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S O L U T I O N  O F  T H E  P R O B L E M  O F  T H E  S T R E S S  S T A T E  O F  N O N C I R C U L A R  

C Y L I N D R I C A L  S H E L L S  O F  V A R I A B L E  T H I C K N E S S  

Ya. M. Grigorenko and L. I. Zakhariichenko UDC 539.3 

A procedure is proposed for solving two-dimensional boundary-value problems on the stress-strain state 

of open and closed noncircular cylindrical shells of variable thickness under surface loads. The solution 
is based on the use of the spline-coliocation method along the directrix and the method of discrete 
othogonalization along the generatrix. Examples of solutions for ellipsoidal sheUs of variable thickness 
are given. 

The problem of the stress-strain state of noncircular cylindrical shells of variable thickness is described by a system 
of partial differential equations with variable coefficients and corresponding boundary conditions [3, 13]. This class of 
problems can be examined in a simplified formulation on the basis of the Mushtari-Donnel-Vlasov equations [1, 4, 12]. In 
many cases, the use of various approximate and numerical methods to solve such problelns does not make it possible to satisfy 
the boundary conditions with sufficient accuracy and obtain the desired solution [2, 6, 9]. 

In this investigation, we solve problems of the given type on the basis of  spline approximation in one coordinate 
direction and the numerical method of discrete othogonalization in the other coordinate direction. 

Tiffs approach to solving boundary-value problems of shell theory was proposed in [5, 7, 8]. Some results tlmt have 
been obtained from solving problems for circular and noncircular cylindrical shells of constant thickness can be found 
in [5, 11]. 

Here, we will examine the class of probleins concerning the stress-strain state of noncircular isotropic tlfin cylindrical 
shells with a thickness that changes along the generatrix and directrix. The shells are subjected to an arbitrary surface load. 

The solution is obtained on the basis of the Mushtari-Donnel-Vlasov equations [1, 12]. The shells may be closed or open 
along the generatrix. Accordingly, the boundary conditions are assigned either on the curvilinear edges or over the entire 
contour. 

The initial equations that describe the deformation of fltis class of shells in the coordinate system s, t - -  where s and 
t are arc length along the generatrix and directrix, respectively - -  are written in the following form [1, 4, 12]: 

the expressions for the strains 
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the elasticity relations 

.~.=DM(~,+vK,), M,=D. (K ,+~Ks) ,  H=(I-v)DM~.t, (3) 

where the radius of cmvature of the directrix R = R ( t ), wlfile the stiffnesses 

E h 3 ( s , t )  DN = E k ( s ' t )  D M_ 
l _ v  2 ' 1 2 ( 1 _ v 2 )  " 

In Eqs. (1)-(3), u, v, andw are the displacements along tile generatrix, the directrix, and a normal to tile middle 

surface;a s , or, esr, K s , Kt, and Ksr are the shear and bending strains; Ns, Nr, S, Qs, and Qt are forces; Ms, M r, and H are 

moments; h = h ( s, t)  is the thickness of the shell; E and v are the elastic modulus and Poisson's ratio; q't = qv ( s, t ) is the 

surface load. 

After certain transformations, Eqs. (1)-(3) lead to a resoivent system of equations in displacements 
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O<s<_L,O<_t<_2n. 

In the case of shells that are closed along file directrix, the boundary conditions are ,assigned on the curvilinear edges. 
In file case of shells that are open along the directrix, file boundary conditions are assigned oll the curvilinear and straight 
edges. The boundary conditions can be formulated in displacements or in mixed form. Arbitrary boundary conditions are 

assigned on the curvilinear edges, wlfile the following boundary conditions are assigned on the straight edges in the case of 
open cylindrical shells: conditions corresponding to pinned or fixed support on both edges, specifically: 

u = v = w = S t = 0  at t = t l ,  t=t 2 (5) 

o r  

u=v=w=Mr=O at t=Q, t=t 2" (6) 

conditions corresponding to pinned support of one end (6) and fixed support of the oilier end (5). Generally speaking, other types 
of boundary conditions can also be assigned on the straight edges. 

