
International Journal o f Parallel Programming, Vol. 25, No. 3, 1997

Techniques for Critical
of Scalar Programs

Path

M i c h a e l S c h l a n s k e r 1 a n d V i n o d Katha i l ~

Reduction

Scalar performance on processors with instruction level parallelism (ILP) is
often limited by control and data dependences. This paper describes a family of
compiler techniques, called Critical Path Reduction (CPR) techniques, which
reduce the length of critical paths through control and data dependences.
Control CPR reduces the number of branches on the critical path and improves
the performance of branch intensive codes on processors with inadequate
branch throughput or excessive branch latency. Data CPR reduces the number
of arithmetic operations on the critical path. Optimization and scheduling are
adapted to support CPR.

KEY WORDS: Critical path reduction; control height reduction; data height
reduction; blocked control substituting; instruction level parallelism.

1. I N T R O D U C T I O N

Critical paths through control and data dependences in scalar programs
limit performance on processors with Instruction-Level Parallelism (ILP).
Performance limits caused by critical paths in a program can be avoided
using transformations which reduce the height of critical paths. Critical
Path Reduction (CPR) represents a collection of techniques specifically
designed to reduce dependence height in program graphs. CPR provides
three main benefits when a program follows a predicted path through its
control flow graph: it decreases the dependence height of program critical
paths; it reduces the number of operations which must be executed; and it
improves the scheduler's freedom in scheduling operations. This paper
presents a systematic approach for obtaining height-reduced and optimized
code for branch-intensive scalar programs with predictable control flow.

1 Hewlett-Packard Laboratories, Palo Alto, California 94304.

147

0885 7458/97,/0600-01475t 2.50/0 (() [997 Plenum PuNishing Corporation
828/25/3~ I

148 Schlansker and Kathail

The paper represents a starting point in understanding CPR for scalar
programs. Programs contain a mix of control and data dependences, and
CPR techniques are needed for both. Further work is needed to adapt
these techniques to more general scalar requirements and to quantify the
benefits of CPR.

Data dependences limit program performance when sequentially
chained arithmetic operations are executed on processors with substantial
ILP. Data CPR uses properties such as the associative property in order to
re-organize code and improve performance. Data CPR must be applied
with careful attention to both critical path height and operation count.

Control dependences limit performance when executing branch inten-
sive code. There is little previous work in developing optimizations for
branch intensive code which alleviate performance limits due to control
dependence. This paper develops a theory of control CPR which explains
how branch intensive code can be reorganized and shows the benefits using
specific examples. Control CPR decreases the height of critical paths due to
control dependences and reduces the amount of computation by moving
rarely taken branches off-trace.

Complex actions on programs, such as CPR or scheduling, are best
performed on modest sized regions selected from a program. A region
consists of a subset of the control flow graph of the program which has
been selected to maximize subsequent opportunities in optimization and
scheduling./1) Previous ILP compilers have identified the loop body as key
region for optimization and scheduling/~ The loop body is scheduled
using software pipelining which overlaps multiple iterations of the loop. In
previous work, we have shown the applicability of data and control CPR
to loops. (3' 4) In this work, we extend data and control CPR to the scalar
case.

A "trace ''(5'6~ has been used as a scheduling region to enhance
available parallelism in scalar programs (loops can be treated by unroll-
ing). When program control flow branches from a basic block to a most
probable subsequent block, the flow follows the trace path, or remains on-
trace. Traces are selected using branch profile statistics. Newly formed traces
can branch into the middle of previously formed traces. Thus, in general,
traces are linear program regions with multiple entries and multiple exits.

The superblock ~7) is similar to a trace except that branches are not
allowed into the middle of previously formed superblocks. Each superblock
has a single entry with potentially multiple exits. The single entry property
for superblocks is maintained using tail duplication. Whenever a branch
within a newly formed superblock jumps into the middle of a previous
superblock, necessary code within the previous superblock is replicated
into the new superblock. The process of tail duplication systematically

Techniques for Critical Path Reduction of Scalar Programs 149

eliminates program merges from superblocks and simplifies the engineering
of ILP compilers.

