
International Journal o f Parallel Programming, VoL 25, No. 3, 1997

The M-Machine Multicomputer

Marco Fillo, 1 Stephen W. Keckler, 1 Wil l iam J. Dally, 1
Nicholas P. Carter, 1 Andrew Chang, 1 Yevgeny Gurevich,
and Whay S. Lee ~

The M-Machine is an experimental multicomputer being developed to test
architectural concepts motivated by the constraints of modern semiconductor
technology and the demands of programming systems.]?he M-Machine computing
nodes are connected with a 3-D mesh network; each node is a multithreaded
processor incorporating 9 function units, on-chip cache, and local memory.
The multiple function units are used to exploit both instruction-level and
thread-level parallelism. A user accessible message passing system yields fast
communication and synchronization between nodes. Rapid access to remote
memory is provided transparently to the user with a combination of hardware
and software mechanisms. This paper presents the architecture of the
M-Machine and describes how its mechanisms attempt to maximize both single
thread performance and overall system throughput. The architecture is complete
and the MAP chip, which will serve as the M-Machine processing node, is
currently being implemented.

KEY WORDS: Computer architecture; parallelism; multithreading; coherence.

1. INTRODUCTION

Because of the increasing density of VLSI integrated circuits, most of the
chip area of modern computers is now occupied by memory and not by
processing resources. Nearly all of this memory is located far from the
processor, resulting in long latency and limited bandwidth access to it. It
is clear that the computer systems of the future must address the latency
and bandwidth limitations of these technology trends. The M-Machine

I Artificial Intelligence Laboratory, Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 545 Technology Square, Cambridge, Massachusetts 02139. E-mail:
fillo { skeckler, billd,npcarter,achang,yev,wslee} @ai.mit.edu.

183

0885-7458/97/0600-0183512.50/0 ~(2) 1997 Plenum Publishing Corporation

184 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

multicomputer is an experimental machine being developed to test architec-
tural concepts motivated by the constraints of semiconductor technology
and the demands of programming systems, such as faster execution of fixed
sized problems and easier programmability of parallel computers.

The normalized area (in 22) of a VLSI chip 2 increasing by 50% per
year, while gate speed and communication bandwidth are increasing by
20% per year. ~ As a result, a 64-bit processor with a pipelined FPU
(400 M22) is only 8 % of a 5G22 1996 0.35 r chip. a In a system with
256 MBytes of DRAM, the processor accounts for 0.13% of the silicon
area in the system. The memory system, cache, TLB, controllers, and
DRAM account for most of the remaining area. Technology scaling has
made the memory, rather than the processor, the most area-consuming
resource in a computer system.

The processor-memory imbalance in conventional computer organiza-
tion exacerbates both the latency and bandwidth mismatch between execu-
tion units and main memory. Current systems use multiple levels of caches
to manage the increasing size of main memory. While this does reduce
latency to access that data contained in the cache closest to the processor, the
latency to access uncached data increases dramatically. Furthermore, since
chip packaging and ott'chip interconnect technologies are not advancing as
fast as VLSI, the bandwidth between the processor and its memory is not
scaling with processor speed or memory capacity. Both increasing latency
and slow improvement of bandwidth to main memory will only continue to
become more critical bottlenecks.

The M-Machine addresses both latency and bandwidth bottlenecks by
increasing the number of processors per unit memory. This allows any
given word of memory to be accessed by some processor very quickly and
enables the aggregate bandwidth between processors and memory to scale
with the size of the memory. In the M-Machine, instead of a multi-level
cache hierarchy, the communication network determines the latency to
access memory on another processor. Both multiple arithmetic units and
fine-grained multithreading are implemented so that a processor may con-
tinue to perform useful work, and keep the memory pins busy, during long
latency operations. In addition, the high arithmetic execution rate on-chip
coupled with multithreading will keep the memory pins busy even during
periods of high computation in which the data resides completely within
the on-chip cache and the processor registers. That some of the on-chip

2 The parameter ,~ is a normalized, process independent unit of length equivalent to one half
of the gate length. {2) For a 0.5 r process, 2 is 0.25 r
Area was determined by measuring the processing components of various chips, in particular
the R4600 described in Ref. 3.

The M-Machine Mult icomputer 185

arithmetic resources go idle is inconsequential relative to the importance of
using the memory bandwidth effectively.

An M-Machine multi-ALU processor (MAP) chip contains three 64-bit
three-issue clusters that comprise 46% of the 5G22 chip and 16% of an
8 MByte (six-chip) node. The high ratio of arithmetic bandwidth to memory
bandwidth (9 operations/word) allows the MAP to saturate the costly DRAM
bandwidth even on code with high cache-hit ratios. A 32-node M-Machine
system with 256 Mbytes of memory has 96 times the peak performance of a
1996 uniprocessor with the same memory capacity at 1.5 times the area, a 64:1
improvement in peak performance/area. Even at a small fraction of this peak
performance, such a machine allows the expensive memory bandwidth to
handle more problems per unit time, resulting in more cost-effective computing.

The M-Machine is intended to extract more parallelism from problems
of a fixed size than traditional computers, rather than requiring enormous
problems to achieve peak performance. To do this, nodes are designed to
manage parallelism at a range of granularities, from the instruction level to
the process level. The 9 function units in an M-Machine node are controlled
using a form of Processor Coupling ~4) to exploit instruction level parallelism
by executing 9 operations per cycle from the same thread, or to exploit
thread-level parallelism by executing operations from up to six different
threads. The fast internode communication allows collaborating threads to
reside on different nodes.

The M-Machine also addresses the demand for easier programmability
by providing an incremental path for increasing parallelism and perfor-
mance. An unmodified sequential program can run on a single M-Machine
node, accessing both local and remote memory. This code can be incremen-
tally parallelized by identifying tasks, such as loop iterations, that can be
distributed both across nodes and within each node to run in parallel.
A flat, shared address space simplifies naming and communication. Software
support for caching of remote data in local DRAM will automatically
migrate a task's data to exploit locality.

Previous publications have introduced some of the mechanisms used
in the M-Machine. The first description of Processor Coupling, a method
for exploiting instruction level parallelism, appeared in Ref. 4. The novel
capability-based memory protection system of the M-Machine was
described in Ref. 5. This paper describes the M-Machine's other features
which include an improved form of Processor Coupling as well as
communication and global addressing mechanisms. The M-Machine
architectural design is complete and the MAP chip, which will serve as the
M-Machine processing node, is currently being implemented.

Section 2 gives an overview of the machine architecture, including the
physical resources of the M-Machine. Section 3 describes the updated

186 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

version of Processor Coupling that simplifies hardware implementation and
is expected to improve performance. Instead of lock-step execution of the
wide instruction words across all of the function units, an instruction
stream is partitioned by the compiler into horizontal threads (H-Threads),
which run concurrently on different execution clusters to exploit instruction
level parallelism. Several mechanisms for synchronizing the clusters are
provided, including a cluster barrier instruction, broadcast of single bit
condition values, and instructions that write register files in remote clusters.
In addition, the function units are time-shared among vertical threads
(V-Threads) which exploit runtime parallelism and mask pipeline, memory,
and communication latencies. Events are handled asynchronously in a
dedicated V-Thread so that event handling may proceed in parallel with
user program execution and the issued instructions of the thread that
caused the event need not be cancelled. Section 4 discusses inter-node com-
munication including user-level communication primitives, global mapping
of virtual addresses to physical memory and remote processors, and how
these mechanisms are used to provide global coherent memory access.
Finally, Section 5 describes the M-Machine software effort, including a
brief overview of the compiler and runtime system.

