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Abstract. The negative ion of hydrogen continues to be important
in atomic physics and astrophysics. Correlations between the two
electrons are strong already in the ground state, the only bound state
in this three-body system. This state attracted early interest, especially
for the description of stellar atmospheres by Chandrasekhar and others.
More recently, the rich spectrum of doubly-excited states, and the
nature of the double escape above the break-up energy of 14.35 eV, have
been central to our understanding of highly-correlated, non-separable
problems in quantum physics. This article is a survey of the story of
H– as it has developed over the last seventy years.

 
 
1. Prologue 
 
This is primarily the story of a negative ion, offered as a tribute to the memory of a
great astrophysicist who contributed to its early understanding. It is also a personal
account because both the negative ion, H–, and the astrophysicist, S. Chandrasekhar,
have had major influences on my own career in physics. I begin, therefore, on that
personal note. 

In common with many an Indian student over the past several decades, Prof.
Chandrasekhar’s immense contributions to physics and astrophysics and his stature
in the scientific world were an inspiring attraction and motivation as I made my
own early decisions to enter the field. I first saw and heard him when he delivered
a lecture at the University of Delhi in the early 1960s while I was an undergraduate
student there. Later, in my decision on a graduate school, his presence on the
faculty was one of the determinants in my choosing the University of Chicago. He
was just beginning his work in the field of General Relativity and, although I chose
to work for my thesis in another field and under another Faculty Advisor, I took
almost every course that he taught during my graduate school years. However, his
generally stern and serious manner meant that our interactions were confined to the
classroom. 

Only in my last year at Chicago did I go further, daring to seek time for
conversations in his office on topics in my research having to do with H– that I
felt sure would interest him. That step set the stage for what became my standard
practice in all subsequent visits to Chicago over the next 12–15 years, to call on
him at his office. Very conscious of his dislike of small talk and of his intense
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focus, I always felt the need to go in with some scientific item to discuss but,
depending on the mood and the interchange, these conversations ranged broadly
over physics and philosophy, with his ideas and opinions about them and about
the physicists he had known. On many of these occasions he was in a relaxed
mood, wanting to talk about some subject, sometimes for long periods. I can still
see his smile and hear his characteristic “consequently” as he made a point. These
conversations remain among my most memorable experiences in my life in physics.
I note one of possible general interest. I had become fascinated with the principle of
invariant imbedding and had worked on it for problems in atomic scattering. Since
he and Ambartsumian had launched the subject of what he called “the principles of
invariance”, I went in on one of these visits to tell him about some of my results.
During that conversation, he said that of all the work he had done, many were much
more difficult and complicated but the one that “gave the greatest satisfaction” was
his work on the principles of invariance, that he found during the course of that
work that the subject had “its own natural flow, each step following inevitably the
previous one, nothing forced”. 

Chandrasekhar’s presence there led me to the University of Chicago although
not to doing research under his supervision. But I fell in with H– and am still
involved in understanding this two-electron system more than twenty-five years
later. Although a simple system, indeed the simplest non-trivial problem in the
study of atoms and ions, and one that has been studied since the earliest days of
quantum mechanics, it continues to pose challenges to our theoretical understanding.
The story of H– is rich in physics and is far from being closed. It is the prototypical
three-body system in atoms and, therefore, the system of choice for studying the
intricacies of three-body dynamics in a quantum system. With long-range Coulomb
interactions between all three pairs of particles, the dynamics is particularly subtle
in a range of energies that lie roughly 2 – 3 eV on either side of the threshold for
break-up into proton + electron + electron at infinity. In this energy range, there is
a delicate balance between the attractive and repulsive interactions and, given the
low kinetic energies involved, the particles develop strong correlations in energy,
angle and spin degrees of freedom. Perturbation and other conventional techniques
fail, posing a challenge to our mathematical and physical understanding. At the
same time, such understanding can be expected to apply broadly to all correlations
in multi-electron atoms and elsewhere in physics as well. Just as the hydrogen atom
is not only the prototype of all one-electron atomic physics but lends its basic ideas,
notation, and terminology to other realms, whether excitons and heterostructures or
quarkonium, so also will the understanding of H– apply to and become part of our
intuition about coupled, non-perturbative, strongly correlated systems throughout
physics. 

Further, H– has been important in the study of our atmosphere (particularly,
the ionosphere’s D-layer) and even more, of the atmosphere of the Sun and other
stars, as first documented by Chandrasekhar, and it has also been central to the
development of accelerators, being the ion of choice to start with even when one is
interested down the line in beams of protons, mesons or neutrinos. 
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2.   Early history: the ground state 
 
Current research on the strong electron-electron correlations displayed by Η– con-
centrates on the energy range of high excitation of both electrons but the early
focus, both in physics and in astrophysics, was on the ground state of this negative
ion. Indeed, H– is peculiar in that, unlike with other members of the two-electron
isoelectronic sequence, correlations between the electrons are crucially important
from the start, even in the ground state. This is not surprising because He, Li+

and other members of this sequence, have a dominant Coulomb attraction by the
nucleus for both electrons, the interaction between the electrons being perturbative
in comparison, so that perturbation and variational methods suffice to give a good
description of the binding energy of the ground and low-lying excited states. In H– 

on the other hand, this is no longer true. As is well known from the earliest days,
a simple Hartree self consistent field treatment with each of the 1s electrons seeing
an effective charge, Zeff = Ζ— 5/16, gives a very accurate value of the ground
state energy for all Ζ ≥ 2 but fails completely for H– The predicted variational
energy of –(11/16)2 atomic units (1 a.u.=27.21 eV), lies above the ground-state
Bohr energy of –1/2 for H, so that one cannot even conclude that H– is a bound
entity relative to ( Η + electron at infinity ).

It was not till Bethe’s 1929 paper, therefore, that there was unambiguous proof of
the existence of H– as abound system (Bethe 1929). Using the Hylleraas variational
wave functions which involve the three coordinates, s ≡ r1+ r2, t ≡ r1 –  r2,
and u ≡ r12, Bethe employed a three-parameter {α, ß, k} function of the form
(1 + αu + ßt2) exp(– ks) to conclude for the first time that the resulting Rayleigh-
Ritz upper bound on the energy lies below –1/2 a.u. The presence of the term
in αu, involving explicitly the inter-electronic distance, speaks to the necessity of
including correlations to arrive at such a conclusion. Soon after, Hylleraas, who
had pioneered similar calculations for He and higher members of the two-electron
sequence, also arrived independently at the same conclusion, his six-parameter
calculations giving of course a slightly lower energy (Hylleraas 1930). Today, later
generations of such calculations, most notably by Pekeris, Kinoshita and the others
who have followed them (cf. Koga & Matsui 1993; Koga & Morishita 1995),
employ hundreds of parameters to give the binding energy of H– to many-decimal
accuracy. These variational calculations have even become a canonical test of
new numerical procedures and of the speed and capacity of new generations of
computers, the value of (approx.) 0.75 eV for this binding energy being a number
remembered by most atomic physicists and astrophysicists. 