This paper assumes that predominate program flow paths can be iden-
tified (8) after which superblocks (or hyperblocks) are formed, optimized
and scheduled. CPR techniques are presented which expedite the path from
the region entry to a primary or on-trace exit. Computation required on-
trace is carefully separated from computation required off-trace. After com-
putation required to reach the primary exit is isolated, other computations
which were traditionally trapped on-trace can now move off-trace.

Predicated execution, as supported in PlayDoh, ~9) has been histori-
cally used to eliminate branches using if-conversion. (1~ 1~ If-conversion by
itself can reduce dependence height, for example, by allowing the parallel
execution of a sequence of in-then-else constructs. Superblocks have been
enhanced to allow if-conversion within a region called a hyperblock. (12~

We illustrate a rather different use of predicates. For each basic block
in the control flow graph of a region, we calculate a fully-resolved predicate
(FRP). Each FRP is computed using a Boolean-valued expression which is
evaluated when flow of control traverses the region. Intuitively, the FRP
for any block is a boolean expression of branch conditions describing the
exact condition, relative to region entry, under which the block executes.
The FRP for any block is true if the program's execution on this entry to
the region traverses that block; otherwise, the FRP for that block is false.
The computation of FRPs is accelerated using data CPR and with hard-
ware features provided by PlayDoh.

When an operation is guarded using its FRP it can be moved upward
across preceding branches within the region during scheduling. The opera-
tion continues to execute under conditions which are faithful to the original
program due to the guarding action of its fully resolved predicate. The
scheduler's freedom in placing operations is enhanced by allowing flexible
motion of operations (including branches) across previous branches.
Superblock scheduling is adapted to support CPR. Operations which are
not necessary on-trace naturally move off-trace. However, code moved off-
trace is kept local to the scheduling region. Operations which are required
for less important (off-trace) exits can fill in unused space within the on-
trace schedule. The approach simplifies compiler engineering because code
generation and optimization are decoupled from scheduling.

The rest of the paper is organized as follows. Section 2 presents archi-
tectural assumptions upon which examples are based. Section 3 presents the
principles of control CPR in superblocks. Section 4 presents a scheduling
approach adapted to take advantage of CPR. Section 5 discusses other
transformations that must be applied after CPR to get the best code
quality. Section 6 provides a detailed example. Section 7 presents more

150 Schlansker and Kathail

general CPR techniques for the treatment of single entry acyclic regions.
Section 8 discusses CPR for processor architectures without predicated
execution. Section 9 discusses related work, and Section 10 contains con-
cluding remarks.

2. A R C H I T E C T U R A L A S S U M P T I O N S

This paper uses the HPL PlayDoh architecture (9) to explain CPR con-
cepts. PlayDoh supports predicated execution of operations. Predication
support in PlayDoh is an enhanced version of the predication capabilities
provided by the Cydra 5 processor, m'13) Predicated execution uses a
Boolean data operand to guard an operation. For example, the generic
operation "rl =op(r2, r3) if p l " executes when pl is true and is nullified
when pl is false. A key constraint here is that if an operation is nullified,
it is as if the operation never executed. This could, for example, be carried
out by executing the operation and nullifying only the write-back into the
register file as well as any possible exceptions. Omitting the predicate
specifier for an operation is equivalent to executing the operation using the
constant predicate true (unconditionally executing the operation).

