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The M-Machine Multicomputer 
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The M-Machine is an experimental multicomputer being developed to test 
architectural concepts motivated by the constraints of modern semiconductor 
technology and the demands of programming systems. ]?he M-Machine computing 
nodes are connected with a 3-D mesh network; each node is a multithreaded 
processor incorporating 9 function units, on-chip cache, and local memory. 
The multiple function units are used to exploit both instruction-level and 
thread-level parallelism. A user accessible message passing system yields fast 
communication and synchronization between nodes. Rapid access to remote 
memory is provided transparently to the user with a combination of hardware 
and software mechanisms. This paper presents the architecture of the 
M-Machine and describes how its mechanisms attempt to maximize both single 
thread performance and overall system throughput. The architecture is complete 
and the MAP chip, which will serve as the M-Machine processing node, is 
currently being implemented. 
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1. INTRODUCTION 

Because of the increasing density of VLSI integrated circuits, most of the 
chip area of modern computers is now occupied by memory and not by 
processing resources. Nearly all of this memory is located far from the 
processor, resulting in long latency and limited bandwidth access to it. It 
is clear that the computer systems of the future must address the latency 
and bandwidth limitations of these technology trends. The M-Machine 
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multicomputer is an experimental machine being developed to test architec- 
tural concepts motivated by the constraints of semiconductor technology 
and the demands of programming systems, such as faster execution of fixed 
sized problems and easier programmability of parallel computers. 

The normalized area (in 22) of a VLSI chip 2 increasing by 50% per 
year, while gate speed and communication bandwidth are increasing by 
20% per year. ~ As a result, a 64-bit processor with a pipelined FPU 
(400 M22) is only 8 % of a 5G22 1996 0.35 r chip. a In a system with 
256 MBytes of DRAM, the processor accounts for 0.13% of the silicon 
area in the system. The memory system, cache, TLB, controllers, and 
DRAM account for most of the remaining area. Technology scaling has 
made the memory, rather than the processor, the most area-consuming 
resource in a computer system. 

The processor-memory imbalance in conventional computer organiza- 
tion exacerbates both the latency and bandwidth mismatch between execu- 
tion units and main memory. Current systems use multiple levels of caches 
to manage the increasing size of main memory. While this does reduce 
latency to access that data contained in the cache closest to the processor, the 
latency to access uncached data increases dramatically. Furthermore, since 
chip packaging and ott'chip interconnect technologies are not advancing as 
fast as VLSI, the bandwidth between the processor and its memory is not 
scaling with processor speed or memory capacity. Both increasing latency 
and slow improvement of bandwidth to main memory will only continue to 
become more critical bottlenecks. 

The M-Machine addresses both latency and bandwidth bottlenecks by 
increasing the number of processors per unit memory. This allows any 
given word of memory to be accessed by some processor very quickly and 
enables the aggregate bandwidth between processors and memory to scale 
with the size of the memory. In the M-Machine, instead of a multi-level 
cache hierarchy, the communication network determines the latency to 
access memory on another processor. Both multiple arithmetic units and 
fine-grained multithreading are implemented so that a processor may con- 
tinue to perform useful work, and keep the memory pins busy, during long 
latency operations. In addition, the high arithmetic execution rate on-chip 
coupled with multithreading will keep the memory pins busy even during 
periods of high computation in which the data resides completely within 
the on-chip cache and the processor registers. That some of the on-chip 

2 The parameter  ,~ is a normalized, process independent unit  of  length equivalent to one half 
of the gate length. {2) For a 0.5 r process, 2 is 0.25 r 
Area was determined by measuring the processing components  of various chips, in particular 
the R4600 described in Ref. 3. 
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arithmetic resources go idle is inconsequential relative to the importance of 
using the memory bandwidth effectively. 

An M-Machine multi-ALU processor (MAP) chip contains three 64-bit 
three-issue clusters that comprise 46% of the 5G22 chip and 16% of an 
8 MByte (six-chip) node. The high ratio of arithmetic bandwidth to memory 
bandwidth (9 operations/word) allows the MAP to saturate the costly DRAM 
bandwidth even on code with high cache-hit ratios. A 32-node M-Machine 
system with 256 Mbytes of memory has 96 times the peak performance of a 
1996 uniprocessor with the same memory capacity at 1.5 times the area, a 64:1 
improvement in peak performance/area. Even at a small fraction of this peak 
performance, such a machine allows the expensive memory bandwidth to 
handle more problems per unit time, resulting in more cost-effective computing. 

The M-Machine is intended to extract more parallelism from problems 
of a fixed size than traditional computers, rather than requiring enormous 
problems to achieve peak performance. To do this, nodes are designed to 
manage parallelism at a range of granularities, from the instruction level to 
the process level. The 9 function units in an M-Machine node are controlled 
using a form of Processor Coupling ~4) to exploit instruction level parallelism 
by executing 9 operations per cycle from the same thread, or to exploit 
thread-level parallelism by executing operations from up to six different 
threads. The fast internode communication allows collaborating threads to 
reside on different nodes. 

The M-Machine also addresses the demand for easier programmability 
by providing an incremental path for increasing parallelism and perfor- 
mance. An unmodified sequential program can run on a single M-Machine 
node, accessing both local and remote memory. This code can be incremen- 
tally parallelized by identifying tasks, such as loop iterations, that can be 
distributed both across nodes and within each node to run in parallel. 
A flat, shared address space simplifies naming and communication. Software 
support for caching of remote data in local DRAM will automatically 
migrate a task's data to exploit locality. 

Previous publications have introduced some of the mechanisms used 
in the M-Machine. The first description of Processor Coupling, a method 
for exploiting instruction level parallelism, appeared in Ref. 4. The novel 
capability-based memory protection system of the M-Machine was 
described in Ref. 5. This paper describes the M-Machine's other features 
which include an improved form of Processor Coupling as well as 
communication and global addressing mechanisms. The M-Machine 
architectural design is complete and the MAP chip, which will serve as the 
M-Machine processing node, is currently being implemented. 

Section 2 gives an overview of the machine architecture, including the 
physical resources of the M-Machine. Section 3 describes the updated 
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version of Processor Coupling that simplifies hardware implementation and 
is expected to improve performance. Instead of lock-step execution of the 
wide instruction words across all of the function units, an instruction 
stream is partitioned by the compiler into horizontal threads (H-Threads), 
which run concurrently on different execution clusters to exploit instruction 
level parallelism. Several mechanisms for synchronizing the clusters are 
provided, including a cluster barrier instruction, broadcast of single bit 
condition values, and instructions that write register files in remote clusters. 
In addition, the function units are time-shared among vertical threads 
(V-Threads) which exploit runtime parallelism and mask pipeline, memory, 
and communication latencies. Events are handled asynchronously in a 
dedicated V-Thread so that event handling may proceed in parallel with 
user program execution and the issued instructions of the thread that 
caused the event need not be cancelled. Section 4 discusses inter-node com- 
munication including user-level communication primitives, global mapping 
of virtual addresses to physical memory and remote processors, and how 
these mechanisms are used to provide global coherent memory access. 
Finally, Section 5 describes the M-Machine software effort, including a 
brief overview of the compiler and runtime system. 

2. M - M A C H I N E  A R C H I T E C T U R E  

The M-Machine consists of a collection of computing nodes intercon- 
nected by a bidirectional 3-D mesh network. Each six-chip node consists of 
a multi-ALU (MAP) chip and 1 MW (8 Mbytes) of synchronous DRAM 
(SDRAM) with ECC. The MAP chip includes the network interface and 
router, and provides bandwidth of 800 Mbytes/s to the local SDRAMs and 
to each network channel. Each node contains a dedicated I/O bus; I /O 
devices may be connected to either every node or a subset of nodes, for 
example, all nodes on a face of the mesh. The target clock rate for the 
MAP is 100 MHz. 