2. M - M A C H I N E A R C H I T E C T U R E

The M-Machine consists of a collection of computing nodes intercon-
nected by a bidirectional 3-D mesh network. Each six-chip node consists of
a multi-ALU (MAP) chip and 1 MW (8 Mbytes) of synchronous DRAM
(SDRAM) with ECC. The MAP chip includes the network interface and
router, and provides bandwidth of 800 Mbytes/s to the local SDRAMs and
to each network channel. Each node contains a dedicated I/O bus; I /O
devices may be connected to either every node or a subset of nodes, for
example, all nodes on a face of the mesh. The target clock rate for the
MAP is 100 MHz.

As shown in Fig. 1, a MAP contains three execution clusters, a unified
cache which is divided into four banks, an external memory interface, and
a communication subsystem consisting of the network interfaces and the
router. Two crossbar switches interconnect these components. Clusters
make memory requests to the appropriate bank of the interleaved cache
over the 142-bit wide (51 address bits, 66 data bits, 25 control bits) 3 x 4
M-Switch. The 88-bit wide (66 data bits, 22 control bits) 9 x 3 C-Switch is
used for inter-cluster communication and to return data from the memory
system. Both switches support up to three transfers per cycle; each cluster
may send and receive one transfer per cycle.

The M-Machine Mult icomputer

Cache
Bank 0

E x t e r n a l
Memory

Bank 1 I ~ Bank 2
Cache
Bank 3

187

Net!ork

l

Fig. 1. The MAP archi tecture .

2.1. Map Execution Clusters

Each of the three ~AP clusters is a 64-bit, three-issue, pipelined pro-
cessor consisting of two integer ALUs, a floating-point ALU, associated
register files, and a 1 KW (8 KB) instruction cache, as shown in Fig. 2.
One of the integer ALUs in each cluster, termed the memory unit, is the
interface to the memory system. Each MAP instruction contains 1, 2, or 3
operations. All operations in a single instruction issue together but may
complete out of order. Every operation may be conditionally executed
depending on the one-bit value of one of the condition code registers.

188 Fillo, Keckler, Dally, Carter, Chang, Gurevieh, and Lee

M-Switch

C-Switch /

Fig. 2. A map cluster consists of 3 execution units, 2 register files, an
instruction cache and ports onto the memory and cluster switches.

2.2. M e m o r y S y s t e m

As illustrated in Fig. 1, the 64 KB unified on-chip cache is organized
as four 2 K W (16 KB) banks that are word-interleaved to permit accesses
to consecutive addresses to proceed in parallel. The cache is virtually
addressed and tagged. The cache banks are pipelined with a three-cycle
read latency, including switch traversal. Each cluster has its own 8 KB
instruction cache which fetches instructions from the unified cache when
instruction cache misses occur.

The external memory interface consists of the SDRAM controller and
a local translation lookaside buffer (LTLB) used to cache local page table
(LPT) entries. Pages are 512 words (64 8-word cache blocks). The
SDRAM controller exploits the pipeline and page modes of the external

The M-Machine Multicomputer 189

SDRAM and performs single error correction and double error detection
on the data transferred from external memory.

Each MAP word in memory is composed of a 64-bit data value, one
synchronization bit and one pointer bit. A pair of special load and store
operations specify a precondition and a postcondition on the synchroniza-
tion bit and are used as atomic read-modify-write memory operations. The
M-Machine supports a single global virtual address space. A light-weight
capability system implements protection through the pointer bit and
guarded pointers, (5) while paging is used to manage the relocation of data
in physical memory within the virtual address space. The segmentation and
paging mechanisms are independent so that protection may be preserved on
variable-sized segments of memory. The memory subsystem is integrated
with the communication system and can be used to access memory on remote
nodes, as described in Section 4.2.

2.3. Communica t ion Subsystem

Messages are composed in the general registers of a cluster and
launched atomically using a user-level SEN D instruction. To provide protec-
tion, messages must be sent to virtual addresses which are automatically
translated into physical node identifiers via a global translation lookaside
buffer (GTLB). The GTLB caches entries of a software global destination
table (GDT), much like a TLB caches page table entries. Arriving messages
are queued in a register-mapped hardware F IFO readable by a system-level
message handler. Two network priorities are provided, one each for requests
and replies. Messages are routed in dimension order using up to four virtual
channels.

3. I N T R A - N O D E C O N C U R R E N C Y M E C H A N I S M S

The amount and granularity of available parallelism varies enor-
mously across application programs and even during different phases of
the same program. Some phases have an abundance of instruction level
parallelism that can be extracted at compile time. Others have data
dependent parallelism that can only be exploited using multiple threads;
thus the task size to achieve maximum concurrency may vary widely.

The M-Machine is designed to efficiently execute programs with either
compiler or runtime scheduled parallelism and with a range of granularities.
The M-Machine architecture contains two mechanisms for intra-node
concurrency: Vertical Threads (V-Threads) and Horizontal Threads
(H-Threads). A V-Thread is similar to a process; it has its own protection
domain and may be swapped in and out of the processor by the system

190 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

software. A V-Thread is allocated one set of processor and pipeline
registers on each cluster where its subthreads (or H-Threads) execute. Each
H-Thread is a 3-wide instruction stream which is statically scheduled and
executes on a single MAP cluster. The H-Threads of a V-Thread can be
either independently scheduled or scheduled together by the compiler to
achieve 9-wide instruction level parallelism (ILP).

The MAP has sufficient hardware resources to support up to six resi-
dent V-Threads; on each cluster, the H-Threads residing there are inter-
leaved on a cycle-by-cycle basis over the shared execution resources.
Consecutive instructions executed by a given cluster may be from distinct
V-Threads and instructions executed at the same time on different clusters
may be from different V-Threads. This flexible interleaving allows the MAP
to exploit thread-level parallelism and to mask variable pipeline, memory,
and communicat ion delays.

The arrangement of V-Threads, H-Threads, instructions, and opera-
tions is summarized in Fig. 3. The contexts of six V-Threads are resident in
the clusters' register files. Each V-Thread includes three H-Threads, one on
each cluster. Each H-Thread consists of a sequence of 3-wide instructions
containing integer, memory, and floating point operations. On subsequent
cycles, a cluster, as demonstrated by cluster 0, may issue instructions from
different V-Threads.

3.1. S ingle Cluster Execut ion

A V-Thread consists of at least one and up to three H-Threads, each
running concurrently on a different cluster. The MAP has sufficient
hardware resources to hold the state of six V-Threads (18 H-Threads) , with
each V-Thread occupying a thread slot. Three of the thread slots are user
slots, two are for events, and one is the exception slot. User threads run in
the user slots, handlers for asynchronous events run in the event slots, and
handlers for synchronous exceptions detected and localized within a
cluster, such as protection violations run in the exception slot. Message
arrival is treated as an asynchronous event.

The H-Threads within the same V-Thread may communicate and
synchronize via registers, while H-Threads of different V-Threads must syn-
chronize and communicate through memory or messages.

On each cluster, up to six H-Threads (one from each V-Thread) are
interleaved dynamically over the cluster's resources on a cycle-by-cycle
basis. A synchronization pipeline stage holds the next instruction to be
issued from each of the six H-Threads until all of its operands are present
and all of the required resources are available, similar to the architecture
described in Ref. 4.

The M-Machine Mult icomputer 191

SPACE SHARE

Thread 0

~? so

......... t ~ ~ - iii

"~'{ ~ , " instr p+l i instr q+l i instr r+l

'~'~ ~ instr q instr r ~ instr p

I 4 4

I Iv3:in,,'=l I I I I
Z.~ IW:'n=l I=____IC= " ----I I C-- I /__lie__ __1

I V4" ~n,,':rl / I I I
4 4 4

Fig. 3. Multiple V Threads are interleaved dynamically over the cluster resources�9
Each V-Thread consists of 3 H-Threads which execute on different clusters.

