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This paper describes the near surface characteristics and vertical variations based on the observa-
tions made at 17.5◦N and 89◦E from ORV Sagar Kanya in the north Bay of Bengal during the Bay
of Bengal Monsoon Experiment (BOBMEX) carried out in July – August 1999. BOBMEX cap-
tured both the active and weak phases of convection. SST remained above the convection thresh-
old throughout the BOBMEX. While the response of the SST to atmospheric forcing was clearly
observed, the response of the atmosphere to SST changes was not clear. SST decreased during
periods of large scale precipitation, and increased during a weak phase of convection. It is shown
that the latent heat flux at comparable wind speeds was about 25–50% lower over the Bay during
BOBMEX compared to that over the Indian Ocean during other seasons and tropical west Pacific.
On the other hand, the largest variations in the surface daily net heat flux are observed over the
Bay during BOBMEX. SST predicted using observed surface fluxes showed that 1-D heat balance
model works sometime but not always, and horizontal advection is important. The high resolution
Vaisala radiosondes launched during BOBMEX could clearly bring out the changes in the vertical
structure of the atmosphere between active and weak phases of convection. Convective Available
Potential Energy of the surface air decreased by 2–3 kJ kg−1 following convection, and recovered in
a time period of one or two days. The mid tropospheric relative humidity and water vapor content,
and wind direction show the major changes between the active and weak phases of convection.

1. Introduction

The convective systems that frequently form or
intensify over the Bay of Bengal are critical for
the summer rainfall over the Indian subcontinent.
Despite its economic and scientific importance,
there have been very few atmospheric observational
studies carried out over the Bay during the mon-
soon period. Two major experiments conducted
over the Bay prior to 1999, namely the monsoon
experiment of 1977 (called MONSOON-77, e.g.,
Mohanty and Das 1986) and the monsoon experi-
ment of 1979 (called MONEX-79, Fein and Kuet-
tner 1980) were more than 20 years back. The
emphasis in the earlier experiments was on under-
standing the large-scale aspects of monsoon circu-
lation. MONEX-79, in particular, has provided the

planetary and regional scale features of the mon-
soon (e.g., Krishnamurti 1985). One of the main
limitations of the earlier experiments is that the
observation period over the Bay was less than two
weeks, and the active and weak phases of monsoon
could not be adequately captured. Further, an issue
that has received considerable attention in the last
20 years is the ocean-atmosphere variations and
coupling on intraseasonal time scales, and accurate
estimation of surface fluxes. For example, while
the initial emphasis in the decade long interna-
tional observational programme “Tropical Ocean-
Global Atmosphere” (TOGA) was on interannual
climate variability, a special process study called
“Coupled Ocean-Atmosphere Response Experi-
ment” (COARE) was subsequently planned and
executed over the west Pacific warm pool as part

Keywords. Monsoon; air-sea coupling; tropical convection; boundary layer.

Proc. Indian Acad. Sci. (Earth Planet. Sci.), 112, No. 2, June 2003, pp. 131–146
© Printed in India. 131



132 G S Bhat

South Bay

longitude (E)

70 75 80 85 90 95 100
5

10

15

20

25

India

Indian Ocean

DS4

Chennai

Paradip

TS2

TS1

North Bay

la
tit

ud
e 

(N
)

Figure 1. Cruise tracks and the time series observation stations (TS1 & TS2) in the Bay of Bengal during BOBMEX.
Observation positions: TS1 – 13◦N, 87◦E; TS2 – 17.5◦N, 89◦sE. DOD’s moored buoy in the head Bay is located at DS4
(18◦N, 88◦E). The present study describes observations made at TS2 from ORV Sagar Kanya.

of TOGA to address ocean-atmosphere coupling on
the intraseasonal time scale of 30–60 days (Web-
ster and Lukas 1992; Godfrey et al 1998). Intrasea-
sonal oscillations in SST have been observed over
the Bay also (Krishnamurti et al 1988), how-
ever, its amplitude in the 30–60 day mode is
found to be smaller compared to that over the
west Pacific. Data from recently deployed moored
buoys in the Bay showed that both SST and wind
were modulated on intraseasonal timescales dur-
ing the monsoon period and suggested a strong
coupling between the ocean and the atmosphere
(Premkumar et al 2000). Buoy data revealed
that the dominant time scale of intraseasonal
oscillation (ISO) over the Bay was 3–4 weeks,
i.e., less than that over the west Pacific. The
precise nature of the ocean-atmosphere varia-
tions and their coupling during active and weak
phases of monsoon was not addressed until very
recently.

