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N O N L I N E A R  P R O B L E M S  O F  T H E  V I B R A T I O N  

O F  T H I N  S H E L L S  ( R E V I E W )  

V. D. Kubenko and P. S. Koval'chuk UDC 539.3 

1. Introduction. More than forty years have passed since the publication of the first studies on the problem of the 
vibration of three-dimensional shell-type structures with finite deflections (i.e., nonlinear vibrations of such structures). The 
nonlinear vibration of shells has by now become one of the most important divisions of the mechanics of deformable solids. 
Solutions have been found to a large number of problems having numerous applications, and unique methods and approaches 
have been developed to obtain those solutions. The progress that has been made in the given area has been the result of the 
efforts of leading scientists in theoretical mechanics from many different countries: S. P. Timoshenko, E. I. Grigolyuk, 
V. V. Bolotin, I. I. Vorovich, I. F. Obraztsov, A. S. Vol'mir, A. N. Guz', Ya. M. Grigorenko, V. I. Gulyaev, E. Reissner, G. 
Donnell, D. Evanson, G. Schmidt, and others. The scope of the discipline is expanding and new avenues of research are being 
opened. Efficient numerical-analytical methods adapted for powerful computers are being developed and introduced into 
practice. At a higher level, modem equipment to excite and record vibrations is being used to perform experimental studies. 

Due to the unusually broad and diverse range of topics that comprise the modem nonlinear dynamics of shells, it is 
difficult to compare most of the scientific investigations that have been made in this area within the scope of a single survey. 
Below, we examine traditional problems in nonlinear shell dynamics that concern period vibrations of thin shells. Our primary 
focus will be on free vibrations, as well as shell vibrations excited by periodic external loads - -  including parametric loads. 
We will also briefly touch on the related topic of determining (identifying) the nonlinear dynamic characteristics of shells 
from an analysis of  experimental data obtained in vibration tests. 

We will not discuss the many other important nonlinear problems of the vibration of shells, including dynamic 
instability under aperiodic-shock loads, impact loads, and other transient loads, free vibrations (flutter), random vibrations, 

inverse problems (in standard formulations), and other problems that could be the subject of extensive independent surveys. 
2. Nonlinear models of shells. The vibrations of all types of actual thin-walled shell structures are essentially 

nonlinear, since there are always nonlinear relations in the laws that govern their dynamic deformation. The study of these 
vibrations as "linear" objects is thus an abstraction of the highest order and is related directly to the process of changing over 
from actual physical phenomena to their mathematical representations in the form of suitable differential (integrodifferential) 
equations. 

The "nonlinearity" seen in the vibrations of shells can have a "geometric" origin (being due to the nonlinear 
relationship between the strains and the displacements) or a physical origin (when the strains exceed the range of application 
of Hooke's law, i.e., when they depend linearly on the forces). In a number of cases, the "nonlinearity" may be caused by the 
complex character of energy dissipation during vibrations. Ceaain problems may also involve nonlinear inertia, which is 
related to the existence of nonlinear inertial terms in the mathematical model of the shells. 

As regards thin shells, the "predominant" type of nonlinearity and thus the type most frequently accounted for in 
mathematical models is geometric nonlinearity due to the flexibility of such shells, i.e., due to their relatively low resistance 
to bending (which causes the shells to undergo displacements that are comparable to their thickness when deformed under 
load). Shells are considered to be thin shells (in problems of dynamics) if their thickness h satisfies the following well-known 

criterion [101]: o~h << 1. Here, co is the characteristic frequency of vibration and c is the velocity of the transverse elastic 
c 

waves. 
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The fundamental principles used in constructing the corresponding linear theories of thin-walled structures have 
served as the methodological basis for the development of the nonlinear theory of shells. Many researchers have contributed 
to the linear theory of deformation of shells. Without discussing the historical aspects of that theory's development, we 
mention the following well-known monographs devoted to the given problem: [5, 36, 37, 64, 87, 148, 202, 220]. These studies 
have provided a detailed exposition of the main postulates of the classical theory of shells and other, refined theories. The 
monographs [5, 9, 10, 26, 65, 73, 80, 81, 132, 151-153, 158, 164, 165, etc.] presented different mathematical methods of 
solving linear problems of shell vibration along with specific results obtained with the models. Surveys of studies concerning 
the above class of problems can also be found among these publications. 

Various aspects of the vibration of shells with small deflections have also been the subject of special survey articles, 
reference works, and other informational literature [7, 8, 35, 66, 166, 179]. 

The principles of the nonlinear theory of shells were laid out in the works of Love and S. P. Timoshenko at the end 
of the XIX centmy and the beginning of the XX century, respectively. Kirchhoff's well-known kinematic and mechanical 
hypotheses were of fundamental importance in the construction of the given theory, having been used earlier to derive the 
equations of deformation of plates. As is known, the use of  these hypotheses essentially reduces the study of the behavior of 
an element of a shell to the study of the behavior of its middle surface. As a result, a three-dimensional boundary-value 
problem in the mechanics of deformable bodies is reduced to a two-dimensional problem. 

This approach was taken further in the research of V. Z. Vlasov [36], Kit M. Mushtari and K. Z. Galimov [50, 51, 
146], L. Donnell [87], Marguerre [207], V. V. Novozhilov [148], A. L. Gol'denveizer [64], A. I. Lur'e [134], A. S. Vol'mir 
[37], I. I. Vorovich [44], W. Flugge [202], and others. However, the conditions necessary for the broad practical use of a 
nonlinear theory of shells based on the classical hypotheses came about thanks to the efforts of L. Donnell, Kh. M. Mushtari, 
and V. Z. Vlasov, who proposed and substantiated a simple variant of the theory m the theory of so-called shallow shells. 
These are shells that allow the use of an approximation in which the metric of the middle surface is replaced by the metric of 
a plane. K. Marguerre later generalized this theory to the case of shells of arbitrmy curvature (in the initial variant, only 
cylindrical shells were considered). The resulting equations, still referred to in the literature as the Donnell-Mushtari-Vlasov 

equations (or Marguerre-Vlasov equations or sometimes simply the Marguerre equations), are known as the equations of the 
theory of"thin shallow shells." They were derived from the general equations by ignoring the shear strains in the expressions 
for the components of the changed curvature of the shell. Inertial sheafing forces are also ignored. These equations are often 
used now to study the characteristics of the nonlinear vibration and dynamic stability of shells. 

Other, refined variants of the geometrically nonlinear theory of shells including those based on Timoshenko's 
kinematic model that are sometimes used to solve various dynamic problems were also discussed in the surveys [1, 4, 74, 
183, 212] and the studies [19, 50, 51, 1011. 