On every cycle, the SZ stage decides which instruction to issue from
those which are ready to execute. The SZ stage checks each instruction to
determine if all of its operands are present, all of the resources it requires
are available, and all of the barrier conditions are satisfied. The MAP chip
implements both a memory barrier (MBAR) and a cluster barrier (CBAR)
instruction. The MBAR instruction causes a thread to stall until all of its
outstanding memory references complete, while CBAR stalls until the other

192 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

two clusters each reach their own CBAR instruction. After determining
which instructions are ready to execute, the SZ stage selects one based on
priority and deadlock avoidance criteria. A one bit per thread priority
scheme is used to allow high priority threads to use more of the execution
slots. A pre-emption counter ensures that threads of low priority get at
least some port ion of the execution slots.

An H-Thread that is stalled waiting for data or resource availability
consumes no resources other than the thread slot that holds its state.
Multiple H-Threads may be interleaved with zero delay, allowing task
switching to mask even very short pipeline latencies as well as longer com-
munication and synchronization latencies. As long as its data and resource
dependencies are satisfied, a single thread may issue an instruction every
cycle. Therefore, single thread performance is not penalized as a result of
the M-Machine 's support for multithreading.

3.2. M u l t i c l u s t e r E x e c u t i o n

An H-Thread runs on a single cluster and executes a sequence of opera-
tion triplets (zero or one operat ion for each of the 3 ALUs in the cluster) that
are issued simultaneously. Within an H-Thread, instructions are guaranteed
to issue in order, but may complete out of order. An H-Thread may com-
municate and synchronize via registers with the two other H-Threads within
the same V-Thread. An H-Thread may only read operands from its own
register file, but can write directly into the register files of its collaborating
H-Threads that are within the same V-Thread on other clusters.

The H-Thread mechanism can support multiple execution models.
H-Threads can execute as independent threads with possibly different con-
trol flows to exploit loop-level or thread-level parallelism. Alternatively, the
compiler can schedule the three H-Threads in a V-Thread as a unit to
exploit instruction level parallelism, as in a VLIW machine. In this case the
compiler may insert explicit register-based synchronization operations or
employ the-CBAR instruction to enforce instruction ordering between
H-Threads. Unlike the lock-step execution of traditional V L I W machines,
H-Thread synchronization occurs only as required by data or resource
dependencies. While explicit synchronization incurs some overhead, it
allows H-Threads to slip relative to one other in order to accommodate
variable-latency operations such as memory accesses.

Figure 4 shows a simple illustrative example of the instruction sequen-
ces of a p rogram fragment on 1 and 2 H-Threads. The p rogram is the body
of the inner loop of a "smoothing" operat ion using a 7-point stencil on 3-D
grid. On a particular grid point, the smoothed value is given by:

u , = u , + a x r , +bx(ru+rd+rn+r~,+re+rw) (3.1)

The M-Machine Multicomputer 193

where r . is the residual value at that point, and ru, rd, r , , rs, re and r w are
the residuals at the neighboring grid points in the six directions uP, DOWN,
NORTH, SOUTH, BAST and W~ST respectively. In order to better illustrate the
use of H-Threads, advanced optimization (such as software pipelining) is
not performed.

Figure 4a shows the single H-Thread program, with a 12 long instruc-
tion stream which includes all of the memory and floating point operations.
The weighting constants a and b are kept in registers. Figure 4b shows the
instruction streams for two H-Threads working cooperatively. Each
H-Thread performs four memory operations and some of the arithmetic
calculations. Instruction 7 in H-Thread 0 calculates a partial sum and
transmits it directly to register t2 in H-Thread 1. The empty instruction on
H-Thread 1 is used to prepare t2 for H-Thread synchronization; H-Thread
1 will not issue instruction 7 until the data arrives from H-Thread 0 as
explained later.

The use of multiple H-Threads reduces the static depth of the instruc-
tion sequences from 12 to 8. On a larger 27-point stencil, the depth is

(a) Single H Thread

MEM Unzt FP Unit
1. l o a d ru

2. l o a d r d

3. l o a d rn t2 = ru + r d
4. l o a d rs t~ = t~ + rn

5. l o a d re t2 = t2 + rs

6. l o a d rw t2 = t2 + re
7. l o a d r . t2 = t2 4- rw
8. load u. t2 = b • t~

9. t l ~ a. x r .
10. t l = t l + t2

11. u , = u , 4- t t
i2 . s t o r e u.

(b) Two concurrent H-Threads

H - T h r e a d 0
MEM Unit FP Unit

1. l o a d r u

2. load r d

3. l o a d r . t2 = ru + r d
4. load u. t~ = b x t2

5. t t = a x r .
6. t l = u , + t l

7. H l . t~ = t t + t2

H - T h r e a d 1
MEM Unit FP Unit

h load rn

2. load r s empty t 2

3. load re tl = rn + rs

4. load rw tl = tl + re

5. t l = t l + rw
6. t l = b x t l

7. u . = t l + t 2
8. store U.

F i g . 4. E x a m p l e o f H - T h r e a d s u s e d to e x p l o i t i n s t r u c t i o n leve l p a r a l l e l i s m : (a) s i n g l e

H T h r e a d ; (b) t w o H - T h r e a d s . T h e c o m p u t a t i o n is a s m o o t h i n g o p e r a t o r u s i n g a 7 - p o i n t

s tenc i l o n a 3 - D g r i d : u . = u . + a x r . + b x (r , + r u + r,, + r , + r,, + r, ,) .

194 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

reduced from 32 to 15 when run on 3 H-Threads. The actual execution
time of the program fragments will depend on the pipeline and memory
latencies.

3.2.1. Thread Synchronization

As shown in the previous example, H-Threads within the same
V-Thread may synchronize with one another through registers. A scoreboard
bit associated with the destination register is cleared (empty) when a multi-
cycle operation, such as a load, issues and is automatically set (full) by MAP
hardware when the result is available. An operation that uses the result will
not be selected for issue until its register operands are present with the
corresponding scoreboard bits set.

All inter-cluster data transfers require explicit register synchronization.
To prepare for intercluster data transfers, the receiving H-Thread executes
an ~MPTY operation to mark empty a set of destination registers. As each
datum arrives from the transmitting H-Thread over the C-Switch, the
corresponding destination register is automatically set full by MAP
hardware. An instruction in the receiving H-Thread that uses the arriving
data will not be eligible for issue until its data is available. Therefore,
explicit synchronization operations required by VLIW style execution
across H-Threads may be overlapped with the inter-cluster data transfers
inherent in the executing program. In order for the clusters to coordinate
the emptying and writing of registers, three main synchronization
mechanisms are provided: global condition registers, the CBAR instruc-
tion, and a tightly coupled mode.

3.2.2. Global Condition Registers

Each V-Thread has an independent bank of global condition code
(CC) registers. Each bank is composed of three sets of four single-bit global
CC registers and is used to broadcast binary values between H-Threads
within a V-Thread. Similar to data registers, each global CC register has an
accompanying scoreboard bit. The MAY global CC registers are physically
replicated on each of the clusters, instead of being centrally located. An
H-Thread may broadcast to other H-Threads of the same V-Thread using
one of its writable global CC registers (only one of the three sets per
H-Thread is writable), but may read and mark empty its local copy of any

global CC register in its bank. Using these registers, all three H-Threads
can execute conditional branches and assignment operations based on a
comparison performed by a single H-Thread.