Since the Bay is a critical area for the Indian
monsoon, the first observational programme under
the Indian Climate Research Programme (ICRP)
was planned and conducted over the Bay. This
experiment, called “Bay of Bengal Monsoon Exper-
iment” (BOBMEX) was entirely an Indian effort
and was carried out during July – August 1999.
The scientific background, main objectives and

field phase of BOBMEX are described in Bhat
et al (2001). The major objectives of BOBMEX
included the atmospheric variations and nature of
air-sea coupling during active and weak phases of
monsoon. The emphasis in BOBMEX was on time
series observations from two locations in the south-
ern and northern Bay (henceforth referred to as
TS1 and TS2 respectively, see figure 1). Indian
research vessels INS Sagardhwani and ORV Sagar
Kanya were deployed at TS1 (13◦N, 87◦E) and TS2
(17.5◦N, 89◦E), respectively.

Recognizing the importance of the Asian mon-
soon on the global climate, an international
experiment, called “The Joint Air-Sea Monsoon
Interaction Experiment” (JASMINE) was carried
out in 1999 over the tropical Indian Ocean with
intraseasonal variability of the south Asian mon-
soon as a major focus (Webster et al 2002). Phase I
(April 7th – 22nd) and Phase II (May 1st – June
8th) of JASMINE were carried out from the US
research ship Ronald H. Brown, and Phase III
(September 2nd–28th) was carried out from the
Australian research ship R/V Franklin. The area
of observations was centered along the 89◦E longi-
tude line between 5◦S and 16◦N, with more num-
ber of observations taken around 12◦N in the Bay.
JASMINE data revealed that wind and humidity
structures in the troposphere change significantly
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between the active and weak phases of ISO. The
mean surface fluxes during the weak and active
phases of ISO were +90 Wm−2 and −89 Wm−2

respectively. On comparison with the west Pacific
warm pool characteristics, it was concluded that
the results of the west Pacific warm pool experi-
ments cannot simply be transferred to the Indian
Ocean (Webster et al 2002).

Convection shifts to the north Bay normally
in late May and early June, and July – August
are peak monsoon months. The major fraction of
JASMINE observations was taken around 12◦N
(Webster et al 2002). The northernmost extent of
the JASMINE cruise was 16◦N, that too in April
when convection is normally active towards south
of 15◦N. Therefore, BOBMEX is the first experi-
ment to collect observations during a peak mon-
soon period in the north Bay using modern flux
sensors and high resolution radiosondes. BOBMEX
followed JASMINE with a gap of about 6 weeks,
and we expect the observations carried out dur-
ing BOBMEX (particularly at TS2) to complement
JASMINE observations.

The present paper is mainly based on the mea-
surements made at the time series station TS2.
The main focus is on the salient features of the
atmosphere observed at TS2. It is shown that the
monsoonal atmosphere over the north Bay has spe-
cial features not normally observed during other
seasons and over the western Pacific warm pool.

2. Data

ORV Sagar Kanya was positioned at TS2 from 27th
July to 24th August 1999 with a break (port call)
during 6th – 13th August. Henceforth, the periods
27th July to 6th August and 13th to 24th August
are referred to as phase I and phase II respec-
tively. The basic surface meteorological variables
measured were wind, temperature (dry bulb, wet
bulb and sea surface), humidity, pressure, radi-
ation and precipitation. The selection and cali-
bration of the instruments used on ORV Sagar
Kanya, and intercomparison with other in situ
data during BOBMEX are discussed in Bhat et al
(2001) and Bhat (2002). The measurement accu-
racies achieved on ORV Sagar Kanya met the
accuracy levels of 0.25◦ C and 0.2 ms−1 (or 2%,
whichever is larger) for air temperature and wind
speed respectively, sought by the World Ocean
Circulation Experiment (WOCE) programme for
observations over the oceans (e.g., Hosom et al
1995). The uncertainty in the relative humidity
was 2% (∼ 0.5 gm kg−1 in the mixing ratio), which
is marginally higher than the WOCE require-
ment of 1.7%. (WOCE specification on the accu-
racy of the mixing ratio is more stringent at

0.25 gm kg−1.) Radiosondes (Vaisala model RS80-
15G) were launched from the ship. The frequency
of radiosonde launch varied between 2 and 5 per
day depending on the synoptic conditions and
weather advice.