As shown in Fig. 1, a MAP contains three execution clusters, a unified 
cache which is divided into four banks, an external memory interface, and 
a communication subsystem consisting of the network interfaces and the 
router. Two crossbar switches interconnect these components. Clusters 
make memory requests to the appropriate bank of the interleaved cache 
over the 142-bit wide (51 address bits, 66 data bits, 25 control bits) 3 x 4  
M-Switch. The 88-bit wide (66 data bits, 22 control bits) 9 x 3 C-Switch is 
used for inter-cluster communication and to return data from the memory 
system. Both switches support up to three transfers per cycle; each cluster 
may send and receive one transfer per cycle. 
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Fig. 1. The  MAP archi tecture .  

2.1. Map Execution Clusters 

Each of the three ~AP clusters is a 64-bit, three-issue, pipelined pro- 
cessor consisting of two integer ALUs, a floating-point ALU, associated 
register files, and a 1 KW (8 KB) instruction cache, as shown in Fig. 2. 
One of the integer ALUs in each cluster, termed the memory unit, is the 
interface to the memory system. Each MAP instruction contains 1, 2, or 3 
operations. All operations in a single instruction issue together but may 
complete out of order. Every operation may be conditionally executed 
depending on the one-bit value of one of the condition code registers. 
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M-Switch 

C-Switch / 

Fig. 2. A map cluster consists of 3 execution units, 2 register files, an 
instruction cache and ports onto the memory and cluster switches. 

2.2. M e m o r y  S y s t e m  

As illustrated in Fig. 1, the 64 KB unified on-chip cache is organized 
as four 2 K W  (16 KB) banks that are word-interleaved to permit accesses 
to consecutive addresses to proceed in parallel. The cache is virtually 
addressed and tagged. The cache banks are pipelined with a three-cycle 
read latency, including switch traversal. Each cluster has its own 8 KB 
instruction cache which fetches instructions from the unified cache when 
instruction cache misses occur. 

The external memory  interface consists of the SDRAM controller and 
a local translation lookaside buffer (LTLB) used to cache local page table 
(LPT)  entries. Pages are 512 words (64 8-word cache blocks). The 
SDRAM controller exploits the pipeline and page modes of the external 
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SDRAM and performs single error correction and double error detection 
on the data transferred from external memory. 

Each MAP word in memory is composed of a 64-bit data value, one 
synchronization bit and one pointer bit. A pair of special load and store 
operations specify a precondition and a postcondition on the synchroniza- 
tion bit and are used as atomic read-modify-write memory operations. The 
M-Machine supports a single global virtual address space. A light-weight 
capability system implements protection through the pointer bit and 
guarded pointers, (5) while paging is used to manage the relocation of data 
in physical memory within the virtual address space. The segmentation and 
paging mechanisms are independent so that protection may be preserved on 
variable-sized segments of memory. The memory subsystem is integrated 
with the communication system and can be used to access memory on remote 
nodes, as described in Section 4.2. 

2.3. Communica t ion  Subsystem 

Messages are composed in the general registers of a cluster and 
launched atomically using a user-level SEN D instruction. To provide protec- 
tion, messages must be sent to virtual addresses which are automatically 
translated into physical node identifiers via a global translation lookaside 
buffer (GTLB).  The GTLB caches entries of a software global destination 
table (GDT),  much like a TLB caches page table entries. Arriving messages 
are queued in a register-mapped hardware F IFO readable by a system-level 
message handler. Two network priorities are provided, one each for requests 
and replies. Messages are routed in dimension order using up to four virtual 
channels. 

3. I N T R A - N O D E  C O N C U R R E N C Y  M E C H A N I S M S  

The amount  and granularity of available parallelism varies enor- 
mously across application programs and even during different phases of 
the same program. Some phases have an abundance of instruction level 
parallelism that can be extracted at compile time. Others have data 
dependent parallelism that can only be exploited using multiple threads; 
thus the task size to achieve maximum concurrency may vary widely. 

The M-Machine is designed to efficiently execute programs with either 
compiler or runtime scheduled parallelism and with a range of granularities. 
The M-Machine architecture contains two mechanisms for intra-node 
concurrency: Vertical Threads (V-Threads) and Horizontal  Threads 
(H-Threads). A V-Thread is similar to a process; it has its own protection 
domain and may be swapped in and out of the processor by the system 
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software. A V-Thread is allocated one set of processor and pipeline 
registers on each cluster where its subthreads (or H-Threads)  execute. Each 
H-Thread is a 3-wide instruction stream which is statically scheduled and 
executes on a single MAP cluster. The H-Threads  of  a V-Thread can be 
either independently scheduled or scheduled together by the compiler to 
achieve 9-wide instruction level parallelism (ILP).  

The MAP has sufficient hardware resources to support  up to six resi- 
dent V-Threads; on each cluster, the H-Threads  residing there are inter- 
leaved on a cycle-by-cycle basis over the shared execution resources. 
Consecutive instructions executed by a given cluster may be from distinct 
V-Threads and instructions executed at the same time on different clusters 
may be from different V-Threads. This flexible interleaving allows the MAP 
to exploit thread-level parallelism and to mask variable pipeline, memory,  
and communicat ion delays. 

The arrangement of V-Threads, H-Threads,  instructions, and opera- 
tions is summarized in Fig. 3. The contexts of six V-Threads are resident in 
the clusters' register files. Each V-Thread includes three H-Threads,  one on 
each cluster. Each H-Thread  consists of a sequence of 3-wide instructions 
containing integer, memory,  and floating point operations. On subsequent 
cycles, a cluster, as demonstrated by cluster 0, may issue instructions from 
different V-Threads. 

3.1. S ingle  Cluster  Execut ion  

A V-Thread consists of at least one and up to three H-Threads,  each 
running concurrently on a different cluster. The MAP has sufficient 
hardware resources to hold the state of six V-Threads (18 H-Threads) ,  with 
each V-Thread occupying a thread slot. Three of the thread slots are user 
slots, two are for events, and one is the exception slot. User threads run in 
the user slots, handlers for asynchronous events run in the event slots, and 
handlers for synchronous exceptions detected and localized within a 
cluster, such as protection violations run in the exception slot. Message 
arrival is treated as an asynchronous event. 

The H-Threads  within the same V-Thread may communicate  and 
synchronize via registers, while H-Threads  of different V-Threads must syn- 
chronize and communicate  through memory  or messages. 

On each cluster, up to six H-Threads  (one from each V-Thread) are 
interleaved dynamically over the cluster's resources on a cycle-by-cycle 
basis. A synchronization pipeline stage holds the next instruction to be 
issued from each of the six H-Threads  until all of its operands are present 
and all of  the required resources are available, similar to the architecture 
described in Ref. 4. 
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Fig. 3. Multiple V Threads are interleaved dynamically over the cluster resources�9 
Each V-Thread consists of 3 H-Threads which execute on different clusters. 

On every cycle, the SZ stage decides which instruction to issue from 
those which are ready to execute. The SZ stage checks each instruction to 
determine if all of its operands are present, all of the resources it requires 
are available, and all of the barrier conditions are satisfied. The MAP chip 
implements both a memory barrier (MBAR) and a cluster barrier (CBAR) 
instruction. The MBAR instruction causes a thread to stall until all of its 
outstanding memory references complete, while CBAR stalls until the other 
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two clusters each reach their own CBAR instruction. After determining 
which instructions are ready to execute, the SZ stage selects one based on 
priority and deadlock avoidance criteria. A one bit per thread priority 
scheme is used to allow high priority threads to use more of the execution 
slots. A pre-emption counter ensures that  threads of  low priority get at 
least some port ion of the execution slots. 