The scoreboard bits associated with the global CC registers may be
used to rapidly synchronize among the H-Threads within a V-Thread.
Figure 5 shows an example of two H-Threads synchronizing at loop

The M-Machine Nlulticomputer 195

H-Thread 0 H-Thread 1
1 LOOP_O : compute bar LOOP 1 : compute

2 eq bar end gccl ~ ; r ; ; e l " LO
3 OP_l

4 empty gcc l~branch
) delay

write gcc3J slots 5 br gccl LOOP_O ~

o

7 slots ~empty gcc3

Fig. 5. Loop synchronization between two H-Threads using MAP global condition code (CC)
registers.

boundaries. Two registers are involved in the synchronization, in order to
provide an interlocking mechanism which ensures that neither H-Thread
rolls over into the next loop iteration.

H-Thread 0 computes bar, compares it (using eq) to end, and broad-
casts the result by targetting gcc] . H-Thread 1 uses gcc] to determine
whether to branch, marks 9cc1 empty again, and writes to 9cc3 to notify
H-Thread 0 that the current value of Occ] has been consumed. H-Thread
0 blocks until gee3 is full, and then empties it for the next iteration.
Neither thread can proceed with the next iteration until both have com-
pleted the current one. Due to the multicopy structure of MAP global CC
registers, this protocol can easily be extended to perform a fast barrier
among 3 H-Threads executing on different clusters, without combining or
distribution trees.

3.2.3. Cluster Barrier Instruction

Although the global condition registers can be used to implement
pairwise barriers and quickly broadcast the results of comparison opera-
tions to be used by conditional branches on other clusters, global barriers
do incur noticeable overheads. The cluster barrier (CBAR) instruction is
intended to be used for fast barrier synchronization among the clusters.
When executed on one H-Thread, the CBAR instruction stalls in the
synchronization (SZ) pipeline stage until the H-Threads on the other
2 clusters execute CBAR instructions. Then all 3 clusters may proceed past
the CBAR. Thus, a global barrier can be executed with only one instruc-
tion overhead and none of the communication overhead required using
data or global condition registers. Since the CBAR operations stall until
ready, no execution unit cycles are used waiting for the other H-Threads to

828/25/3-4

196 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

H-Thread 0 H-Thread 1
1 LOOP_O : compute bar LOOP_I : compute

2 eq bar end gccl ~ b r ; ; c l " LO
3 b r g c c l LOOP_0 OP_I

branch
4 delay m c b a r e m p t y g c c l ~ b r a n c h

slot ~ delay
5 char ; slots

Fig. 6. Loop synchronization between two H-Threads using the CBAR instruction.

reach the barrier, and the arithmetic units on that cluster may be used by
the other resident V-Threads.

Figure 6 shows the same loops as Fig. 5, but using CBAR instead of
the GCC registers for synchronization. The register gcc l is still used for
broadcasting the result of the comparison operations, but the overhead of
using gcc3 is removed, by using the CBAR instruction to enforce instruc-
tion ordering across the different H-Threads.

3.2.4. Tightly Coupled Mode

The overhead of executing the CBAR instruction may become signifi-
cant for code that requires frequent synchronization across all of the
clusters. Tightly coupled mode provides implicit synchronization between
all of the H-Threads on the 3 clusters, essentially by making every instruc-
tion an implicit CBAR. The MAP chip then behaves like a 9-wide VLIW
processor, in which no operation from instruction i + 1 may issue (leave the
SZ pipeline stage) until all of the operations from instruction i have issued.
However, it is not identical to a VLIW as the cycle-by-cycle scheduling
decisions on each cluster are independent. Since latencies are not com-
pletely known at compile time, the compiler must still coordinate register
transfers between clusters by emptying the register on the destination
cluster. However, traditional VLIW compilation techniques can be used to
generate the code.

3.3. Asynchronous Exception Handling

Exceptions that occur outside the MAP cluster are termed even t s and
are handled asynchronously by generating an even t r e c o r d and placing it in
a hardware event queue. Local TLB misses, block status faults, memory
synchronization faults, and message arrivals are events that are handled
asynchronously. These events are precise in the sense that the faulting
operation and its operands are specifically identified in the event record,

The M-Machine Multicomputer 197

but they are handled asynchronously, without stopping the thread. Each
H-Thread in the eventl V-Thread slot handles one class of events. Local
TLB misses are handled on cluster 0, and arriving messages are handled on
clusters 1 and 2, depending on the priority of the message. Memory syn-
chronization and status faults are handled in the eventO slot and can use all
3 H-Threads in the slot to execute the event handler.

The dedicated handler located in each H-Thread of the event V-Thread
slots processes event records to complete the faulting operations. The event
handler loops, reading event records from the register-mapped queue and
processing them in turn. A read from the queue will not issue if the queue
is empty. For example, on a local TLB miss, the hardware formats and
enqueues an event record containing the faulting address as well as the
write data or read destination. The software TLB miss handler reads the
record, places the requested page table entry in the TLB, and restarts
the memory reference. The thread that issued the reference does not block
until it needs the data from the reference that caused the miss. Similarly,
inter-node message arrival is also treated as an event in which the contents
of the message are written into the appropriate event queue (which serves
as the message queue).

Handling events asynchronously obviates the need to cancel all of the
issued operations which follow an operation that faults, a significant
penalty in a 9-wide machine with deep pipelines. Dedicating H-Threads to
this purpose accelerates event handling by eliminating the need to save and
restore state, and allows concurrent (interleaved) execution of user threads
and event handlers. Asynchronous event handling does require sufficient
queue space to handle the case where every outstanding instruction
generates an exception. To reduce queue size requirements, those excep-
tions that can be detected in the first execution cycle, such as protection
violations and some arithmetic exceptions, stall all user H-Threads in the
affected cluster, and are handled synchronously by the local H-Thread of
the exception V-Thread. User H-Threads executing on neighboring clusters
are unaffected.

3.4. D i s c u s s i o n

There are two major methods of exploiting instruction level parallelism.
Superscalar processors execute multiple instructions simultaneously by
relying upon runtime scheduling mechanisms to determine data dependen-
cies.~,, 7) However, they do not scale well with increasing number of func-
tion units because a greater number of register file ports and connections
to the function units are required. In addition, superscalars a t tempt to
schedule instructions at runtime (much of which could be done at compile

198 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

time), but can only examine a small subsequence of the instruction stream
to do so.

Alternatively, Very Long Instruction Word (VLIW) processors such
as the Multiflow Trace series (6~ use only compile time scheduling to
manage instruction-level parallelism, resource usage, and communication
among a partitioned register file. However, the strict lock-step execution is
unable to tolerate the dynamic latencies found in multiprocessors.

Processor Coupling, as originally introduced in Ref. 4, used implicit
synchronization between the clusters on every wide instruction. Relaxing
the lock-step synchronization, as described in this section, has several
advantages. First, it is easier to implement, because control is localized
completely within the clusters. Second, it allows more slip to occur between
the instruction streams running on different clusters (H-Threads), which
eliminates the automatic blocking of one thread on long latency operations
of another, providing more opportunity for latency tolerance. Finally, the
H-Threads can be used flexibly to exploit both instruction and loop level
parallelism. When H-Threads must synchronize, they may do so explicitly
through registers, at a higher cost than implicit synchronization. However,
fewer synchronization operations are required, and many of them can be
included in the data transfer between clusters which are inherent in the
executing program. In addition, global condition code registers, the CBAR
instruction, and tightly coupled mode provide lower cost synchronization
mechanisms when synchronization latency is critical.

