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Physico–mechanical properties of rocks have great significance in all operational parts in mining
activities, from exploration to final dispatch of material. Compressional wave velocity (p-wave
velocity) and anisotropic behaviour of rocks are two such properties which help to understand the
rock response under varying stress conditions. They also influence the breakage mechanism of rock.
There are different methods to determine the p-wave velocity and anisotropy in situ and in the
laboratory. These methods are cumbersome and time consuming. Fuzzy set theory, Fuzzy logic and
Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction
with statistics and conventional mathematical methods, hybrid methods can be developed that
may prove to be a step forward in modeling geotechnical problems. Here, we have developed and
compared two different models, Neuro-fuzzy systems (combination of fuzzy and artificial neural
network systems) and Artificial neural network systems, for the prediction of compressional wave
velocity.

1. Introduction

Physico–mechanical properties of rocks are impor-
tant for the planning and designing of mining and
civil excavations. Long term stability can be only
achieved when the compressional wave velocity of
the rock mass is fully known. The compressional
wave velocity depends on the chemical composi-
tion, density and hardness of the rock material. It
is difficult to determine compressional wave veloc-
ity in the field and in the laboratory and this adds
to its importance during blasting of the rock mass.
When field and laboratory geophysical data are
considered together with data of geology and geo-
chemistry, it is possible to obtain much informa-
tion about the rocks and minerals that are likely
to form the deeper layers of the Earth. Hence, it
is necessary to study and understand the physi-
cal properties of the rocks and minerals of which
the layers of the Earth are composed. Laboratory
measurements of the elastic constants or the elastic

wave velocities in the rocks are needed for inter-
pretation of seismic velocities (Singh et al 1999).
A considerable number of measurements of elas-
tic wave velocities in rocks and other materials
have been made in laboratories around the world
(Balakrishna and Ramana 1968, Inoue and Ohomi
1981, Gaviglio 1989, Diallo et al 2003, Singh et al
2004).

The relation of the seismic velocities in rocks
of the western region of central Asia to den-
sity and other physical parameters has been dis-
cussed (Yudborovsky and Vilenskaya 1962). The
advantages and disadvantages of the static and
dynamic methods have also been discussed by
Volarovich and Fan (1962), who suggested the use
of field seismic observations and the data obtained
by static methods in geodynamics. Anisotropy in
granite was found in the Sidobre massif (Ave-
line 1964). Studies both in the laboratory and the
field revealed some anisotropy, ascribed to be due
to microfissures (Singh and Dubey 2000). These
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studies revealed the lower velocity in weathered
granite as compared to fresh granite. Berezkin
and Mikhaylov (1964) found a linear correlation
between density and elastic wave velocities in rocks
of the central and eastern regions of the Russian
platform.

This paper presents an alternative modeling
approach to assist the prediction of elastic prop-
erty of rock (p-wave velocity). The principal con-
stituents of the modeling approach are fuzzy set,
fuzzy logic, neural network and data clustering.
These are combined into the so-called hybrid mod-
eling framework (Neuro-fuzzy). In the present work
two different models have been designed using two
different systems, ANN and Neuro-fuzzy, and com-
parison is made between them to know which
is the better method. The focus here is not
only on how to construct the model but also on
how to use this modeling framework to inter-
pret the results and assess the reliability of the
model.

2. The dataset

As already stated, the aim of the present investi-
gation is to predict the elastic property of rocks
(p-wave velocity) taking physico–mechanical prop-
erties and chemical composition of the rocks as
inputs. It is, however, uneconomical to obtain all
the parameters because this is expensive and time-
consuming. On the other hand, all the parame-
ters are not independent and some of them are
strongly correlated (Hogstrom 1994). Hence, it is
not important to use all the variables as input
parameters.

Hence, taking the above discussion and the aim
of the investigation under consideration, the fol-
lowing parameters have been taken as input para-
meters for the network.

Input parameters for the networks

Parameters Variables
Physico–mechanical Compressive strength,

properties: density, hardness.
Chemical composition: quartz. (wt. %)

So in all, four parameters have been taken as
input parameters for both the Neuro-fuzzy and
ANN systems. p-wave velocity has been taken as
the output parameter for both systems.

