroidal components of the magnetic field and of the fluid velocity. Poloidal 
and toroidal components tend to have independent physical origins in both the field 
and fluid motions, and the fluid motion driven by convective forces is not likely 
to be of such a form as to provide the required relation of the poloidal magnetic 
field to the toroidal magnetic field and toroidal velocity. Hence one does not expect 
a convecting magnetic star to achieve a stationary axisymmetric state. This is 
confirmed by the observed nonuniform distribution of magnetic activity around 
most stars. 
 
 

Then the paper (3, 41, 609) formulates the difficult problem of the oscillations 
of a self-gravitating magnetic star of uniform density in which there is not only an 
axisymmetric magnetic field but a related fluid velocity ν everywhere parallel to the 
magnetic field. Both v and B are solenoidal in this case, and Chandrasekhar treats 
the equipartition case Β = ± (4πρ)1/ 2 ν in which B and v contribute only to the net 
pressure, the Maxwell stress (tension) of B being precisely offset by the Reynolds 
stress (compression) of v. Expressing both B and v in terms of their toroidal and 
poloidal scalar functions, the field equations again reduce to second order quasi- 
linear partial differential form. Then a variational principle is used to study the 
diverse modes of pulsation of a star with toroidal field and flow. Chandrasekhar 
points out that the method provides only a slow convergence of the result with 
increasing order of trial functions, but the convergence is sufficient to show that 
the characteristic pulsations correspond to Alfven waves propagating around the 
star. This result expresses the incompressibility of the uniform star, and the Alfvén 
waves may be thought of as gravity waves since the field tension is canceled to 
lowest order by the Reynolds stress. 

 
 
The elegant mathematics of these pioneering papers on axisymmetric static

and stationary equilibria of magnetic stars of uniform density ρ sets off in striking 
manner the much more complicated problem of the gaseous magnetic star with its
strong radial stratification, convection, general absence of equilibrium because of 
magnetic buoyancy and convective overturning, and perpetual non-steady magnetic 
activity because of the tendency to form current sheets in all but the simplest field
topologies (Parker 1994). 
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4. Generation of magnetic field 
 
A crucial question in the physics of magnetic stars and planets (not to mention 
interstellar gas clouds, proto-stellar disks, galaxies, and clusters of galaxies) is the 
origin and maintenance of their magnetic fields. The magnetic fields are continually 
dissipated through the slight electrical resistivity of the planet or star and, in the case 
of stars, by the incessant dynamical rapid reconnection of the magnetic field caught 
up in the internal convection. Indeed, as already noted, even a hypothetical dipole 
magnetic field anchored in the stable radiative core of the Sun has a characteristic 
decay time estimated at 1010 years. For the planet Earth the decay time is estimated 
at ~ 2 × 104 years for the dipole mode. The turbulent mixing of magnetic fields 
in the convective zones of stars may hasten the demise of magnetic fields there, 
unless, of course, the convection has the special properties sufficient for generating 
the magnetic field in the first place. In fact one can see from the magnetic cycle of the 
Sun, and from the comparable magnetic cycles of other stars, that the magnetic fields
is created and destroyed approximately every decade by the turbulent convection. 
The creation and destruction can be characterized by a resistive diffusion coefficient 
η of the order of 1011 – 1012 cm2/sec. The characteristic decay time is L2/η for a 
field of scale L, yielding 10 years for L ~ 1010 cm. The diffusion η is conventionally 
attributed to turbulent mixing of magnetic field, characterized by a mixing length   
and associated eddy velocity u( ), so that η ~ 0.1λ v(  ). However, it is a difficult
question as to how, or whether, the turbulence can perform the assumed mixing
and dissipation without necessarily producing small-scale magnetic fields vastly 
greater than the mean macroscopic magnetic field. In fact the mean fields in the 
convective zone of the Sun are themselves comparable to the equipartition field, so 
it is not clear why the assumed turbulent mixing and winding of the mean field does 
not produce small-scale fields of such great intensity as to suppress the convective 
mixing. The answer seems to be that the effect of the convection is to concentrate 
the magnetic field into intense filaments or fibrils with the interstices essentially 
field-free. The individual fibrils are then free to interconnect rapidly across their 
small diameters. 