Using multiple threads to hide memory latencies and pipeline delays
has been examined in several different studies and machines. Gupta and
Weber explore the use of multiple hardware contexts in multiprocessors, ~9~
but the context switch overheads they used are too large to mask pipeline
latencies. MASA (1~ as well as HEP,/~t) and TERA I~2) use fine grain multi-
threading to issue an instruction from a different context on every cycle in
order to mask pipeline latencies. However, with the required round-robin
scheduling, single thread performance is degraded by the number of
pipeline stages. The zero cost switching among V-Threads and the pipeline
design of the MAP provide fast single thread execution as well as latency
tolerance for better local memory bandwidth utilization. Furthermore,
none of the previous multithreaded machines have multiple clusters for
exploiting wide instruction level parallelism.

Various machines optimized for dataflow languages (13 l S~ provide hard-
ware support for fine grained synchronization between threads (usually via
memory synchronization bits), but they do not exploit instruction level
parallelism, nor do they provide low cost register-based synchronization
between threads. The XIMD architecture (16) uses multiple ALUs to exploit
instruction level parallelism as well as thread level parallelism. However, it

The M-Machine Mult icomputer 199

uses a single global register file and does not interleave multiple threads
over the same execution units. Two approaches that do exploit instruction
level parallelism using multiple threads and multiple ALUs include Ref. 17
and 18.

4. INTER-NODE CONCURRENCY MECHANICS

The M-Machine provides a fast, protected, user-level message passing
substrate. A user program may communicate and synchronize by directly
sending messages or by reading and writing remote memory using a
coherent software shared memory system layered on the message-passing
substrate. Direct messaging provides maximum performance data transfer
and synchronization while shared memory support simplifies programming.
Remote memory access is implemented using fast trap handlers that inter-
cept load and store operations which reference remote data. These handlers
send messages to other nodes to complete remote memory references trans-
parently to user programs. Additional hardware and software mechanisms
allow remote data to be cached locally in both the cache and external
memory.

4.1. Message Passings Support

The M-Machine provides hardware support for injecting a message
into the network, determining the message destination, and dispatching a
handler on message arrival. For example, Fig. 7 shows the M-Machine
instruction sequences for both the sending and receiving components of a
remote memory store. The message sending sequence (Fig. 7a) loads the

(a) Message Send
LOAD A[O], MC1
SEND Raddr, Rdip, #I

(b) Message Receive
loop:
JMP Rnet

;start ofremote write code
MOVE Rnet, RI

STORE Rnet, R1
BRANCH loop

; load A[O] into register 1
; send a 3 word remote store
; message to the processor
; containing VA in Raddr

; j u m p to DIP (remote write)

; move virtual address into R1
; store word to memo ry
; branch to message dispatch code

Fig. 7. Example of M-Machine code implementing a remote store: (a) Sending a 3 word
remote store message; (b) Receiving and performing the store. On the receiving end Rnet is
the register mapged to the head of the message queue.

200 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

data to be stored into general register MC 1. The SEN D instruction takes
three arguments, the target address (Taddr) contained in Raddr, the dis-
patch instruction pointer (DIP) in Rdip, and the message body length ($1).
When the SEND issues, the Global Translation Lookaside Buffer (GTLB)
translates virtual address Raddr into a physical node identifier, and a 3
word message containing DIP, Taddr, and the contents of M C 1 is sent to
that node. When the message arrives at the destination (Fig. 7b) hardware
enqueues it in the priority 0 message queue. An H-Thread dedicated to
message handling jumps to the handler via the DIP contained in the first
word of the message, executes a store operation, and branches back to the
dispatch portion of the code. Two message priorities are provided: user
messages are sent at priority zero, while priority 1 is reserved for system
level message reply, thus avoiding deadlock.

4. 1.1. Message Address Translation

As described in Ref. 19, the explicit management of processor iden-
tifiers by application programs is cumbersome and slow. To eliminate this
overhead, the MAP implements a Global Translation Lookaside Buffer
(GTLB), backed by a software Global Destination Table (GDT), to hold
mappings of virtual address regions to node numbers. These mappings may
be changed by system software. The user specifies the destination of a
message with a virtual address, which the network output interface
hardware uses to access the GTLB and calculate the physical destination
node.

A range of virtual addresses (called a page-group) is mapped across a
region of processors with a single GTLB entry. In order to simplify encoding,
the page-group must be a power of 2 pages in size, where each page is 512
words. The mapped processors must be in a contiguous 3-D rectangular
region with a power of 2 number of nodes on a side. This information is
encoded in a single GTLB entry as shown in Fig. 8. The virtual page field
is used as the tag during the fully associative GTLB lookup. The starting
node enumerates the coordinates of the origin of the region of mapped pro-
cessors, while the extent specifies the base 2 logarithm of the X, Y, and Z

E x t e n t

V i r t u a l P a g e N o d e I L e n g t h N o d e Z Y X

42 b i t s 16 b i t s 6 b i t s 6 b i t s 3 b i t s e a c h

Fig. 8. Format of a Global Destination Table (and GTLB) entry, used to determine a physi-
cal node identifier from a virtual address.

The M-Machine Multicomputer 201

dimensions of the region. The page-group length field specifies the number
of local pages that are mapped into the page group. The pages-per-node
field indicates the number of pages placed on each consecutive processor,
and is used to implement a spectrum of block and cyclic interleaving

4. 1.2. Message Reception

At the destination node, an arriving message is automatically placed in
a hardware message queue. The head of the message queue is mapped to
a register accessible by an H-Thread (in either cluster 1 or 2, depending on
message priority) in the event V-Thread. The message dispatch handler
code running in that H-Thread stalls on the empty register until a message
arrives, marking the register full; the handler then reads the dispatch
instruction pointer (DIP) from the register end jumps to it. This starts
execution of the specific handler code to perform the action requested in
the message. Some of the actions include remote read, remote write,
and remote procedure call. The message need not be copied to or from
memory, as it is accessible via a general register. In order to avoid overflow
of the fixed size message queue and back up of the network, only short,
well-bounded tasks are executed by message handlers. Longer tasks are
enqueued to be run as a user process on a user V-Thread.

4. 1.3. Protection

The M-Machine communicat ion substrate provides fully protected
user-level access to the network. The SEN D instruction atomically launches
a message into the network, preventing a user from occupying the network
output indefinitely. The automatic translation provided by the G L T B
ensures that a p rogram may only send messages to virtual addresses within
its own address space. Finally, restricting the set of user accessible DIPs
prevents a user handler from monopolizing the network input. If an illegal
D I P is used, a fault will occur on the sending thread before the message is
sent.

4.1.4. Throtting

In order to prevent a processor from injecting messages at a rate
higher than they can be consumed, the M-Machine implements a return-to
sender throttling protocol. A port ion of a local node's memory is used for
returned message buffering. When a message is sent, a counter is automati-
cally decremented, which reserves buffer space for that message, should it
be returned. If the counter is zero, no buffer space is available and no addi-
tional messages may be sent; threads attempting to execute a SEND
instruction will stall. When the message reaches the destination a reply is
sent indicating whether the destination was able to handle the message.

202 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

If the message was consumed, the reply instructs the source processor to
increment its counter, deallocating the buffer space. Otherwise, the reply
contains the contents of the original message which are copied into the
buffer and sent again later.

4. 1.5. Discussion

The M-Machine provides direct register-to-register communication,
avoiding the overhead of memory copying at both the sender and the
receiver, and eliminating the dedicated memory for message arrival, as is
found on the J-Machine. (2~ Register-mapped network interfaces have been
used previously in the Mars Machine, (2~ J-Machine, and iWarp, (22~ and
have been described by *T(23~as well as Henry and Joerg. (24) However,
none of these systems provide protection for user-level messages.