3. Free and forced vibrations. Research into the nonlinear vibration of shells was begun in the middle of the 1950s 
by E. I. Grigolyuk [70, 71] and E. Reissner [216, 217]. These studies were preceded by just a few publications devoted to 
vibrations of simpler continuous systems (rods, beams, and plates) with large deflections. The dynamic deformation of shells 
was studied solely by analyzing their linear mathematical models. The authors of [70, 71,216, 217] were the first to use 
nonlinear equations of the following form in calculations of shell vibrations (for cylindrical and spherical shells) 

_ c~2w 
D v 4 w + p _ _ _  L(w O)+Vk2CD+ 
h a t  2 - ' 
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where w is the transverse deflection; D is cylindrical stiffness; h is file thickness of the shell; p is the density of the material; cD 

is the stress function for the stresses in the middle surface; N x and Ny are the unit forces in the initial stress state; q (x, y ,  t ) is a 

normal periodic load; V k = k x a---~--2 + ky ~ 2  (kx and Icy are the curvatures of an element of the shell in the directions of the x and 
ax  2 a y  2 

y axes, respectively); V 4 and L ale known differential operators. Thus, the dynamic deformation of shells was studied mainly in 
bending (inertial shearing forces were ignored). Researchers chose to represent the solution of Eqs. (1) in the form of monomial 
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("monomodal") approximations, so that a variational method could be used to reduce the initial problem to the study of a 
second-order nonlinear differential equation in the amplitude parameter 

~/-+ o)2f+ $f~ + y f3 = q0 ( t ) .  (2) 

Here, r is the natural frequency of the shell; 8 and y are constant parameters. Integration of the given equation by Lindshtedt's 
method in [70, 711 and Galefldn's method in [216, 2171 (in the latter case, the orthogonalization was done only for one-quarter 
of the period of vibration) yielded the first specific "nonlinear" feature of the deformation of shells with finite deflections - -  the 
fact that their vibrations are asymmetric relative to the undefonned middle surface. In comrast to the linear case, the amplitudes 
of v~ration turned out to be differetl in the directions of outward and inward normals. Meanwhile, the amplitude of the "sag" 
(along the inward normal) was always greater than the amplitude of the bend (along the outward normal). 

The number of publications on the vibration of shells with large deflections grew rapidly after 1955, but all of them 
were initially theoretical in nature. I. I. Vorovich was the first [43] to take a sufficiently rigorous approach in studying 
problems related to the existence and uniqueness of the solutions of the nonlinear equations that describe the vibration of 
shells. The subsequent monograph [441 elaborated on this topic and included an extensive bibliography. (A rigorous proof 
of the validity of using classical shell models - -  particularly the Donnell-Mushtari-Vlasov model - -  in calculations of 
nonlinoar vibrations was also presented by V. I. Sedenko [172, 173] on the basis of more recent developments in the given 

discipline.) 
Among the studies made in the "early" (to use the classification devised by D. Evensen [2191) stage of investigation, 

the most typical are those performed by G. Chu [196] and G. Nowinski [210]. Their findings were subsequently the eanse of 
much debate and discussion, which continues to this day. They were the first to pose and examine a question that is 
fundamental to the mechanics of shells: is the geometric nonlinearity of shells of the"soft" type or the "hard" type. Analyzing 
the amplitude-frequency characteristics (AFCs) for free and forced vibrations, the authors of those studies came to the 
conclusion that regardless of the geometric parameters and modes of vibration of shells (as in [70, 2161, the authors of the 
above works examined unimodal approximations of deflections), their skeleton curves always correspond to nonlinearity of 
the "hard" type (the frequencies of vibration increase with an increase in the amplitudes of vibration). Similar conclusions 
were reached in [14]. However, the reliability of that result was questioned by D. Evensen [198, 199]. In [198] Evensen 
proposed a more complex, binomial approximation of deflection for cylindrical shells 

2 

n 2(t) sin 2rx w =f(t)  sin rx cos s y -  ~-~f (3) 

m ~  /,i Here, r = - T -  ; s = ~ are the wave generation parameters; R is the radius of the shell; I is its length. In contrast to [196], function 

(3) satisfies the periodicity condition [38] and vanishes at the ends (in contrast to [2101). In addition to geometric nonlinearity, 

nonlinear inertia is exhibited in the equation for determining f(t). Their combined effect results in an amplitude-frequency 
characteristic of the "soft" type. In fact, this type of AFC was observed experimentally soon thereafter [ 199, 2111. 

An important new stage in studies of the vibrations of shells was begun during the period 1966--1968 by D. Evensen 
and R. Fulton [200, 201], who were the first to point out and substantiate the need to qualitatively complicate the 
approximation of the deflection w. The experimental data which had been obtained up to that time indicated the existence of 
complex, unconventional stationary waves and modes of deformation in the case of closed circular rings and cylindrical shells 
subjected to periodic loads. The crux of the problem was accounting for wave (circumferential travelling wave) processes 
caused by the superposition of "conjugate" bending modes, i.e., geometrically similar modes phase-shifted in the 

circumferential direction by the angle ~--~_. In the case of a cylindrical shell, the deflection w is represented in the form 

2 
n 

w =fl (t) cos sy sin rx +f2 (t) sin sy sin rx - ~-~ Ill 2 (t) +f22 (0 ] sin2 rx. (4) 
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(It should be noted that a dual-wave mode of deflection had already been used in calculations of nonlinear vibrations 
of circular rings [188, 199]). As studies showed, a travelling wave is realized in a shell only within a certain zone of the 
resonance region in which vibrations in both conjugate modes are stable simultaneously. Outside this zone, unimodal 
vibrations take place in the mode that was excited directly. 

In the study [1971 by E. Dowell and C. Ventres, a cylindrical shell was modeled by a system with three degrees of 
freedom 

w =f l  (t) cos s y  sin rx +f2 (t) sin s y  sin r x +f3 (t) sin r x .  (5) 

However, the periodicity condition was satisfied only on the average, which would obviously result exclusively in 
" h a r d "  AFCs for all four modes (n = 2, 4 .... ) regardless of the parameters of the shell m, l, h, and R. This approach was 
developed further by S. Atluri in [194]. The results therein agree qualitatively with [197]. 

However, directly opposite conclusions were reached by T. MatsnTnki and S. Kobayashi in [208], where a study was 

made of vibrations of a shell with clamped ends. These conclusions were also supported experimentally by the authors. 
Nevertheless, in subsequent studies by J. Ginsberg [203], J. Chen and C. Babcock [195], A. I. Telalov [182], and others, it 

was shown that both types of AFCs - -  "soft" and " h a r d "  - -  are possible for cylindrical shells, depending on the modes that 
are excited. 

As follows from the above discussion, complete clarity has yet to be achieved in regard to the state of the given 
problem as a whole. Still to be definitely determined are the general principles underlying the effects of the physical and 
geometric parameters of shells, the wave generation parameters, boundal3t conditions, and other factors on the nonlinear 
dynamic characteristics of these shells m particularly their natural frequencies. Without a resolution of this issue, it will be 
impossible to reliably predict resonance situations that might arise when a shell is acted upon by periodic (nearly periodic) 
external loads. 

Nonlinear free and forced vibrations of cylindrical shells, most of them unimodal, were also examined in [16, 17, 

96, 155, 156, 170, 204, 213], etc. Some of these investigations considered physical nonlinearity in addition to geometric 

noulinearity and analyzed their interaction. The author of [170] attempted to evaluate approximate analytical solutions 
obtained by the method of harmonic balance (HB). It was shown that the mode of nonlinear vibrations of a shell having a 
relatively large amplitude differs appreciably from the corresponding harmonic mode and that the HB method can lead to 
even qualitatively incorrect results in ceruain cases. 

In addition to analytical approaches, numerical methods of solving nonlinear problems of the dynamics of shells 
were the subject of  considerable research in the 1970s. The most important results in this area were obtained by A. S. Vol'mir 
and his colleagues [38, 39, etc.] and by N. V. Valishvili and V. B. Silldn [34, 33, 176]. The generalized monograph [33] 
presented different computer algorithms that are based on the straight-line method and were developed to calculate 
characteristics of  free and forced vibrations of spherical (in the case of the "shallow model") shells with large deflections. 
Dynamic problems ultimately reduce to a Canchy problem that can be solved by the Runge-Kutta method with automatic 
selection of the step (depending on the prescribed accuracy). An important conclusion reached on the basis of the results 
obtained in [33] is that the use of simplified (especially unimodal) models of shells in calculations can lead to serious errors 
in the determination of the parameters of their vibrations and, thus, the stress-strain state (SSS) as a whole. 