It is interesting to return to the early days 40 years ago when the problem con- 
fronting the theoretician was to establish the limiting conditions for the generation
of magnetic field by the motion of a simply connected body of electrically con- 
ducting fluid. Cowling (1934; Bachus and Chandrasekhar 1956) had shown two 
decades earlier that “when the magnetic field and the fluid motions are symmetric 
about an axis and the lines of force of the magnetic field as well as the trajectories 
of the fluid particles are confined to meridional planes, no stationary dynamo can 
exist”. In fact this anti-dynamo theorem was generally understood in a stronger 
form, that no magnetic field and steady fluid motion with the same topology as with 
axisymmetry can operate as a self-sustaining dynamo. This stronger conclusion is 
inferred from the inability to maintain the azimuthal current that necessarily flows 
through the neutral point (or points) in the poloidal field in the meridional planes.
Bachus and Chandrasekhar (1956) proceeded in the paper (3, 38, 570) to provide
 

Ƭ 
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a formal proof for the ideal axisymmetric case. The proof starts from the fact that 
the toroidal field necessarily vanishes at the surface of the star or planetary core, 
whereas the field equation for a stationary field is fully elliptic. Hence the boundary 
condition at the surface would require that the field vanish throughout. That is to 
say, no steady state axisymmetric dynamo with uniform conductivity and density 
exists. Subsequent experience has shown that a variety of dynamo forms exist as 
soon as one turns to nonsymmetric steady and unsteady flows. 

Now if a steady axisymmetric fluid motion cannot sustain a magnetic field, 
the question arises whether such fluid motion can accelerate or retard the resistive 
decay of the axisymmetric field. This was taken up by Chandrasekhar in (3, 40, 
587), using the established axisymmetric formalism in which each vector quantity 
is decomposed into its toroidal and poloidal parts. Then the individual modes are 
found to be expressible in terms of Gegenbaur polynomials C 3/2

n (cos θ) while the
radial dependence is J n+3/2 (kr)/r3/2 in terms of Βessel functions of half integral
order. The intermodal coupling leads to a complicated array of equations. The
array is necessarily truncated to effect an asymptotic solution, and Chandrasekhar
displayed the convergence of the result as successively more terms were employed. 
The convergence was clear for weak velocity fields, which is to be expected because 
such fields are close to the modes of resistive decay in a static fluid. Unfortunately 
when the velocity is strong enough to have a substantial effect, the convergence 
is not so clear. It appeared from the calculations that the decay of both poloidal 
and toroidal magnetic fields could be slowed by a factor of ten or more by velocity 
fields that deform the magnetic field so as to decrease the characteristic scale. The 
calculations also yielded substantially retarded decay in other cases. Chandrasekhar 
mentions lifetimes increased by factors of 20 or 50. Unfortunately these interesting 
cases of prolonged field life are among those exhibiting poor convergence. In fact 
a subsequent calculation by G. Bachus (1957) showed formally that no increase in 
characteristic decay time beyond a factor of four is possible. There is no significant 
prolonging of the life of a magnetic field without the dynamo effects that generate 
new field. 

Lüst & Schlüter (1954) were the first to emphasize that strong magnetic fields 
in relatively tenuous gases are of such form that the Lorentz force F j, i.e., the 
divergence of the Maxwell stress tensor T ij, is essentially zero, 

 
The reason is simply that if the gas is too tenuous to push on the magnetic field, 
then from Newton's third law it follows that the magnetic field does not push on the 
gas, F j = 0. The fluid motions, if any, are channeled along the strong field, which 
acts as a curved conduit of nonuniform cross-section in the general case. So the
force-free condition is a restriction on the field, requiring 
 

(10) 
 

 
in general, where α is a scalar function of position, constant along each field line
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(B · ∇α = 0) but varying arbitrarily from one line to the nest. The fluid moves 
freely along the field without significant effect on the field. 