For the ANN system all the input and output
parameters were scaled between 0 and 1. This was
done to utilize the most sensitive part of neuron
and since the output neuron being sigmoid can only

give an output between 0 and 1, the scaling of the
output parameter was necessary.

Scaled value =
(max. value − unscaled value)

(max. value − min. value)
.

3. Artificial neural network

Neural networks are a branch of “Artificial Intelli-
gence”, besides Case-based Reasoning, Expert Sys-
tems, and Genetic Algorithms. Neural networks
are able to detect similarities in inputs, even
though a particular input may never have been
seen previously. This property allows for excel-
lent interpolation capabilities, especially when the
input data are noisy (not exact). Neural networks
may be used as a direct substitute for autocor-
relation, multivariate regression, linear regression,
trigonometric and other statistical analysis and
techniques.

When a data stream is analyzed using a
neural network, it is possible to detect important
predictive patterns that were not previously appar-
ent to a non-expert. Thus, the neural network
can act as an expert. A particular network can
be defined using three fundamental components:
transfer function, network architecture and learn-
ing law (Simpson 1990). One has to define these
components depending upon the problem to be
solved.

A network first needs to be trained before
interpreting new information. Several different
algorithms are available for training of neural net-
works, but the back-propagation algorithm is the
most versatile and robust technique for it provides
the most efficient learning procedure for multi-
layer neural networks. Also, the fact that back-
propagation algorithms are especially capable to
solve problems of prediction makes them highly
popular (Maulenkamp and Grima 1999).

During training of the network, data are
processed through the network until they reach the
output layer (forward pass). In this layer, the out-
put is compared to the measured values (the “true”
output). The difference or error between the two
is processed back through the network (back-
ward pass) updating the individual weights of the
connections and the biases of the individual neu-
rons. The input and output data are mostly repre-
sented as vectors called training pairs. The process
as mentioned above is repeated for all the train-
ing pairs in the data set, until the network error
has converged to a threshold minimum defined by
a corresponding cost function, usually the root
mean squared error (RMS) or summed squared
error (SSE). A simple ANN network is shown in
figure 1.
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Figure 1. Backpropagation neural network.

4. Fuzzy backpropagation system

Fuzzy systems are currently being used in a wide
field of industrial and scientific applications. Since
the design and especially the optimization process
of fuzzy systems can be very time consuming, it
is convenient to have algorithms, which construct
and optimize them automatically. One popular
approach is to combine fuzzy systems with learn-
ing techniques derived from neural networks. Such
approaches are usually called Neuro-fuzzy systems
(Grima et al 2000).

ANN’s have been employed in several applica-
tions ranging from target recognition to financial
forecasting. Their most prominent feature is to
learn from examples, and then adapt themselves
based on actual solution space training data sets.
They are practically powerful in clustering the
solution space identifying the important features.
Fuzzy systems are based on the idea that all sets
are not crisp but some are fuzzy, and these can be
modeled in linguistic human terms such as large,
small and medium. In a fuzzy system, rules can be
formulated that use these linguistic human expres-
sions (Takagi and Sugeno 1985). The combination
of ANN’s and fuzzy sets offers a powerful method
to model human behaviour. The ANN is used to
define the clustering in the solution space, which
results in creation of fuzzy sets (Jang et al 1997).

4.1 Fuzzy system

The classical set is a set with a crisp boundary.
The variable either belongs or does not belong to
the set. In contrast to a classical crisp set, a fuzzy
set is defined as without a crisp boundary, where
the transition “belong to a set” is gradual and
this transition is characterized by the membership

functions in the range that give fuzzy sets flexibil-
ity in modeling (Bezdek 1981).

The membership may be described either in
a discrete form as a set of membership val-
ues or as a continuous function valid over some
range of values of the variable x. To the most
popular types of membership functions belong the
triangle, trapezoidal, Gaussian or bell functions.
We have used here the generalized description of
the Gaussian function, given in the form

f(x, σ, c) = e
−(x−c)2

2σ2 . (1)

This is the Gaussian function that depends on
two parameters σ and c. The parameters for the
Gaussian function represents the parameters σ and
c listed in order to the vector.