Numerical methods of performing dynamic calculations for shell structures on the basis of both linear and nonlinear 
models were further refined and applied in practice in several subsequent generalizing publications [40, 41, 45, 46, 72, 76, 
95, 141, 147, 150, etc.]. The emphasis in most of these studies was on aspects of the nonsteady deformation of such structures, 
including their interaction with the environment. 

As regards investigations of periodic modes of shell deformation with the use of analytical methods, research in this 

area proceeded in several main directions. The research in one of those directions was begun by A. S. Vol'mir and his followers 
in [39, 97-100, etc.], where a geometrically nonlinear formulation was used to examine problems on the free and forced 
vibrations of shallow cylindrical shells with allowance for small initial shape flaws. Fairly complete surveys of early studies 
in this area were made in the monograph [39] and the article [77]. In these investigations, the initial deflection 

w 0 = w 0 (x, y ) is usually treated as a component of the total deflection w (w = w o + w 1; W l is the additional or dynamic 
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deflection). The functions w I and w o are represented in a form that reflects the character of wave formation in shells during 

loss of stability [381 

w I =f l  (t) sin rx sin sy +J~ (t) sin 2 rx; 

Wo =fl0 sin rx sin sy +J~0 sin2 rx, (6) 

(fl0 ,J20 = const). 

The second term in w I is the "correcting" term and is introduced in order to represent specific features of shell 

deformation with conical deflections ("preferential inward buckling" [391). Most problems have been solved by the 
Bubnov-Galerkin method, with subsequent use of methods from nonlinear mechanics (particularly the harmonic balance, 
perturbation, K~lov-Bogolyubov, and small parameter methods). It was found that the skeleton curves of the shells usually 
corresponded to the =soft" type of nonlinearity. For certain wave generation parameters, the frequency characteristics 

corresponded to the combination ("soft-hard") type. An initial deflection w 0 results in more pronounced asymmetly of the 

amplitudefl (0 relative to the undeformed middle surface (with its direction toward the center of curvature). 

A similar approach was used later in the studies [56-59, 91, 140, 186, etc.]. V. I. Matsner [140] took actual 
(determined in special measurements) initial deflections into consideration in the shell equations, which accounted for the 
good agreement between the theoretical and experimental values of the natural frequencies of the shell (the shell was 
cylindrical and was reinforced by a set of stringers forming the primary structure). The deformation of shells was described 
in the studies ofM. S. G-ershtein and S. S. Khalyuk [57-591 by using equations from the technical theory that were obtained 
with allowance for transverse shear strain. Here, the Kirchhoff-Love hypothesis is assumed to be valid for each load-bearing 

layer, while the hypothesis of an assigned distribution of transverse shears is adopted for the shell as a whole. The authors 
came to the conclusion that the degree of  nonlinearity - -  usually "soft" - -  which is manifested during shell vibrations is 

greater, the larger the parameter h = h/R. 
The methods developed for cylindrical shells have also been used to calculate the nonlinear vibrations of shells of 

other forms, especially spherical shells [11, 78, 88, 125, 171, 191,215, etc.]. 
N. I. Zhinzher and V. N. Denisov proposed a special asymptotic method for solving nonlinear problems on the 

unimodal vibration of shells. The method is based on the notion of dynamic edge effects. It was used to study the effect of 
geometric nonlinearity on the asymptotic distribution of the natural frequencies of cylindrical panels and shells. 

A second direction being taken in research is related to the solution of nonlinear problems of shell vibration on the 
basis of multimodal approximations of the deflections. It became obvious by the end of the 1970s that the previously examined 
unimodal models of shells were basically unusable for describing many of the phenomena which are observed experimentally 
and have their origin in the intensive interaction of several modes of vibration that are equivalent in terms of their energy 
contribution. 

In [52, 105, 106, 127, 128, 130, 131, 168], ~results were presented from theoretical analyses of the bimodal 
deformation of cylindrical and spherical shells during free and forced vibrations. The "nonlinear" behavior of the shells was 
studied on the basis of dynamic equations written in mixed form (type (1)). As the interacting modes, conjugate modes were 
chosen in one case, while arbitrary modes (with different wave parameters) were chosen in another instance. Proceeding on 

the basis of an analysis of  the free vibrations of shells, researchers showed for the first time that, when internal resonances 
are present (when the natural frequencies are close to one another or are multiples of one another), it is almost impossible to 
realize individual bending modes of the shells - -  the excitation of a given bending mode by some means invariably causes 
the excitation of other modes that are "resonant" with the mode excited first [128, 130]. In this case, the resolvent equations 

permit first integrals of the form k I ~ + k 2 a~ = C O (kl, k2, C O = const),  where a 1 and a 2 are the amplitudes of vibration 

corresponding to the resonance modes. This basic fact must be considered when choosing approximations for the deflection 
w. Taking it into account is particularly important in the case of closed shells of revolution, since they are always characterized 

by internal resonance (due to the existence of conjugate modes). 
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The studies mentioned above were the first to theoretically explain one other specific ef fec t - -  the "splitting" of the 

frequency spectrum of nonideal shells (compared to the case of the corresponding ideal shells, when w o = 0). 

This phenomenon was observed experimentally as early as 1951 by Tobias [221], who showed that there are two 

preferred nodal configurations for each mode of vibration of a cylindrical shell. In the general case, these configurations have 
different natural frequencies. The difference between the frequencies can be regarded as a"measure of the initial imperfections 
in the shell." The presence of two peaks on the experimental AFCs and "splitting" of the frequencies were also described 
later by Koval [205], A. I. Telalov [182], and the authors of [52, 128]. In [103, 105, 130], a detailed study was made of the 

effect of initial imperfections on the forced bimodal vibration of cylindrical shells. The case of the interaction of conjugate 
modes was examined. Dynamic deflection w I was represented in the form 

w i =fl (0 cos sy sin rx +f2 (0 sin sy sin rx +f3 (t) sin 2 rx, (7) 

and corresponded in the linear approximation to the initial deflection. Figure 1 shows a typical AFC corresponding to vibrations 

in a mode excited directly by the external force. Here, ~ is the amplitude of vibration in this mode; ~ is the frequency of periodic 

excitation; s and D a are natural frequencies of the shell that correspond to conjugate modes. It can be seen that in addition to 

the traditional ("classical") region of instability A, there is another region B which is formed as a result of nonlinear coupling of 
the conjugate modes and the exchange of energy between them. The presence of the second region is responsible for the existence 
of the sectionMiNon the upper branch of the AFC. No unimodal modes of vibration are realized on this section. Studies show 

that in this zone bimodal v~rations take place (both conjugate modes participate in the deformation of the shell) with the 
amplitudes ~ and b, respectively (Fig. 2). A narrow zone C was discovered theoretically at about the same time. Unimodal and 

bimodal modes are unstable simultancously within this zone. Certain random modes also exist in the zone, the form of these 
modes depending on the initial conditions. 