3. Results

3.1 The synoptic setting

During the period 25th July to 9th August, India
Meteorological Department (IMD) declared three
monsoon systems in the region, namely, a depres-
sion, a low and again a depression during 27th –
29th July, 2nd – 4th August and 6th – 8th August,
respectively (Bhat et al 2001). These systems
formed/intensified over the north Bay, moved onto
the subcontinent and produced wide spread rain-
fall over India. During phase II, few deep convec-
tive systems were seen over the observation area,
however, these systems decayed over the Bay itself
and did not develop into monsoon systems. The
daily outgoing longwave radiation (OLR) averaged
for the area 15◦–20◦N and 82.5◦–92.5◦E is shown
in the top panel in figure 2. It is observed from fig-
ure 2 that there were several occasions when OLR
was below 175 Wm−2. Except for the 15th – 16th
August event, other low OLR events were associ-
ated with the monsoon systems declared by IMD.
Further, the daily OLR was below 240 Wm−2, a
value often associated with deep convection (Gra-
ham and Barnett 1987), throughout phase I and
during most of phase II. The surface pressure was
about 7 mb lower during phase I (mean 999 mb)
compared to that during phase II (mean 1006 mb)
(figure 2). All the three monsoon systems formed
during the period when the average surface pres-
sure was low. An important question that arises
is, was the average surface pressure low because of
convection and formation of the monsoon systems,
or a larger (planetary) scale circulation gave rise
to a low pressure regime which was conducive for
the development of monsoon systems, that in turn
consolidated the low pressure regime further. Pre-
vious studies have shown that the size and duration
of convective systems depend on the phase of ISO.
For example, over the tropical west Pacific, long
living, large (deep) cloud systems characterize the
active ISO period, whereas, the weak phase of ISO
is characterized by short lived and smaller cloud
systems (Chen and Houze 1997). Was the lower
surface pressure during phase I and higher pressure
during phase II a manifestation of the ISO over the
north Bay? Present observations are suggestive but
not adequate to answer this question unambigu-
ously. The connections between the development of
the monsoon systems versus the phase of ISO needs
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Figure 2. INSAT daily OLR for the 15◦–20◦N and 82.5◦–92.5◦E box in the north Bay of Bengal, SST, hourly rainfall,
surface pressure (PS), relative humidity (RH), wind speed and the latent heat flux (LHF) at TS2.
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Figure 3. Diurnal variation in rainfall at TS2. Rainfall shown is obtained by adding the precipitation that occurred during
respective hourly intervals for all days having total daily rainfall of more than 2mm.

to be explored as this is an important problem and
has potential application in the advance prediction
of the development of a monsoon system.

Rainfall exceeding 50 mm occurred on 31st July,
6th August, and 15th – 16th August. (Since the
ship moved away from TS2 on 6th August, rainfall
data for that day is incomplete.) A closer exam-
ination of rainfall revealed a prominent diurnal
variation with more rainfall favored around local
afternoon hours (figure 3) and the period between
2100 LST and early morning hours being the least
preferred time. This pattern of diurnal variation
is different from that of early morning peaks nor-
mally observed over open tropical oceans (e.g.,
Chen and Houze 1997; Gambheer and Bhat 2001).
SST was above the convection threshold value of
28◦ C (Gadgil et al 1984) throughout except for a
brief period on August 16th. SST remained around
28.5◦ C during phase I and showed a larger vari-
ation from less than 28◦ C to more than 29.5◦ C
during phase II. On 31st July, TS2 station received
80 mm of rainfall and SST decreased by about
0.4◦ C. A larger decrease of 0.9◦ C was observed
during 15th – 16th August when the TS2 station
received about 200 mm total rainfall. From 19th
to 24th August, the sky was nearly clear of deep
clouds over TS2 and a prominent diurnal varia-
tion in SST is seen. Thus, modulation of SST by
the atmosphere was clearly seen during BOBMEX.
Average wind speeds varied from less than 3 ms−1

to more than 15 ms−1 during the BOBMEX period,
with the average wind during phase I (∼ 10 ms−1)
higher than that during phase II (∼ 7.5 ms−1). It
may be mentioned here that gust winds exceed-
ing 18 ms−1 have been observed on few occasions
for brief periods just ahead of an approaching rain
belt. RH was between 85% and 90% most of the
time, and exceeded 90% during rains. The specific
humidity of the surface air decreased marginally
(by 1–2 gm kg−1) during rains (Bhat 2001). It is
important to note here that evaporation of falling

rain drops decreases the temperature of the sur-
face air and increases the relative humidity (air
temperature approaches the wet bulb tempera-
ture). In such cases, the specific humidity of the
air increases. However, during convective episodes,
both temperature and specific humidity decreased
at TS2 (Bhat 2001). Simultaneous decrease in the
temperature and specific humidity of the surface
air is possible only if air having a lower moist sta-
tic energy from above the cloud base reached the
surface (Betts 1976).

3.2 Surface fluxes

The latent heat flux (LHF) shown in the last
panel in figure 2 is based on the bulk algorithm
described in Zeng et al (1998). This algorithm uses
the Monin-Obukhov similarity theory for the con-
vective surface layer, and is observed to agree well
with the directly measured TOGA-COARE fluxes.
Measurements that enable the direct computation
of the latent heat flux using the eddy correlation
method were made during BOBMEX also. The
results obtained so far indicate good agreement
between the LHF obtained from the bulk algorithm
of Zeng et al (1998) and that obtained from the
eddy covariance method using BOBMEX data (dif-
ferences between the two are typically less than
10%). LHF varied in the 40–280 Wm−2 range. It is
observed from figure 2 that the variation in LHF
closely follows that of the wind speed. This is not
unexpected as LHF depends on the mean wind
speed, however, there is an important difference
in the variation of LHF with wind speed between
other tropical oceans and the Bay. LHF at TS2 was
substantially lower compared to that over the west-
ern Pacific warm pool at comparable wind speeds
(figure 4). For example, at a wind speed of 8 ms−1