An H-Thread that is stalled waiting for data  or resource availability 
consumes no resources other than the thread slot that  holds its state. 
Multiple H-Threads  may be interleaved with zero delay, allowing task 
switching to mask even very short pipeline latencies as well as longer com- 
munication and synchronization latencies. As long as its data  and resource 
dependencies are satisfied, a single thread may  issue an instruction every 
cycle. Therefore, single thread performance is not penalized as a result of  
the M-Machine 's  support  for multithreading. 

3.2. M u l t i c l u s t e r  E x e c u t i o n  

An H-Thread runs on a single cluster and executes a sequence of opera- 
tion triplets (zero or one operat ion for each of the 3 ALUs in the cluster) that 
are issued simultaneously. Within an H-Thread,  instructions are guaranteed 
to issue in order, but may  complete out of order. An H-Thread  may com- 
municate and synchronize via registers with the two other H-Threads  within 
the same V-Thread. An H-Thread  may  only read operands from its own 
register file, but can write directly into the register files of its collaborating 
H-Threads that  are within the same V-Thread on other clusters. 

The H-Thread mechanism can support  multiple execution models. 
H-Threads can execute as independent threads with possibly different con- 
trol flows to exploit loop-level or thread-level parallelism. Alternatively, the 
compiler can schedule the three H-Threads  in a V-Thread as a unit to 
exploit instruction level parallelism, as in a VLIW machine. In this case the 
compiler may insert explicit register-based synchronization operations or 
employ the-CBAR instruction to enforce instruction ordering between 
H-Threads. Unlike the lock-step execution of traditional V L I W  machines, 
H-Thread synchronization occurs only as required by data  or resource 
dependencies. While explicit synchronization incurs some overhead, it 
allows H-Threads to slip relative to one other in order to accommodate  
variable-latency operations such as memory  accesses. 

Figure 4 shows a simple illustrative example of the instruction sequen- 
ces of a p rogram fragment on 1 and 2 H-Threads.  The p rogram is the body 
of the inner loop of a "smoothing" operat ion using a 7-point stencil on 3-D 
grid. On a particular grid point, the smoothed value is given by: 

u , = u ,  + a x r ,  +bx(ru+rd+rn+r~,+re+rw) (3.1) 
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where r .  is the residual value at that point, and ru, rd, r , ,  rs, re and r w are 
the residuals at the neighboring grid points in the six directions uP, DOWN, 
NORTH, SOUTH, BAST and W~ST respectively. In order to better illustrate the 
use of H-Threads, advanced optimization (such as software pipelining) is 
not performed. 

Figure 4a shows the single H-Thread program, with a 12 long instruc- 
tion stream which includes all of  the memory and floating point operations. 
The weighting constants a and b are kept in registers. Figure 4b shows the 
instruction streams for two H-Threads working cooperatively. Each 
H-Thread performs four memory operations and some of the arithmetic 
calculations. Instruction 7 in H-Thread 0 calculates a partial sum and 
transmits it directly to register t2 in H-Thread 1. The empty instruction on 
H-Thread 1 is used to prepare t2 for H-Thread synchronization; H-Thread 
1 will not  issue instruction 7 until the data arrives from H-Thread 0 as 
explained later. 

The use of multiple H-Threads reduces the static depth of the instruc- 
tion sequences from 12 to 8. On a larger 27-point stencil, the depth is 

(a) Single H Thread 

MEM Unzt FP Unit 
1. l o a d  ru 

2. l o a d  r d 

3. l o a d  rn t2 = ru + r d 
4. l o a d  rs t~ = t~ + rn 

5. l o a d  re t2 = t2 + rs 

6. l o a d  rw t2 = t2 + re 
7. l o a d  r .  t2 = t2 4- rw 
8. load u. t2 = b • t~ 

9. t l  ~ a. x r .  
10. t l  = t l  + t2 

11. u ,  = u ,  4- t t  
i2 .  s t o r e  u.  

(b) Two concurrent H-Threads  

H - T h r e a d  0 
MEM Unit FP Unit 

1. l o a d  r u 

2.  load r d 

3. l o a d  r .  t2 = ru + r d 
4. load u.  t~ = b x t2 

5. t t  = a x r .  
6. t l  = u ,  + t l  

7. H l . t~  = t t  + t2 

H - T h r e a d  1 
MEM Unit FP Unit 

h load rn 

2. load r s empty t 2 

3. load re tl = rn + rs 

4. load rw tl = tl + re 

5. t l  = t l  + rw 
6. t l  = b x t l  

7. u . = t l + t 2  
8.  store U. 

F i g .  4. E x a m p l e  o f  H - T h r e a d s  u s e d  to  e x p l o i t  i n s t r u c t i o n  leve l  p a r a l l e l i s m :  ( a )  s i n g l e  

H T h r e a d ;  (b )  t w o  H - T h r e a d s .  T h e  c o m p u t a t i o n  is a s m o o t h i n g  o p e r a t o r  u s i n g  a 7 - p o i n t  

s tenc i l  o n  a 3 - D  g r i d :  u .  = u .  + a x r .  + b x ( r ,  + r u +  r,, + r ,  + r,, + r, ,) .  
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reduced from 32 to 15 when run on 3 H-Threads. The actual execution 
time of the program fragments will depend on the pipeline and memory 
latencies. 

3.2.1. Thread Synchronization 

As shown in the previous example, H-Threads within the same 
V-Thread may synchronize with one another through registers. A scoreboard 
bit associated with the destination register is cleared (empty) when a multi- 
cycle operation, such as a load, issues and is automatically set (full) by MAP 
hardware when the result is available. An operation that uses the result will 
not be selected for issue until its register operands are present with the 
corresponding scoreboard bits set. 

All inter-cluster data transfers require explicit register synchronization. 
To prepare for intercluster data transfers, the receiving H-Thread executes 
an ~MPTY operation to mark empty a set of destination registers. As each 
datum arrives from the transmitting H-Thread over the C-Switch, the 
corresponding destination register is automatically set full by MAP 
hardware. An instruction in the receiving H-Thread that uses the arriving 
data will not be eligible for issue until its data is available. Therefore, 
explicit synchronization operations required by VLIW style execution 
across H-Threads may be overlapped with the inter-cluster data transfers 
inherent in the executing program. In order for the clusters to coordinate 
the emptying and writing of registers, three main synchronization 
mechanisms are provided: global condition registers, the CBAR instruc- 
tion, and a tightly coupled mode. 

3.2.2. Global Condition Registers 

Each V-Thread has an independent bank of global condition code 
(CC) registers. Each bank is composed of three sets of four single-bit global 
CC registers and is used to broadcast binary values between H-Threads 
within a V-Thread. Similar to data registers, each global CC register has an 
accompanying scoreboard bit. The MAY global CC registers are physically 
replicated on each of the clusters, instead of being centrally located. An 
H-Thread may broadcast to other H-Threads of the same V-Thread using 
one of its writable global CC registers (only one of the three sets per 
H-Thread is writable), but may read and mark empty its local copy of any 

global CC register in its bank. Using these registers, all three H-Threads 
can execute conditional branches and assignment operations based on a 
comparison performed by a single H-Thread. 

The scoreboard bits associated with the global CC registers may be 
used to rapidly synchronize among the H-Threads within a V-Thread. 
Figure 5 shows an example of two H-Threads synchronizing at loop 
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H-Thread 0 H-Thread 1 
1 LOOP_O : compute bar LOOP 1 : compute 

2 eq bar end gccl ~ ; r  ; ; e l "  LO 
3 ........ OP_l 

4 ........ empty gcc l~branch 
) delay 

write gcc3J slots 5 br gccl LOOP_O ~ 

o 

7 slots ~empty gcc3 

Fig. 5. Loop synchronization between two H-Threads using MAP global condition code (CC) 
registers. 

boundaries. Two registers are involved in the synchronization, in order to 
provide an interlocking mechanism which ensures that neither H-Thread 
rolls over into the next loop iteration. 