While many-parameter variational calculations give the ground state energy of
H– 

 

to great accuracy, the best experimental values come from a high resolution
(0.03 cm) laboratory photodetachment experiment with lasers. Extrapolating
with the use of the known threshold behaviour for this detachment (to be discussed
further below in section 2.1), the threshold and thereby the electron affinity (or
binding energy) has been determined to be 6082.99 ± 0.15 cm-1 

for H(F=0) and
6086.2 ± 0·6 cm for the similar D (F = 1/2) states (Lykke et al. 1991).
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2.1 Opacity of stellar atmospheres
 
 
The astrophysical importance of the existence of a weakly bound H– was first
recorded in the literature by Wildt (1939, 1941). The abundant presence of both
hydrogen and low energy electrons in the ionized atmospheres of the Sun and other
stars argues for the formation of H– 

 

by electron attachment. At the same time,
subsequent photodetachment back to H+ electron for photon energies larger than
0.75 eV points to its importance for the opacity of these atmospheres to the passage
of electromagnetic radiation. Indeed, since most neutral atoms and positive ions
have their first absorption at 4 or 5 eV if not larger, H–

   

is the dominant contributor
to the absorption of 0.75 – 4 eV photons, a critical range of infrared and visible
wavelengths. At this point, Chandrasekhar played a crucial role in the subsequent
story of H– ,

 

 both in physics and astrophysics. The continuum absorption coefficient
in the solar atmosphere as a function of wavelength was well-known. As shown in
figure 31 of his book (Chandrasekhar 1960), it increases by a factor of two from
4,000 to 9,000Å, then decreases to a minimum at 16,000Å, followed by another
increase. It was also known that this shape is characteristic of many other stars with
surface temperatures less than 10,000 K. For a long time, until Wildt’s suggestion,
people had tried to explain this shape as due to continuous absorption by Η or some
of the other abundant species such as Na, Mg, Ca, Fe and Si, but the wavelength
dependence did not match. Following Wildt, it became natural to look to H– 

 
for

the explanation, but attempts and calculated absorption coefficients by Jen, Massey
and Bates, Williamson, Wheeler and Wildt, etc., were unsatisfactory, as pointed out
by Chandrasekhar. 

Fig. 1 drawn from Bethe and Salpeter (1977) shows the very different shapes of
the photoabsorption of a negative ion as compared to neutral atoms. Simple physics
underlies this difference. Following photoabsorption by H–, the photoelectron
departs in a p-wave. Just above threshold, the low energy electrons see the angular
momentum barrier as the longest-range potential and their tunneling through the
barrier suppresses the cross-section. Therefore, as seen in the figure, the cross-
section rises from zero, following the Wigner El+1/2 =E3/2 law (Wigner 1948). It
later rises to a peak value and then gradually falls off. In contrast, photoionization
of neutral atoms behaves quite differently. The longest range potential for the
photoelectron is now an attractive Coulomb one which has two effects. It enhances
the wavefunction near the origin and it also renders l irrelevant since the angular
momentum 1/r2 potential falls off faster than the Coulomb. The net effect is that
photoionization cross-sections are independent of the l-value of the photoelectron
and start at a finite value at threshold, to fall off in some fashion at higher energies
(cf. Rau 1984a). It is the difference in shapes and, in particular, the feature of a
broad region of absorption somewhat above threshold that makes H– important for
stellar atmospheres in the 4,000  20,000Å wavelength range. Next, for quantitative
treatment, Chandrasekhar appreciated the special features associated with its weak
binding. 
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Figure 1. Contrast between the cross-section for photoionization of neutral atoms and
photodetachment of a negative ion. Horizontal axis is the incident photon frequency in
units of the threshold frequency (from Bethe & Salpeter 1997). 
 
2.2 Compensating for errors introduced by a diffuse wave function
 
It is now common wisdom that Rayleigh-Ritz variational calculations may pro-
vide accurate energies while the wave function itself may be seriously deficient in
other regards. This is particularly important for a weakly bound system such as
H– with its very extended wave function. Together with the deuteron, H– is a
canonical example of a loosely bound quantum system wherein the wave function
and probability amplitude can extend beyond the range of the binding potential
itself. Chandrasekhar & Krogdahl (1943) pointed out that for the matrix element
in the photoabsorption coefficient, the wave function at distances of 4 – 5 a0 (Bohr
radius, ~ 0·53Å) is involved and even a many-parameter function may give a poor
description at this distance while providing a reasonable energy (which arises more
from the wave function at smaller r). As a result, they argued that trial functions
be subjected to sum rule tests as indicators of their reliability. Together with the
Thomas-Reiche-Kuhn total oscillator strength sum rule, they developed another
which related the integrated continuum absorption coefficient to the matrix element
of r2, this sum rule following from the assumption that H– has only one bound state.
This too is an interesting element of the H– story. For one-electron excitations,
a negative ion is very different from its higher isoelectronic analogs. Unlike the
infinite number of bound excited states in positive ions and neutral atoms, negative
ions have a much sparser spectrum. A rigorous proof that H-

 

has only one bound
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state, the ground state, and no singly excited states at all is very recent (Hill 1977
a,b) but not unexpected from the earliest days. Chandrasekhar thanks E. Teller for
a conversation regarding his assumption that there are no excited bound states. 

Based on these sum rules and under Chandrasekhar’s influence, Henrich (1944)
did a 11-parameter Hylleraas calculation for H–. The next important step was taken
a year later when Chandrasekhar, pursuing the same theme that the wave functions
may be poorer at large r, developed alternative forms of the photoabsorption matrix
element (Chandrasekhar 1945). Today these have become standard in our thinking
but they first appeared in this context, with Chandrasekhar pointing out that the usual
“dipole-length” form of this electromagnetic coupling, eε r, weights large values
of r, precisely where the H– functions are deficient. But through commutation
relationships involving the Hamiltonian, an alternative can be developed which
involves matrix elements of the momentum operator p. Another alternative gives
an “acceleration” form and even more alternatives are of course possible. The
“momentum” form (today more often called “dipole-velocity”) weights the same
small -r regions which contribute most to the energy. The wave function in that
region being, therefore, expected to be more reliable, the “momentum” calculation
of the absorption coefficient may by the same token be more trustworthy. In
this vein, Chandrasekhar & Breen (1946), working with the Henrich 11-parameter
function, showed that the H– photoabsorption does indeed peak at 8,500Å and
that H– can itself account for the continuum absorption coefficient in the solar
atmosphere over the entire range from 4,000 to 25,000A [as in figures 3 and
4 of Chandrasekhar & Breen (1946) and figure 32 of Chandrasekhar (1960)].
Characteristic of Chandrasekhar’s work at other times and on other problems, they
presented extensive tables and, in a succeeding paper with Münch (Chandrasekhar
& Munch 1946), applications were made to all A0 – G0 stars. (As an aside, there
is no general rule that the velocity form of the dipole matrix element is always
superior. Indeed, one of my first conversations with Chandrasekhar grew from my
analysis (Rau & Fano 1967) that the asymptotic form of a transition matrix element
at high momentum transfer was better described by the length form). 
 
2.3 Radial correlation and a simple wave function
 
The above works are notable for their contribution to atomic physics of alternative
forms of the photoabsorption matrix element and to astrophysics of a complete
accounting of the opacity of stellar atmospheres. For these detailed quantitative
applications, he used many-parameter Hylleraas functions (as also in later work
(Chandrasekhar & Herzberg 1955) on He, Li+ and O6+) but another paper of
Chandrasekhar’s around this time is notable for a further important insight into the
structure of H. He introduced a two-parameter trial wave-function, 
 

exp (–αr1 – ßr2) + exp (αr2 – ßr1), (1)
 
and showed that the energy minimum at α =1.03925 and β= 0.28309 is sufficient
to provide binding for H– (Chandrasekhar 1944). There is no explicit use in (1) of
 

→ → 
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the electron-electron correlation, only the imposition of the Pauli symmetrization
requirement for this 1S function which differs from the Hartree or Hartree-Fock
one parameter wave function wherein α = β = Z eff.  The function in (1) is,
therefore, referred to sometimes as an “unrestricted” Hartree-Fock function, the
two 1s electrons not restricted to see the same effective charge and, therefore, to
have the same orbital. The function exhibits a radial “in-out” correlation between
the electrons such that when one electron is “in” close to the nucleus, the other
is kept “out”. Particularly striking is the feature that α is larger than 1, so that
the presence of the second, “outer” electron pushes the inner one closer to the
nucleus than it would be were it alone bound to the proton. Thereby it “sees” an
effective charge larger than the value unity of the proton’s real charge! At the same
time, the outer electron also sees enough of an effective charge, albeit small, to be
itself bound. In the same paper, Chandrasekhar also considered a second function
which included an additional factor (1 + cr12) in (1) which, of course, improved
the binding energy and indeed was superior to the 3-parameter Bethe-Hylleraas
result. See Bethe & Salpeter (1977) for other discussions on the ground state of
two-electron atoms and ions. For recent reviews on negative ions, see Bates (1990)
and Buckman & Clark (1994). 