Random "jumps" in the amplitudes of forced vibration of shells had already been described experimentally in [ 195], 
where it was proposed that the jumps could either be a fundamental phenomenon or could be characteristic only of the specific 

experiment. However, the authors of [195] did not theoretically examine the stability of the steady-state solutions that they 
obtained, which casts some doubt on the matter of whether or not they can actually be realized. The region in which the 
experimentally observed jumps occur probably coincides with the region of instability of those solutions. 

Similar "irregularities" in the behavior of full-scale shells subjected to deterministic periodic excitation were also 
observed in [ 128, 113 ]. It is important to note that the manifestation of random modes was preceded by fairly complex periodic 
modes of the travelling circumferential wave type (the amplitudes and phase velocities of these waves generally evolve over 
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time, rather than being constant). It was also found in a theoretical analysis that the region of dynamic chaos is always absent 

in the case of ideal shells (when w o = 0). Its realization requires that the elastic system possess a certain "asymmetry," and 

such asymmetry could be caused by initial deflections (which are nonaxisymmetric). It is also necessary that the external 
load be sufficient to overcome the forces which impede the indirect excitation of a second conjugate mode. 

Forced nonlinear vibrations of shells corresponding to the interaction of nonconjugate bending modes (i.e. modes 
with different wave generation parameters) were examined in [106, 117, 128]. The effects of the interaction in this case are 

qualitatively similar to the case when conjugate modes are accounted for in the deflection w. 
An unconventional approach was used in [107, 114, 115, 129] to calculate the nonlinear multimodal deformation of 

cylindrical shells subjected to periodic excitation. In this approach, the sought deflection w is represented in a mixed 

(space-time) form 

k=O j = l  

k= -;rJ = t J 

which is typical of wave expansions. In fact, in the general case each term in (8) describes a travelling bending wave whose 

amplitude akj and phase o~kj are certain functions of time. f fakj  = const and Otkj = t~ O t, where COkj is one of the natural frequencies 

of the shell, then this wave becomes a "classical" travelling wave characterized by a con,slant amplitude and constant phase 
velocity. The advantage of the given approach is that it makes it possible to reduce the solution of the initial problem to the 
analysis of equations that are free of the internal resonances characteristic of conventional approaches. Special methods based 
on averaging techniques were presented in [112, 125] to determine the parameters of waves - -  amplitude, phase velocity, and 

period. The solution for the functions akj and ~kj in (8) is represented in the form: 

ajk = ~[Ujk + Vjk Sin 2 (~  t + Sjk ) ; 

+ s : )  + v :  
O~jk : ~Pjk + arctan~'k tan(f)/_ ~ (9) 
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( / = 1 , 2  .... ; k = 0 , 1 , 2  .... ) ,  

where ujt, vjt are the amplitude parameters of the wave and Cpjk, 8jk are its phase parameters. This solution characterizes a 

stationary wave in a shell when ujk = vflo while when ujk, vjk it characterizes a travelling bending wave with a phase velocity 

equal to Vp = + ~jk ~hi. Figures 3 and 4 show graphs of the dependence of phase velocity on the wave parameter n and the 

dimensionless amplitudes ~ = ajk/h for a shell with the following parameters: 

11-- 1 h E=2.10  r a ; ~ = 2 . 5 ;  =3.125.10-3;p=7.g-lO3kg/m3;~t=O.3;R=O.16m;m=l. 

It can be seen that the minimum velocity of  the wave Vp is realized at n = 7. It is also interesting to note that the 
fundamental frequency of this shell corresponds to n = 6. The phase velocity of the wave always decreases with an increase 
in the amplitudes, with the largest decrease being seen for the mode (m = 1, n = 6). 

Figure 5 shows the general form of the AFC 

a h 2 h 2 , 

constructed inthe case m = 1, n = 6, Q0 = 60 Pa 11151 (here, Qo =Fo/ph ; FO is the intensity of the periodic external load, with 

the period T = 2n/~) .  The sections KR and PQ correspond to unimodal deformation of the shell (in the form of a stationary 

wave); sections RL and RS correspond to deformation of the shell in the form of a travelling wave (the frequency curves 

represented by dashed lines are unstable). 
V. I. Gulyaev, V. A. Bazhenov, E. S. Dekhtyaryuk et al. [82, 83, 68, 69, etc.l used a somewhat different ("classical") 

formulation to examine nonlinear travelling waves in shells of revolution due to moving periodic loads. Along with simplified 

(traditional) shell models, these researchers used complex models that account for transverse shear and rotational inertia. The 

emphasis of  these investigations was on devising effective algorithms for calculating and then analyzing the stability of 
periodic wave solutions of the corresponding dynamic equations. The algorithms are based on the combined use of the 
parameter continuation method, the Newton-Kantorovich method, Floquet's theory, and methods from branching theory. 
The algorithms made it possible to perform detailed studies of the resonance properties of shells of  different geometries, 

examine complex nonlinear restructuring phenomena due to the resonance interactions of different waves, determine the 
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dependences of the amplitudes of waves on the loading parameters, etc. Certain nonlinear problems on the propagation of 
free periodic waves in cylindrical shells were also studied. 

"Polymodal" approaches to calculating the periodic vibrations of thin shells on the basis of geometrically nonlinear 
models were further generalized and developed in several investigations [75, 85, 86, 90, 92, 93, 133, 157, etc.] conducted in 

the Scientific Research Problems Laboratory at the Kiev Institute of Construction Engineering (now Kiev Technical 
University of Construction and Architecture). Some of these investigations were partially reviewed in [741 by Ya. M. Grigorenko 
and V. I. Gulyaev. A distinguishing feature of this research was the use of the finite-element method to develop effective 
computational teclmiques that allow the construction of finite nonlinear dynamic models of shells. Several (5-10) lower 
bending modes (obtained from the solution ofa  linearized problem) were used as the basis functions. Subsequent expansion 
made it possible to adequately describe the field of membrane displacements that accompanies large deflections. The system 
of re.solvent equations of  the shell has the form 

f/+ 2~,~ +o2f + ~y/,/c, lfjfkft=qi(t) ' 
j,k,l 

( i , j , k , l =  1 ,2  . . . .  N ) .  (lO) 

Here, ~i are the damping parameters; co i are the natural frequencies of the shell; y/; k, t are constant coefficients; q~, (t) are periodic 

functions of time. A "global" (to use the authors' terminology) analysis of this system made it possible to study the entire range 
of complex modes and regimes of dynamic deformation of the shell which are attributable to mode interactions that take place 
under harmonic loading. Included in that range are periodic, quasi-periodic, and random modes. It was believed until recently 
that a shell subjected to deterministic oscillating loading could undergo only harmonic (subharmonic) vibrations. However, deeper 
investigation of this matter proved otherwise. In addition to regular modes, such shells can also undergo random vibrations whose 
main property is their unpredictable behavior. The authors of [85, 86, 90] provided a detailed description of mechanisms 
("scenarios") fora change from regular v~rations to random vibrations (in the ease of cylindrical shells), used qualitative methods 

to examine the phase trajectories corresponding to random processes, determined the dominant modes whose interaction results 

in the formation of limiting sets of the "strange attractor" type, and proposed methods of identifying random vibrations. 
�9 There has recently been increased interest in more thorough study of problems concerning the dynamic interaction 

of the bending modes of  thin shells under complex resonance conditions, especially for combination resonances. Modem 
analytical methods are being used in this effort. The process of interaction is being examined within the context of the general 
theory of  nonlinear waves in distributed systems on the basis of such concepts as plmse and group synchronism and resonance 
wave ensembles [1671. The first studies in this area were performed by A. I. Potapov and D. A. Kovrygin for closed circular 
tings [121, 122, 163]. They examined interaction and energy exchange under conditions of phase synchronism (in this case, 

the normal frequencies of the ring co i and the wave vectors (ki} sa t i s fy  the conditions co I + o 2 = o 3 ; k 1 + ~ = k 3) between 

high-frequency (radial) vibrations and a bending wave created by the superposition of conjugate modes. An analysis of the 

evolutionary equations established that the circumferential mode of vibration becomes unstable (in relation to small 
perturbations) and results in the resonance excitation of two coupled bending-circumferential waves that travel in opposite 
directions. Formulas were obtained for the period of energy transfer between the radial vibrations and the travelling waves. 