H-Thread 0 computes bar, compares it (using eq) to end, and broad- 
casts the result by targetting gcc] .  H-Thread 1 uses gcc]  to determine 
whether to branch, marks 9cc1 empty again, and writes to 9cc3 to notify 
H-Thread 0 that the current value of Occ] has been consumed. H-Thread 
0 blocks until gee3 is full, and then empties it for the next iteration. 
Neither thread can proceed with the next iteration until both have com- 
pleted the current one. Due to the multicopy structure of MAP global CC 
registers, this protocol can easily be extended to perform a fast barrier 
among 3 H-Threads executing on different clusters, without combining or 
distribution trees. 

3.2.3. Cluster Barrier Instruction 

Although the global condition registers can be used to implement 
pairwise barriers and quickly broadcast the results of comparison opera- 
tions to be used by conditional branches on other clusters, global barriers 
do incur noticeable overheads. The cluster barrier (CBAR) instruction is 
intended to be used for fast barrier synchronization among the clusters. 
When executed on one H-Thread, the CBAR instruction stalls in the 
synchronization (SZ) pipeline stage until the H-Threads on the other 
2 clusters execute CBAR instructions. Then all 3 clusters may proceed past 
the CBAR. Thus, a global barrier can be executed with only one instruc- 
tion overhead and none of the communication overhead required using 
data or global condition registers. Since the CBAR operations stall until 
ready, no execution unit cycles are used waiting for the other H-Threads to 

828/25/3-4 
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H-Thread 0 H-Thread 1 
1 LOOP_O : compute bar LOOP_I : compute 

2 eq bar end gccl ~ b r  ; ; c l "  LO 
3 b r  g c c l  LOOP_0 OP_I 

branch 
4 delay m c b a r  e m p t y  g c c l ~ b r a n c h  

slot ~ delay 
5 char ; slots 

Fig. 6. Loop synchronization between two H-Threads using the CBAR instruction. 

reach the barrier, and the arithmetic units on that cluster may be used by 
the other resident V-Threads. 

Figure 6 shows the same loops as Fig. 5, but using CBAR instead of 
the GCC registers for synchronization. The register gcc l  is still used for 
broadcasting the result of the comparison operations, but the overhead of 
using gcc3 is removed, by using the CBAR instruction to enforce instruc- 
tion ordering across the different H-Threads. 

3.2.4. Tightly Coupled Mode 

The overhead of executing the CBAR instruction may become signifi- 
cant for code that requires frequent synchronization across all of the 
clusters. Tightly coupled mode provides implicit synchronization between 
all of the H-Threads on the 3 clusters, essentially by making every instruc- 
tion an implicit CBAR. The MAP chip then behaves like a 9-wide VLIW 
processor, in which no operation from instruction i + 1 may issue (leave the 
SZ pipeline stage) until all of the operations from instruction i have issued. 
However, it is not identical to a VLIW as the cycle-by-cycle scheduling 
decisions on each cluster are independent. Since latencies are not com- 
pletely known at compile time, the compiler must still coordinate register 
transfers between clusters by emptying the register on the destination 
cluster. However, traditional VLIW compilation techniques can be used to 
generate the code. 

3.3. Asynchronous Exception Handling 

Exceptions that occur outside the MAP cluster are termed even t s  and 
are handled asynchronously by generating an even t  r e c o r d  and placing it in 
a hardware event queue. Local TLB misses, block status faults, memory 
synchronization faults, and message arrivals are events that are handled 
asynchronously. These events are precise in the sense that the faulting 
operation and its operands are specifically identified in the event record, 
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but  they are handled asynchronously, without stopping the thread. Each 
H-Thread  in the eventl V-Thread slot handles one class of events. Local 
TLB misses are handled on cluster 0, and arriving messages are handled on 
clusters 1 and 2, depending on the priority of the message. Memory  syn- 
chronization and status faults are handled in the eventO slot and can use all 
3 H-Threads in the slot to execute the event handler. 

The dedicated handler located in each H-Thread  of the event V-Thread 
slots processes event records to complete the faulting operations. The event 
handler loops, reading event records from the register-mapped queue and 
processing them in turn. A read from the queue will not issue if the queue 
is empty. For example, on a local TLB miss, the hardware formats and 
enqueues an event record containing the faulting address as well as the 
write data or read destination. The software TLB miss handler reads the 
record, places the requested page table entry in the TLB, and restarts 
the memory  reference. The thread that  issued the reference does not block 
until it needs the data from the reference that  caused the miss. Similarly, 
inter-node message arrival is also treated as an event in which the contents 
of the message are written into the appropriate  event queue (which serves 
as the message queue). 

Handling events asynchronously obviates the need to cancel all of the 
issued operations which follow an operation that faults, a significant 
penalty in a 9-wide machine with deep pipelines. Dedicating H-Threads to 
this purpose accelerates event handling by eliminating the need to save and 
restore state, and allows concurrent (interleaved) execution of user threads 
and event handlers. Asynchronous event handling does require sufficient 
queue space to handle the case where every outstanding instruction 
generates an exception. To reduce queue size requirements, those excep- 
tions that can be detected in the first execution cycle, such as protection 
violations and some arithmetic exceptions, stall all user H-Threads  in the 
affected cluster, and are handled synchronously by the local H-Thread  of 
the exception V-Thread. User H-Threads  executing on neighboring clusters 
are unaffected. 

3.4.  D i s c u s s i o n  

There are two major  methods of exploiting instruction level parallelism. 
Superscalar processors execute multiple instructions simultaneously by 
relying upon runtime scheduling mechanisms to determine data dependen- 
cies.~,, 7) However, they do not scale well with increasing number  of func- 
tion units because a greater number  of register file ports and connections 
to the function units are required. In addition, superscalars a t tempt  to 
schedule instructions at runtime (much of which could be done at compile 
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time), but can only examine a small subsequence of the instruction stream 
to do so. 

Alternatively, Very Long Instruction Word (VLIW) processors such 
as the Multiflow Trace series (6~ use only compile time scheduling to 
manage instruction-level parallelism, resource usage, and communication 
among a partitioned register file. However, the strict lock-step execution is 
unable to tolerate the dynamic latencies found in multiprocessors. 

Processor Coupling, as originally introduced in Ref. 4, used implicit 
synchronization between the clusters on every wide instruction. Relaxing 
the lock-step synchronization, as described in this section, has several 
advantages. First, it is easier to implement, because control is localized 
completely within the clusters. Second, it allows more slip to occur between 
the instruction streams running on different clusters (H-Threads), which 
eliminates the automatic blocking of one thread on long latency operations 
of another, providing more opportunity for latency tolerance. Finally, the 
H-Threads can be used flexibly to exploit both instruction and loop level 
parallelism. When H-Threads must synchronize, they may do so explicitly 
through registers, at a higher cost than implicit synchronization. However, 
fewer synchronization operations are required, and many of them can be 
included in the data transfer between clusters which are inherent in the 
executing program. In addition, global condition code registers, the CBAR 
instruction, and tightly coupled mode provide lower cost synchronization 
mechanisms when synchronization latency is critical. 

Using multiple threads to hide memory latencies and pipeline delays 
has been examined in several different studies and machines. Gupta and 
Weber explore the use of multiple hardware contexts in multiprocessors, ~9~ 
but the context switch overheads they used are too large to mask pipeline 
latencies. MASA (1~ as well as HEP,/~t) and TERA I~2) use fine grain multi- 
threading to issue an instruction from a different context on every cycle in 
order to mask pipeline latencies. However, with the required round-robin 
scheduling, single thread performance is degraded by the number of 
pipeline stages. The zero cost switching among V-Threads and the pipeline 
design of the MAP provide fast single thread execution as well as latency 
tolerance for better local memory bandwidth utilization. Furthermore, 
none of the previous multithreaded machines have multiple clusters for 
exploiting wide instruction level parallelism. 