LHF was around 100 Wm−2 at TS2, whereas, the
corresponding value over the Pacific warm pool
is about 150 Wm−2 (Fairall et al 1996), i.e., 50%
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Figure 4. Mean variation of the latent heat flux with wind speed observed during TOGA-COARE, BOBMEX, IFP99 and
BOBMEX-Pilot experiments.

higher. Also shown in figure 4 are the variations of
LHF with wind speed measured from ORV Sagar
Kanya during INDOEX intensive field phase in
1999 (IFP99, e.g., Mitra 1999; Bhat et al 2003)
and BOBMEX-Pilot (henceforth Pilot, e.g., Bhat
et al 2000). IFP99 data were collected over the
tropical Indian Ocean during January–March 1999
(i.e., northern hemispheric winter), and the Pilot
data were collected over the southern Bay dur-
ing October–November 1998, i.e., during the post
monsoon period. The same set of instruments was
used during IFP99, Pilot and BOBMEX. There-
fore the differences in LHF between BOBMEX,
IFP99 and Pilot are due to factors other than
instrument differences. The latent heat fluxes at a
given wind speed are comparable during TOGA-
COARE, IFP99 and Pilot, however, that during
BOBMEX is lower by 30–40%. The main factor
responsible for the lower values of LHF during
BOBMEX is the high amount of water vapor in
the air during the monsoon period. While typical
values of relative humidity over the tropical oceans
are 75–80%, those observed during BOBMEX were
often in the 85–90% range. As a result, the specific
humidity difference between the sea surface (sat-
urated over the saline water at SST) and air at
10 m height was typically in the 3–4 g kg−1 range
during BOBMEX compared to values of 5–7 g kg−1

normally observed over the tropical oceans. There-
fore, although the winds were much stronger dur-
ing the summer monsoon, the surface cooling due
to evaporation of water was not proportionately
higher.

The daily net surface heat flux Qnet, defined as
Qnet = NSW−(NLW+LHF+SHF) (where NSW is
net shortwave radiation, NLW is net longwave radi-
ation and SHF is sensible heat flux), is computed

for days when incoming shortwave and longwave
radiation data are available in addition to LHF and
sensible heat fluxes. Outgoing components of radi-
ation were measured only during BOBMEX. For
IFP99 and Pilot cruises, outgoing longwave and
reflected shortwave radiation are computed assum-
ing 0.95 sea surface emissivity and 5% albedo,
respectively. LHF and shortwave radiation were the
largest terms in the surface heat flux. Normally,
the sensible heat flux was less than 10 Wm−2. The
average value of net longwave radiation was 40
to 50 Wm−2 during IFP99 and Pilot experiments,
but was much lower (20–30 Wm−2) during BOB-
MEX. Qnet is shown in figure 5. (Flux into the
ocean is taken as positive.) The net heat flux
basically followed the synoptic conditions. When
convection was active, depleted shortwave radia-
tion and increased LHF due to stronger winds
resulted in substantial net heat loss. The reverse
was taking place during the weak phase of con-
vection. During IFP99, net heat flux varied from
−90 Wm−2 to 120 Wm−2. The corresponding range
was −240 Wm−2 to 220 Wm−2, and −140 Wm−2

to 100 Wm−2, respectively during BOBMEX and
PILOT. During JASMINE, carried out over the
Bay of Bengal during April – June 1999, net heat
flux values ranged from −150 Wm−2 to 125 Wm−2.
Therefore, the largest variations in the net heat
flux among the recent experiments over the Indian
Ocean are seen during the peak monsoon period
in the north Bay of Bengal. Webster et al (2002)
report that the intraseasonal variability of the
fluxes observed during JASMINE was larger than
that encountered during TOGA-COARE in the
western Pacific Ocean. Although the present time
series are not long enough to clearly bring out
the intraseasonal variations, the range of BOB-
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Figure 5. Daily net surface heat flux during IFP99, BOBMEX and BOBMEX-Pilot experiments. Also shown along with
IFP99 data is NCEP reanalysis net surface heat flux.

MEX net heat flux variations are larger than those
observed during JASMINE, and support the obser-
vation made by Webster et al (2002) that varia-
tions in the net heat flux are largest over the Bay
of Bengal during the monsoon.