The same problems were further examined in [119, 120] for infinitely long cylindrical shells. As in the case of the 

ring, the interaction of vibrational and wave modes of deformation was studied for free vibrations, which were described 
using the Flugge-Lur'e-Byme model. The author demonstrated the connection between that model and the classical 
Timoshenko and Donnell-Mnshtari-Vlasov equations. An analysis was made of mechanisms by which axisymmetric waves 
in a shell could become unstable, leading to the excitation of bending waves propagating in the longitudinal direction and 

travelling waves propagating in the circumferential directiorL 
A. I. Manevich [1391 examined a conceptually similar problem concerning the features of nonlinear interaction in 

the case of fundamental internal resonance (o~ l ~ co2) of conjugate bending modes of a circular ring undergoing free vibration. 

Using the method of multiple scales [209] in combination with topological analysis, Manevich was the first to obtain and 
study the "amplitude-frequency modulation" integral that links the amplitudes of vibrations in conjugate modes with the 
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phase shift between those vibrations. It was shown that one of two outcomes is possible, depending on the initial conditions: 
the classical travelling wave mode (with constant amplitude and constant phase velocity), with the wave propagating in the 
circumferential direction; complex amplitude-frequency modulated vibrations (resulting from the superposition of slow 
modulation waves and a rapid travelling wave). Obviously, the results reported in [1391 can easily be generalized to the case 
of cylindrical and other shells of revolution, since only circumferential modes take part in the formation of the above-described 
wave motions. 

4. Parametrically excited vibrations. Problems concerning parametric vibrations arising from periodic loads 
applied in the plane of the shell occupy a special place among noulinear problems on the vibration of thin shells. Since such 
loads enter into the main differential equations of the shell in the form of parameters, they are called parametric loads. In the 
scientific literature, problems of this type are usually referred to as problems of dynamic instability, since their resolution 
mainly involves solving the problem of loss of stability by the shell and subsequent examination of the supercritical (realized 
after loss of stability) modes of deformation. These two steps in the solution of the overall problem of dynamic instability 
are related to each other, and the ensuing discussion will be held within this context. 

The basic postulates of the theo~j of nonlinear parametric vibration of different elastic systems, including shells, 
were laid out in the famous monograph [231 by V. V. Bolotin published more than 40 years ago. The concepts underlying 
those postulates were later widely used by many investigators. The results that were obtained are reflected in the generalizing 
monographs by A. S. Vormir [38, 391, G. Schmidt [189], S. A. Ambartsumyan [51, A. E. Bogdanovich [19], A. P. Filippov 
[1841, V. O. Kononenko [94], and others. 

As was the case for problems of forced vibrations of shells, the first studies in the given area were oriented toward 
use in calculations of simplified unimodal models obtained within the framework of traditional classical hypotheses. Inertial 
shearing forces, inertial rotational forces, and transverse shear strains were usually not considered. The problem of 
determining the stability of the vibrations of shells was reduced to the solution of the Mathieu-Hill problem [ 135, 136, 190]. 
This involved the use of one of the most important conclusions reached by V. V. Bolotin, stating that the boundaries of the 
regions of dynamic instability (RDIs) of shells can be judged on the basis oflinearized forms of their equations of deformation. 
The RDI was constructed by various analytical methods, especially the method of trigonometric series, the small-parameter 
method, the Krylov-Bogolyubov asymptotic method, and other methods in nonlinear mechanics [22, 23, 135-138, 187, 190, 
etc.l. Effective numerical-analytical methods of constructing the RDI (the method of transfer matrices and the method of 
generalized Hill determinants) were also proposed in studies by V. V. Bolotin [24, 25]. These methods are free of the 
traditional assumptions regarding the smallness of the dissipative terms, the slight modulation of the parameters, and the 
closeness of the investigated system to the corresponding canonical system 

Among the most notable publications in the early stage of investigation of parametric vibrations of shells is the cycle 
of studies by V. Ts. Gnuni [60-63, etc.], as well as the works by G. V. Mishenkov [144, 145], S. A. Ambartsumyan, G. E. 
Bagdasaryan, and V. Ts. Gnuni [6, 13, 15, etc.]. The focus in this research was on anisotropic shells of revolution with 
symmetrically arranged layers (isotropic shells were examined in [144, 1451). Stability was analyzed and the amplitudes of 
the parametric vibrations were calculated by analyzing ordinary differential equations with a periodic coefficient 

J'+ 2g)'+ co 2 (1 + 2 I.t cos vt)f+F(f, .):, f t) = 0, (11) 

obtained by the Bubnov--Galerkin method. Here, g is the damping parameter, Ft is the depth of modulation of the parameter, v is 
. .  

the frequency of parametric excitation; F is a function which is nonlinear with respect tof,f, andfand in most cases has the 

form F = 8 f  2 + y f3  or F = 8 f  2 + y f3  + 2 ~:f()2 + f~ ) ,  (8, y, ~: = con.st). 

As calculations showed, vibrations that occur in the region of the principal parametric resonance (co = v/2) usually 

tend toward higher frequencies v (i.e., the AFC is of the "soft" type). At the same time, long cylindrical shells have AFCs of 

relatively complex form: vibrations tend toward smaller values of v for low amplitudes a and in the opposite direction for 
high amplitudes (Fig. 6). 

Parallel with the above-noted investigations, solutions were being obtained to the first problems on the effect of 
initial imperfections on parametric vibrations of shells [53-55, 102, etc.]. Initial deflection w 0 was assigned in the form 
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w o =j~ cos rx cos sy in the studies by R. E. Geizenblazen and in the form w 0 =fo sin rx sin sy + ~o sin2 rx, ( fo,  ~t0 = cons0 in 

the investigation by S. Kislyakov. 
It was usually assumed that such deflection does not give rise to prestresses in shells and that the deflection can be 

regarded as being of  the same order as the thickness h. The deflection w I was approximated in relation to the form of the 

function w o (x, y) (corresponding in form to the latter). It was established that the initial deflection w o causes a certain 

expansion of t ic  RDI. The effect of an axisymmetric imperfection w o = w o (x) on this expansion is significantly greater than 

the corresponding effect of  a nonaxisymmetric imperfection w o = w 0 (x, y) .  

In the studies by Yao [222, 223], problems on parametric vibrations of cylindrical shells were solved on the basis 

of more complex approximations of  t ic  deflection w. For example, it was assumed in [223] that 

w =A (0 cos,'x cos sy +A (0 cos 2,-x +A (0 cos 20, +.fi (t). (12) 

A numerical analysis of equations obtained as usual by the Bubnov-Galerkin method allowed the author to show 

that only the first term in (12) makes a decisive contribution to the development of parametric vibrations. 
Other investigations of  parametric vibrations conducted by foreign authors prior to 1970 were surveyed by S. Shu 

in [219]. Among other studies carried out during this period, we should mention those performed by R. M. Finkel'shtein 
[185], G. V. Nozhak [149], A. A. Berezovskii and Yu. I. Zharii [18, 89], N. K. Alekseeva [2, 3], G. M. Sal'nikov [169], Zh. 