Now theory shows that the fields cannot be force-free everywhere throughout a 
body of gas. The simple scalar viral equation, noted above, shows that the overall 
effect of the magnetic field is measured by the total magnetic energy, which is 
positive definite. So the magnetic field engenders expansion and the field can be 
in static equilibrium only if held firmly in the grip of the negative gravitational 
potential of a star or other gravitating body. So the Lorentz force may vanish to 
give a force-free field in the region outside the gravitating body, but it must be 
remembered that the Lorentz force cannot vanish everywhere inside the body. 

Lüst & Schlüter treated the special case of an axisymmetric force-free field with
α = constant to illustrate the properties of the forcefree field. In the paper (3, 42, 
618) Chandrasekhar wrote down the general solution for that illustrative case, in 
terms of Gegenbauer polynomials and Bessel functions of half integral order. He 
went on to treat the boundary conditions at the surface of a spherical shell adjoining 
another shell in which the constant value of α is different. The calculations show 
the interesting result that the energy of the poloidal and toroidal field components 
are equal. 

The next paper (3, 43, 623), with P.C. Kendall, extends the calculations to
the resistive decay of the force-free poloidal and toroidal modes in the presence 
of uniform resistivity, showing that the decay preserves the force-free form of the 
field, a general point first made by S. Lundquist (1952). Thus no fluid motions are 
created as a consequence of the resistive decay. 

The paper (3, 44, 627), by Chandrasekhar and L. Woltjer, takes up the question 
of the field configuration with the maximum magnetic energy, i.e., the maximum 
mean square magnetic field, for a fixed mean square current density. They pointed 
out that there can be no minimum mean square field for a given mean square current 
density because the mean square current density can be made arbitrarily large 
without affecting the mean square field by the simple procedure of introducing 
many steep gradients or shears in the magnetic field. The variational problem is 
easily formulated, maintaining the volume integral of (∇×B)2 constant while the 
integral of (B)2 is an extremum. With Lagrangian multiplier α2 the final result is 
the elliptic equation 

 

encompassing the force-free fields with constant α, as well as other solutions. How- 
ever, it should be noted that the conditions for static equilibrium are not incorporated 
into the derivation. So the only equilibrium field for which the magnetic energy 
is maximum for a given mean square current density is the force-free field with
constant α. 

Note again that the magnetic field cannot be force-free everywhere. For the
field must be confined by inward forces if it is not to expand to infinity. In star-like
structures one would expect to find either that the field is held in the grip of the
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central core or otherwise confined by some hypothetical enclosing boundary outside
the force-free regions, or both. 
 
 
5. Collisionless plasmas 
 
Laboratory plasma confinement is achieved by surrounding a volume of plasma with 
a strong magnetic field. The scales are not astronomical and indeed the characteristic 
scale perpendicular to the confining magnetic field may be not many times larger 
than the cyclotron radius of the ionic component of the plasma. The convenient 
approximations of MHD, treating the very large-scale behavior as the dynamics of an 
electrically conducting isotropic fluid, become a poor approximation. The thermal 
velocity distribution is generally not isotropic for a variety of reasons, e.g., the free 
motion of charged particles along the field as distinct from the cyclotron motion 
perpendicular to the field. The free particle motion along the field is reflected from 
regions of strong field by the invariant diamagnetic moment ½ mw⊥ 

2 /B of the particle 
with mass m and velocity w ⊥  perpendicular to B. The cyclotron motion of the
ions and electrons around B provide a drift of the guiding center (the instantaneous 
center of the cyclotron circular motion) perpendicular to B as a consequence of 
the curvature of the field lines (the curvature drift) and as a consequence of the 
variation of the field intensity in the direction perpendicular to Β (the gradient 
drift). In view of the free interpenetration of particles from different regions along 
the field, where the curvature and field gradients as well as the thermal velocities 
may be quite different, the general dynamics of the confined plasma presents a 
daunting problem. 