Among the three experiments, namely Pilot,
IFP99 and BOBMEX, IFP99 was the longest (20th
January to 10th March) and the total observa-
tion period was more than 40 days. This period
is reasonably long enough to compare in situ
and model reanalysis data. Since NCEP reanaly-
sis data is one of the frequently used products by
the research community, I have considered here
the NCEP reanalysis surface fluxes. The NCEP
reanalysis daily net surface heat flux, correspond-
ing to the grid box where the ship was located
on the respective day of observation during IFP99,
is shown in the top panel in figure 5. In general,
the agreement between the two is better in the
north Indian Ocean and poorer in the south Indian
Ocean. When the individual components of the

heat flux are examined, it is observed that ship
and NCEP reanalysis net longwave, latent heat and
sensible heat fluxes are in reasonable agreement
with each other (Bhat et al 2003). Good and poor
agreement in Qnet mainly resulted from differences
in the net shortwave radiation, the largest compo-
nent of Qnet (Bhat et al 2003).

3.3 SST evolution

One of the questions asked from the very plan-
ning stage of BOBMEX was the role of surface
heat fluxes in the SST evolution. All components
of radiation, namely, incoming and outgoing com-
ponents of shortwave and longwave radiation, were
measured at TS2. Also sensible and latent heat
fluxes have been computed. Therefore, the net
surface heat flux could be computed. I used a
1-dimensional mixed layer model forced by the
surface heat flux to explore the SST evolution at
TS2. Neglecting a minor contribution from the
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Figure 6. Observed SST and the predicted temperature of the mixed layer using 1-D heat balance model. Day shown is
with respect to the local time. Dashed lines are drawn to indicate the mean trends in the temperature.

rainfall, the evolution of the temperature of the top
layer of the ocean is given by (e.g., Bradley et al
1993),

ρwCw∂(hT )/∂t = Q(t) − RT (h) +
[ρwCwκ∂T/∂z](h) + Ah + Az (1)

where ρw and Cw are the density and specific heat
of water, h is depth of the layer under considera-
tion (here taken as the mixed layer depth (MLD)),
T is the average temperature of the layer, RT is
the downward transmission of shortwave radiation
at depth h, κ is the eddy diffusivity of heat, Ah

and Az are the horizontal and vertical transport of
heat by advection. Assuming a constant value of
h and ignoring the diffusion and advection terms,
the temporal evolution of T is given by,

T (t) = T0 +

t∫

0

[Q(t′) − RT (h)]dt′/(ρwCwh). (2)

Apart from the net heat flux Q, the time evolution
of T depends on the assumed value of h (namely
MLD), and RT , the amount of shortwave radia-
tion passing through the bottom of the mixed layer
unabsorbed.

The vertical profiles of water temperature, salin-
ity and density, and the estimation of MLD during
BOBMEX are discussed in Vinayachandran et al
(2002) and Bhat et al (2001). In the north Bay
salinity plays a dominant role. Examination of the
CTD profiles taken at TS2 during BOBMEX sug-
gested that the MLDs were in the 10–15 m range
(Vinayachandran et al 2002). In the following cal-
culations, 14 m and 13 m are assumed for MLD
during the first and third weeks of August respec-
tively. Mixed layer depth is taken to be slightly
larger during phase I as winds were much stronger
during this period (figure 2). RT is an important
parameter when MLD is small, however RT was
not measured during BOBMEX. Here 15% of the
net shortwave radiation received at the surface is
assumed to pass through the bottom of the mixed
layer without being absorbed by water (Paulson
and Simpson 1981).

The predicted water temperature from equa-
tion (2) is compared with the observed SST in fig-
ure 6 for two occasions in August which were nearly
free of rain. (During periods of heavy or continuous
rains, the uncertainty in the measured/computed
fluxes is more, and hence such periods are not
included in the present calculations.) Predicted
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and observed temperature trends are not in agree-
ment with each other during the first two days
of August, but compare well on other days. Dur-
ing 1st – 3rd August, while the predicted temper-
ature is nearly constant, observed SST increased
by about 0.5◦ C. It is to be noted from figure 6(a)
that SST increased during night hours as well, a
period during which there was a continuous loss of
heat from the surface. Therefore, the SST increase
cannot be attributed to the surface heat fluxes
but to the advection of warmer water. The surface
salinity decreased rapidly from more than 30 psu
to 28.5 psu during the corresponding period (Bhat
et al 2001). Local precipitation could account for
less than 0.5 psu change in salinity (Vinayachan-
dran et al 2002). Therefore, the salinity change
was mainly due to horizontal advection of water
from another place, thus supporting the conclusion
based on mixed layer heat budget analysis that
horizontal advection was dominating the surface
variations in the first week of August. The pre-
dicted water temperature and observed SST are in
good agreement with each other during the 19th –
24th August period except for the larger ampli-
tude of diurnal variation in the observed SST.
During the 19th – 24th August period, solar inso-
lation was high and the latent heat losses were
relatively small. Fairall et al (1996a) argue that
the top two meters of the ocean absorbs roughly
50% of the net solar radiation, and in the absence
of vertical mixing, can keep increasing the tem-
perature of this layer uniformly by 2◦ C on clear
sky days. The warmer water eventually gets mixed
throughout the mixed layer due to wind stir-
ring. This process was taking place at TS2 dur-
ing the 19th – 24th August period resulting in a
stronger diurnal cycle in the observed SST as
compared to the mixed layer average tempera-
ture.