Various machines optimized for dataflow languages (13 l S~ provide hard- 
ware support for fine grained synchronization between threads (usually via 
memory synchronization bits), but they do not exploit instruction level 
parallelism, nor do they provide low cost register-based synchronization 
between threads. The XIMD architecture (16) uses multiple ALUs to exploit 
instruction level parallelism as well as thread level parallelism. However, it 
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uses a single global register file and does not interleave multiple threads 
over the same execution units. Two approaches that do exploit instruction 
level parallelism using multiple threads and multiple ALUs include Ref. 17 
and 18. 

4. INTER-NODE CONCURRENCY MECHANICS 

The M-Machine provides a fast, protected, user-level message passing 
substrate. A user program may communicate and synchronize by directly 
sending messages or by reading and writing remote memory using a 
coherent software shared memory system layered on the message-passing 
substrate. Direct messaging provides maximum performance data transfer 
and synchronization while shared memory support simplifies programming. 
Remote memory access is implemented using fast trap handlers that inter- 
cept load and store operations which reference remote data. These handlers 
send messages to other nodes to complete remote memory references trans- 
parently to user programs. Additional hardware and software mechanisms 
allow remote data to be cached locally in both the cache and external 
memory. 

4.1. Message Passings Support 

The M-Machine provides hardware support for injecting a message 
into the network, determining the message destination, and dispatching a 
handler on message arrival. For example, Fig. 7 shows the M-Machine 
instruction sequences for both the sending and receiving components of a 
remote memory store. The message sending sequence (Fig. 7a) loads the 

(a) Message Send 
LOAD A[O], MC1 
SEND Raddr, Rdip, #I  

(b) Message Receive 
loop: 
JMP Rnet 

;start ofremote write code 
MOVE Rnet, RI 

STORE Rnet, R1 
BRANCH loop 

; load A[O] into register 1 
; send a 3 word remote store 
; message to the processor 
; containing VA in Raddr  

; j u m p  to DIP (remote write) 

; move virtual address into R1 
; store word to memo ry  
; branch to message dispatch code 

Fig. 7. Example of M-Machine  code implementing a remote  store: (a) Sending a 3 word  
remote store message; (b) Receiving and performing the store. On  the receiving end Rnet  is 
the register mapged  to the head of  the message queue. 
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data to be stored into general register MC 1. The SEN D instruction takes 
three arguments, the target address (Taddr)  contained in Raddr, the dis- 
patch instruction pointer (DIP)  in Rdip, and the message body length ($1). 
When the SEND issues, the Global Translation Lookaside Buffer (GTLB)  
translates virtual address Raddr into a physical node identifier, and a 3 
word message containing DIP, Taddr, and the contents of M C 1 is sent to 
that node. When the message arrives at the destination (Fig. 7b) hardware 
enqueues it in the priority 0 message queue. An H-Thread dedicated to 
message handling jumps to the handler via the DIP  contained in the first 
word of the message, executes a store operation, and branches back to the 
dispatch portion of the code. Two message priorities are provided: user 
messages are sent at priority zero, while priority 1 is reserved for system 
level message reply, thus avoiding deadlock. 

4. 1.1. Message Address Translation 

As described in Ref. 19, the explicit management of processor iden- 
tifiers by application programs is cumbersome and slow. To eliminate this 
overhead, the MAP implements a Global Translation Lookaside Buffer 
(GTLB),  backed by a software Global Destination Table (GDT),  to hold 
mappings of virtual address regions to node numbers. These mappings may 
be changed by system software. The user specifies the destination of a 
message with a virtual address, which the network output interface 
hardware uses to access the GTLB and calculate the physical destination 
node. 

A range of virtual addresses (called a page-group) is mapped across a 
region of processors with a single GTLB entry. In order to simplify encoding, 
the page-group must be a power of 2 pages in size, where each page is 512 
words. The mapped processors must be in a contiguous 3-D rectangular 
region with a power of 2 number of nodes on a side. This information is 
encoded in a single GTLB entry as shown in Fig. 8. The virtual page field 
is used as the tag during the fully associative GTLB lookup. The starting 
node enumerates the coordinates of the origin of the region of mapped pro- 
cessors, while the extent specifies the base 2 logarithm of the X, Y, and Z 

E x t e n t  

V i r t u a l  P a g e  N o d e  I L e n g t h  N o d e  Z Y X 

42 b i t s  16 b i t s  6 b i t s  6 b i t s  3 b i t s  e a c h  

Fig. 8. Format of a Global Destination Table (and GTLB) entry, used to determine a physi- 
cal node identifier from a virtual address. 
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dimensions of the region. The page-group length field specifies the number  
of local pages that are mapped  into the page group. The pages-per-node 
field indicates the number  of pages placed on each consecutive processor, 
and is used to implement a spectrum of block and cyclic interleaving 

4. 1.2. Message Reception 

At the destination node, an arriving message is automatically placed in 
a hardware message queue. The head of the message queue is mapped  to 
a register accessible by an H-Thread  (in either cluster 1 or 2, depending on 
message priority) in the event V-Thread. The message dispatch handler 
code running in that H-Thread  stalls on the empty register until a message 
arrives, marking the register full; the handler then reads the dispatch 
instruction pointer (DIP)  from the register end jumps to it. This starts 
execution of the specific handler code to perform the action requested in 
the message. Some of the actions include remote read, remote write, 
and remote procedure call. The message need not be copied to or from 
memory,  as it is accessible via a general register. In order to avoid overflow 
of the fixed size message queue and back up of the network, only short, 
well-bounded tasks are executed by message handlers. Longer tasks are 
enqueued to be run as a user process on a user V-Thread. 

4. 1.3. Protection 

The M-Machine communicat ion substrate provides fully protected 
user-level access to the network. The SEN D instruction atomically launches 
a message into the network, preventing a user from occupying the network 
output  indefinitely. The automatic  translation provided by the G L T B  
ensures that  a p rogram may only send messages to virtual addresses within 
its own address space. Finally, restricting the set of user accessible DIPs  
prevents a user handler from monopolizing the network input. If  an illegal 
D I P  is used, a fault will occur on the sending thread before the message is 
sent. 

4.1.4. Throtting 

In order to prevent a processor from injecting messages at a rate 
higher than they can be consumed, the M-Machine implements a return-to 
sender throttling protocol. A port ion of a local node's memory  is used for 
returned message buffering. When a message is sent, a counter is automati-  
cally decremented, which reserves buffer space for that message, should it 
be returned. If  the counter is zero, no buffer space is available and no addi- 
tional messages may be sent; threads attempting to execute a SEND 
instruction will stall. When the message reaches the destination a reply is 
sent indicating whether the destination was able to handle the message. 
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If  the message was consumed, the reply instructs the source processor to 
increment its counter, deallocating the buffer space. Otherwise, the reply 
contains the contents of the original message which are copied into the 
buffer and sent again later. 

4. 1.5. Discussion 

The M-Machine provides direct register-to-register communication,  
avoiding the overhead of memory  copying at both  the sender and the 
receiver, and eliminating the dedicated memory  for message arrival, as is 
found on the J-Machine. (2~ Register-mapped network interfaces have been 
used previously in the Mars Machine, (2~ J-Machine, and iWarp, (22~ and 
have been described by *T(23~as well as Henry and Joerg. (24) However, 
none of these systems provide protection for user-level messages. 

Systems, like the J-Machine, that provide user access to the network 
interface without atomicity must temporari ly disable interrupts to allow the 
sending process to complete the message. The M-Machine 's  atomic SEND 
instruction eliminates this requirement at the cost of  limiting message 
length to the number  of cluster registers. Most  messages fit easily in this 
size, and larger messages can be packetized and reassembled with very low 
overhead. 