Using certain transformations, we write resolvent system of differential equations (4) in the form: 
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where the coefficients aij ( i = 1, 2, 3; j = 1, 2 ..... 12) are expressed through the mechanical characteristics and are functions of 

the coordinates s and t. 
The solution of the boundary-value problem for system of partial differential equations (7), with the corresponding 

boundary conditions on the boundary, will be sought in the form 

N N 

u ( s , t ) =  ff" u i ( s ) % ( t ) ,  v ( s , t ) = ~  v i ( s )q~ i ( t ) ,  
i=0 i=0 

(8) 

N 

w ( s , t ) =  E w i ( s ) ~ i ( t ) ,  
i=O 

where u i (s), v i (s), w i (s), ( i = 0, N )  are unknown functions; % ( t ) and q~i ( t ) are linear combinations of B-splines of degree 

three and five, respectively [8, 101. These spline combinations exactly satisfy the boundary conditions on the straight contours 
for open shells and the periodicity conditions for closed shells. 

Shown below are the expressions for third- and fifth-degree B-splines on an expanded grid which is numbered on 
the basis of the middle node of  the carrier 
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ti_3 <l <li_2, 
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t i -  1 <l <t i , 

ti<<-t <ta+l, 

ti+l <-t<li+2, 

tl+2<-l<ti+ 3 , 

t>-ti+ 3 , 

0o) 

where z = ( t - t k ) /h ,  ( t k + l - tk = h = const ) on the interval [ tk, t k + ! ] ; 
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k = i - ( m + l ) / 2 , i + ( m + l ) / 2 - 1 ;  i = - ( m + l ) / 2 + l , N + ( m + l ) / 2 - 1 ;  m = 3 , 5 .  

In particular, we have the following relations when the edge t -- t I is fixed and the edge t = t 2 is pinned 

1 
( P o ( t ) = - 4 B 3 1 ( t ) + B ~  % ( t ) = B a l ( t ) - ~ B ~  

1 N BN+I ~ ( t ) = B ~ ( t ) ,  ( i = 2 , N - 2 ) ,  ( p N _ l ( t ) = B N - l ( t )  - ~ B  3 ( t ) +  ( t ) ,  

1 6 5 - ~ 2  ~ B 5 1  ( P N ( t ) = B N 3 ( t ) - 4 B N + l ( t ) ,  q,O ( t )  =--~-- B ~ ( t ) + B ~  (11) 

26 1 u & ( t ) = B 5 1 ( t ) - ~ - ~ B ~  v 2 ( t ) = B 5 2 ( t )  - B ~  

N+2(t  ) % ( t ) = B ~ ( t ) ,  ( i = 3 , N - 3 ) ,  u & : _ 2 ( t ) = B N - 2 ( t ) - B 5  , 

U l N _ I ( t ) = B N - I ( t ) - B N + I ( t ) ,  R , N ( t ) = B N ( t ) - 3 B N * I ( t ) + I 2 B N + 2 ( t ) .  

Equations (11) can easily be used to construct expressions for% ( t ) and ql i ( t ) when both edges are fixed or pinned. 

Similar procedures are used to construct expressions in the form of  linear combinations of B-splines for other boundary 

conditions or symmetry conditions [5, 8, 10]. 

Choosing the functions (Pi ( t ) and % ( t ) so as to satisfy tlm boundary conditions or symmetry conditions on the 

straight edges, we insert Eqs. (8) into differential equations (7) and require that riley be satisfied at the collocation points 

t = t k ( k = O, N),  i.e., on straight line N + 1. After completing several transformations, we obtain a system of ordinary 

differential equations of the order 8(N + 1) 

d Z  
- A ( s ) Z + f ( s ) ,  (O<s<L) .  (12) 

ds 

Here, 

where z'rn = { Zm o �9 Zm I ..... Zm n } T, ( m = 7,8 ). 