Thus, the results shown in figure 6 show that
both horizontal advection and surface net heat
flux are important in maintaining the high SST
in the north Bay during the summer monsoon. As
already pointed out earlier (figure 5), during the
weak phase of convection, the net heat flux into
the ocean is around 200 Wm−2, which, as already
discussed, is significantly large when compared to
other seasons over the Indian Ocean. This, com-
bined with a shallow mixed layer of the north Bay
created by a strong salinity stratified layer enables
the SST to increase by more than 1◦ C in just 4–
5 days. A 1◦ C increase in SST above 28◦ C takes
the overlying atmosphere from convection thresh-
old to peak convection level (Waliser et al 1993).
Thus, within a few days after a convective episode
occurred, the sea surface conditions become ready
to support another event of deep convection over
the Bay.

3.4 Atmospheric stability and vertical
variations

One of the major objectives of BOBMEX was to
understand the response of the atmosphere to con-
vection and changes in the vertical stability of the
atmosphere. As already discussed, both convective
and clear sky conditions were encountered during
BOBMEX at TS2. For the present purpose, periods
with substantial rainfall (total rainfall associated
with the convective event more than 50 mm) are
considered as convective periods (CP, consists of
days July 31st – August 1st, August 6th and 15th –
16th August). During 19th – 24th August, the sky
was clear of deep clouds and substantial heating
of the ocean took place. This was a weak phase of
convection (WPC) over the Bay, and the average
for this period is taken as representative of such a
phase. Next, properties of the atmospheric mixed
layer and that of the troposphere at TS2 during
active and WPC are discussed.

3.4.1 Mixed layer

Atmospheric mixed layer is that part of the
atmosphere that continuously interacts with the
underlying surface. The energy from the surface is
first received by this layer and then transported
upwards by convective processes. Therefore, it is
important to understand the fluctuations in the
properties of the mixed layer during active and
weak phases of convection. Here the mixed layer
height (MLH) is defined as the height from the
surface above which the virtual potential tem-
perature θv increases (rapidly) with height. θv is
approximately constant within the mixed layer.
Figure 7(a) shows MLH observed at TS2. The
average MLH was about 500 m (∼ 50 mb). The
MLH responded to synoptic conditions and var-
ied from less than 100 m to 900 m, with the
larger heights normally observed during the weak
phase of convection. MLH became shallow (less
than 200 m) following a rain spell. After the rains
stopped, MLH regained the normal value within
two days. The average as well as the range of
MLHs observed at TS2 are comparable to those
observed during TOGA-COARE (Godfrey et al
1998).

Figure 7(b) shows the variation of average value
of the water vapor mixing ratio in the lowest 50 mb
layer (qml). (Since 50 mb is the average MLH, aver-
age of the lowest 50 mb layer is referred to as
the mixed layer property henceforth for the con-
venience of reference, although, as already dis-
cussed, the actual MLH was not constant at TS2.)
The average value of 9 ml is between 18 and
19 gm kg−1. When convection was active, values of
qml decreased by ∼ 10%, due to convective down-
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Figure 7. Temporal variation of mixed layer height, mixed layer average water vapor mixing ratio, mixed layer equivalent
potential temperature and mixed layer CAPE. Also shown in the last panel is the CAPE of the surface air.

drafts (Betts 1976), and recovered within two days
after rains stopped. Surface evaporation can easily
account for this recovery period (Bhat 2001). It is
observed that while SST increased by more than
1◦ C during 19th – 24th August, there was no corre-
sponding increase in the amount of water vapor in
the mixed layer. (Apart from SST, the strength of
air-sea coupling decides the amount of water vapor
in the mixed layer, which to a large extent depends
on the wind speed, e.g., Bhat 2002.) Figure 7(c)
shows the equivalent potential temperature (θe)
of the mixed layer (θeml). θeml varied in 347 K to
362 K range. The decrease in θeml during convec-
tively active periods is in the 10–14 K range and
θeml increased to the pre-convective range within
two days after rains stopped. The range of (sur-
face) θe observed in the Pacific warm pool area dur-
ing TOGA COARE was 345 K to 365 K (Kingsmill
and Houze 1999) and the values observed at TS2
are comparable to those over the Pacific warm
pool area.

Critical parameters for the atmospheric convec-
tion are the convective available potential energy
(CAPE), a measure of the vertical instability of
the atmosphere (Moncrief and Miller 1976). Fig-
ure 7(d) shows the variation of CAPE of the
surface air (CAPEsur) and the average value for
the mixed layer (CAPEml) during BOBMEX.
(CAPEml is calculated by taking the mean of
the individual CAPE of air parcels lifted in
5 mb intervals.) The highest value of CAPEsur
exceeded 4 kJ kg−1. The mean values of CAPEsur
and CAPEml are around 3 kJ kg−1 and 1 kJ kg−1

respectively. CAPE decreased during the active
phase of convection and the amount of instability
destroyed by the deep convection, as measured by
the decrease in CAPE, is 2–3 kJ kg−1 for the sur-
face air and about 1 kJ kg−1 for the mixed layer air.
The recovery time of both CAPEs is 1 to 2 days.
The range of CAPE observed at TS2 and TOGA-
COARE are comparable (Kingsmill and Houze
1999).
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Figure 8. Vertical profiles of temperature (top) and relative humidity (bottom) during active and weak phases of convection
along with the observation period average.