M. Sibukaev [174]. Also noteworthy is later research by O. Adams and R. Evan-Iwanovski [192, 193], J. Singer, J. Arboc, 
and C. Babcock [218], H. Radwan and J. Genin [214], E. F. Sivak [175], and others. In most of these works, solutions to 
problems on the parametric vibration of  shells (mainly cylindrical and spherical shells) were obtained by the Bubnov-Galerkin 
method and the use of simplified approximations of the deflection. The correctness and usefulness of  these solutions depend 

to a significant extent on a successful choice of deflection approximation. 
A number of  problems on the parametric vibration of cylindrical shells were solved using the approach proposed by 

A. S. Vol'mir and A. T. Ponomarev [42]. These authors approximated the deflection function w by means of  a trinomial 

expression 

w =f( t )  [sin rx sin sy + ~ (t) sin 2 rx + qo (t) I. (13) 

Here, the function q~ (t) was determined on the basis of the condition of closure of the shell, while the parameter ~ (t) was found 

approximately from the solution of the corresponding "quasistatic" problem [38]. Two types of parametric excitation of shells 

were examined: 1) the action of an axial load N x = N o + N l cos Vlt (in combination with constant radial pressure q = qo); 2) 

pulsating external pressure q = qlo cos v2t (in combination with axial static compression N x = Nlo ). The studies conducted in 
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[42] led to the important conclusion that both "soft" and "hard" excitation of a shell can be achieved by vaiying the parameters 
of combination static-dynamic loading (an orthotropic model was studied). An increase in the parameter qo (or NIt ) leads to 

expansion of the RDI and its simultaneous shifting to a region of lower excitation frequencies v I (v2). 

The investigation [160] was apparently the first to examine unimodal parametric vibrations of a cylindrical shell 
with allowance for the imperfect elasticity of its material (the Davidenkov-Pisarenko hysteresis loop [1591 was chosen to 
describe this elasticity). Features of the effect of physical nonlinearity on the characteristics of parametric vibrations were 

compared with the effect of nonlinear elasticity and inertia. 
Parametric vibrations of cylindrical shells of nonlinearly elastic materials in a unimodal regime were also examined 

by S. B. Sinitsyn [177, 178] and Yu. N. Tamurov [180, 181]. When allowance was made for the energy losses, they were 
assumed to correspond to frequency-independent (Bock-Sorokin hypothesis) and amplitude-dependent internal friction. It 
was shown that it is inconrect to use the well-known viscous friction hypothesis (Voigt hypothesis) in calculating parametric 
vibrations of shells with a hard nonlinear elasticity characteristic, since internal friction decreases with the frequency of 
vibration. This makes it impossible to establish the maximum amplitude of vibration (the upper branch of the AFC never 

intersects the lower branch). 
The first attempt to investigate multimodal parametric vibrations of shells was made by A. I. Telalov [182], who 

examined a nonlinear problem concerning the dynamic instability of a cantilever-supported cylindrical glass-plastic shell 
subjected to kinematic excitation (the top end of the shell was simply supported). The dynamic deflection w was approximated 

by the expression 

w = gi  (0 cos sy +f2 (0 sin syl X (x) - -~ lf~ 2 (0 +f2 2 (0l x 2  (x), (w 0 = 0), (14) 

whereX (x) are the axial coordinates of the function. The Bubnov-Galerkin method was used to obtain a system of two nonlinear 

equations with variable parameters 

?, ( 1 -  2 .  cos vol ,  § § o, (15) 

where co 1 and 0) 2 are natural frequencies which are a priori  assumed to differ somewhat from one another. An analysis of this 

system established that normal unimodal supercritical modes of deformation can become unstable at certain frequencies of 

excitation v. 
Substantial progress was made in the cycle of investigations [52, 104, 105, 128, etc.] on multidimensional problems 

concerning parametric vibrations of cylindrical shells, including shells with initial imperfections. The deflection 
approximation was constructed by a method typically used for forced vibrations (in the case of hinged support of the ends) 

wl =fl (t) cos sy sin rx +f2 (t) sin sy sin rx +./~ (0 s in2 rx +f4 (0. (16) 

The cofunctionj~ describes radial vibrations of points belonging to the end sections (the stress state of the shell is 

assumed to be momentless prior to loss of stability). The initial deflection w o was assigned in a form analogous to Eq. (16) 

~ o  = o). 

It was shown that interaction in the region of tile main parmnetric resonance of the modes can give rise to complex 
buckling modes, particularly "progressive" (with increasing amplitude) travelling waves. Initial deflections in turn result in 
a certain transformation of the RDI - -  they shift it in the direction of higher or lower (compared to an ideal shell) excitation 

frequencies v. Figures 7 and 8 show typical AFCs a = a  (v), b = b (v) of parametric vibrations of a shell with an 
nonaxisymmetric initial deflection These results were obtained for two cases - -  when the RDIs corresponding to conjugate 
modes in (16) do not intersect and when such intersection takes place (Fig. 8) (as usual, the stable sections are represented 
by solid lines and the unstable sections by dashed lines). The occurrence of the "double" vibrational hysteresis seen here has 

been repeatedly demonstrated experimentally in corresponding vibration tests of smooth metallic and glass-plastic shells 
[182, 49, 52, 79], shells with apparent additional masses [48, 128, 791, and reinforced shells [791. The width of the region in 
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which hysteresis "frequency pulling" takes place is usually many times greater than the width of the region of dynamic 

instability. This is illustrated by Fig. 9, in which the regions A (A') correspond to excitation of the mode m = 1, n = 3 of a 

two-layer glass-plastic shell (1 = 0.96 m; R = 0.16 m; h = 5.10 -3 m) that was cantilever-supported in tests. Regions B (B') 

correspond to the excitation of  the corresponding conjugate mode [128] (here, v is the frequency of vibration of the platform 

of the vibration stand and p is its vibrational acceleration). 
The experimental studies also show that the AFCs of all of the shells subjected to parametric excitation have the 

form typical of nonlinear systems of the "soft" type (except for one or two lower bending modes (n = 1, 2)). This result was 

obtained earlier in a study of unimodal modes of buckling [27, 32, 80]. 
An attempt was made in [109] to theoretically explain the poor correlation between RDIs obtained by experiment 

and calculation. Bimodal parametric vibrations of a cylindrical shell with small holes were examined in [ 116]. The problem 

was solved by replacing part of the multiply connected structure by a "continuous" model with nonuniform bending stiffness 
and nonuniform density [ 164]. Combination parametric resonances occurring in the vibration of cylindrical shells (including 
shells with apparent additional masses) were studied in [189, 123, 111]. The authors described a specific "destabilization" 

phenomenon (expansion of the RDI) that was attributable to the combined effect of damping forces and initial deflections. 
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A wave approach to the calculation of bimodal parametric vibrations of shells (with the deflection w being represented 

in the form of a generalized travelling wave) was used in I112, 162]. The resonance solution for the amplitude and phase of 

the wave process has the form (9), with allowance for the substitution s = v/2. The AFC in this case (curves I and 2 in Fig. 