PlayDoh introduces a family of compare-to-predicate operations
which are designed to efficiently support the computation of predicates.
Two predicate targets can be computed within a single compare operation.
The two targets are often used to compute predicates corresponding to the
taken and not-taken sense of a branch allowing operations from either
block subsequent to the branch to be moved prior to the branch. PlayDoh
also introduces compare operations which support the parallel computa-
tion of high fan-in logical operations. Examples within this paper primarily
use the unconditional and wired-and compare forms which are described
later. The general form of a compare operation appears as:

pl, p2 = CMPP.(Dl-action).(D2-action)(rl(cond) r2) if p3

The operation is interpreted as follows:

- - p l , p2: target predicates set by the operation;

- - CMPP: generic compare op-code;

- - (Dl -ac t ion) , (D2-act ion): actions for the two targets;

- - rl , r2: data operands to be compared;

cond) : compare condition;

- - p3: predicate input.

Techniques for Critical Path Reduction of Scalar Programs 151

A single target compare is specified by omitting one target operand and
one target action.

The allowed compare conditions exactly parallel those provided by the
HP PA-RISC architecture. These include " = , " " < , " " < = , " and other
traditional tests on data. The Boolean result of a comparison is called its
compare value. The compare value is used in combination with the target
action to determine the target predicate result.

The actions allowed on each target predicate are as follows: uncondi-
tionally set (UN or UC), conditionally set (CN or CC), wired-or (ON
or OC), and wired-and (AN or AC). The second character (N or C)
indicates whether the compare value is used in "normal mode" (N), or
"complemented mode" (C). In complemented mode, the compare value is
complemented before performing an action on the target predicate.

Figure 1 provides a predicate result table for four combinations of
input predicate and compare value as specified by the four rows below the
horizontal double line, and eight target actions as specified by the eight
columns to the right of the vertical double line. Each cell within the table
specifies a result corresponding to an input combination indicated by its
row, and an action indicated by its column. A cell's row is identified in the
two columns to the left of the double lines which specify a choice of input
predicate and compare value. A cell's column is identified immediately
above the double lines where a choice of destination action is specified. The
cell specifies one of three results for the target predicate: set to 0, set to 1,
or leave untouched (shown as " - ") .

The wired-and action (AN) is used to execute high fan-in AND opera-
tions. A careful inspection of Fig. 1 shows that when the AN specifier is
used the predicate result is set to false exactly when its input predicate is
true and its compare value is false. In all other cases, the result is left
unchanged. A wired-and is accomplished as follows: (1) initialize the
predicate result register to true; (2) execute n compare operations in
parallel or in arbitrary order, each of which uses AN action (or AC if
the condition is to be complemented) to conditionally set the common

input compare

predicate value

0 0

0 1

1 0

1 1

On result [On complement

UN [CN [ON [AN I UC [CC [OC [AC
0 0

0 0

0 0 0 1 1 1

1 1 1 0 0 0

Fig. I. Result table for compare-to-predicate operations.

152 Schlansker and Kathail

predicate result to false. After all compares have executed, the conjunction
is available in the predicate result. The "wired-or" uses a similar approach
in which the result is initialized to false and then conditionally set to true.

As an example, assume that data values i0, i l , / 2 and i3 are to be
tested to see if all four are equal to zero, and the Boolean result is to be
placed in r. The result is computed with the following code sequence:

r = TRUE;

r = CMPP.AN(i0 = 0);

r = CMPP.AN(i2 = 0);

r = C M P P . A N (i l = 0);

r = CMPP.AN(i3 = 0);

The first assignment initializes the result to true and precedes the wired-and
compares. The predicate input for each compare is true and is omitted in
the code. The wired-and compares can execute in any order or in parallel
since each conditionally clears the result if the test for equality fails. When
multiple compares clear the result in the same cycle, the mult iported
register hardware must ensure that the result is in fact cleared. We will
sometimes denote such a sequence for computing A N D by a high-level
macro written as follows:

r = AND(i0 = 0, il = 0,/'2 = 0, i3 = 0)

The use of wired-and compares provides two benefits. I t allows constituent
compares to be re-ordered during scheduling, and it allows the retirement
of multiple terms in the conjunction within a single cycle.