We can use the boundary conditions assigned on the edges s = 0 ,and s = L to formulate boundary conditions for 
system (12). In tile general case, the boundary conditions for tlmt system will have the form 

B22(L)= 2. (13) 

We use the stable method of discrete orthogonalization [3, 9] to solve the boundary-value problem for system (12) 

with boundary conditions (13). Inserting the values found for the functions u i ( s ), v i ( s ), and w i ( s ), ( i = 0, N)  into 

Eqs. (8), we obtain the solution of the initial problem for the displacements and use that solution to calculate all of the factors 
oftlm stress-strain state of the shell. Some results obtained from an evaluation of the accuracy of this approach were presented 

in [5, 8, 11]. 
Let us now present the results of file solution of problems on the basis of the given approach. We will examine the 

problem of  the stress-strain state of an isotropic cylindrical shell with an elliptic cross section. The shell is subjected to a 

uniformly distributed nonnaJ surface load q~,. We write file parametric equations of the cross section of the shell in the form 

x = b cos qJ, z = a sin W ( 0 < u/_< 2 n ), where a and b are tile minor and major semi-axes of tile ellipse, respectively. The 

perimeter of the middle section of the shell remains constant and equal to the perimeter of a circle of radius R, i.e., we have 
the equality 
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1 +--~  + ~-~-~ + . . .  = 2 n R ,  (14) 

where 

b - a  R R 
A - b + a ,  a = ~ ( l - A ) ,  b = ~ ( l + A ) ,  

A 2 A 4 A 6 _a = 1 -___AA. 

f =  1 +--4- +-~-~- + ~-~ + . . . .  b l + A '  

d t - y ( v ) d v ,  Y ( V ) =  [d-~ql) ~ )  " 

We will study the stress-strain state of the ellipsoidal cylindrical shell for three variants: 

variant 1 - -  an open sheU ( -  7t/2 _< ~ _< 7t/2), the curvilinear and straight edges of which are fixed, i.e., the following boundary 

conditions are satisfied: 

~ w  
u = v = w =  =0 at s = 0 ,  s = L ,  

0 s  

O w  "1t 7t 
u = v = w =  Ot =0 at ~ u = - - ~ , V = ~ ;  (15) 

variant 2 - -  an open shell ( -  n / 2  < u? _< ~/2)  with fixed curvilinear edges and pinned straight edges, i.e., the following boundary 

conditions are satisfied: 

t~w 
u = v = w = - - = O  at s = 0 ,  s = L ,  

Os 

7"[ 7Z 
u = v = w = M t = O  at V = - ~ ,  q~=~;  (16) 

variant 3 - -  a closed shell with fixed curvilinear edges, i.e., the following boundary conditions ,are satisfied: 

~ w  
u = v = w =  =0 at s = O ,  s = L .  (17) 

Os 

We can solve the problem by examining part of the shell: 

O <_ s < L /2  , 0_<W_<n/2, 

specifying symmetry conditions with s = L / 2 ,  ~ = 0, and ~ = 7c/2. 

The problem was solved using the following data: R = 20; L = 60; q~ = qo = const, h = h 0 ( 1 + ~c [ sin qs [), h o = 0.5, 

v = 0.3; A and tx were given different values, which are shown in the tables. Twelve terms were taken into account in 

series (8). 

Table 1 shows the maximum deflections w in the section s = L/2 at ~ = 0.7 (rt/2) for variants 1 and 2 and ~ = n / 2  

for variant 3. The table also shows the forces N t at u? = 0 for variants I and 2 and u? = n / 2  for variant 3, as well as the moments 

M t at ~ = n / 2  for variants 1 and 3 and W = 0.8 0t/2) for variant 2. The tabular data illustrates how the deflections, forces, and 

moments clmnge in relation to shell tlfickness along the directrix for the three variants when the value of A is also changed. 