The most popular solution of the fuzzy net-
works is based on the so-called fuzzy inference sys-
tem, fuzzy if-then rules and fuzzy reasoning. Such
a fuzzy inference system implements a nonlinear
mapping from input space to output space. This
mapping is accomplished by a number of fuzzy
if-then rules, each of which describes the local
behaviour of the mapping, like it is done in radial
basis function networks. The antecedent of the rule
defines the fuzzy region in the input space, while
the consequent specifies the output of the fuzzy
region.

There are different solutions of fuzzy inference
systems. Two well known fuzzy modeling meth-
ods are the Tsukamoto fuzzy model and Takagi–
Sugeno–Kang (TSK) model. In the present work,
only the TSK model has been considered. A typi-
cal fuzzy rule in this model has the form

If x1 is A1 and x2 is A2 . . . .

And xN is AN then y = f(x) (2)

crisp function in the consequent. The function
y = f(x) is a polynomial in the input variables
x1, x2, . . . , xN . We will apply here the linear form
of this function. The aggregated values of the mem-
bership function for the vector x may be assumed
either in the form of MIN operator or in a prod-
uct form. For M fuzzy rules of the equation (2), we
have M such membership functions µ1, µ2, . . . , µM .
We assume that each antecedent is followed by the
consequent of the linear form

= pio +
N∑

j=1

pijxj, (3)

where pij are the adjustable coefficients, for
i = 1, 2, . . . ,M and j = 1, 2, . . . , N .

Generalized Gaussian membership function have
been described by equation (1). The algebraic
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product aggregation of the input variables, at the
existence of M rules, the Neuro–fuzzy TSK system
output signal y(x) upon excitation by the vector x
is described by the equation (3).

The adjusted parameters of the system are
the nonlinear parameters (c(k)

j , σ
(k)
j , b

(k)
j ) for

j = 1, 2, . . . , N and k = 1, 2, . . . , M of the fuzzifier
functions and the linear parameters (weights pkj)
of TSK functions. In contrary to the Mamdani
fuzzy inference system, the TSK model generates
a crisp output value instead of a fuzzy one. The
defuzzifier is not necessary.

y(x) =
1∑M

r=1 [
∏

J=1 µr(xj)]

×
M∑

K=1

([
N∏

J=1

µk(xj)

](
pko +

N∑
J=1

pkjxj

))

(4)

5. Neuro-fuzzy network system

The TSK fuzzy inference systems described by
equation (4) can be easily implanted in the form of
a so called Neuro-fuzzy network structure. Figure 2
presents the 5-layer structure of a Neuro-fuzzy net-
work, realizing the TSK model of the fuzzy system.
It is assumed that the functions yi, yi = fi(x) are
linear of the form

fi(x) = pio +
N∑

j=1

pijxj. (5)

The adaptable parameters of the networks are the
variables of the membership functions c

(k)
j , σ

(k)
j , b

(k)
j

for j = 1, 2, . . . , N , k = 1, 2, . . . , M and the coef-
ficients (linear weights) pij for i = 1, 2, . . . , M
and j = 0, 1, 2, . . . , N of the linear Takagi–Sugeno
functions.

The network in figure 2 has a multilayer form.
The first layer performs the fuzzification accord-
ing to the membership function µk(xj), described
by equation (1). The second layer aggregates the
fuzzified results of the individual scalar functions
of every variable and determines the membership
function of the whole vector x. This is the prod-
uct type aggregation. Each node of this layer rep-
resents the firing strength of a rule. The third layer
calculates the aggregated signal of the fuzzy infer-
ence for each inference rule. The output signal of
each unit of this layer is the product of the firing
strength of the rule and the consequent member-
ship value. The fourth layer determines the output
membership function. Layer five calculates only the
sum of the signal of the third and the second layers

of the network. The final sixth layer contains only
one neuron for output. In the case of multiple out-
puts, we can add as many output neurons as needed
in a fashion similar to the case of one output. The
output neuron computes the overall output sig-
nal according to the equation (4). Thus, we have
constructed the Neuro-fuzzy network that is func-
tionally equivalent to Takagi–Sugeno fuzzy model.
Only the first and the third layers are paramet-
ric. The parameters of the first layer are associated
with the nonlinear functions and the weights pij of
the third layer are linear.