The recovery of the time scale of CAPE suggests
that thermodynamic conditions become favorable
for another active phase of convection in just one
or two days after a disturbance passed over the
area. Positive (and sufficiently large) CAPE is a
necessary but not sufficient condition for deep con-
vection. To realize the instability however, large
scale dynamical conditions (low level convergence
in particular) need to be favorable. For example,
on August 18th, CAPE had recovered, deep clouds
started developing and about 30 mm rainfall was
recorded. However, the system dissipated, proba-
bly due to unfavorable large scale conditions for the
convection to intensify. The high frequency of con-
vection over the Bay means that not only the ther-
modynamic recovery of the atmosphere is rapid,
large scale conditions also become favorable fre-
quently (perhaps in the form of perturbations of

sufficient magnitude) during the monsoon period.
There are indications from the visual inspection of
satellite imageries that the travelling disturbances
from west Pacific and equatorial Indian Ocean
intensify over the Bay. The precise nature of the
large scale control on convection as well as the
sources of perturbations needs to be investigated
further for the Bay.

3.4.2 Vertical profiles

To start with, let us consider the average sound-
ing for the entire period at TS2 (referred to as the
average sounding), and the departures from the
average during active and weak phases of convec-
tion. As already stated, the frequency of radiosonde
launch varied between 2 and 5 per day. In order to
remove the bias of the average sounding towards
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Figure 9. Anomalies of temperature and water vapor mixing ratio during the active and weak phases of convection.

days with more frequent soundings, the average
sounding is calculated by considering the morning
(00 UTC) and evening (∼ 12 UTC) soundings for
each day. The average soundings for the active and
weak periods of convection are averages of all avail-
able soundings for the respective periods. The aver-
age sounding is an average of 24 days of radiosonde
data, and CP and WPC soundings are averages of
5 days each.

Figure 8 shows the vertical profiles of average
air temperature and relative humidity, and figure 9
the anomalies (i.e., departure from the average) of
temperature and mixing ratio during active and
weak convective periods. Maximum temperature
departure from the average were less than 1.5◦ C
(figure 9); this change is small compared to more
than 110◦ C decrease observed between the surface
and the tropopause (figure 8). Therefore, temper-
ature profiles appear more or less identical in fig-
ure 8. On the other hand, changes in the humidity
field are more prominent. Relative humidity (RH)
increased particularly in the middle troposphere
during the convective period, and the entire tro-
posphere became drier during WPC; the largest
changes occurred between 600 mb and 300 mb lev-
els (figure 8). There is a clear difference in the

temperature and humidity anomalies between con-
vective and WPC periods (figure 9). During the
convective period, the average temperature in the
lowest 6 kilometers (below 490 mb) decreased, that
in the 6 to 13 kilometers (490 mb to 185 mb) layer
became warmer, and above 13 kilometers the tem-
perature decreased. The physical processes respon-
sible for the decrease in the temperature near the
surface and humidity anomaly are discussed later.
The large cooling between 5 km and 6 km heights
is due to melting of the ice when frozen hygrome-
teors in deep convective clouds descend below the
zero degree centigrade isotherm. During the WPC
period, the lower troposphere was warmer, mid tro-
posphere was colder and a warmer layer near the
tropopause was present.

Another quantity of interest is the variation of
amount of water vapor in different layers, and is
shown in figure 10. It is observed that the average
integrated water vapor (IWV) amount was around
60 kg m−2 with extreme values of 52 kg m−2 and
68 kg m−2. The major contribution to the variation
came from 850–300 mb layer, with the variations
in the lowest 150 mb layer and above 300 mb being
small. Thermals and shallow cumulus clouds (when
present) continuously carry up and mix the water
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evaporated from the underlying ocean in the low-
est 1–2 kms (convective boundary layer). Therefore
this layer is normally rich in moisture and tem-
poral variations in its moisture content are small.
In fact, a small decrease (less than 2.5 kg m−2) is
seen during the convective period in the amount
of water vapor in the lowest 50 mb layer. This is
attributed to the downdrafts caused by precipita-
tion, which brings the air having a lower amount
of water vapor from above the boundary layer into
the boundary layer (Knupp and Cotton 1985). As
a result, the amount of water vapor in the low-
est 50 mb layer decreased. Due to strong winds
that prevail during monsoon, evaporation rate is
high and the convective boundary layer recovers its
moisture content within a day (Bhat 2001). Owing
to the strong vertical thermal stratification of the
atmosphere, only deep convective clouds (cumu-
lonimbus clouds) can transport moisture from low
levels to the middle and upper troposphere. There-
fore, moisture from the low levels is transported
to the middle and upper troposphere only during
the convective period, and the amount of water
vapor increases during such periods. When convec-
tion ceases, subsidence prevails. Subsidence brings