P layDoh supports multiple branches in a single cycle, but does not
support dependent parallel branches; that is, when multiple branches take
in the same execution cycle, the semantics is undefined. However, compare
operations can be used to compute mutually exclusive branch conditions so
that independent branches execute either simultaneously or in an over-
lapped manner.

3. C O N T R O L CPR IN S U P E R B L O C K S

This section introduces control CPR for superblock scheduling. Each
superblock has a number of unlikely (secondary) exits and a single most
probable (primary) exit. Control CPR reduces the dependence height
through the critical path as well as the number of operations required to
reach the pr imary exit. The critical path 's dependence height is based on
individual dependences or precedence constraints which are defined in the
context of a scheduling model. We begin with a discussion of conventional
superblock scheduling. By introducing fully-resolved predicates, we relax

Techniques for Critical Path Reduction of Scalar Programs 153

normal dependence constraints and reduce the critical path length to the
primary exit. One or more fall through branches are introduced in order to
allow the motion of code off trace. The improved motion of branches
across branches allows code, including secondary exit branches as well as
other noncritical operations, to move below the primary exit and off-trace.
In addition, the use of fully-resolved predicates converts branch dependen-
ces into data dependences whose height can be reduced using data CPR.
Additional techniques are presented to reduce the number of redundant
operations which are introduced when using data CPR.

3.1. Branch D e p e n d e n c e s

During scheduling, branches may impose restrictions on code-motion.
The precise definition of the restrictions depends upon the scheduling
strategy and the code generation schema. This section discusses the code-
motion restrictions imposed by branches in superblocks.

An example superblock is shown in Fig. 2. The superblock consists
of three basic blocks, each of which contains the following: some number
of instructions (denoted by {block n b o d y)) , a compare operation to
calculate a branch condition, and a branch operation. All operations are
within their original basic block and are executed using true predicate. The
code uses PlayDoh compare operations to compute conventional branch
conditions. For example, the compare operation in basic block 0 calculates
the Boolean condition x0 = y0 and stores the result in el.

The restrictions imposed by branches are defined using a dependence
graph. Edges in the dependence graph describe data dependences as well as
any scheduling constraints due to branches. Data dependences are conven-
tional flow, anti, and output dependences between operations. Edges that

<block 0 body> if T;
el =CMPP.UN(x0=y0) if T;
branch E1 if el;
<block 1 body> if T;
e2 =CMPP.UN(x l=y 1) if T;
branch E2 if e2;
<block 2 body> if T;
e3=CMPP.UN(x2=y2) if T;
branch E3 if e3;

E4: /* fall-through code*/

/* Basic block 0 */

/* Basic block 1"/

/* Basic block 2*/

Fig. 2. Example Superblock.

154 Sch lansker and Kathai l

represent scheduling constraints due to branches will be called branch
dependences. Branch dependences will first be used to enforce the rules of
code motion traditionally used in superblock scheduling.

Figure 3a shows various types of edges to and from a branch. A branch
has a number of properties: it uses a branch condition, and it transfers flow
of control. As a user of a branch condition, it has a flow dependence edge
from an operation that generates the condition, and it may have a anti-
dependence edge to an operation which over-writes the condition. These
traditional data dependence edges are shown as solid edges between
branches and other operations. Dotted lines represent branch dependences.
Branch dependences maintain order among branches or between branches
and other operations as needed to support the scheduling scheme.

Speculative execution can be used to move operations above branches,
and exceptions from speculative operations can be ignored with proper
hardware support/9,14) However, some operations cannot be executed
speculatively without disrupting program semantics. Within this discussion,
operations which write to a location in memory are nonspeculative. Opera-
tions which write to a register which is live out at a previous exit branch
are also considered nonspeculative. Other operations can be executed
speculatively. In Fig. 3a, "live-out anti" edge from a branch to a side-effect-
ing operation ensures that the live-outs and memory are not overwritten
before the branch takes.