Table 2 show tile distribution of  the deflections, forces, and moments along the generatrix for a closed shell with 

s = L/2 and the same parameters as in the previous case. The distributions are shown for different values ofo~ when A = 0.005. 

The goal here was to make the distribution of the deflection w along the generatrix of the elliptic cylindrical shell as uniform 
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TABLE 1 
,J  

A n a=O a=O.l a-- 0.25 a=0.5 

10 4 qo 
w / - - -  

E 

0.1 1 0.4440 0.3985 0.3484 0.2891 

2 0.4600 0.4213 0.3723 0.3084 

3 0.5363 0.4845 0.4233 0.3498 

0.2 1 0.9409 0.8441 0.7227 0.5683 

2 0.9673 0.8894 0.7875 0.6511 

3 1.246 1.120 0.9718 0.7956 

N / 1 0  3 qo 

0.1 1 2.256 2.169 2.032 1.806 

2 2.121 2.062 1.967 1.805 

3 -1.770 -1.755 -1.738 -1.719 

0.2 

0.1 

4.418 4.294 4.072 3.659 

4.183 4.108 3.965 3.677 

-3.661 -3.609 -3.547 -3.470 

Mt/10 3 qo 

-1.633 -1.858 -2.205 -2.801 

0.6614 0.7377 0.8548 1.056 

0.2542 0.2783 0.3168 0.3882 

0.2 1 -3.913 -4.391 -5.127 - 6.382 

2 1.690 1.856 2.130 2.583 

3 0.7512 0.8084 0.8998 1.070 
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T A B L E  2 

A = 0 A-- 0.005 A= 0.005 A= 0.005 A= 0.005 

a =  0 a = 0 a =  0 . 2 5  a - -  0 .50  ot = 0 . 8 3  

10 3 qo 
w~ 

E 

0 0.7334 0.5492 0.5322 0.5150 0.4934 

0.2 0.7334 0.5841 0.5548 0.5281 0.4968 

0.4 0.7334 0.6761 0.6087 0.5551 0.4988 

0.6 0.7334 0.7911 0.6694 0.5812 0.4961 

0.8 0.7334 0.8853 0.7155 0.5995 0.4929 

1 0.7334 0.9215 0.7327 0.6061 0.4918 

N / 1 0 2  qo 

0 0.2000 1.081 1.170 1.261 1.374 

0.2 0.2000 0.9129 0.8439 0.7825 0.7086 

0.4 0.2000 0.4723 0.3590 0.2555 0.1330 

0.6 0.2000 - 0.0722 -0 .1406  - 0,1988 - 0.2634 

0.8 0.2000 - 0.5133 - 0.5119 - 0.5029 - 0.4860 

1 0.2000 - 0.6820 - 0,6493 - 0.6106 - 0.5582 

Mr /10  qo 

0 0 

0.2 0 

0.4 0 

0.6 0 

0.8 0 

1 0 

- 0.8367 

- 0 . 6 8 3 2  

- 0.2765 

0.2487 

0.6939 

0.8710 

-0 .5589  - 0 . 3 4 6 0  

- 0.4657 - 0.2431 

-0 .1084  0.0456 

0.3026 0.2566 

0.6537 0.4396 

0.8012 0.5320 

- O. 1224 

0.0601 

0.2013 

0.0101 

- O. 1447 

- 0 . 1 6 4 0  
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as possible by suitably choosing the parameters characterizing the variable thickness of the shell. It follows from the table 

that the distribution is most uniform when o~ = 0.83. The results show how the forces N t and moments M t are redistributed 

along the directrix as a result of a change in thickness. 
Thus, the results shown in Tables I and 2 from the solution of the given problems demonstrate the effect of a change 

in thickness in noncircular cylindrical shells on the stress-strain state, 
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