Chandrasekhar, with A.N. Kaufman and K.M. Watson, took on the problem in 
the two papers (4, 1, 3) and (4, 2, 39) neglecting Coulomb interactions between 
particles (the collisionless plasma) and working in the strong field limit so that the 
plasma introduces only a small perturbation of the magnetic field. Thus, the calcu- 
lation omits thermalization of the ions and electrons, and is a valid representation of 
the plasma dynamics over periods short compared to the thermalization or collision 
time. Even so, the formal calculation is massive, starting with the collisionless 
Boltzmann equation (the Vlasov equation) 
 

(11)

 
for the velocity distribution functions f(xj, vk, t) of the individual ions and electrons 
in the presence of a gravitational acceleration  and the electric and magnetic fields
Ε ι and Bj, respectively. They wrote vj= Vj+ wi where 
 

(12) 
 
is the local mean velocity and wj is the thermal velocity. The collisionless Boltz-
mann equation was then written in a variety of forms, e.g., equation (22) of (4, 1,
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3) which was cast in the form1 
 

(13) 
 

 
Here Ψi = cεijk Ej Bk / B2 is the so called electric drift velocity, Tij is the Maxwell
stress tensor 

reducing to  

(14)

 
for vi << c. Pij is the total pressure tensor (ions and electrons) 
 

(15)

 
and the summation is over both electrons and ions. The electric drift velocity Ψj 
derives from the Poynting flux cεijk Ej Bk /4π .Its contribution to the momentum
density on the left-hand side is of the order of the magnetic energy density divided 
by the rest energy density of the particles. This is not small in the limit of tenuous 
plasma, of course, but it is generally small when the gas is dense enough that the
Alfvén speed is small compared to c. 

The time dependent Boltzmann equation is treated for small perturbations about 
a stationary state. The electromagnetic field perturbations are expressed in terms
of the Lagrangian displacement of the artificial velocity Uj defined by the equation
of motion 
 

 
where B0

k represents the stationary field and the prime denotes the perturbation,
with 

 

 
The calculation proceeds from there to work out the general conditions for the
stationary fields B0

j ,E0
j , treating the particle motion essentially in the guiding

center approximation, as well as developing the macroscopic boundary conditions
at a discontinuity. The second paper (4, 2, 39) works out the pressure drift, which
is a combination of the gradient drift of the individual particles and the net local
particle cyclotron motion in the presence of a nonvanishing cyclotron radius and
a plasma pressure gradient. The paper goes on to describe the general plasma
conditions in a variety of special conditions. 

The final paper (4, 3, 64), with A. N. Kaufman and K. M. Watson, treats
 
 

1A factor 1/c is missing from the term εijk Ej Bk in equation (22).

(16)

(17)
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the stability of the laboratory magnetic pinch. Rosenbluth (1957) had previously
treated the problem using the particle orbits in the guiding center approximation
in place of the Boltzmann equation. The more detailed study from the Boltzmann
equation gives a slightly different criterion for marginal stability, but the principal
results for stabilizing the pinch are confirmed. The immense complexity of both the
calculation and the ultimate stability criteria for the various modes are best studied
from the original paper. No attempt to summarize the results can be made without
a detailed description of the formalism. 

The invariants of the guiding center motion of a charged particle in a strong
magnetic field are described in a subsequent paper (4, 4, 85) by Chandrasekhar,
which the reader may find useful to have in mind when studying the three papers just
mentioned. The strongest invariant is the diamagnetic moment µ of the cyclotron
motion of the particle (ion or electron) around the field. If ω⊥ denotes the particle
velocity perpendicular to the field, we have µ =½Mw⊥

2/B. The invariance of µ
can be violated only by changes in the field over scales comparable to or smaller
than the cyclotron radius Mw⊥c/eB or over times less than the cyclotron period
2π Mc/eB. 

The longitudinal invariant is ∫ ds  W||, where W|| is the particle velocity parallel
to the magnetic field. The integration over length ds along the field is carried out
from one mirror point (where the particle is reflected from a region of increasing
B) to the other. The invariance of this quantity is preserved for changes in the field
that take place over characteristic times that are large compared to the bounce time
of the particle between mirror points. The concept and validity of the invariants of
various orders are discussed at length in this paper. 