The Chandrasekhar function (1) shows the specific nature of electron-electron
correlation in the ground state of H– Of the two kinds of correlations, “angular”
between the directions r1 and r2 and “radial” between the magnitudes r1 and r2,
it is the latter that proves crucial. Further, the two electrons are on a very different
footing, one bound much closer to the nucleus than the other which is weakly
held at a distance ~ 4 – 5 a0 from the nucleus. This suggests a very useful next
step, of regarding photoabsorption and other collision processes as primarily due to
this electron so that a “one-electron picture” of H– suffices, this electron regarded
as weakly bound in a short-range attractive potential well. An extreme model
takes the attraction to be of “zero-range” (or, indeed, as a delta-function well) so
that a single parameter, the binding energy, characterizes the form of the wave
function of the outer electron as exp(–kBr) /r, where ½kB

2  is the electron affinity
of H– (~ 0.75 eV). Together with a constant C that allows for normalization, and
takes the numerical value 0.31552, Ohmura & Ohmura (1960) took the resulting
two-electron wave function 
 
 (2) 
 
where P12 

is the particle interchange operator, and evaluated the continuum photo-
absorption coefficient shown in fig. 2. This calculation, which describes the outgo-
ing photoelectron by a free p-wave, is extremely simple and completely analytical,
while giving a very good description of the absorption coefficient over the en-
tire range from 4,000 to 16,000Å (section 7.2.4 of Fano & Rau 1986). Figure 2
is a re-rendering of the H– curve in Fig. 1 and similar to equivalent figures in
Chandrasekhar’s papers that were referred to in section 2.2. 

Besides photodetachment, collision processes involving H– 
 

are also important

^ ^
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Figure 2. Continuous photoabsorption coefficient of Η– 

 
from Ohmura & Ohmura (1960).

Data from experiment compared with the analytical expression from the simple “zero-range
wave function” in (2), plotted as curve 3, and with numerical results using a 20-parameter 
Hylleraas variational wave function in curves 1 (“dipole velocity” form) and 2 (“dipole 
length” form). Horizontal axes are in photon wavelength (bottom) and photoelectron
energy in Ry (top). 
 
 
 
 
 
in stellar atmospheres. Prominent among these are collisions with the neutral
hydrogen and protons that are abundantly present. One among the many results is
that “charge exchange”, H + H+ → H(1s) + H(nl), dominates over “associative
detachment”, H– + Η → H2 

+ e, in atmospheres with temperatures greater than
8,000 Κ and in lower temperature stars with lower surface gravity (cf.  Praderie
1971). 
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3. One-electron excitations
 
The very weak binding already of the ground state, and the absence of a long-
range Coulomb attraction for the outer electron, make the excitation spectrum of 
H– very different from He and higher members of the isoelectronic sequence. 
As already noted, there are no other bound states at all (except for an item to 
be mentioned in section 4.5), no counterparts of the multiple infinity of Rydberg 
states in He. The only excited states are, therefore, of the one-electron continuum 
of (H+

  

electron) which begins 0·75 eV above the H– ground state. These are, 
of course, the same states involved in elastic scattering of low energy (< 10 eV) 
electrons from ground state hydrogen. They have also played an important role as 
tests of our understanding of electron-atom scattering; see, for instance, a recent 
review on electron-Η scattering (Bray & Stelbovics 1995). Proper treatment of 
exchange, the singlet and triplet scattering lengths being very different, and of 
the polarizability of the Η ground state (which leads to an attractive r– 4 

 

potential 
seen by the scattered electron), are important in describing this scattering. An 
early variational calculation by Schwartz (1961), with over fifty parameters in the 
wave function, continues to serve as a benchmark against which later calculational 
techniques and numerical values are sized up. 

As noted in section 2.2, although it was suspected from the beginning that there 
may be no excited 1 snl bound states of H–, nevertheless there were temptations 
from time to time to attribute unexplained diffuse interstellar lines to such states. In 
the 1950s and 1960s, such suggestions were made with regard to absorption lines 
at 4,430, 4,760, 4,890 and 6,180Å. Given the persistence of these speculations 
and their astrophysical significance, a careful laboratory laser photodetachment 
experiment by Herbst et al. (1974) finally demonstrated conclusively that there 
is no structure in the detachment cross-section at these wavelengths. As already 
noted, today we have a completely rigorous mathematical proof (Hill 1977a,b) that there 
are no one-electron excited bound states of H–. 
 
3.1 Excitation in static electric and magnetic fields 
 
With the interaction of photons below 10 eV with H– essentially understood, more 
recent work has turned to the effect of additional external electromagnetic fields. 
Considering first static fields, both electric and magnetic fields are of interest. 
In both situations, for laboratory field strengths of interest, the couplings eε

 

r 
and (e

2
B2 /8mc2 )r2 sin2

 

θ (from the quadratic or diamagnetic coupling) share the
common feature of being negligible at small r and increasing with radial distance. 
To an excellent approximation, therefore, they affect only the final state of the 
detached photoelectron and that too only at large distances. The initial state of H–

   

 

and the initial absorption of the photon by it are essentially unchanged from the 
zero-field case. Only the large-r wave function of the photoelectron has to be recast 
in terms of the eigenstates of a free electron in the external potential and these are
well known, Airy functions and Landau functions, respectively. The cross-section

→ → 
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Figure 3. Photodetachment of Η– 

 
just above the detachment threshold at 0.75 eV (dashed

line) and in the presence of a strong electric field F (solid line). Note in the latter that
absorption sets in “below threshold” because of field-assisted tunneling through the sloping
potential cFx and that field induced modulations appear at higher energies. The arrow
marks the data point that was normalized to the theoretical expression (from Rau and Wong
1988). 
 
 
for photodetachment in the presence of the external field F takes, therefore, a simple
form

(3)
 

where H F(k) is a “modulation factor” which depends on the outgoing electron’s
momentum k. Simple analytical expressions for this factor have been developed
(Greene 1987; Rau & Wong 1988; Du & Delos 1988). In the case of an external
static electric field, experimental data is available (Bryant et al. 1987) for fields
of 105 V/cm and, as shown in fig. 3, are in excellent agreement with theoretical
calculations (Rau & Wong 1988). Note that photoabsorption sets in below the zero- 
field threshold energy of 0.75 eV because of field-assisted tunneling and that above
this energy, the cross-section displays oscillations about the zero-field cross-section.

It is worth taking note of the experiment that gave the results in fig. 3. Taking 
advantage of the fact that most particle physics accelerators that accelerate protons 
start with H– as the initial species because it has the same mass and magnitude
of the charge and the two electrons can be stripped off after acceleration, a group
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has conducted a series of detailed studies of H– over the last twenty years at the
LAMPF accelerator in Los Alamos (see a review: Bryant et al. 1981). The
relativistic nature of the 800 MeV H– beam has been cleverly exploited to make
certain measurements that are not otherwise easily carried out. Thus, in the context
of Fig. 3, such large electric fields were realized by imposing a modest magnetic
field of 10 Gauss on the H beam as it was photodetached by a laser (Bryant et al.
1987). This laboratory magnetic field transforms in the rest frame of the H– beam
into both a comparable magnetic but also into a large electric field. 
 