Automatic translation of virtual processor numbers to physical pro- 
cessor identifiers is used in the Cray T3D. (25/ The use of virtual addresses 
as message destinations in the M-Machine  has two advantages. When com- 
bined with translation hardware, it provides protection for user initiated 
messages, without incurring the overhead of operating system invocation, 
as messages may not be sent to processors mapped outside of the user's 
virtual address space. It  also facilitates the implementat ion of global 
shared memory.  The interleaving performed by the GTLB, although not as 
versatile as the CRAY T3D address centrifuge or the interleaving of the 
RP3, (26) provides a means of distributing ranges of the address space across 
a region of nodes. 

In contrast  to both  *T and F L A S H  (2~) which use a separate com- 
munication coprocessor for receiving incoming messages, the M-Machine 
incorporates that function on its already existing execution resources, an 
H-Thread  in the event V-Thread. This avoids idling a dedicated processor 
when it is not in use. During periods of few messages, user threads may 
make full use of the cluster's arithmetic and memory  bandwidth. 

4.2. N o n - C a c h e d  Shared  M e m o r y  

Fast access to remote memory  is provided transparently to the user with 
a combination of hardware and software mechanisms. When a load or store 
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operation to a global virtual address causes a Local Translation Lookaside 
Buffer (LTLB) miss, a software trap is signalled. Like the hardware dedicated 
to message arrival, one H-Thread in the eventl  V-Thread is reserved for 
handling LTLB misses. The LTLB miss handler code probes the GTLB to 
determine where the requested data is located, and if necessary, sends a 
message to the destination node. If the data is in fact local, the LTLB miss 
handler fetches the required page table entry and places it in the LTLB. 
Using a small port ion of the execution resources for fast trap handling 
reduces the latency of both local LTLB misses and remote data access. 

The sequence of operations required to satisfy a remote memory load 
is shown below. The labels H W  and S W  indicate whether the action is 
performed by hardware or software. 

1. H W :  Memory operation accesses the cache and misses (2 cycles). 

2. H W :  LTLB miss occurs, enqueueing an event (2 cycles). 

3. SW:  Software accesses the local page table (LPT),  probes the 
GTLB, and composes and sends a message containing the referenced 
and return addresses (48 cycles). 

4. HW:  Message delivered to remote node (5 cycles). 

5. SW:  Message handler fetches requested data from memory, for- 
mats a reply message, and sends it (29 cycles). 

6. H W :  Return message delivered (5 cycles). 

7. SW:  Message handler decodes the original load destination 
register and writes the data directly there (41 cycles). 

Tirnelines for both remote read and write accesses are shown in Figs. 9 
and 10. These measurements are based on prototype message and event 
handlers written in assembly code and running on the M-Machine 
simulator. A user level program running on node 0 makes read and write 
requests to memory on neighboring node 1. Except for the message handler 
that runs on demand, node 1 is idle. All references to memory system data 
structures in the software handlers are assumed to cache hit. 

Table I shows a comparison of preliminary results of local and remote 
access latencies (in cycles), for single word accesses. A read is completed 
when the requested data has been written into the destination register. 
A write is completed when the line containing the data has been fully 
loaded into the cache. The remote read and write accesses are larger than 
their local counterparts due to the software intervention required to send 
the message to the remote node. However, the time to perform a remote 
read that hits in the cache is only a twice as large as a local read that 
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R E M O T E  R E A D  
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Start LTLB miss handler 

Start LPT lookup 

Probe GTLB 
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~----llm-OMessage received 
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1 ~ R e t u r n  d a t a  to  

] 4 0 ~  d e s t i n a t i o n  r e g i s t e r  

160# Time 
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Fig. 9. Remote read access. 

Tablel .  Comparison of Local and Remote 
Access Times, Assuming No Resource Contention 

Access Times (cycles) 

Access Type REAl) WRITE 

Local Cache Hit 3 2 
Local Cache Miss 13 19 
Local LTLB Miss 61 67 
Remote Cache Hit 138 74 
Remote Cache Miss 154 90 
Remote LTLB Miss 202 138 
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R E M O T E  W R I T E  

NODE0 NODE 1 

0F~ STORE issues 
Start LTLB miss handler 

Start LPT lookup 

Probe GTLB 

40t- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ,Format message 

Send STORE m e s s a g e ~ M e s s a g  e received 

60~ LTLB miss handler - I  . . . . . .  
-- completes ~ E x e c u t e  store 

80[ ~ M e s s a g e  handler - 
completes 

1004 Time 
(cycles) 

Fig. 10. Remote write access. 

requires software intervention (LTLB miss). For  the remote write, which 
does not require return data, the difference is only 10%. 

The primary contributors to remote access latency in the M-Machine 
are searching for the faulting address in the local page table and decoding 
the reply message (about 40 cycles each). The page-table search is required 
only when accessing the first block of a page. Accesses to subsequent 
blocks cause block-status faults (rather than page faults) which skip the 
page-table access. The reply decode could be accelerated by prohibiting the 
faulting V-Thread from swapping out during the memory operation. 

4.3. Cach ing  and C o h e r e n c e  

Even though remote accesses are fast, their latency is still large 
compared to local memory references. This overhead reduces the ability 
of the map to use the network and remote memory bandwidth effectively. 
To reduce overall latency and improve bandwidth utilization, each 
M-Machine node may use its local memory to cache data from remote 
nodes. 

In addition to the virtual to physical mapping, each LTLB (and LPT)  
entry contains 2 status bits for each cache block in the page. These b l o c k  

s t a t u s  bits are used to provide fine-grain control over 8 word blocks, 



206 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee 

allowing different blocks within the same mapped  page to be in different 
states. This fine-grain control over data  is similar to that  provided in 
hardware based cache coherent multiprocessors, and alleviates the false 
sharing that exists in other software data coherence systems/28) The two 
block status bits are used to encode the following four states: 

�9 i N V A L I D :  The block may  not be read, written, or placed in the 
hardware cache. 

�9 READ-ONLY: The block may be read, but  not written. 

�9 R E A D / W R I T E :  The block may be read or written. 

�9 D I RTY: The block may be read or written, and it has been written 
since being copied to the local node. 

One software policy that uses the block status bits fetches remote 
cache blocks on demand. When a memory  reference occurs, the block 
status bits corresponding to the global virtual address are checked in 
hardware. I f  the at tempted operation is not  allowed by the state of the 
block, a software trap called a block status fault occurs. The trap code runs 
in the eventO V-Thread. The block status handler sends a message to the 
home node, which can be determined using the GTLB, requesting the 
cache block containing the data. The home node logs the requesting node 
in a software managed directory and sends the block back. When the block 
is received, the data is written to memory  and the block status bits are 
marked valid. If  the virtual page containing the block is not mapped to a 
local physical page, a new page table entry is created and only the newly 
arrived block is marked valid. The remote data may be loaded into the 
on-chip cache, and modifications to the data will automatically mark  the 
block state dirty. More complex coherence schemes can map  blocks from 
different virtual pages into the same physical page, reducing the amount  of  
unmapped physical memory.  

The software handlers used to transmit data  from node to node may  
implement a variety of coherence policies and protocols. This code is easily 
incorporated within the remote read and write handlers described in 
Section 4.2. Using local memory  as a repository will allow more remote 
data to be cached locally than could fit in the on-chip cache alone. 

4.3. 1. Discussion 

Directory-based, cache coherent multiprocessors such as Alewife 129) 
and DASH (3~ implement coherence policies in hardware. This improves 
performance at the cost of flexibility. Like the M-Machine,  FLASH (27) 
implements remote memory  access and cache coherence in software, but 
uses a coprocessor. However, this system does not  provide block status bits 
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in the TLB to support caching remote data in local DRAM. The subpage 
status bits of the KSR-1 (31) perform a function similar to that of the block 
status bits of the M-Machine. 