Systems, like the J-Machine, that provide user access to the network
interface without atomicity must temporari ly disable interrupts to allow the
sending process to complete the message. The M-Machine 's atomic SEND
instruction eliminates this requirement at the cost of limiting message
length to the number of cluster registers. Most messages fit easily in this
size, and larger messages can be packetized and reassembled with very low
overhead.

Automatic translation of virtual processor numbers to physical pro-
cessor identifiers is used in the Cray T3D. (25/ The use of virtual addresses
as message destinations in the M-Machine has two advantages. When com-
bined with translation hardware, it provides protection for user initiated
messages, without incurring the overhead of operating system invocation,
as messages may not be sent to processors mapped outside of the user's
virtual address space. It also facilitates the implementat ion of global
shared memory. The interleaving performed by the GTLB, although not as
versatile as the CRAY T3D address centrifuge or the interleaving of the
RP3, (26) provides a means of distributing ranges of the address space across
a region of nodes.

In contrast to both *T and F L A S H (2~) which use a separate com-
munication coprocessor for receiving incoming messages, the M-Machine
incorporates that function on its already existing execution resources, an
H-Thread in the event V-Thread. This avoids idling a dedicated processor
when it is not in use. During periods of few messages, user threads may
make full use of the cluster's arithmetic and memory bandwidth.

4.2. N o n - C a c h e d Shared M e m o r y

Fast access to remote memory is provided transparently to the user with
a combination of hardware and software mechanisms. When a load or store

The M-Machine Mult icomputer 203

operation to a global virtual address causes a Local Translation Lookaside
Buffer (LTLB) miss, a software trap is signalled. Like the hardware dedicated
to message arrival, one H-Thread in the eventl V-Thread is reserved for
handling LTLB misses. The LTLB miss handler code probes the GTLB to
determine where the requested data is located, and if necessary, sends a
message to the destination node. If the data is in fact local, the LTLB miss
handler fetches the required page table entry and places it in the LTLB.
Using a small port ion of the execution resources for fast trap handling
reduces the latency of both local LTLB misses and remote data access.

The sequence of operations required to satisfy a remote memory load
is shown below. The labels H W and S W indicate whether the action is
performed by hardware or software.

1. H W : Memory operation accesses the cache and misses (2 cycles).

2. H W : LTLB miss occurs, enqueueing an event (2 cycles).

3. SW: Software accesses the local page table (LPT), probes the
GTLB, and composes and sends a message containing the referenced
and return addresses (48 cycles).

4. HW: Message delivered to remote node (5 cycles).

5. SW: Message handler fetches requested data from memory, for-
mats a reply message, and sends it (29 cycles).

6. H W : Return message delivered (5 cycles).

7. SW: Message handler decodes the original load destination
register and writes the data directly there (41 cycles).

Tirnelines for both remote read and write accesses are shown in Figs. 9
and 10. These measurements are based on prototype message and event
handlers written in assembly code and running on the M-Machine
simulator. A user level program running on node 0 makes read and write
requests to memory on neighboring node 1. Except for the message handler
that runs on demand, node 1 is idle. All references to memory system data
structures in the software handlers are assumed to cache hit.

Table I shows a comparison of preliminary results of local and remote
access latencies (in cycles), for single word accesses. A read is completed
when the requested data has been written into the destination register.
A write is completed when the line containing the data has been fully
loaded into the cache. The remote read and write accesses are larger than
their local counterparts due to the software intervention required to send
the message to the remote node. However, the time to perform a remote
read that hits in the cache is only a twice as large as a local read that

204 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

R E M O T E R E A D

NODE 0 NODE 1

0[.........

201

4oi-

LOAD issues

Start LTLB miss handler

Start LPT lookup

Probe GTLB

Format message
-- Send LOAD m e s s a g e ~

~----llm-OMessage received

b omple es xecute
l ~ F o ~ a t reply message

80

r ~~Sendreplymessage

~ Reply Message ~ �9 handler
I00~ I ~eceived ~pletes

I T Decode LO~ destination

, 0L !
1 ~ R e t u r n d a t a to

] 4 0 ~ d e s t i n a t i o n r e g i s t e r

160# Time
(cycles)

Fig. 9. Remote read access.

Tablel . Comparison of Local and Remote
Access Times, Assuming No Resource Contention

Access Times (cycles)

Access Type REAl) WRITE

Local Cache Hit 3 2
Local Cache Miss 13 19
Local LTLB Miss 61 67
Remote Cache Hit 138 74
Remote Cache Miss 154 90
Remote LTLB Miss 202 138

The M-Machine Multicomputer 205

R E M O T E W R I T E

NODE0 NODE 1

0F~ STORE issues
Start LTLB miss handler

Start LPT lookup

Probe GTLB

40t- . ,Format message

Send STORE m e s s a g e ~ M e s s a g e received

60~ LTLB miss handler - I
-- completes ~ E x e c u t e store

80[~ M e s s a g e handler -
completes

1004 Time
(cycles)

Fig. 10. Remote write access.

requires software intervention (LTLB miss). For the remote write, which
does not require return data, the difference is only 10%.

The primary contributors to remote access latency in the M-Machine
are searching for the faulting address in the local page table and decoding
the reply message (about 40 cycles each). The page-table search is required
only when accessing the first block of a page. Accesses to subsequent
blocks cause block-status faults (rather than page faults) which skip the
page-table access. The reply decode could be accelerated by prohibiting the
faulting V-Thread from swapping out during the memory operation.

4.3. Cach ing and C o h e r e n c e

Even though remote accesses are fast, their latency is still large
compared to local memory references. This overhead reduces the ability
of the map to use the network and remote memory bandwidth effectively.
To reduce overall latency and improve bandwidth utilization, each
M-Machine node may use its local memory to cache data from remote
nodes.

In addition to the virtual to physical mapping, each LTLB (and LPT)
entry contains 2 status bits for each cache block in the page. These b l o c k

s t a t u s bits are used to provide fine-grain control over 8 word blocks,

206 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

allowing different blocks within the same mapped page to be in different
states. This fine-grain control over data is similar to that provided in
hardware based cache coherent multiprocessors, and alleviates the false
sharing that exists in other software data coherence systems/28) The two
block status bits are used to encode the following four states:

�9 i N V A L I D : The block may not be read, written, or placed in the
hardware cache.

�9 READ-ONLY: The block may be read, but not written.

�9 R E A D / W R I T E : The block may be read or written.

�9 D I RTY: The block may be read or written, and it has been written
since being copied to the local node.

One software policy that uses the block status bits fetches remote
cache blocks on demand. When a memory reference occurs, the block
status bits corresponding to the global virtual address are checked in
hardware. I f the at tempted operation is not allowed by the state of the
block, a software trap called a block status fault occurs. The trap code runs
in the eventO V-Thread. The block status handler sends a message to the
home node, which can be determined using the GTLB, requesting the
cache block containing the data. The home node logs the requesting node
in a software managed directory and sends the block back. When the block
is received, the data is written to memory and the block status bits are
marked valid. If the virtual page containing the block is not mapped to a
local physical page, a new page table entry is created and only the newly
arrived block is marked valid. The remote data may be loaded into the
on-chip cache, and modifications to the data will automatically mark the
block state dirty. More complex coherence schemes can map blocks from
different virtual pages into the same physical page, reducing the amount of
unmapped physical memory.

The software handlers used to transmit data from node to node may
implement a variety of coherence policies and protocols. This code is easily
incorporated within the remote read and write handlers described in
Section 4.2. Using local memory as a repository will allow more remote
data to be cached locally than could fit in the on-chip cache alone.