5.1 Hybrid learning algorithm

Learning of the Neuro-fuzzy network, that is adap-
tation of the parameters of the first (c(k)

j , σ
(k)
j , b

(k)
j )

and third (pij) layers of the network, can be done
either in supervised or self-organizing mode. For
the purpose of approximation, the more efficient
and straightforward is the supervised one.

In practical implementation, the hybrid app-
roach has been applied. In this method, we take
into account that the network is linear in the para-
meters pij, and thus, can identify these linear para-
meters by a linear least squares method based on
singular value decomposition (SVD). At this stage
we assume that all nonlinear parameters are fixed.
This is the first run of the learning stage. In the sec-
ond run we fix the linear parameters of the network
and apply the gradient steepest descent method for
the estimation of the nonlinear parameters of the
membership functions.

In hybrid learning each iteration is composed of
a forward pass and a backward one. In the forward
pass, after the input vector is presented, we cal-
culate the node outputs in the network layers and
on the basis of this the linear parameters pij are
adjusted using pseudo inverse based on SVD tech-
nique. After the linear parameters are identified we
can compute the error for training data pairs. In
the backward pass the error signals propagate from
the output end toward the input nodes; the gra-
dient vector is calculated and the nonlinear para-
meters c

(k)
j , σ

(k)
j , b

(k)
j updated by steepest descent

method. The learning step of the nonlinear para-
meters update is adjusted using adaptive approach.
This process is repeated many times until there is
sufficient change of the values of the adapted para-
meters of the network.

The important advantage of the hybrid algo-
rithm is splitting the learning process into two
independent stages: the adaptation of linear
weights and adaptation of parameters of the
nonlinear membership functions. This algorithm
decreases the complexity of the algorithm and at
the same time the efficiency of learning increases.
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5.2 Rules generation using fuzzy
self-organization

One of the most important stages of the Neuro-
fuzzy TSK network generation is the establishment
of the inference rules (Takagi and Sugeno 1985).
Often used is the so-called grid method, in which
the rules are defined as the combinations of the
membership functions for each input variable. If
we split the input variable range into a limited
number (say ni for i = 1, 2, . . . , N) of member-
ship functions, the combinations of them lead to
many different inference rules. For example for 10
input systems, at 3 membership functions each,
the maximum possible number of rules is equal
M = 310 = 59049. The problem is that these com-
binations correspond in many cases to the regions
of no data, and hence a lot of them may be deleted.

This problem can be solved by using the fuzzy
self-organization algorithm. This algorithm splits
the data space into a specified number of over-
lapping clusters. Each cluster may be associated
with the specific rule of the center corresponding
to the center of the appropriate cluster. In this way
all rules correspond to the regions of the space-
containing majority of data and the problem of the
empty rules can be avoided (Chiu 1994).

The ultimate goal of data clustering is to par-
tition the data into similar subgroups. This is
accomplished by employing some similar measures
(e.g., the Euclidean distance). In this paper data
clustering is used to derive membership functions
from measured data, which, in turn, determine the
number of If-Then rules in the model (i.e., rules
indication).

Several clustering methods have been proposed
in the literature (Nauck et al 1997). The method
employed in this paper is the subtractive clustering
method.

6. Network architecture for ANN model

A feed-forward network is adopted here as this
architecture is reported to be suitable for problems
based on pattern identification. Pattern matching
is basically an input/output mapping problem. The
closer the mapping, the better is the performance
of network.