Implementing remote memory access and coherence completely in 
software on a conventional processor would involve delays much greater 
than those shown in Table I, as evidenced by experience with the Ivy 
system. (28) The M-Machine's fast exception handling in a dedicated 
H-Thread avoids the delay associated with context switching and allows 
the user thread to execute in parallel with the exception handler. The 
GTLB avoids the overhead of manual translation and the cost of a system 
call to access the network. Finally, the M-Machine provides memory-map- 
ped addressing of thread registers to allow the operation to be completed 
in software. 

5. M - M A C H I N E  S O F T W A R E  

The M-Machine addresses the problem of parallel software by suppor- 
ting an incremental approach to parallelization. Unlike conventional 
parallel machines, the M-Machine is designed to efficiently run a sequential 
program that uses all the machine's memory, including that on remote 
nodes. A shared address space, high-performance messaging, and caching 
remote data in local DRAM provide fast access to remote data. The 
programmer can then incrementally improve program performance by 
adding parallelism. The cache coherence mechanisms enable efficient 
sharing of data across processors. The high-speed messaging network and 
runtime system support allow for low-overhead task parallelism. The 
ability to support fine-grain parallelism increases the number of suitable 
tasks and allows extraction of more parallelism from small problems. Sup- 
port for synchronizing memory operations and global addressing simplifies 
user-level communication and synchronization between tasks and reduces 
overhead. Caching in DRAM automates much of the data placement and 
migration. For the cases where a programmer wants to extract the maxi- 
mum performance fast, protected, user-level messages may be employed. 

The M-Machine software is being designed and implemented jointly 
with the Scalable Concurrent Programming Laboratory at Caltech. The 
Multiflow compiler (32) has been ported to the M-Machine to generate long 
instructions spanning multiple clusters. The Multiflow compiler is designed 
to generate VLIW instructions from a sequential source program using 
Trace Scheduling. The modifications required to generate multicluster code 
for the M-Machine consist of partitioning the graph (DAG) of the trace 
into sub-DAGs that may be executed on different clusters with minimal 
communication. The sub-DAGs are then scheduled for each cluster using 
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the greedy instruction scheduler of the Multiflow compiler. Explicit syn- 
chronization is required to take the place of the implicit synchronization 
of a true VLIW. Communication is implemented by writing to remote 
registers, while the global condition registers and cluster barrier instruction 
are used to implement explicit barrier synchronization. An algorithm that 
might be used to discover the synchronization points is described in 
Ref. 33. The compiler currently generates code for a single cluster, and a 
prototype for generation multi-cluster code is being tested. 

A prototype runtime system consisting of primitive message and event 
handlers has also been implemented. Approximately 90 percent of the 
runtime system code is implemented in C, compiled using the Multiflow 
compiler, and runs on the M-Machine simulator; the remaining 10 percent 
are assembly code routines which access hardware features not exposed to 
the compiler. The runtime system consists of independent modules which 
manage virtual memory allocation, physical memory allocation, memory 
coherence between nodes, and multiple threads on a single node and across 
nodes. The implementation of the runtime system is described more fully in 
Ref. 34. 

6. C O N C L U S I O N  

In this paper we have described the architecture of the M-Machine 
with an emphasis on its novel features. The M-Machine, currently under 
development, is a 3-D mesh, each node of which contains a multi-ALU 
processor (MAP) and 8 Mbytes of synchronous DRAM. Each MAP chip con- 
sists of three 64-bit 3-issue clusters connected by a cluster switch, a 4-way 
interleaved on-chip cache, an external memory interface, and on-chip 
network interfaces and routers. 

Instruction level parallelism is exploited both within a cluster and 
across clusters using H-Threads. An H-Thread may communicate and syn- 
chronize through registers with H-Threads on different clusters but within 
the same V-Thread. A 27 point stencil computation on 3 H-Threads 
(9-wide issue) has half the static instruction count of 1 H-Thread (3-wide 
issue). 

To increase use of the local memory and execution bandwidth, multi- 
ple tasks, called V-Threads, are interleaved on a cycle-by-cycle basis inde- 
pendently on each of the clusters. Each cycle, a different thread may be 
selected for execution, or if only one V-Thread is resident, it may issue an 
instruction every cycle on each cluster. 

The M-Machine has a user-level, protected, fast message passing sub- 
strate to reduce communication and remote memory latencies. Messages are 
composed in general registers and sent via a user level SEND instruction. 
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Arriving messages are extracted by system-level software message dispatch 
handlers, which are always resident in the eventl V-Thread. The message 
contents are accessed via a register mapped  queue. The message need not 
be copied to or from memory  on either the sending or receiving side. Two 
level translation is used to independently relocate objects in the physical 
address space on a node, and in the processor namespace. 

The fast message system is used to provide the user with t ransparent  
access to remote memory.  When a user's load or store instruction traps to 
software on a LTLB miss, a message is sent to a remote node to perform 
the access. While slower than local accesses, a remote load can be satisfied 
in 138 cycles, while a remote store can be satisfied in 74 cycles. In order to 
facilitate local caching of remote data, 2 status bits for each block (8 words) 
in a page are added to the LTLB and page table entries. When an invalid 
block is accessed, a trap to software occurs which can retrieve the missing 
block from a remote node, copy it into local memory,  and mark  the status 
bits valid. 

Both a C language based architectural simulator and a Verilog based, 
cycle accurate, RTL model have been completed and are being used for 
software development and hardware validation. A combinat ion of manual,  
random, and compiler generated tests have been used to validate both  the 
RTL model and the circuit schematics against the architectural simulator. 
The hardware design of the MAP is nearly complete; all the modules have 
been designed, 100% of the schematics are done, and 95 % of the datapath  
layout is complete. The MaP will be fabricated on a single integrated circuit 
with a projected area of 18 m m  x 18 m m  in 0.5 /~m CMOS with 5 metal 
layers. The target clockrate is 100 Mhz and tapeout  is expected in the 
middle of 1997. After tapeout, the runtime system will be completed and 
the optimization and scheduling components  of the compiler will be 
improved. When the manufactured MAP chips are returned, a single node 
system will be built to test the communicat ion and synchronization 
mechanisms between H-Threads,  and a 16-node system will be built to 
evaluate the inter-node communicat ion and memory  systems. 

The M-Machine addresses the growing imbalance between memory  
system capacity and bandwidth, making all of memory  close to some pro- 
cessor and increasing the aggregate bandwidth to memory.  By employing 
multiple processors and multiple ALUs within a processor, the M-Machine  
enables parallelism to be used to both access more memory  simultaneously, 
and keep the expensive communicat ion channels between a given processor 
and its local memory  busy. 

The M-Machine increases the percentage of chip area devoted to the 
processor from 0.13% to 16% for a typical 1996 system. A 32-node (96 
clusters) M-Machine with a total of 256 Mbytes of memory  requires 50 % 
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more chip area than a uniprocessor with the same amount of memory but 
provides 96 times as much peak performance, a 64:1 improvement in peak- 
performance/area. More importantly it provides 32 times the bandwidth 
between the processors and memory. The 64:1 improvement in peak-per- 
formance/area makes the increased parallelism of the M-Machine cost 
effective even in cases where only a small fraction of its peak performance 
is realized. 

We expect that the architecture concepts demonstrated in the M-Machine 
will be useful in machines ranging from single-node personal computers, 
through workstations with tens of nodes, to servers with hundreds to 
thousands of nodes. Memory bandwidth and capacity are becoming the 
dominant factor in the cost and performance of systems of all scales. By 
changing the processor/memory ratio, providing methods for extracting 
parallelism at all levels, and supporting an incremental approach to 
parallelism, the M-Machine's mechanisms will lead to more cost effective 
and programmable machines across the price-performance spectrum. 