10) differs in form from the traditional frequency characteristics for parametric vibrations (straight lines 1 "and 2"exist only 

when ~ > C = a2 (0) ~ (0)) (the notation used in the figure: ~ is the amplitude parameter of the wave; A = ~ - v/2; I~ is the 
o~ 

level of parametric excitation). It can be seen that the excitation of bending modes in the shell requires that an initial energy 
"push" be provided by assigning certain nontrivial values to amplitude and phase velocity. 

A similar formulation was used in [108] to study features of parametric vibrations of cylindrical shells additionally 
loaded by periodic radial pressure that was nonuniformly distributed over the lateral surface. The authors examined the case 
when the frequencies of both loads (longitudinal and transverse) satisfy the resonance relation and thus establish the 
prerequisites for the excitation of parametric and forced vibrations with a large amplitude. The AFC constructed for this case 
consists of sections characteristic both of purely forced vibrations (sections CPQ and L D M  in Fig. 1 I) and parametric 
vibrations (VK). The branch of the AFC corresponding to parametric vibration VK is realized (is stable) only at frequencies 

v such that v < v D = v 2 (point D is the point of intersection of curves 2 and 3). The phase of the parametric vibrations is unique 

for each steady -state value of amplitude. The complex travelling-wave type mode of deformation typical of forced vibrations 

is realized in the regions of instability of the unimodal modes (i.e., in the region v 2 < v < v3). 

Another approach to calculation of the nonlinear multimodal parametric vibrations of cylindrical shells was proposed 
by A. E. Bogdanovich and E. G. Feldman [19-21, etc.]. Dynamic problems are solved in two stages. First the spectrum of 
the RDIs of the shells is found by analyzing the linear equations that describe their deformation. Then the necessary 
approximation of the "nonlinear" deflection is chosen on the basis of the following principle: ff the assigned characteristics 

of the external load correspond to a point in the plane of the parameters i~, v (where v is the frequency of excitation and ~t is 
modulation depth) that is located only in one RDI (such as inside region A in Fig. 12), then it will suffice to approximate the deflection 

w by nwans of one term of a Fourier series: w =J~ (t) sin r lx  cos s I y (r I = m p t / l ,  s I = n l / R  ). If two RDI intersect (region C), then 

the deflection should be chosen accordingly: w =J~ (t) sin r lx  cos s ly  + f2 (t) sin r2x cos s2F, (r 2 = m27t/l , s 2 = n2 /R  ). A similar 

procedure is used in the case of the intersection of three or more RDIs. A question that is yet to be answered is why the authors of the 
above-cited studies approximated the total dynamic deflection w by an incomplete Fourier series - -  only expansions in the functions 

cos ( n y / R )  were included in that series. This resulted in loss of the complete RDI spectrmn corresponding to the functions 

sin ( n y / R ) .  Both of these expansions should be taken into account in nonlinear problems on parametric vibration, in light of lie 
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�9 m rt x n y  by an external source inevitably "involves" the mode already-stated fact that excitation of the ber ing mode sm ~ cos R 

�9 m ~ x  
sm ~ sin in the process as well (due to internal resonance). 

The authors of [19-211 also deem it inexpedient to allow for "correcting" terms, particularly dual harmonics, in the 
deflection function. The theoretical AFCs that they obtained for composite shells thus always corresponded to "hard" 

characteristics, which is inconsistent with the experimental data (discussed above). 

The experiments also show that the vibratious of points of the shell in orthogonal sections which occur after loss of 

stability occur relative to a certain line inside the shell (the line is sometimes referred to as the displaced position of dynamic 
equilibrium) [32, 79, 1281. This line becomes farther removed from the initial (undeformed) middle surface of the shell as 
the modes become more complex, which is an aspect of nonlinear deformation that should also be considered in the deflection 
approximation. 

Unfortunately, in many current theoretical studies of the nonlinear parametric vibration of shells (this applies to 
problems involving free and forced vibrations) the deflection functions continue to often be chosen on the basis of 
representations of the linear theory characteristic of the early stage of research. For example, researchers are still using 
unimodal models of shells, which is incorrect in the case of finite strains; no allowance is made for "conjugate" modes in the 

deflection; when the deflection is approximated by several modes, those modes are chosen arbitrarily without allowance for 

the character of the relations ('strong," "weak") between them in the vibration process, etc. The final results thus are often 
of no practical value and contradict numerous experimental findings from vibration tests of shells. 

5. Certain inverse problems. The nonlinear problems of shell dynamics that were discussed above belong to the 
class of so-called "direct" problems: the external loads on a shell and its characteristics are assigned and its stress-strain state 
is unknown. However, in a number of cases, certain "internal" characteristics of a shell (such as the damping parameters or 
the nonlinearities formed during vibration) are unknown beforehand. Thus, in essence the mathematical model that describes 
the dynamic behavior of the shell is also unknown. The problem of constructing the model on the basis of certain types of 

"output" data (which is assumed to be given) belongs to the class of "inverse" problems of dynamics. Information obtained 

from special dynamic tests of a full-scale object can be used as the "output" data. 
As is known, the term"inverse problem" encompasses a range of problems, the main features of which were described 

in [41, 124, 142, 143,161, etc.]. The inverse problems that will be discussed below are linked with the term "identification" 

which was used in [124] and involves the use of modal approaches ("modal identification"). The ultimate goal of these 

approaches is to construct differential equations that describe the vibrations of an elastic object (in the present case, a shell) 
in each of its normal modes (in the nonlinear case, quasi-normal modes). It is assumed a priori that there are no internal 
resonances in the elastic region and that all of the nonlinearities are small compared to the linear terms of the indicated 
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equations. This makes it possible to use a conventional method (generally the "resonance" method) [94, 142, 1431 to excite 
one mode of vibration of the object. It is therefore always possible to write an equation of the form 

(17) 

where F k (...) is a function that describes energy dissipation and the nonlinear elastic and inertial characteristics of the object (for 

the kth mode); 0 < ~ << 1, Qo k = const. 

In accordance with [124], the structure of the nonlitwar forces in (17) is assumed to be known. It canbe determined 
by so-called qualitative identification methods, which are based on the use of certain geometric constructs or "standard 
portraits" such as AFCs, APFCs (amplitude-phase-frequency characteristics), and diagrams of decaying free vibrations 
constructed on the basis of suitable vibration tests of the objects being studied. These portraits are compared to standard 
portraits corresponding to specific systems with typical nonlinear characteristics for the elastic, inertial, and dissipative forces. 
If the structure of the nonlinear forces is unknown, specific values of those forces canbe found by special methods of analytical 
identification [124, 1611. 

The "weakest" link in the construction of theoretical models of shells is the determination of their damping 
characteristics, since the associated energy losses are affected by many factors - -  energy dissipation in the material of the 
shell itself, structural dissipation, and external resistance forces (such as aerodynamic or hydrodynamic damping). 

Some results of experimental studies of integral vibration-damping characteristcs of shells were reported in [28, 31, 
47, 79, 142] for cylindrical shells and in [67] for cylindrical and spherical shells. Tests were conducted with cantilever support 
of the shells; both isotropic and composite (glass-plastic) shells were studied. Damping capacity was determined on the basis 
of logarithmic vibration decrements. On the whole, the energy dissipation characteristics depend in a fairly complex manner 
on the amplitudes of flexural vibrations and the wave parameters. The vibration decrements can either increase or decrease 
with an increase in amplitude [47, 67]. A similar pattern is seen in the variation of the parameters that characterize wave 

formation. It was established that the vibration decrements decrease significantly as the bending mode becomes more complex 
(i.e., as the parameter n increases). The decrease in the integral vibration decrements with an increase in the amplitude of 
deformation can be attributed in general to an increase in the role of structural energy dissipation in the overall balance of 
energy losses [67]. No general laws governing "nonlinear" energy dissipation in shells have yet been established. It is clear 
only that the resolution of this problem will require simultaneous consideration of effect of several factors - -  the amplitudes 
of vibration, the "geometry" of the mode being excited, boundary conditions, the effect of interaction of the modes, etc. 