The reader who is not already familiar with the guiding center orbit theory
of particle motions and with the associated invariants may find the small book on
plasma physics (Chandrasekhar and Trehan 1960) a useful place to begin. The book
goes on to give a simplified and lucid treatment of the stability of the pinch before
taking up plasma oscillations and transport phenomena in the collisionless plasma.
 
 
6. Magnetic fields and convective instability 
 
Fluids are subject to a variety of dynamical instabilities. A static fluid undergoes
convective overturning if heated from below or cooled from above. In general an ad-
verse vertical density stratification may be caused by a temperature or compositional
gradient, producing a Rayleigh-Taylor instability and the associated overturning of
the fluid. The presence of a directed radiation field and a spatially varying opacity
may induce unstable temperature and density distributions. The relative motion
of two contiguous volumes of fluid produces a Kelvin-Helmholtz instability at the
interface. These instabilities all arise from the interplay of fluid pressure, gravita-
tional acceleration, and Reynolds stress Rij = —ρυiυj. The Reynolds stress is a
compressive force ρυ2 in the direction of υi, causing buckling of the stream lines to
produce the Kelvin-Helmholtz instability.
 

.
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The presence of a magnetic field in an electrically conducting fluid adds the

Maxwell stress, represented by Tij, described by equation (14). In particular the 
magnetic field introduces an isotropic pressure B2/8π (Β in gauss) and a tension 
B2/4π along the field. The tension in the magnetic field tends to stabilize waves 
with phase along the magnetic field, as distinct from the Reynolds stress compres- 
sion which de-stabilizes waves with phase along the velocity field. The magnetic 
pressure tends to expand a compressible (gaseous) fluid providing buoyancy in the 
presence of a gravitational field. The buoyancy of the magnetic field contributes a 
form of the Rayleigh-Taylor instability. Then, of course, in a rotating body the fluid 
velocity gives rise to a Coriolis force 2v × Ω whereas the magnetic field B produces 
no comparable effect. The tension in the field strives merely to make everything 
rotate with the same angular velocity along each field line. 

It is evident from these brief remarks that the subject of hydrodynamic stability 
and instability takes on new dimensions in the presence of electrical conductivity 
and a magnetic field. Clearly a methodical recalculation of the classical hydrody- 
namic instabilities was in order, with the expectation of new instabilities as well as 
the suppression of familiar hydrodynamic instabilities by the tension in the field. 
Chandrasekhar’s lifelong interest in stars led to a concern with thermal convec- 
tion, so the general magnetohydrodynamical theory of convection was an obvious 
challenge. The customary starting point is a fluid of uniform density except for a 
small thermal expansion coefficient which provides the buoyant forces that drive 
the convection. The slight thermal density change has no sensible effect on the 
inertia of the fluid (the Boussinesq approximation). The classical Bernard problem 
of convection was studied a century earlier by Rayleigh, and by many others since. 
The reader is referred to Chandrasekhar's (1961) comprehensive monograph for a 
detailed discussion of the historical development of the theory of thermal convec- 
tion. The application of convection to stellar structure immediately introduces the 
theoretical problem of convection in a rotating system. This suggests convection in 
the presence of both rotation and magnetic field with no particular special relative 
orientation of the gravitational acceleration g, the angular velocity and the magnetic
field B. 

To begin with the simpler cases, then, Chandrasekhar (1953; Chandrasekhar 
and Elbert 1955) investigated the effect of rotation on the dynamics of thermal con- 
vection. The results are concisely summarized in Chandrasekhar's Rumford Medal 
Lecture in 1957 (4, 8, 163), where he begins by noting that the rotation strongly
constrains the fluid motion. The effect is stated by the Taylor-Proudman theorem
that all slow motions (for which the nonlinear terms can be neglected) in a rotating 
inviscid fluid are necessarily two dimensional, being invariant in the direction of 
the uniform angular velocity of the body of fluid. It follows that an inviscid fluid is 
stable against convective overturning by an adverse temperature gradient in the di- 
rection of the angular velocity, no matter how strong the temperature gradient. The
introduction of viscosity, on the other hand, vitiates the Taylor-Proudman theorem
and provides convective instability in a suitably strong temperature gradient. In a
rotating system the convective instability may appear as an overstability, in which
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the motion is oscillatory (as in a stable system) but the amplitude of the oscillations
grows exponentially with time. The system is overstable at small Prandtl numbers
v/K, (where ν is the kinematic viscosity and k is the thermometric conductivity)
and unstable at large Prandtl number.