A C K N O W L E D G M E N T S  

We would like to thank the members of the Scalable Concurrent 
Programming Laboratory at Caltech for their feedback on the M-Machine 
architecture and for their work on the M-Machine software effort: Steve 
Taylor, Daniel Maskit, and Bryan Chow. In addition we would also like 
to thank Kathy Knobe and the anonymous referees for their comments on 
various versions of this paper. The research described in this paper was 
supported by the Advanced Research Projects Agency and monitored by 
the Air Force Electronic Systems Division under contract F19628-92- 
C0045. 

REFERENCES 

1. J. L. Hennessy and N. P. Jouppi, Computer Technology and Architecture: An Evolving 
Interaction. Computer, pp. 18 29 (September 1991). 

2. C. A. Mead, L. A. Conway, Introduction to VLSI Systems. Addison- Wesley, Reading, 
Massachusetts, (1980). 

3. L. Gwennap, New MIPS Chip Targets Windows NT Boxes. Microprocessor Report 
(November 18, 1992). 

4. S. W. Keckler, and W. J, Dally~ Processor Coupling: Integrating Compile Time and Run- 
time Scheduling for Parallelism. Proc. 191h Inl'l. Syrup. Computer Archit., Queensland, 
Australia, ACM, pp. 202-213 (May 1992). 

5. N. P, Carter, S. W. Keckler, and W. J. Dally, Hardware Support for Fast Capability- 
Based Addressing. Proc. Sixth Int'l. Conf on Archit. Support Progr. Lang. Oper. Syst. 
(ASPLO VI), Association for Computing Machinery Press, pp. 319 327 (October 1994). 



The M-Machine Multicomputer 211 

6. R. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM J. 11, 
25 33 (January 1967). 

7. W. M. Johnson, Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs, 
New Jersey ( 1991 ). 

8. R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P. K. Rodman, and J. E. Tornes, 
Architecture and Implementation of a VLIW Supercomputer. Proc. Supercomputing, 
IEEE Computer Society Press, pp. 910-919 (November 1990). 

9. A. Gupta, and W.-D. Weber, Exploring the Benefits of Multiple Hardware Contexts in a 
Multiprocessor Architecture: Preliminary Results. Proc. 16th Ann. Syrup. Computer Arehit. 
IEEE, pp. 273 280 (May 1989). 

10. R. H. Halstead, and T. Fujita, MASA: A Multithreaded Processor Architecture for 
Parallel Symbolic Computing. 15th Ann. Symp. Computer Archit. IEEE Computer Society, 
pp. 443 451 (May 1988). 

11. B. J. Smith, Architecture and Applications of the HEP Multiprocessor Computer System. 
SPIE Vol. 298 Real-Time Signal Processing IV, Denelcor, Inc., Aurora, Colorado, 
pp. 241 248 (1981). 

12. R. Alverson et al., The Tera Computer System. Proc. Int'l. Conf Supercomputing, ACM 
SIGPLAN Computer Architecture News, pp. 1 6 (September 1990). 

13. R. S. Nikhil, G. M. Papadopoulos, Arvind, *T: A Multithreaded Massively Parallel 
Architecture. Computation Structures Group Memo 325-1, Laboratory for Computer 
Science, Massachusetts Institute of Technology (November 1991). 

14. H. H. Hum et aL, A Design Study of the EARTH Multiprocessor. lnt'l. Conf Parallel 
Archit. and Compilation Techn., pp. 59 68 (1995). 

15. S. Sakai, Y. Kodoma, and Y. Yamaguchi, Prototype Implementation of a Highly Parallel 
Dataflow Machine em-4. Proc. FiJ~h Int'l. Parallel Processing Syrup., IEEE Computer 
Society, pp. 278 286 (May 1991). 

16. A. Wolfe, and J. P. Shen, A Variable Instruction Stream Extension to the VLIW Architec- 
ture. Proc. Fourth Int'l. Conf. Archit. Support for Progr. Lang. Oper. Syst., ACM Press, 
pp. 2 14 (April 1991). 

17. G. S. Sohi, S. E. Breach, and T. Vijaykumar, Multiscalar Processors. Proc. 22nd Int'l. 
Symp. Computer Archit., pp. 414 425 (May 1995). 

18. D. M. Tullsen, S. J. Eggers, and H. M. Levy, Simultaneous Multithreading: Maximizing 
On-Chip Parallelism. Proc. 22nd lnt'l. Symp. Computer Archit., pp. 392 403 (May 1995). 

19. M. D, Noakes, D. A. Wallach, and W. J. Dally, The J-Machine Multicomputer: An 
Architectural Evaluation. Proc. 20th Int'l. Syrup. Computer Archit., San Diego, California, 
IEEE, pp. 224 235 (May 1993). 

20. W. J. Dally et al., The J-Machine: A Fine-Grain Concurrent Computer. Proc. the IFIP 
Congress G. Ritter, (ed.), North-Holland, pp. 1147 t153 (August 1989). 

21. P. Agrawal, W. Dally, W. Fischer, H. Jagadisch, A. Krishnakumar, and R. Tutundjian, 
A. Mars, A Multiproccssor-Based Programmable Accelerator. 1EEE Desiqn Test 4:28 36 
(October 1987). 

22. S. Borkar et al., Supporting Systolic and Memory Communication in Iwarp. Proc. 17th 
Int'l. Symp. Computer Archit., pp. 70-81 (May 1990). 

23. G. M. Papadopoulos, G. A. Boughton, R. Grainer, and M. J. Beckerle, *T: Integrated 
Building Blocks for Parallel Computing. Proc. Supercomputing, IEEE, pp. 624~635 (1993). 

24. D. S. Henry, and C. F. Joerg, A Tightly-Coupled Processor-Network Interface. Fifth Int'l. 
Conf Archit. Support for Progr. Lang. Oper. Systems (ASPLOS V), ACM, pp. 111 122 
(October 1992). 

25. Cray Research, Inc., Cray T3D System Architecture Overview. Chippewa Falls, Wisconsin 
(1993). 

828/25/3-5 



212 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee 

26. G. Pfister et al., The IBM Research Parallel Processor Prototype (RP3): Introduction and 
Architecture. Proc. Int'l. Conf. Parallel Processing, pp. 764-771 (1985). 

27. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni et al., The Stanford FLASH Mul- 
tiprocessor. Proc. 21st Int'l. Symp. Computer Archit., IEEE, pp. 302 313 (April 1994). 

28. L. K. Ivy, A Shared Virtual Memory System for Parallel Computing. Int'l. Conf. Parallel 
Processing, pp. 94-101 (1988). 

29. A. Agarwal et al., The MIT Alewife Machine: A Large-Scale Distributed-Memory Multi- 
processor. Sealable Shared Memory Multiprocessor, Kluwer Academic Publishers, ( 1991 ). 

30. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, The 
DASH prototype: Implementation and Performance. Proc. 19th Ann. Int'l. Symp. Com- 
puter Archit., IEEE, pp. 92 103 (1992). 

31. S. J. Frank et al., Multiprocessor Digital Data Processing System. United States Patent 
No. 5,055,999 (October 8 1991). 

32. P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S. 
O'Donnell, and J. C. Ruttenberg, The Multiflow Trace Scheduling Compiler. J. Supercom- 
puting 7(1/2):51 142 (May 1993). 

33. A. Zaafrani, H. G. Dietz, and M. O'Keefe, Static Scheduling for Barrier MIMD Architec- 
tures, lnt'l. Conf Parallel Processing (1990). 

34. Y. Gurevich, The M-Machine Operating System. Master of Engineering Thesis, 
Massachusetts Institute of Technology, Department of Electrical Engineering and Com- 
puter Science (September 1995). 