air from upper levels to lower levels and relative
humidity decreases. In this process, the middle and
upper troposphere become drier. Therefore, the
amount of water vapor in 850–300 mb layer criti-
cally depends on if convection is active or weak,
and if not active, then on the time duration since
convection. (If convection is active in a location,
it changes the amount of water vapor in its sur-
rounding area due to horizontal advection. Hence
distance from the convective area is another impor-
tant factor controlling the amount of moisture
in the middle troposphere.) The saturation vapor
pressure itself is very small at temperatures that
prevail above 300 mb level (∼ −30◦ C and lower),
and the amount of water vapor is small even if
the atmosphere was fully saturated. Therefore, the
fluctuations in the amount of water vapor above
300 mb level are relatively small. It may be noted
that, the small changes in the amount of water
vapor that occur at these heights may be very
important in certain problems such as radiative
cooling of the atmosphere.

Upper winds are available for the second leg
of BOBMEX only. Vertical profiles of the wind
changed with synoptic conditions (Bhat et al 2001),
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Figure 11. Typical profiles of wind speed and wind direction during active and weak phases of convection.

and here we consider a representative case for
the active and weak convective periods. Figure 11
shows the vertical variation of wind speed and wind
direction on 14th and 23rd August correspond-
ing to the active and weak phases of convection
respectively. In the lower troposphere, wind speed
increased when the area was convectively active
and decreased during the weak convective period.
Easterly jet was narrower (but normally stronger)
during the convectively active period, and the level
of maximum wind also moved up. At low levels,
westerly and southwesterly winds prevailed, and
easterly winds were always present at upper lev-
els (∼ 200 mb). During the active period, south-
westerly winds penetrated beyond 350 mb height,
whereas, as the weak convective conditions contin-

ued, easterly winds gradually migrated down even
below 650 mb level. In general, the change from
southwesterly to easterly wind direction took place
abruptly, that is, the transition was sharp.

Another important issue was the fluctuations in
the tropopause height in response to convection.
Figure 12 shows the variations in the tropopause
height and temperature, and the level and value of
maximum wind at TS2. (Some radiosonde ascents
did not reach up to the tropopause, and figure 12
includes only those ascents where the variables
under consideration could be unambiguously deter-
mined.) Mean height of the tropopause was 100 mb
and the minimum temperature fluctuated between
−78◦ C and −86◦ C with a mean of −82◦ C. Sur-
prisingly, the tropopause height increased and the
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minimum temperature decreased during the weak
convective phase (19th – 24th August). (Normally,
we expect the tropopause height to increase during
the active phase of convection due to penetrating
cumulonimbus clouds.) Height of the wind maxi-
mum fluctuated between 140 mb and 90 mb, with a
mean around 110 mb. Maximum wind speed varied
between 29 ms−1 and 39 ms−1. No clear dependence
of the maximum wind on the phase of convection is
seen. (The upper wind time series is relatively short
to make a very definite statement.) The major
changes in the wind field are noticeable in the lower
troposphere (Bhat et al 2001).

4. Summary and conclusion

For the first time, accurate measurements of
atmospheric variables have been made during a
peak monsoon period in the north Bay of Ben-
gal under the BOBMEX programme. Data cov-
ering convectively active and weak phases were
collected during BOBMEX. The present work
described the atmospheric characteristics observed
at 17.5◦N, 89◦E in the north Bay during July–
August 1999. Important conclusions are as follows.
• Convection influencing SST was clearly seen, and

SST decreased by 0.4◦ C or more when daily
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rainfall exceeded 75 mm. However, the extent to
which SST influenced convection could not be
established from BOBMEX observations.

• CAPE of the surface air decreased by
2–3 kJ kg−1 in response to deep convection and
recovered in a time period of 1–2 days.

• One dimensional heat budget analysis revealed
that horizontal advection is an important
process in the north Bay governing SST evolu-
tion and vertical mixing is not important due to
strong density stratification.

• There are important differences in the near
surface characteristics between the monsoonal
atmosphere over the north Bay and the west
Pacific warm pool. Over the Indian Ocean itself,
there is a strong seasonal dependence.

• During the convective period, the atmosphere
cooled below 6 km and became warmer between
6 km and 13 km height. The amount of cool-
ing/warming was less than 1.5◦ C relative to the
observation period average temperature profile.
The largest warming was located between 8 km
and 10 km height, and the largest cooling was
found just below 5 km height.

• The largest fluctuations in the humidity field
occurred in the mid troposphere.
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