In the Rumford Lecture, Chandrasekhar (1952, 1954a) pointed out that the 
introduction of a magnetic field parallel to gravity and angular velocity tends to 
stabilize the electrically conducting fluid for the simple reason that the vertical 
magnetic field inhibits any variation of the horizontal fluid velocity with height, 
pushing the system back toward the Taylor-Proudman condition. If we supposed 
that the layer of fluid is capped above and below by rigid infinitely conducting 
boundaries, instead of free boundaries, the field is line tied at the boundaries so that 
the field inhibits all motion, of course. For instance, in applications to sunspots 
the field lines are largely free to be moved about at the upper end of the sunspot 
field (at the visible surface) being tied only at the distant opposite end of the 
bipolar field configuration. The field is tied into the convective motions at the 
bottom end where the lines are subject to some unknown pattern of circulation. 
With such strong magnetic fields the convective motions are largely constrained to 
vertical oscillations along the field. The general effect is to inhibit convective heat 
transport, thereby producing a cool region at the visible surface. One can imagine the 
endless variety of circumstances that arise in the presence of the three independent 
vectors g, Ω, and B, together with the Prandtl number, Rayleigh number, and
magnetic Reynolds number (cf. Chandrasekhar 1954b, 1956). Chandrasekhar 
pointed out the somewhat different and conflicting roles of Ω and B with the possible 
overstability from both Ω and B in certain parameter ranges and instability in other 
ranges. The combination (discussed at some length in chapter V of Chandrasekhar 
1961) provides a number of distinct circumstances. In the paper (4, 9, 192) the 
overstability is addressed from the energy or thermodynamic point of view. The 
purely mathematical aspects of the theory of hydrodynamic and hydromagnetic 
(MHD) instability are treated in the paper (4, 11, 207) on characteristic value 
problems and the paper (4, 12, 221) on adjoint differential systems and variational 
principles. There is extensive discussion to be found at several places in the 
monograph (Chandrasekhar 1961). 

The foregoing labors were all theoretical, of course, involving a variety of 
mathematical techniques and enormous algebraic undertakings. It is interesting 
to note, then, that at the same time an experimental effort was launched at the 
University of Chicago to test the theoretical predictions. The project was initiated 
under the auspices of Professor S.K. Allison who was Director of the Institute 
for Nuclear Studies (now the Enrico Fermi Institute). Professor D. Fultz carried 
through a number of experiments of convection in rotating systems – the rotating 
dishpan experiments (Fultz and Nakagawa 1955; Nakagawa and Frenzen 1955). 
Dr.Υ. Nakagawa carried on the effort with the addition of uniform magnetic fields, 
up to about 8000 gauss between the pole pieces of a 36 inch cyclotron magnetic. 
The cyclotron had been decommissioned some time earlier and the magnetic yoke
and pole pieces were reconditioned and put to use again. Nakagawa used mercury
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in depths of a few centimeters, achieving magnetic Reynolds numbers rather less 
than one. Chandrasekhar worked closely with the experimenters and communicated 
several of the experimental papers for publication in the Proceedings of the Royal 
Society. Nakagawa (1957) showed the close agreement of theory and experiment in 
the presence of magnetic field B . A year later he exhibited results of combined Ω and
B (Nakagawa 1959) generally confirming the validity of the theoretical predictions.
 