In the small sample, as the data were analyzed
here, a cross-validation technique termed leaving-
one-out is more appropriate. Out of 55 data sets, 54
were taken to train the network and tested on the
remaining one data set. The procedure is repeated
15 times, leaving one observation randomly chosen
out at a time. In the experiment the first observa-
tion was predicted, using the outcome of an analy-
sis based on the observations 2, 3, . . . , 55, and the

55th observation was predicted from the observa-
tions 1, 2, 3, . . . , 54. This method is advantageous
as it uses nearly the entire data sets for training
the network. For the ANN networks used for pre-
diction, this cross-validation technique was used.
The network has input layer consisting of 4 neurons
and output layer consisting of 1 neuron. The num-
ber of hidden layers was decided by training and
predicting the “training data” and “testing data”
by varying the number of hidden layers and neu-
rons in the hidden layer. A suitable configuration
has to be chosen for the best performance of the
network. Out of the different configurations tested,
single hidden layer with 5 hidden neurons produced
the best result. Hence, the final configuration cho-
sen for the network is: 4 input neurons, 1 hidden
layer with 5 hidden neurons, and 1 output neuron.
Suitable numbers of epochs have to be assigned to
overcome the problem of overfitting and underfit-
ting of data. In the present paper, to deal with
the above mentioned problem, Bayesian regulation
(MacKay 1992) was used. Bayesian regulation is
an automated regulation, the use of which removes
the danger of overfitting, as it never lets the data to
suffer from overfitting. This eliminates the guess-
work required in determining the optimum num-
ber of epochs of the network. In the network the
learning rate assigned was 10−2, number of train-
ing epochs given were 1500, and error goal was set
to be 0.0001.

7. Network architecture for
Neuro-fuzzy model

For Neuro-fuzzy model, similar training and testing
data sets were used as in ANN model. The mem-
bership function of each input was tuned using the
hybrid method consisting of backpropagation for
the parameters associated with the input member-
ship function and the least square estimation for
the parameters associated with the output mem-
bership functions (figure 3a–d). The computations
of the membership function parameters are facili-
tated by a gradient vector which provides a mea-
sure of how well the FIS system is modeling the
input/output data. For a given set of parameters,
the numbers of nodes in the training data were
found to be 57. The numbers of linear parameters
and non-linear parameters were found to be 25 and
40 respectively. The hypothesized initial number of
membership functions and the type used for each
input were 5 and Gaussian respectively. Now, the
hypothesized FIS model is trained to emulate the
training data by modifying the membership func-
tion parameters according to the chosen error cri-
terion. A suitable configuration has to be chosen
for the best performance of the network. Goal for
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Figure 2. ANFIS structure for the PR model, Neuro-fuzzy,
with four input parameters and five rules. Layer-1 represents
inputs, layer-2 input membership function, layer-3 rules, lay-
er-4 output membership function, layer-5 weighted sum out-
put and layer-6 output.

the error was set to be 0.01 and number of train-
ing epochs was given 50. After the training (with
50 epochs) was complete final configuration for the
FIS are

Number of output membership functions = 5
Number of fuzzy rules = 5
Neuro-fuzzy adaptive network for p-wave
velocity

1. No. of input = 4
2. No. of membership functions for each

input = 5
3. Type of membership functions for each

input = Gaussian
4. No. of rules = 5
5. Type of membership functions for each

output = Linear
6. No. of output membership function = 5
7. No. of training epochs = 50
8. No. of training data sets = 40
9. No. of testing data sets = 15

10. Error goal = 0.01
11. Error achieved = 5.18597

The clustering method used in this paper is sub-
tractive clustering. The purpose of using cluster-
ing method is to identify natural groupings of data
from a large set of data to produce a concise rep-
resentation of a system’s behaviour. ANFIS struc-
ture for the PR model, Neuro-fuzzy, with four input
parameters and five rules is shown in figure 2.

8. Results from ANN system

Observed and predicted values of p-wave velocity
along with the percentage error are given in table 1.
As the Bayesian regulation (MacKay 1992) is used

in this case, there is no danger of overfitting prob-
lems; hence the network trained with 1500 training
epochs. The correlation coefficient for the relation-
ship between predicted and observed values is 0.871
(figure 4a). The mean absolute percentage errors
(MAPE) for the variables are 2.266% respectively.
Figure 4b shows the performance of the network
during the training process. The predicted number
of parameters on which output is depending is 18,
which is more than 6 (input parameters given for
this network), which shows that all the parameters
were not included.