 

3.2 Multiphoton detachment 
 
In recent years, intense lasers have made it possible to observe effects of multi-
photon absorption by atoms and ions. Among notable effects are “above-threshold
ionization wherein more photons are absorbed than are necessary to break up the
system, the extra energy going to increase the kinetic energy of the ejected photo-
electron by multiples of the photon energy. The Los Alamos H– beam mentioned
above in section 3.1 has also been used for similar studies of “above-threshold
detachment” (Tang et al. 1989, 1991). With a CO2 laser beam of laboratory photon
energy 0.117 eV, the relativistic Doppler shift makes it appeal” in the frame of H– 

 
as 

of energy 0.08 to 0.39 eV, depending on the angle between the photon momentum and the
H beam. Detachment, which requires 0.75 eV, takes place therefore as
the result of the absorption of two to nine photons or more. Thereby multiphoton
detachment and above-threshold detachment have now been experimentally studied
in H–

 

: Fig. 4. Theoretically, this problem had been investigated earlier and by
several groups, again primarily because the negative ion is a simpler system than
an atom with its Coulomb field and spectrum (cf. Crance & Aymar 1985; Arrighini 
et al. 1987; Geltman 1990 & 1991; Liu et al. 1992; Laughlin & Chu 1993; and 
the collection Gavrila 1992). The coupling of an intense time-dependent electro-
magnetic field to an atom is still an unsolved problem because neither the external
field nor the internal binding field can be treated perturbatively. With a negative
ion, especially in a zero-range description as in section 2.3, the internal field is at
least simple and, therefore, H has been a system of choice for the study of such
time-dependent problems (Gavrila 1992; Wang & Starace 1993). 
 
4. Two-electron excitations 
 
Although H–  

is very different from He as regards the one-electron excitation
spectrum, they are on the same footing when it comes to states in which both
electrons are excited. Indeed, upon regarding them as two excited electrons around a
positive charge, H–, He, Li+, ... , are exact “iso-double-electronic” analogs, differing
only in the magnitude of Z, the central positive charge, Ζ = 1, 2, 3, ... . Therefore, as
a prototype for the study of doubly-excited atomic states, H– 

 

is as good a candidate
as He. Fig. 5 is a sketch of the entire spectrum of H for L = S = J= 0, that is,
1 Se states. Similar sketches describe states of other L, S and J. Fig. 5(a) provides
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Figure 4. Multiphoton detachment of Η– 

 
at different laser intensities: (a) 4 GW / cm2,

(b) 6 GW / cm2, and (c) 12 GW / cm2. Multiplication factors indicate the magnification in
signal counts (from Tang et al. 1991).
 
 
the conventional independent-electron labeling, each group of states described as
H(N ≥ 2) + e(n ≥ N). Note Ν Rydberg series of states (described as l2 with
l = 0,1, ..., Ν – 1) below each single ionization limit, H(N)+ electron at infinity,
along with their associated one-electron continuum above this limit. The first group 
below N = 2 lies, therefore, in the vicinity of 10.95 eV above the ground state of
H–. For analogies to quark families, see Rau (1992). 

These states in which both electrons are excited out of the ground 1s orbitals are
not strict bound states, even in the absence of coupling to the radiation field. This
is clear from fig. 5 since these states are degenerate with one or more continuum
states of electron plus Η (lower Ν). Thus, the 1/r12 interaction itself mixes all these
degenerate states and the physical eigenstates of the Hamiltonian are superpositions
of both, with bound and continuum character. They are quasi-bound, “autoionizing”
states (cf. sections 10.1 and 10.2 of Fano & Rau 1986). In a descriptive picture, were
one to excite both electrons in H–

 

to one of the states in fig. 5(a), one electron can
drop back into abound state of hydrogen with lower N, the other then ending up with
that released energy which is sufficient to let it escape to infinity (“autoionization”).
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Figure 5. Spectrum of 1S states of H– .(a)In independent electron labeling with Rydberg
series |Nl, nl〉 converging to states of H(N) plus one electron at infinity. Note the single
bound state 1s2 of H– 

 

but a rich spectrum of doubly-excited states, with both Ν and n
larger than 1. (b) In a pair labeling, with principal quantum number v, angular correlation
number v, and radial correlation number η(= 0, – ; = 1,---; etc.). States with same υ and
η form “pair-Rydberg” series converging to the double-detachment threshold of Η

 

+ (ee) 
pair at infinity. 
 
 
 
 
These states manifest themselves as resonances in electron-hydrogen scattering, as
for instance, in the elastic scattering of 10.2 eV electrons from the ground state of
hydrogen They are also seen in photodetachment of H– in a corresponding energy
range. This range being, approximately, 10.95 – 14.35 eV, energies not easily
available with laboratory lasers, it was once again the Los Alamos experiment that
provided laboratory studies of these doubly-excited states. 
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4.1 Experimental observation
 
One of the clever exploitations of a relativistic H– beam is to use the Doppler
effect to tune the laser frequency as seen in the frame of the H–. By changing the
angle a between the two beams, a laboratory frequency von appears to the H— as
v= gv0(1 + b cos a), where b ≡ vlc and g ≡ (1 —b2)-1/2. In the Los Alamos
experiments, v/v0 could be adjusted from 0.293 to 3.413. As a result, the fourth
harmonic of a Yag laser with hv0 = 4.66 eV can be used to cover the region of
doubly-excited states in H– from 10 to 15 eV (Bryant et al. 1981). Small changes
in a provide for the tuning, allowing experimental resolution (mainly limited by
H— beam stability) of a few meV. It is worth noting the interesting combination
of circumstances that speaks eloquently to the unity of physics. An 800 MeV H—

beam at an accelerator built for studies of mesons and neutrinos is used to study
details of an atomic state around 10 eV with a few meV accuracy! The resulting
photodetachment cross-section is shown in fig. 6 and represents an extension of
fig. 2 to higher energies (Broad & Reinhardt 1976). 

Against a background of the one-electron continuum absorption, doubly-excited
states of H– appear in fig. 6 as groups of resonances in the vicinity of the various
single ionization limits H(N) — see fig. 5. Selection rules for single photon absorption
by the ground I Se state lead to 1Po states, the lowest such doubly-excited states
being the ones associated with H(N = 2) and loosely termed 2s2p. Experimental
data in fig. 7 show in greater detail that there are two prominent resonances, a
sharp one just below the N = 2 threshold at 10.95 eV above the ground state
and a broader one just above that threshold (Bryant et al. 1977). Similar sets of
resonances have been resolved in the experiment below higher N up to N = 7, fig. 8
providing as an example the N = 5 set (Harris et al. 1990). Although the integrated
oscillator strength over the resonances may be small compared to the background
continuum, the resonance structures are dramatic over the narrow energy ranges
where they occur. Although they have not been observed or discussed so far in the
astrophysical context, the advent of far-ultraviolet telescopes may well make them
relevant for future studies of stellar atmospheres in this wavelength range of 900 –
1,100A. 
 
 
4.2 Strong correlations 
 
Once both electrons are excited away from the nucleus, correlations between them
become more important. In H–, as already noted, radial correlations are already
important in the ground state but, whether in H– or He, radial and angular corre-
lations are crucial in doubly-excited states (Ho & Callaway 1984, 1986; Pathak et 
al. 1988). The higher the excitation and, therefore, the further removed are the
electrons from the central attraction and the slower they get, the more important
these correlations become, reaching an extreme near the 14.35 eV energy of the
threshold for double break-up. Increasingly, independent particle pictures lose their
 meaning as each electron feels as much of a force from the other as it does from the
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Figure 6. Extension of photodetachment cross-section of H– in fig. 2 to higher energies,
with horizontal axis reversed, photon energy now increasing to the right, and showing
doubly-excited states as sharp resonances (from Broad and Reinhardt 1976). 
 
 
nucleus and proper understanding requires a treatment of the three-particle system
as a whole with a joint description of both electrons – a “pair” of electrons. Pair
quantum numbers and even pair coordinates are, therefore, part of the story of H– 
in the 10 –16 eV energy range (Rau 1984b). 