The studies [30, 1181 were apparently the first to solve the problem of qualitatively identifying the deforming forces 
in forced nonlinear vibrations of cylindrical shells in the unimodal mode. It was assumed that these forces could satisfy one 
of the following relations 

R ( f , ) ' )  = + ~ [a +f)no - 2% - la% ] (18) 

(the Pisarenko-Davidenkov hypothesis [1591); 

R ( f ,  f )  = +_ a o a% ~]l - . f2/a2 (19) 

(the Panovko hypothesis [154]); 

R ( f , ) ' )  = (% + 4 e l f  2 ) f2)" (20) 

(nonlinear viscous friction [23]), where 11, k, n 0, %, el, f2 = const ; a is the amplitude of the vibrations. 

The model represented by Eq. (17) simultaneously considered the nonlinear elastic force Qd = y f3  and the inertial 

force Qi = 2 K f ( f f + )  "2 ) (~', • = const). A comparison of the APFCs of velocity for Eq. (17) and for a full-size two-layer 

glass-plastic shell established that the physical essence of the damping forces in the shell is most accurately reflected by 
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hypothesis (19). It was also determined that nonlinear inertia has a dominant effect on the natural frequencies (compared to 

nonlinear elasticity). 
This method was generalized in [121 to the case when parametric excitation is used as the external load on the object 

in tests. Other methods of determining the damping forces in the vibration of elastic bodies (including shells) were presented 
in [29, 110], these methods being based on an analysis of decaying free vibrations of the objecL The first integral formulas 
for determining the unknown nonlinear functions of the resistance forces for a specified (established experimentally) "decay 

angle" 0 = 0 (a) were obtained in [291. Relations were derived in [1101 to determine the unknown damping factors of a shell 
from experimental vibration decrements and the initial imperfections of the shell. 

Certain problems on identifying the dynamic characteristics of aeroelastic thin-walled structures were discussed in 
the monograph [41] by A. S. Vol'mir. Studies by V. O. Kononenko and N. P. Plakhtienko [124] and other researchers 
(references can be found in [41, 124]) established the general theoretical principles of analytical identification methods that 
can be used to construct nonlinear mathematical models of thin-walled shell systems. 

On the whole, it should be noted that research into the problems involved in constructing reliable theoretical dynamic 

models of shells deformed with finite deflections is still in its initial stage and needs to be taken farther. 
6. Conclusion. It follows from an analysis of the investigations mentioned above that many of the problems 

connected with the nonlinear vibration of thin shells have already been exhaustively studied. Many of the results from these 
investigations have proven useful in practical applications and have served as a scientific foundation for improving the designs 
and weight characteristics of many different types of objects. At the same time, it is also possible to identify several unresolved 
problems in the nonlinear dynamics of shells that are important and could be the subject of future investigations. 

1. First of all, it is necessary to devise general methodological approaches to the construction of adequate nonlinear 
theoretical dynamic models of shells. These approaches should be based on the principle of"reasonable compromise" - -  the 
model should be as simple as possible while still accurately depicting the actual processes that take place in a specific elastic 
object. To solve this problem, it will be necessary to use modern methods of theoretical analysis and modern computer 

technology to conduct basic research into the energy coupling of bending modes of free vibration accompanied by internal 
resonances created by the nonlinearities accounted for in the model. This will make it possible to construct the deflection 
function (and, thus, the theoretical model itself) with allowance for the relative contribution of  each mode to the over vibration 
process (for actual shells, these modes do not necessarily follow one another with an increase in the wave parameters). The 
damping forces should be determined on the basis of experimental analysis of the vibrations. 

2. In the area of forced vibrations, it is necessary to improve research into the mnltimodal deformation of shells by 
using refined variants of nonlinear dynamic equations and examining more complex cases - -  especially polyhannonic 
external loading. Considerable attention should be given to the analysis of nonlinear vibrations of spherical and conical shells 
modeled by systems with many degrees of freedom. Also important is the problem of calculating vibrations (free and forced) 
of shells with large deflections with allowance for different types of nonlinearities (geometric, physical, inertial). 

3. In the area of parametric vibrations, it is necessary to develop special analytical methods of study oriented toward 
the case of substantial (arbitral) parameter modulation depths. Nearly all nonlinear problems on the dynamic stability of 
shells have been solved with the assumption that the parametric loads are small (of the same order as the nonlinear terms in 
the dynamic equations), which in many cases is not justified. 

Among the other problems of practical interest are those concerning multimodal and wave modes of loss of stability 
by shells subjected to periodic combination loading - -  a combination of radial excitation (nonuniformly distributed over the 
lateral surface) and harmonic loading in the plane of the shell. 

4. Substantial progress must be made in problems on the nonlinear vibration of shells that have initial shape 
imperfections. It is not yet clear which practical methods of accounting for initial deflections in the equations of shells (as 

part of the total deflection or through a change in curvature) will provide the most reliable results. There has not been enough 
study of the mechanisms by which initial imperfections of shells affect their frequency spectrum, the regions of parametric 
instability, the character of the loss of stability, the amplitudes of vibration, the realization of wave modes of deformation, 
and other issues. In calculating the nonlinear vibrations of nonideal shells, broad use should be made of a new approach in 
which the deflection functions account for the actual modes of such shells (''mixed mode"). These modes are calculated with 

allowance for initial deflections. 
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5. Methods of solving inverse problems of shell dynamics must be further refined. Such methods have generally not 
been developed for multimodal idealizations of shells, when the deformation process takes place with allowance for the 
nonlinear interaction of many different modes. 

6. Research also continues to be promising in rogard to problems on random vibrations of shells undergoing 
deterministic vibrations. The study of this phenomenon, surprising in its nature, is important for reasons besides obtaining 
new basic insights into the nonlinear mechanics of shells. For practical purposes, it is extremely important to know how this 
phenomenon affects the stress-strain state of shell structures, their dynamic strength, and their reliability in service. 
Meanwhile, there is a danger that the many of the different theoretical studies of chaos now being performed will not be of 
any practical value for specific shells because the theoretical model does not adequately conform to the full-scale object. 
Allowing for actual damping in the models (the damping being essentially nonlinear in the case of vibrations of shells with 
large deflections) may in fact make it physically impossible to realize chaos. Thus, appropriate experimental studies must 
play an important role in the study of random vibrations of shells. It will be necessary to develop special methods that can 
"recognize" random modes among other complex modes - -  quasi-periodic, subharmonic, etc. As regards theoretical 
approaches, it will be necessary to more thoroughly study the effects of linear and nonlinear damping of shells on the 
mechanics of chaos, the regions in which chaos exists, scenarios by which a transition from regular to irregular modes can 
take place, and spectral properties. 

In conclusion, we note that the problems discussed above are important for calculating the nonlinear vibrations of 
all shells, whether they be smooth or reinforced, uniform or anisotropic, elastic, viscoelastic, or elastoplastic, or have holes 
and apparent additional masses, etc. 
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