9. Results from Neuro-fuzzy system

The results are presented in this section to demon-
strate the performance of the network. The mean
absolute percentage error (MAPE) and coefficient
of correlation between the predicted and observed
value are taken as the performance measures. The
prediction was based on the input data sets dis-
cussed above.

Using 40 training data sets and 15 testing data
sets and hybrid method consisting of backpropaga-
tion for the parameters associated with the input
membership function and the least square estima-
tion for the parameters associated with the out-
put membership functions, prediction was made
for compressional wave velocity (p-wave velocity)
of the rockmasses. Predicted and observed val-
ues along with the percentage errors are given in
table 2. The correlation coefficients and training
performance are shown in figure 5(a–b). Coefficient
of correlation between predicted and observed val-
ues and MAPE are 0.9901 and 1.692% respectively.
From coefficient of correlation and MAPE, it can
be said that results obtained were highly encour-
aging and precise.

Surface graphs between the inputs and the pre-
dicted output are shown in figure 7(a–f). As can
be seen, the variation of predicted value (p-wave
velocity) with the input parameters is found to
be in agreement with the literature. This indicates
the excellent identification capability of the ANFIS
algorithm.

10. Comparison of the Neuro-fuzzy
and ANN models

Results from two models are presented in this sec-
tion to access and compare the degree of predic-
tion accuracy and generalization capabilities of the
two networks designed in the present problem. The
same training and testing data sets were used to
train and test both models to extract more solid
conclusions from the comparison results.
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Table 1. Observed and predicted values from ANN model along with the percentage error.

Compressive Observed p-wave Predicted p-wave
strength Density velocity velocity

Sl. no. Hardness (kg/cm2) % of quartz (gm/cm3) (m/s) (m/s) % Error

1 5.69 87.69 2.20 194.87 2217.69 2215 0.12
2 5.68 87.75 2.21 212.14 2230.61 2221.3 0.42
3 5.76 87.84 2.22 213.85 2234.65 2224.4 0.46
4 5.74 87.89 2.22 231.05 2247.58 2230 0.78
5 5.74 87.91 2.27 239.69 2307.35 2246.1 2.66
6 5.85 88.69 2.28 255.26 2324.72 2253.1 3.08
7 5.94 89.65 2.28 256.97 2328.76 2255.4 3.15
8 5.96 89.76 2.38 258.68 2474.15 2278.3 7.92
9 5.98 89.85 2.46 284.68 2741.88 2290.2 16.47

10 4.79 84.98 2.02 115.57 1957.19 1957 0.01
11 4.92 85.56 2.02 127.63 1957.19 1967.7 −0.54
12 4.93 85.69 2.04 125.92 1982.63 1985.9 −0.17
13 4.23 75.94 1.82 68.95 1666.40 1665.8 0.04
14 4.25 76.01 1.82 68.95 1670.84 1670.4 0.024
15 4.26 76.05 1.85 72.45 1747.58 1710.2 2.14

Figure 3. Membership function plots for (a) input 1 (compressive strength), (b) input 2 (hardness), (c) for input 3
(% quartz) and (d) for input 4 (density).
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Figure 3. (Continued)

Table 2. Observed and predicted values from Neuro-fuzzy model along with the percentage error.

Compressive Observed p-wave Predicted p-wave
strength Density velocity velocity

Sl. no. Hardness (kg/cm2) % of quartz (gm/cm3) (m/s) (m/s) % Error

1 5.69 87.69 2.20 194.87 2217.69 2299.52 −3.69
2 5.68 87.75 2.21 212.14 2230.61 2274.98 −1.99
3 5.76 87.84 2.22 213.85 2234.65 2296.42 −2.76
4 5.74 87.89 2.22 231.05 2247.58 2278.56 −1.38
5 5.74 87.91 2.27 239.69 2307.35 2382.13 −3.24
6 5.85 88.69 2.28 255.26 2324.72 2371.42 −2.01
7 5.94 89.65 2.28 256.97 2328.76 2349.99 −0.91
8 5.96 89.76 2.38 258.68 2474.15 2653.55 −7.25
9 5.98 89.85 2.46 284.68 2741.88 2828.55 −3.16