Angular: A glance at fig. 5(a) suffices to emphasize that strong angular corre-
lations set in already at N = 2 with the first doubly-excited states. This is because
states differing only in l, such as 2s2 and 2p2, or 2sns and 2pnp, are degenerate
in the absence of the electron-electron interaction and, therefore, will be strongly
mixed when that interaction is taken into account. Put another way, in the presence
of the electric field due to the other electron, the degenerate 1 states of the hydrogenic
manifold of one electron are strongly mixed so that 1 loses meaning as a quantum
number. A first step is to use degenerate perturbation theory within the set of (nl)2
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Figure 7. Doubly-excited 

 
1P° resonances of Η–

 

in the vicinity of the H(N = 2) threshold
as observed in the photodetachment cross-section, with a sharp “Feshbach” resonance just
below and a broad “shape” resonance just above the 10.95 eV threshold (from Bryant et al.
1977). 
 
 
states ( for 1 

 

S symmetry, and counterparts for other values of L, S and J) to get new
eigenstates that include the 1/r12 interaction. The label l is thereby replaced by
v = 0,1,2,..., (n – 1), which is the first of such “pair quantum numbers” and which
may be regarded as the quantum number associated with θ 12, the angle between r1
and r2. 

The mixing coefficients in |v〉=∑
l
〈l/v|〉l〉 can be obtained by numerical diago-

nalization (Rau & Molina 1989; Rau 1990a,b) and are seen to be very well described
by analytical expressions from a group-theoretical model (see a review: Herrick
1983). In this description, the product of the individual SO(4) representations that
hold for each electron independently (the well-known symmetry of the hydrogen
atom) is reduced to a single SO(4) for the pair to provide simple analytical formulae
for 〈l|v〉. Examination of the corresponding wave functions of the mixed states |v〉
shows, as may be expected, that the lowest-lying state with υ = 0 has a concentra-
tion at θ12 ∼ 

π which minimizes the electron-electron repulsion whereas the state
at the opposite end with ν= n – 1 has a concentration around θ12 = 0. The former
 

^

^
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Figure 8.  1P° resonances of H 

 
below the H(N = 5) threshold, with data fitted to “Fano

resonance profiles” (from Harris etal. 1990). 
 
 
is of greatest interest because it describes the lowest energy states with greatest
stability. The concentration at θ12 

~ π in this state is seen to have a width that
scales as n–1/2. The extreme concentration due to angular correlation, reached as
η →∞, the double-detachment threshold, has the two electrons lying on opposite
sides of the nucleus (Rau 1990a). The SO(4) model also applies to L ≠ 0 states
in which the individual l1 and l2 values of the electrons need not be equal, leading
to two pair quantum numbers, called Κ and T, which replace l1 and l2 (Herrick
1983). The former, simply related to v, is associated with the pair coordinate θ12, 
whereas T is a measure of (L

 

·r<)2
 

, that is, of the projection of the total orbital
angular momentum on the radial vector of the inner (N) electron (see, for instance,
sections 10.3 & 10.5.2 of Fano & Rau 1986). 

Radial: Whereas angular correlations are similar in all doubly-excited states,
having their origin in the degenerate l-mixing, under radial correlations two-electron
excitations divide into two classes. One, with an “in-out” aspect as in section 2.3 for
the ground state of H, has r> >> r< , whereas the second group has comparable
radial excitation (r1 ~ r2) of the two electrons. The first group may be termed
“planetary” (Percival 1977) in that each electron can be ascribed an individual
principal quantum number (or orbit) with n > N, these one-electron quantum
numbers retaining their meaning (Rau 1984b). Such states in H

 
may also be

 

–

–

^
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termed “Coulomb-dipole” because the inner electron sees a dominant Coulomb
field whereas the outer electron sees the dipole field of the other two particles
(this is again the permanent electric dipole moment or the “linear Stark effect” of
H(N ≥ 2) arising from the degenerate l-mixing). In He and other isoelectronic
analogs, however, such planetary states have both electrons seeing a Coulomb
attraction, the outer having in addition a dipole field. The second class of states
with a radial correlation such that both electrons share comparably the excitation
energy have been called “Wannier ridge” states (Buckman et al. 1983) and for
them H– and He are essentially similar. In their description, particularly as one
approaches the double-detachment threshold, a true pair picture with no reference
to independent particle coordinates (r1 and r2) or quantum numbers (N and n) or
ionization limits (N) becomes necessary (Rau 1983 & 1984b). 
 
 
4.3 Hyperspherical coordinates and two-electron Schrödinger equation 
 
Over the last twenty-five years, the study of doubly-excited states has prompted
the use of a set of coordinates that deal with the pair of electrons from the start
(cf. chapter 10 of Fano & Rau 1986; Lin 1986). An alternative, which also treats
the three-body system as a whole, sets up a correspondence between H–

  

and H+
2,

using the language of molecular orbitals and potential wells, r12 playing the role
of the internuclear distance R (Feagin & Briggs 1986, 1988; Rost & Briggs 1988;
Feagin 1988). Both these approaches have common elements and have been useful
in understanding doubly-excited states. I will now turn to the more direct recasting
of r1 and r2 of the atomic system in terms of joint coordinates called hyperspherical
coordinates, because this also generalizes immediately to problems involving more
electrons. These coordinates were actually first introduced by Bartlett (1937) and
Fock (1954) in the study of the ground state of He, to handle the description of the
wave function wherein both r1 and r2 go to zero, the same considerations applying
also of course to H–. The coordinates were also invoked by Wannier (1953) over
forty years ago in treating the threshold double escape of two electrons (we will
return to this in section 5) before they were popularized in recent years for the study
of doubly-excited states. 

The angle θ12 between r1 and r2 has already been introduced. Next, the
radial distances are replaced by the “circular coordinates” in the r1 —r2 plane,
R = (r 1

2
 

+ r 2
2

 
) 1/2, α = arctan (r2/r1) Together with the three Euler angles to

describe the position of the (proton + electron + electron) plane in space, the
coordinates R, α, and θ12  

provide a set of six “pair coordinates” to replace (r1

 
, r2

 

) 
in the independent-particle picture. The three pair coordinates also provide a very
natural description of the system, with R providing the overall size and a measure of
excitation, α indexing the radial correlation, and θ12 the angular correlation between
the electrons. For a general three or Ν > 3-body system with arbitrary masses for
the particles, hyperspherical coordinates can be defined to incorporate the masses

so that R ≡[∑ i m i  r i2/ ∑ 
m i ]

½
is actually the radius of gyration (Fano 1981).

 

→ → 

^ ^

→ → 
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The coordinates then are those of a 3(N – l)dimensional sphere with R the radius
and R the hypersurface of such a sphere. 

The Schrödinger equation for H– 
or its isoelectronic analogs takes the following

form in hyperspherical coordinates and in atomic units (cf. section 10.4 of Fano &
Rau 1986): 
 

(4)
 
 
where Λ R2

 

 is the Laplacian or “grand angular momentum” operator involving deriva-
tives with respect to α and θ12  

(the counterpart of L2 in three dimensions), and Z(R
 

)
is an “effective charge operator”: 
 

(5) 
 
Each of the three terms in (5) arises from the three pairs of Coulomb interactions in
the system once a common dimensional 1/ R element has been factored out. The
“potential surface” described by Z(R) in (5) is shown in fig. 9. Note deep valleys
at α = 0 and π/2 which correspond to r2 or r1  vanishing and an infinite repulsion at
α =π/4, θ12 

= 0 which marks the electron-electron repulsive singularity at r1 = r2.
Only half the potential surface from θ12 

=0 to π is shown, the identity of the
two electrons repeating a reflected segment of fig. 9 for θ12 =π to 2π. Finally,
the surface has another critical point, a saddle at α = π/4, θ12 

= π, that is, when
r1 = –r2. This saddle point will be crucial in the rest of this story. 