 
7. Magnetic fields and dynamical instability 
 
Chandrasekhar's contributions to the effect of magnetic field on the dynamical 
instability of Couette flows, the Rayleigh-Taylor instability in adverse density gra- 
dients, and the Kelvin-Helmholtz instability between fluids with relative tangential 
velocity are summarized in the aforementioned monograph (Chandrasekhar 1961). 
The stationary flow between concentric cylinders in relative rotation is an example 
of Couette flow. The fluid velocity is entirely azimuthal and a function only of 
distance ϖ from the axis of rotation. Under steady conditions the torque (in the 
axial direction) transmitted by the viscosity is independent of ϖ, from which it is 
readily shown that υ(ϖ) ~ 1/ ϖ in the presence of a uniform viscosity. Rayleigh 
pointed out a century ago that Couette flow is stable if the angular momentum den- 
sity ρϖυ(ϖ) increases outward and unstable if it decreases outward. We note that 
for uniform density and viscosity the angular momentum density is independent 
of radius, providing neutral stability. On the other hand, if viscosity is neglected, 
then any variation of υ with radius is possible, providing both stable and unstable 
Couette flow. The dynamical effects can be strikingly different in different cases, 
and the interested reader is referred to Chandrasekhar's monograph. Chapter IX of 
the monograph takes up the stability for a conducting fluid with a uniform magnetic 
field parallel to the axis of rotation, an azimuthal magnetic field (parallel to the 
azimuthal velocity υ), and a combination of axial and azimuthal fields, with and 
without viscosity. The magnetic tension tends to stabilize the system, of course, 
and the detailed effects are different in each special case. 

The Rayleigh-Taylor instability of superposed fluids arises when the upper fluid 
is denser so that gravitational potential energy is released by interchanging or over- 
turning fluid. The effects of vertical magnetic field and of horizontal magnetic field 
are treated in chapter X, with the tension in the magnetic field inhibiting the onset 
of instability. Short wavelengths are most strongly inhibited by a vertical magnetic 
field so that the growth rate does not increase without bound with increasing wave 
number, as it does in the inviscid non-conducting case. The inhibition declines 
to zero in the limit of long wavelengths, of course. The stabilizing effect of a 
horizontal magnetic field is equivalent to the effect of surface tension. 

Finally, the influence of a magnetic field on the Kelvin-Helmholtz instability 
is treated in chapter XI, with similar results. The tension in the field tends to 
stabilize any waves with phase extending along the field, with the consequence that
the velocity difference between the two relatively moving semi-infinite regions of
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fluid must exceed the Alfvén speed to produce instability. For fluids of different
densities ρ1 and ρ2 the final result is slightly more complicated because there is no
single Alfvén speed, but the principle is the same, that the system is stable when the
tension in the field exceeds the Reynolds compressive stress. The magnetic field
perpendicular to the direction of flow has no effect on the unstable waves with wave
vector parallel to the flow. 
 
 
8. Concluding remarks 
 
In conclusion one can only remark on the vast and various contributions that Chan-
drasekhar has made to magnetohydrodynamics. The present article is only the
briefest summary of the many different problems elucidated by Chandrasekhar’s
theoretical studies. The importance of his contributions can be comprehended at
the most primitive level by noting that his monograph on Hydrodynamic and Hy-
dromagnetic Stability (Chandrasekhar 1961) has sold n copies with In n ~ 11. The
monograph has been reprinted now by Dover Publications of New York. It must
be appreciated that the monograph covers only a modest part of Chandrasekhar’s
contributions to hydromagnetics or MHD. The publication by Dover is not without
practical significance to the scientific community and it was not without personal
significance to Chandrasekhar who recognized the important scientific role of Dover
Publications in reprinting landmark books after they have passed out of print on the
regular market. This point is best made by relating an experience of some 35 years
ago. I was a junior faculty member of the Physics Department at the University
of Chicago. One morning, walking to my office I met Chandrasekhar coming the
other way. He was in good spirits, and as we met he said, “Well, Parker, I have
been immortalized.” To my puzzled look he added "Dover has decided to publish
my Radiative Transfer.” And as we all know Dover went on to publish several of
his monographs, which make excellent textbooks to this day. 
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