4.3. 1. Discussion

Directory-based, cache coherent multiprocessors such as Alewife 129)
and DASH (3~ implement coherence policies in hardware. This improves
performance at the cost of flexibility. Like the M-Machine, FLASH (27)
implements remote memory access and cache coherence in software, but
uses a coprocessor. However, this system does not provide block status bits

The M-Machine Multicomputer 207

in the TLB to support caching remote data in local DRAM. The subpage
status bits of the KSR-1 (31) perform a function similar to that of the block
status bits of the M-Machine.

Implementing remote memory access and coherence completely in
software on a conventional processor would involve delays much greater
than those shown in Table I, as evidenced by experience with the Ivy
system. (28) The M-Machine's fast exception handling in a dedicated
H-Thread avoids the delay associated with context switching and allows
the user thread to execute in parallel with the exception handler. The
GTLB avoids the overhead of manual translation and the cost of a system
call to access the network. Finally, the M-Machine provides memory-map-
ped addressing of thread registers to allow the operation to be completed
in software.

5. M - M A C H I N E S O F T W A R E

The M-Machine addresses the problem of parallel software by suppor-
ting an incremental approach to parallelization. Unlike conventional
parallel machines, the M-Machine is designed to efficiently run a sequential
program that uses all the machine's memory, including that on remote
nodes. A shared address space, high-performance messaging, and caching
remote data in local DRAM provide fast access to remote data. The
programmer can then incrementally improve program performance by
adding parallelism. The cache coherence mechanisms enable efficient
sharing of data across processors. The high-speed messaging network and
runtime system support allow for low-overhead task parallelism. The
ability to support fine-grain parallelism increases the number of suitable
tasks and allows extraction of more parallelism from small problems. Sup-
port for synchronizing memory operations and global addressing simplifies
user-level communication and synchronization between tasks and reduces
overhead. Caching in DRAM automates much of the data placement and
migration. For the cases where a programmer wants to extract the maxi-
mum performance fast, protected, user-level messages may be employed.

The M-Machine software is being designed and implemented jointly
with the Scalable Concurrent Programming Laboratory at Caltech. The
Multiflow compiler (32) has been ported to the M-Machine to generate long
instructions spanning multiple clusters. The Multiflow compiler is designed
to generate VLIW instructions from a sequential source program using
Trace Scheduling. The modifications required to generate multicluster code
for the M-Machine consist of partitioning the graph (DAG) of the trace
into sub-DAGs that may be executed on different clusters with minimal
communication. The sub-DAGs are then scheduled for each cluster using

208 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

the greedy instruction scheduler of the Multiflow compiler. Explicit syn-
chronization is required to take the place of the implicit synchronization
of a true VLIW. Communication is implemented by writing to remote
registers, while the global condition registers and cluster barrier instruction
are used to implement explicit barrier synchronization. An algorithm that
might be used to discover the synchronization points is described in
Ref. 33. The compiler currently generates code for a single cluster, and a
prototype for generation multi-cluster code is being tested.

A prototype runtime system consisting of primitive message and event
handlers has also been implemented. Approximately 90 percent of the
runtime system code is implemented in C, compiled using the Multiflow
compiler, and runs on the M-Machine simulator; the remaining 10 percent
are assembly code routines which access hardware features not exposed to
the compiler. The runtime system consists of independent modules which
manage virtual memory allocation, physical memory allocation, memory
coherence between nodes, and multiple threads on a single node and across
nodes. The implementation of the runtime system is described more fully in
Ref. 34.

6. C O N C L U S I O N

In this paper we have described the architecture of the M-Machine
with an emphasis on its novel features. The M-Machine, currently under
development, is a 3-D mesh, each node of which contains a multi-ALU
processor (MAP) and 8 Mbytes of synchronous DRAM. Each MAP chip con-
sists of three 64-bit 3-issue clusters connected by a cluster switch, a 4-way
interleaved on-chip cache, an external memory interface, and on-chip
network interfaces and routers.

Instruction level parallelism is exploited both within a cluster and
across clusters using H-Threads. An H-Thread may communicate and syn-
chronize through registers with H-Threads on different clusters but within
the same V-Thread. A 27 point stencil computation on 3 H-Threads
(9-wide issue) has half the static instruction count of 1 H-Thread (3-wide
issue).

To increase use of the local memory and execution bandwidth, multi-
ple tasks, called V-Threads, are interleaved on a cycle-by-cycle basis inde-
pendently on each of the clusters. Each cycle, a different thread may be
selected for execution, or if only one V-Thread is resident, it may issue an
instruction every cycle on each cluster.

The M-Machine has a user-level, protected, fast message passing sub-
strate to reduce communication and remote memory latencies. Messages are
composed in general registers and sent via a user level SEND instruction.

The M-Machine Multicomputer 209

Arriving messages are extracted by system-level software message dispatch
handlers, which are always resident in the eventl V-Thread. The message
contents are accessed via a register mapped queue. The message need not
be copied to or from memory on either the sending or receiving side. Two
level translation is used to independently relocate objects in the physical
address space on a node, and in the processor namespace.

The fast message system is used to provide the user with t ransparent
access to remote memory. When a user's load or store instruction traps to
software on a LTLB miss, a message is sent to a remote node to perform
the access. While slower than local accesses, a remote load can be satisfied
in 138 cycles, while a remote store can be satisfied in 74 cycles. In order to
facilitate local caching of remote data, 2 status bits for each block (8 words)
in a page are added to the LTLB and page table entries. When an invalid
block is accessed, a trap to software occurs which can retrieve the missing
block from a remote node, copy it into local memory, and mark the status
bits valid.

Both a C language based architectural simulator and a Verilog based,
cycle accurate, RTL model have been completed and are being used for
software development and hardware validation. A combinat ion of manual,
random, and compiler generated tests have been used to validate both the
RTL model and the circuit schematics against the architectural simulator.
The hardware design of the MAP is nearly complete; all the modules have
been designed, 100% of the schematics are done, and 95 % of the datapath
layout is complete. The MaP will be fabricated on a single integrated circuit
with a projected area of 18 m m x 18 m m in 0.5 /~m CMOS with 5 metal
layers. The target clockrate is 100 Mhz and tapeout is expected in the
middle of 1997. After tapeout, the runtime system will be completed and
the optimization and scheduling components of the compiler will be
improved. When the manufactured MAP chips are returned, a single node
system will be built to test the communicat ion and synchronization
mechanisms between H-Threads, and a 16-node system will be built to
evaluate the inter-node communicat ion and memory systems.

The M-Machine addresses the growing imbalance between memory
system capacity and bandwidth, making all of memory close to some pro-
cessor and increasing the aggregate bandwidth to memory. By employing
multiple processors and multiple ALUs within a processor, the M-Machine
enables parallelism to be used to both access more memory simultaneously,
and keep the expensive communicat ion channels between a given processor
and its local memory busy.

The M-Machine increases the percentage of chip area devoted to the
processor from 0.13% to 16% for a typical 1996 system. A 32-node (96
clusters) M-Machine with a total of 256 Mbytes of memory requires 50 %

210 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

more chip area than a uniprocessor with the same amount of memory but
provides 96 times as much peak performance, a 64:1 improvement in peak-
performance/area. More importantly it provides 32 times the bandwidth
between the processors and memory. The 64:1 improvement in peak-per-
formance/area makes the increased parallelism of the M-Machine cost
effective even in cases where only a small fraction of its peak performance
is realized.

We expect that the architecture concepts demonstrated in the M-Machine
will be useful in machines ranging from single-node personal computers,
through workstations with tens of nodes, to servers with hundreds to
thousands of nodes. Memory bandwidth and capacity are becoming the
dominant factor in the cost and performance of systems of all scales. By
changing the processor/memory ratio, providing methods for extracting
parallelism at all levels, and supporting an incremental approach to
parallelism, the M-Machine's mechanisms will lead to more cost effective
and programmable machines across the price-performance spectrum.