The H– 
 
-Schrödinger equation in hyperspherical coordinates takes the form in

(4) which is very similar to that of hydrogen in three-dimensional spherical coor-
dinates, with a radial and angular kinetic energy and a Coulomb potential. The
major difference is that the charge depends on the hyperangles, making the equa-
tion non-separable. Since other multi-particle problems of atomic and molecular
systems also take a form similar to (4) with 3(N – 1) -dimensional hyperspherical
coordinates (and 5/2 replaced by (3N – 4)/2) and a charge that depends on the
(3N – 7) hyperangles, the H– system takes on added significance as a prototype
for such non-separable problems. In particular, the potential surface in fig. 9 is
the simplest prototype of such multi-dimensional potential surfaces, so that the un-
derstanding of quantum-mechanical solutions of a configuration point moving on
such a surface may be expected to play the same role in shaping our intuition about
more general problems of chemical transformation as the Coulomb and harmonic
oscillator potentials have played for two-body problems in physics. Besides max-
ima and minima, there is one saddle point in such a two-variable potential surface
which will turn out to be especially interesting for the rest of our story of H– and
also of especial significance generally because saddle points proliferate when more
variables are involved.

^

^

→ → 

→ → 
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Figure 9. Potential surface C(α, θ12) =Z(R) in (5) for Η–  

in hyperspherical coordinates
(from Lin 1974). Note valleys at α = 0 and π/2, a peak at α = π/4, θ12 

= 0, and a saddle
point at α = π/4, θ = π. 
 
 
 
4.4 Low-lying states — adiabatic treatment 
 
The Schrödinger equation in (4) is non-separable so that no exact solutions are
feasible. The different scaling in R of the Coulomb potential and angular kinetic
energy, together with the dependence of Ζ on R are at the heart of this non-
separability, so that expansion/excitation of the system (in R) is inextricably coupled
to the radial and angular correlations (in α and θ12, respectively). For the low-
lying doubly-excited states, however, that is, with Ν ≤ 6 in fig. 5, an adiabatic
separation of R from α and θ12 

has proved successful (Macek 1968). That is,
correlations develop faster than the general expansion of the system under excitation.
Much as in the Bohr-Oppenheimer procedure for molecules, with R held fixed, the
angular part of the Hamiltonian is solved to provide R-dependent eigenvalues and
eigenfunctions, 
 
 

(6) 
 

^

^
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These so-called “channel functions” then provide a basis for expansion of the wave
function Ψ in (4):
 

(7) 
 
 
The eigenvalues Uμ (R)appeal as potential wells in the resulting coupled radial
equations for Fμ (R), the coupling between µ and µ' provided by matrix elements
of d/dR and d2 /d R2 between Φμ 

and Φμ' 
. The initial adiabatic approximation

neglects these couplings, viewing each Fµ(R) as an eigenfunction of a single
potential well Uµ (R),the resulting eigenvalues being the doubly-excited state energy
levels (Lin 1986; chapter 10 of Fano & Rau 1986).

A variety of different approaches may be used to solve (6) to get the Uµ and
Φµ. One is to expand Φ

 
in terms of the basis provided by the “hyperspherical har-

monics” that are the eigenfunctions of Λ R
2

 

and are analogs of the ordinary spherical 
harmonics (Vilenkin 1968; Avery 1988). Generally, the adiabatic hyperspherical 
calculations have viewed doubly-excited states as groups converging to H(N) plus
electron and, therefore, at large R have imposed the corresponding boundary con-
ditions in defining the channel functions. Fig. 10 shows the three lowest potential
curves in the vicinity of the Ν = 2 threshold (Lin 1975, 1976). In independent par-
ticle terms, 2 snp and 2 pns states are strongly mixed in the combinations marked +
and –, together with a smaller admixture of the third configuration, 2pnd, of this
1
 

P° symmetry (Cooper et al. 1963). The curve marked – has a long range attractive
tail which corresponds to the 1/r2 dipole potential on the outer electron because
of the 2s – 2p degeneracy of H(N = 2). This well holds an infinite number of
“dipole-bound” states, the lowest of which is in very good correspondence with the
experimentally observed sharp feature, a “Feshbach resonance”, in fig. 7. The other
broader feature in that figure is seen to correspond to the + curve in fig. 10 which
has a broad barrier region for R > 15a0, a state just above the – 0.25 a.u. Ν=2
threshold energy being temporarily trapped by this barrier to appear as a “shape
resonance”. For a molecular orbital treatment and labeling of similar potentials to
those in fig. 10, see Feagin (1988). 

Adiabatic hyperspherical calculations have been carried out to higher N, the
most extensive H– study in Koyama et al. (1989); Sadeghpour & Greene (1990)
and Sadeghpour (1991). Fig. 11 shows a sequence of potential wells and of doubly-
excited state Feshbach resonances held in the lowest well which has an asymptotic
attractive potential due to the dipole moment of H(N). These resonances conform
well (Sadeghpour 1991) to the experimental data, as illustrated in fig. 8. In each of
these Rydberg series below each H(N) threshold, the lowest level Ν = n in inde-
pendent particle language) fits a “six-dimensional Rydberg formula” (Rau 1983) to
be discussed further in section 5, while higher members of the series (with n > Ν)
then fit the spacings expected of “dipole-bound” states (Gailitis & Damburg 1963;
Gailitis 1980). The greatest numerical accuracy at lower Ν has been achieved by
a so-called “diabatic-by-sector” handling of the coupled hyperspherical equations
(Tang et al. 1992). 

µ
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Figure  10 Adiabatic potential wells Uµ(R) in (6) for 1Po

. States of H–
  converging to

H (N=2) (From Lin 1975).
 
 
4.5 Doubly-excited states in an external field
 
The same Los Alamos experiment that observed the doubly-excited states of H–

  

shown in figures 6–8 has also studied the effect of a strong electric field on them
(Gram et al. 1978; Bryant et al. 1983). Of the two Ν = 21

 

Po resonances in fig. 7,
the sharp Feshbach one was seen to show a linear Stark effect due to mixing with an
almost degenerate 1

 

Se resonance (Callaway & Rau 1978; Wendoloski & Reinhardt
1978). With increasing strength of the external electric field, the resonance finally
disappears, whereas the shape resonance just above threshold persists to even larger
fields. Hyperspherical calculations that give the potential barrier in fig. 10 which
accounts for this resonance have been extended to include the effect of the electric
field on this barrier and, thereby, on the resonance (Lin 1983; Slonim & Greene
1991; Du et al. 1993). Similar studies have also been carried out for Ν = 4 and 5
(Zhou & Lin 1992), and also by conventional configuration interaction calculations
with independent particle functions (Ho 1995; Bachau & Martin 1996). 

Of particular interest among the Ν = 2 states is the lowest one of 3Pe symmetry,
described in independent-electron terms as 2p2

 

. This is bound below the H(N = 2)
threshold with about 9.6 meV. The only one-electron continuum at this energy
being H(N= 1)+ electron which cannot form a state with quantum numbers 3

 

Pe 
 

, 
this state is forbidden to autoionize. It can only decay into this continuum by
also simultaneously radiating a photon along with the electron, these two particles 
sharing the excess energy of ~ 10.2 eV (Drake 1973). The inverse process of
 

–



The Negative Ion of Hydrogen 135 
 

 
Figure  11. Similar to fig. 10 but showing only the lowest potential well for 1Po states
below successive thresholds H(N). Plotted are effective quantum numbers vμ   ( R ) =
[–Uμ(R)/ 13.6 e V]1/2 as a function of R1/2. in each well, the lowest bound states are
shown as horizontal lines (from Sadeghpour & Greene 1990).
 
radiative attachment, H(N= l)+e + γ→+ H

 

(3P
 

e) has been suggested as an efficient
absorption mechanism for ultraviolet light (Drake 1974) and has been observed in
rocket measurements of Zeta Tauri stars (Heap & Stecher 1974). This very long-
lived H– state has not so far been observed in the laboratory but double detachment
(Mercouris & Nicolaides 1993) and photodetachment to the 2s2p 3P° state (Du et
al. 1994) have been studied theoretically as possibly feasible experiments. 
 