10 4.79 84.98 2.02 115.57 1957.19 1964.29 −0.36
11 4.92 85.56 2.02 127.63 1957.19 1957.14 0.00
12 4.93 85.69 2.04 125.92 1982.63 1989.28 −0.34
13 4.23 75.94 1.82 68.95 1666.40 1671.43 −0.30
14 4.25 76.01 1.82 68.95 1670.84 1671.43 −0.04
15 4.26 76.05 1.85 72.45 1747.58 1710.72 2.11

The predicted values of the p-wave velocity from
both the networks are plotted against the original
experimental values of p-wave velocity in the test-
ing dataset (figures 4(a) and 5(a)). Accuracy of

prediction in each case is estimated by draw-
ing the 1:1 line, which represents 100% accuracy,
95% confidence ellipse is also drawn which has its
major axis superimposed on the best-fit line. 95%
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Figure 4. (a) Correlation between predicted and observed value of p-wave velocity using ANN, (b) Performance graph of
the neural network used for prediction.

confidence represents the probability that the val-
ues will fall inside the area marked by the ellipse,
thus, it is a very good measure of distribution of
points around the best fit line. Hence, smaller the

minor axis and the angle between the its major axis
and the 1:1 line better the prediction accuracy. A
visual inspection reveals that confidence ellipse for
ANN model is having its minor axis longer and its
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Figure 5. (a) Correlation between predicted and observed p-wave velocity using Neuro-fuzzy, (b) Performance graph of
the Neuro-fuzzy model.

Figure 6. Comparison graph between predictions from two
networks against observed values.

major axis is involving the bigger angle with 1:1
line, in comparison to the confidence ellipse of
Neuro-fuzzy model. Visual inspection of compar-
ison graph (figure 6) reveals that ANN model
shows excellent prediction accuracy for lower val-
ues of p-wave velocity but is unable to main-
tain its accuracy for higher values, hence losing
its generalization capabilities, whereas the Neuro-
fuzzy model maintains its excellent prediction
accuracy throughout the range of p-wave velocity,
hence showing consistency and high a degree of
generalization capability. From the above discus-
sion it can be concluded that Neuro-fuzzy model
shows better prediction accuracy and better gen-
eralization capability in comparison to the ANN
model.

Observations made from comparing the results
are backed by the fact that results from ANN are
largely dependent on architecture of the network,
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Figure 7. Surface graph showing relationship of (a) input 1 and input 2 with predicted output, (b) input 3 and input1
with predicted output, (c) input 4 and input 1 with predicted output, (d) input 3 and input 2 with predicted output,
(e) input 4 and input 2 with predicted output, and (f) input 4 and input 3 with predicted output, input 1 is compressive
strength of rock, input 2 is hardness of rock, input 3 is percentage of quartz in rock, input 4 is density of rock and output
is predicted p-wave velocity by Neuro-fuzzy model.

which is very hard to select as it is a complex
and time-consuming task. Another limitation that
ANN has is its inadequate ability to deal with fuzzy
and nonlinear data, whereas Neuro-fuzzy is largely
free from both of those limitations. Furthermore,
computationally the Neuro-fuzzy model is more
easy and efficient than the ANN model.

11. Conclusions

The Neuro-fuzzy method presented in this paper
shows a good potential to model complex,
nonlinear and multivariate problems. It also shows
that the Neuro-fuzzy method is better than the
ANN method though the results obtained from
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ANN are also satisfactory. Considering the com-
plexity of the relationship between the input and
the output, results obtained are very accurate and
encouraging. The lower MAPE obtained by the
Neuro-fuzzy method suggests its good generaliza-
tion capability. Neuro-fuzzy modeling is an emerg-
ing computational tool that combines fuzzy logic
and artificial neural network methods. Perhaps the
most interesting feature of this approach is that
we can cope scientifically with subjectivity and
uncertainty in the engineering process, rather than
ignoring them.
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