A C K N O W L E D G M E N T S

We would like to thank the members of the Scalable Concurrent
Programming Laboratory at Caltech for their feedback on the M-Machine
architecture and for their work on the M-Machine software effort: Steve
Taylor, Daniel Maskit, and Bryan Chow. In addition we would also like
to thank Kathy Knobe and the anonymous referees for their comments on
various versions of this paper. The research described in this paper was
supported by the Advanced Research Projects Agency and monitored by
the Air Force Electronic Systems Division under contract F19628-92-
C0045.

REFERENCES

1. J. L. Hennessy and N. P. Jouppi, Computer Technology and Architecture: An Evolving
Interaction. Computer, pp. 18 29 (September 1991).

2. C. A. Mead, L. A. Conway, Introduction to VLSI Systems. Addison- Wesley, Reading,
Massachusetts, (1980).

3. L. Gwennap, New MIPS Chip Targets Windows NT Boxes. Microprocessor Report
(November 18, 1992).

4. S. W. Keckler, and W. J, Dally~ Processor Coupling: Integrating Compile Time and Run-
time Scheduling for Parallelism. Proc. 191h Inl'l. Syrup. Computer Archit., Queensland,
Australia, ACM, pp. 202-213 (May 1992).

5. N. P, Carter, S. W. Keckler, and W. J. Dally, Hardware Support for Fast Capability-
Based Addressing. Proc. Sixth Int'l. Conf on Archit. Support Progr. Lang. Oper. Syst.
(ASPLO VI), Association for Computing Machinery Press, pp. 319 327 (October 1994).

The M-Machine Multicomputer 211

6. R. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM J. 11,
25 33 (January 1967).

7. W. M. Johnson, Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs,
New Jersey (1991).

8. R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P. K. Rodman, and J. E. Tornes,
Architecture and Implementation of a VLIW Supercomputer. Proc. Supercomputing,
IEEE Computer Society Press, pp. 910-919 (November 1990).

9. A. Gupta, and W.-D. Weber, Exploring the Benefits of Multiple Hardware Contexts in a
Multiprocessor Architecture: Preliminary Results. Proc. 16th Ann. Syrup. Computer Arehit.
IEEE, pp. 273 280 (May 1989).

10. R. H. Halstead, and T. Fujita, MASA: A Multithreaded Processor Architecture for
Parallel Symbolic Computing. 15th Ann. Symp. Computer Archit. IEEE Computer Society,
pp. 443 451 (May 1988).

11. B. J. Smith, Architecture and Applications of the HEP Multiprocessor Computer System.
SPIE Vol. 298 Real-Time Signal Processing IV, Denelcor, Inc., Aurora, Colorado,
pp. 241 248 (1981).

12. R. Alverson et al., The Tera Computer System. Proc. Int'l. Conf Supercomputing, ACM
SIGPLAN Computer Architecture News, pp. 1 6 (September 1990).

13. R. S. Nikhil, G. M. Papadopoulos, Arvind, *T: A Multithreaded Massively Parallel
Architecture. Computation Structures Group Memo 325-1, Laboratory for Computer
Science, Massachusetts Institute of Technology (November 1991).

14. H. H. Hum et aL, A Design Study of the EARTH Multiprocessor. lnt'l. Conf Parallel
Archit. and Compilation Techn., pp. 59 68 (1995).

15. S. Sakai, Y. Kodoma, and Y. Yamaguchi, Prototype Implementation of a Highly Parallel
Dataflow Machine em-4. Proc. FiJ~h Int'l. Parallel Processing Syrup., IEEE Computer
Society, pp. 278 286 (May 1991).

16. A. Wolfe, and J. P. Shen, A Variable Instruction Stream Extension to the VLIW Architec-
ture. Proc. Fourth Int'l. Conf. Archit. Support for Progr. Lang. Oper. Syst., ACM Press,
pp. 2 14 (April 1991).

17. G. S. Sohi, S. E. Breach, and T. Vijaykumar, Multiscalar Processors. Proc. 22nd Int'l.
Symp. Computer Archit., pp. 414 425 (May 1995).

18. D. M. Tullsen, S. J. Eggers, and H. M. Levy, Simultaneous Multithreading: Maximizing
On-Chip Parallelism. Proc. 22nd lnt'l. Symp. Computer Archit., pp. 392 403 (May 1995).

19. M. D, Noakes, D. A. Wallach, and W. J. Dally, The J-Machine Multicomputer: An
Architectural Evaluation. Proc. 20th Int'l. Syrup. Computer Archit., San Diego, California,
IEEE, pp. 224 235 (May 1993).

20. W. J. Dally et al., The J-Machine: A Fine-Grain Concurrent Computer. Proc. the IFIP
Congress G. Ritter, (ed.), North-Holland, pp. 1147 t153 (August 1989).

21. P. Agrawal, W. Dally, W. Fischer, H. Jagadisch, A. Krishnakumar, and R. Tutundjian,
A. Mars, A Multiproccssor-Based Programmable Accelerator. 1EEE Desiqn Test 4:28 36
(October 1987).

22. S. Borkar et al., Supporting Systolic and Memory Communication in Iwarp. Proc. 17th
Int'l. Symp. Computer Archit., pp. 70-81 (May 1990).

23. G. M. Papadopoulos, G. A. Boughton, R. Grainer, and M. J. Beckerle, *T: Integrated
Building Blocks for Parallel Computing. Proc. Supercomputing, IEEE, pp. 624~635 (1993).

24. D. S. Henry, and C. F. Joerg, A Tightly-Coupled Processor-Network Interface. Fifth Int'l.
Conf Archit. Support for Progr. Lang. Oper. Systems (ASPLOS V), ACM, pp. 111 122
(October 1992).

25. Cray Research, Inc., Cray T3D System Architecture Overview. Chippewa Falls, Wisconsin
(1993).

828/25/3-5

212 Fillo, Keckler, Dally, Carter, Chang, Gurevich, and Lee

26. G. Pfister et al., The IBM Research Parallel Processor Prototype (RP3): Introduction and
Architecture. Proc. Int'l. Conf. Parallel Processing, pp. 764-771 (1985).

27. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni et al., The Stanford FLASH Mul-
tiprocessor. Proc. 21st Int'l. Symp. Computer Archit., IEEE, pp. 302 313 (April 1994).

28. L. K. Ivy, A Shared Virtual Memory System for Parallel Computing. Int'l. Conf. Parallel
Processing, pp. 94-101 (1988).

29. A. Agarwal et al., The MIT Alewife Machine: A Large-Scale Distributed-Memory Multi-
processor. Sealable Shared Memory Multiprocessor, Kluwer Academic Publishers, (1991).

30. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, The
DASH prototype: Implementation and Performance. Proc. 19th Ann. Int'l. Symp. Com-
puter Archit., IEEE, pp. 92 103 (1992).

31. S. J. Frank et al., Multiprocessor Digital Data Processing System. United States Patent
No. 5,055,999 (October 8 1991).

32. P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O'Donnell, and J. C. Ruttenberg, The Multiflow Trace Scheduling Compiler. J. Supercom-
puting 7(1/2):51 142 (May 1993).

33. A. Zaafrani, H. G. Dietz, and M. O'Keefe, Static Scheduling for Barrier MIMD Architec-
tures, lnt'l. Conf Parallel Processing (1990).

34. Y. Gurevich, The M-Machine Operating System. Master of Engineering Thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science (September 1995).