 
5. High excitation and the double continuum 
 
As discussed in the previous section, we have now a fairly good and complete
understanding of the low-lying doubly-excited states of H–, both experimentally
and theoretically, including the nature of radial and angular correlations in them. For
states above Ν = 6, however, and as the double-detachment threshold at 14.35 eVis
reached, our knowledge is extremely fragmentary (Nicolaides & Komninos 1987;
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Pathak et al. 1989; Ho 1990, 1992). Experimental data on the series converging 
to such larger values of Ν are sparse and show, as also in He in the corresponding
energy range, ~ 79 eV (Domke et al. 1991, 1995; Wintgen & Delande 1993), that
the series overlap and perturb one another. Hyperspherical treatments as in fig. 11
lead to the same conclusion of many overlapping potential wells (Sadeghpour 1991).
Although at first some analysis can and has been carried out to handle interlopers
perturbatively, it is clear that this cannot extend to really high Ν and the double-
detachment threshold. This is due to the very nature of a Coulomb potential with its
high density of states. In the similar situation of one electron in a three-dimensional
Coulomb potential (plus shorter range distortions), quantum defect theory, based
on continuity properties in the vicinity of the ionization threshold, affords effective
handling of a highly excited electron (chapter 5 of Fano & Rau 1986). Now, for
a pair moving in the six-dimensional Coulomb field in (4), it is likewise natural to
focus on the double-detachment threshold as the starting point on which to base
analysis of the higher reaches of the doubly-excited state spectrum (Rau 1984b).
 
 
5.1 Description as a pair of electrons 
 
The methods described in sections 4.3 and 4.4 while employing joint or pair coor-
dinates, nevertheless, do not give up completely the crutch of independent-particle
descriptions. In particular, the use of N, the inner electron’s principal quantum num-
ber, both in the classification of doubly-excited states and in developing the channel
functions Φµ to converge to successive single-detachment thresholds, introduces
an element foreign to a fully pair treatment. Indeed, calculations revert at large R
even to the independent-particle coordinates r1 and r2 

to get efficient convergence
to the single-detachment thresholds (Christensen-Dalsgaard 1984). Only recently
have treatments emerged that depart from this, proceeding to large R without ever
reverting to single particle aspects (Zhang & Rau 1992; Heim et al. 1996). Once
double detachment is energetically possible above 14.35 eV, it is also the pair that
escapes to R = ∞ as emphasized in Wannier’s treatment of the threshold law for
this process, a point of view essentially different from all others that regard two
electrons as escaping from a central positive charge (Rau 1971, 1984 b,c). 

The focus on the pair coordinates (R, α, θ 12) throughout also organizes the
spectrum of doubly-excited states in fig. 5, the quantum numbers µ, and the potential
wells, in an alternative but very different way from the discussion so far. Thus,
instead of series associated with each Ν as in fig. 5(a), consider the alternative
in fig. 5(b) where the same levels have been redrawn with no reference to Ν and
grouped differently (Rau 1984b). For each v, the pair quantum number that indexes
the number of nodes in θ12, levels drawn similarly (solid, dashed, etc., lines) form
series converging to the double-detachment threshold. For the system of a pair of
electrons in a Coulomb field, this is the only limit compatible with the picture of
the system as a whole, shorn of all independent-particle aspects (Read 1982; Rau
1983, 1984b). A pair principal quantum number v, conjugate to R, and a “radial
correlation quantum number” η, which counts the nodes in α, provide an alternative

–
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basis | ν, η, υ〉 to the adiabatic hyperspherical basis, |N, n, v,〉 or the independent-
particle basis, |N, n ,l〉 The H–

 

Schrödinger equation does not separate in any
coordinate system and, as in any such non-separable problem, any complete basis
set affords a description of the whole system. The choice among alternatives is
made on the basis of appropriateness, one or the other affording a more economical
description depending on the energy range. For the high doubly-excited states and
nearby double continuum in the vicinity of 14.35 eV, when many basis states of
the other sets are strongly mixed, it is the |v, η, ν〉 that more nearly conform to the
physical eigenstates. 

States with the same ν and η but successive values of ν form a “six-dimensional”
Rydberg series with an appropriate Rydberg formula (Rau 1983) and, as already
noted in section 4.4, provide a good description of the lowest states below each N.
Examination of their wave functions is also instructive. The adiabatic hyperspher-
ical calculations such as in fig. 11 had already noted (Lin 1986) that the channel
functions Φμ near R = R min  

for the lowest potential well converging to each Ν
showed a concentration of the wave function near α = π/4, θ12 

= π, the config-
uration in which the two electrons are on opposite sides of the nucleus at equal
distances and which is the saddle point of fig. 9. Viewed as a set of potential wells,
this concentration passed at larger R from one well to the next of higher Ν roughly
in the vicinity of the prominent avoided crossings seen in fig. 11. The locus of
avoided crossings in such a figure is well described by the value of the potential at
the saddle point, namely, Z(R = saddle point)/R. 

This suggests an alternative “diabatic” handling of the hyperspherical Schrödinger 
equation in (4), wherein the set of lowest wells of fig. 11 is replaced by the single 
well in fig. 12 that tracks at large R essentially the saddle value and converges to 
the double-detachment threshold (Heim & Rau 1996). At small R, this potential
coincides with the lowest well, that is, to the lowest eigenvalue   of the Λ2 angular
momentum operator which dominates at small distances. The lowest states in each
of the wells in fig. 11 are thereby seen as a single sequence in the single potential
well of fig. 12. Although the energy positions are little changed, there is a drastically
different picture of the wave functions in the two pictures. In fig. 11, each state has
a radial wave function that is nodeless in R, the higher ones having more nodes in
the hyperangles (while, at the same time, all having peak probability density at the
saddle point). Instead, all the states in fig. 12 have no nodes in angles, having traded
them for successive nodes in R (see also Bohn 1994 and Bohn & Fano 1996). The
two pictures are drastically different for a matrix element such as the one involved
in photoabsorption from the ground state. Because of the staggering in R of success-
sive wells in fig. 11, the wave functions at higher Ν are very (exponentially) small
at small R  which is where the ground state function is concentrated. Therefore,
the matrix element and cross-section for photoabsorption decreases exponentially
in Ν on comparing excitation of this set of states. In fig. 12, on the other hand,
the successive states ν have more nodes in R and the oscillating loops of the wave
function at small R have more overlap with the ground state, the photoabsorption
cross-section dropping off thereby as a power of ν just as is indeed observed. Once
 

^
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Figure 12. Lowest (η = 0) diabatic potential well for pair states, corresponding to the set
in fig 11. At small R, it coincides with the lowest of that set while, at large R, it traces
through the loci of avoided crossings to converge to the double-detachment threshold.
 
 
again, note the one-electron analogy, the description in fig. 11 being like a sequence
2p, 3d, 4f, ..., all nodeless in r but with more angular nodes, whereas fig. 12 is more
like 2p, 3p, 4p, ..., that is, with the same angular structure but more radial nodes.
Energy considerations alone do not suffice for characterization in a Coulomb prob-
lem, given the high degeneracy. One has to examine wave functions as well and,
clearly, the second picture is more in conformity with the excitation of a Rydberg
series, now of double excitations (Heim et al. 1996; Heim & Rau 1996).
 
5.2   Threshold escape of the pair  
 
A sequence such as in fig. 12 of doubly-excited states connects as ν →∞ to the
double continuum above the 14.35 eV threshold. The threshold behaviour of double
escape is, therefore a natural adjunct to the study of highly-excited states (Rau 1971,
1984b). For a one-electron Coulomb problem, the feature that the photoabsorption
cross-section to successive n falls off as n–3 connects to the finite and constant
photoionization cross-section just above threshold (section 2.5 of Fano & Rau
1986). For the two-electron problem, the threshold law was studied by Wannier
(1953) long before any doubly-excited states had been observed. He recognized that
the correlations between the electrons are at an extreme at threshold given that the
electrons are slow, allowing for a long range over which their motion can remain
correlated. A joint, pair treatment was therefore essential and he described one
 



The Negative Ion of Hydrogen 139
 
based on classical mechanics. With reference to our discussion and in the language
of quantum physics, the final state of double escape has to be handled correctly in
terms of the pair’s escape to infinity (Rau 1971, 1984c).
 

It is the final state wave function at large distances that governs the threshold
law and this has to be obtained from (4) for Ε ≥ 0. The kind of radial and angular
correlations that prevail in the so-called “ridge” states described in section 5.1, with
wave function concentration in the saddle of the potential surface, also pertain to
the threshold wave function. Unless the two electrons maintain an equal sharing of
the available energy for most of the escape (that is, stay in the vicinity of α = π/4),
double escape will be thwarted, one or the other getting faster at the expense of the
other which will then fall back into a bound state H(N). This instability towards
falling away from the saddle into the valleys at α = 0 and π/2 in fig. 9 acts as a
suppression mechanism (Rau 1971). In its absence, the escape of two electrons
described as a product of two Coulomb wave functions, would give a threshold
cross-section proportional to E. A “Coulomb-dipole” description (Temkin & Hahn
1974; Temkin 1982), with a Coulomb wave for the inner and a dipole wave for the
outer electron, would give a similar result (Greene & Rau 1985). The additional
suppression in the Wannier pair description raises the exponent from 1; since the
saddle potential and departures from it involve Z, so does this exponent. Both
Wannier’s analysis and a pair hyperspherical treatment of the quantum problem
(cf. a review: Rau 1984c) give the value 1.127 for this exponent for Ζ= 1 which
applies both to photo double-detachment of H (photon energy = 14.35 + E) and
electron-impact ionization of Η (incident electron energy = 13.6 + E).
 

Once again, only the Los Alamos experiment, with its relativistic Doppler
amplification of laser photon energies to about 15 eV, has been able so far to study
the double detachment. Fig. 13 shows a crosssection that is indeed compatible
with the Ε threshold law (Donahue et al. 1982). Other details of the outgoing
electrons, such as the distribution in the mutual angle θ12, or the angular distribution
of one electron with respect to the laser polarization, or spin correlations between
the electrons have not been measured. Theoretical predictions exist on all these (Rau
1984c, 1990a; Kato & Watanabe 1995) but the relativistic velocity of the Η– beam
makes the electrons emerge in a very forward direction as seen in the laboratory,
making their experimental observation difficult. Such measurements will have to
await laboratory photodetachment studies once tunable lasers are available in the
15 eV energy range.  
 

The double continuum of H– can also be studied in electron-impact ionization
of hydrogen. Again, unlike similar studies of threshold ionization of He and other
rare gases by electrons, no such measurements have been made except for one on
the spin dependence of this ionization. The asymmetry parameter for triplet and
singlet double-detachment has been studied close to threshold and compared with
theoretical predictions (Guo et al. 1990, Crowe et al. 1990, Friedman et al. 1992).
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Figure 13. Cross-section for photo double-detachment of H– just above the 14.35 eV
threshold (from Donahue et al. 1982).
 
 
6. Collisions with other particles 
 
 
We have discussed so far the structure of Η– 

 
and its interactions with the elec

tromagnetic field. Collisions involving H–
 

and a second particle have also been
studied (see reviews by Risley 1980, 1983; Esaulov 1986). One, already noted at the
end of section 2.3, is collision with H+, leading to charge exchange or associative
attachment to form H2

+ , processes of interest in stellar atmospheres. Collisions of 1
–25 keV H– ions with Na have also been studied (Allen et al. 1988), as well as
with noble gases and small molecules over a range of energies from about 100 eV
to a few ten keV (Tuan & Esaulov 1982; Montmagnon et al. 1983; Andersen et al.
1984). In the case of molecules, charge exchange to shape resonances plays a major
role. Below about 1 keV, an adiabatic molecular picture based on the zero-range
model of H– 

 

gives an adequate description whereas at higher energies an impulse
approximation for the scattering of the loose electron suffices. There are also the-
oretical predictions of novel structures in H– collisions with atoms (Theodosiou
1991). 

Collisions with electrons, also likely in astrophysical contexts, have been studied
in the laboratory, particularly with the advent of cooled storage rings for ions. An
H–

 

beam in such a ring is merged with an almost parallel electron beam so that a low
energy process such as detachment, e + H– 

 

→ Η+ e + e, can be studied. This time,
unlike in section 5, the double escape is not in a Coulomb but in an asymptotically
 



The Negative Ion of Hydrogen 141 
 
neutral field. Careful measurements (Andersen et al. 1995) show no resonances of
states of H– –

  
but, were metastable resonance states to exist (Lieb 1984 and Simon

1974 have proven thát no stable bound states exist and experimental searches (Chang
et al. 1987) have also been negative), they might be of importance in astrophysics.
In analogy with the tightly correlated Wannier state of two electrons, a similar state
of three low energy electrons in a Coulomb potential would be in the saddle point
of the potential surface and have the geometrical configuration of an equilateral
triangle, the electrons at the vertices and equidistant form the nucleus at the center
Such a tight correlation, with r1 =r2 = r3 

, and the mutual angles between the ri 
equal to 2π/3, would only result from a superposition of a very large number of
angular harmonics, which might account for why it has escaped notice in theoretical
calculations so far (Robicheaux et al. 1994). 

Finally, the latest experiments from Los Alamos are worth noting, in which the
relativistic H– beam is passed through thin carbon foils (Mohagheghi et al. 1991).
The time of interaction is less than a femtosecond, the H– 

 
experiencing a pulse of

the “matter field”. Remarkably, many H– ions emerge unscathed, although both
neutral Η and protons H+ a

 

re also observed. The distribution in principal quantum
number of the neutrals has been studied, showing a falloff roughly proportional to
n–3 for low n (n = 2–5 ) but a much steeper n–8

 

for higher n (10 – 15). Our
understanding of these results and of the interaction of the negative ion with the foil
is as yet very incomplete. 
 
 
 
7. Epilogue 
 
 
The H–

 

ion has played an important and central role from the earliest days of quan-
tum physics. As the simplest, and therefore prototype, threebody quantum system
with long range interactions between all pairs of particles, its relevance extends be-
yond atomic physics to multiparticle problems of chemical transformation and even
more general physics. All three regions of energy, the ground state and photoab
sorption continuum for visible and near ultraviolet, the low-lying doubly excited
states into the “middle ultraviolet” (~ 10 – 13 eV), and the high doubly-excited
states and double continuum in the “far ultraviolet” (> 14 eV), exhibit interesting
and different effects of electron-electron correlations in this system. This essay has
discussed the nature of these correlations and the associated structures, based on
the understanding gained from laboratory experiments and theoretical studies over
the years. Applications, some central as described by Chandrasekhar over fifty
years ago, to astrophysics, and the use of H– 

 
as the initial species for acceleration

in particle physics accelerators and plasma machines, add further interest to this
fascinating species. New techniques that are just emerging, such as the advent of far
ultraviolet telescopes, detailed coincidence measurements of energy, angular and
spin distributions of two electrons, stored beams of H– which can be intercepted by
other particles over a wide range of collision energies, etc., are likely to give even
 

^
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further insight into the physics of Η–

 
and add to the applications in varied areas of

physics and astrophysics. 
I had just begun the writing of this essay when my close friend and colleague,

the astrophysicist Ganesar Chanmugam, passed away unexpectedly. In our long
association, we had many discussions, including some on H– and its early his-
tory. These many memories have been very much in my mind as I wrote and I
wish, therefore, to dedicate this first paper after his death to him and to his many
contributions. 
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