Superblock scheduling avoids compensation code generation in order
to simplit}r compiler engineering. This paper also assumes that compensa-
tion code is kept local to the current scheduling unit. If an operation
calculates a value that is live-out at a branch, then it is not allowed to

~ " ~ ~ - ~ l i v e - o u t ~

data anti .
anti ~ - - , .~

~ (cond ite I Lside-effect op]
inter- data ~ ~

branch, f l ow l ive -ou t " ~

~ f l o w

(a)

edges g
out of branch ~o ~ "o

data anti X
inter-branch X
live-out anti X

edges ~
into branch ~ -o

" o

I data f l ow IxlXl
i.ter-branch IX l I
live-out flow I X l X l

(b)

Fig. 3. Branch dependences.

Techniques for Critical Path Reduction of Scalar Programs 155

move below the branch. In other words, all live-out values are calculated
before exiting the region. Similarly, stores are not allowed to move below
a branch. The "live-out flow" edge from a side-effecting operation to
branch ensures that these conditions are satisfied.

Lastly, the "inter-branch" edge from branch to branch ensures correct
branch order. Branch conditions in conventional superblock code don' t
take the effect of previous branches into account. Consider, for example,
the second branch in Fig. 2. It should branch to E2 only if the first branch
falls through and its compare value (xl = y l) is true. The second branch's
compare value alone is not sufficient to decide whether the second branch
takes. Assume that the computation of the compare value (xl = y l) is
speculatively moved above the first branch. Also, assume that compare
values for both the first and the second exit branch are true. The program
should branch to E1 and not to E2 even though the compare value for the
second branch is true. If we naively interchange branches, an incorrect
program results. Branches can be re-ordered using the approach described
in Ref. 15. However, the approach requires compensation code and may
not help reduce the critical path. Section 9 discusses this further.

In Fig. 3b, two tables are provided which describe the necessary edges
both out of and into each branch within a superblock. The rows of each
table are labeled within the left hand column and indicate the type of edge
under consideration. The columns of each table indicate the scheduling
model under consideration with the "no FRP" scheduling model sum-
marizing branch dependences for conventional superblock code. The
column marked "FRP" will be discussed in Section 3.2. Each cell within the
table is either marked with an X indicating that the dependence must be
considered to generate correct code or the cell is blank indicating that the
dependence can be ignored.

The relevant parts of the dependence graph for the superblock example
are shown in Fig. 4. To simplify the presentation, we focus on store opera-
tions in each basic block. The dependence graph shows that branches are
ordered and stores are trapped between branches when the no F RP or con-
ventional scheduling model is employed.

3.2. F u l l y - R e s o l v e d Pred ica tes

Given a single entry acyclic region within a control flow graph, a fully-
resolved predicate (FRP) 2 can be defined for every basic block within the
region and for every control flow edge within or exiting the region. The
FRP for any block (edge) is true only if the program's control flow path

2 Fully-resolved predicates were called fully-qualified predicates in Ref. 4.

156 Schlansker and Kathail

Czz

x0 aneh ~ = y 0 J[. _.

i

I
I
I

I

x l ~ _ _

i

X 2 ~ ~ neh ~ ~ _ _ _

" v
I

E 4

" ~ E 1

- - ~ E 2

- > E 3

Fig. 4. Dependence graph for superb|ock.

on this entry to the region traverses that block (edge); otherwise, the FRP
for that block (edge) is false. The use of an FRP allows an action to be
correctly guarded using predicates and without relying on control flow.
Because FRPs can guard operations without relying on control flow, they
can be used to liberalize the rules of code motion. Block FRPs are used to
predicate operations which can move upward across one or more previous
branches. Speculatively executed operations are guarded by predicates
other than their block FRPs (e.g., unconditionally executed when guarded
using predicate true). On the other hand, nonspeculative operations such
as stores and live-out overwrites are guarded using their block's FRP. Edge
FRPs are used to predicate branches which are always nonspeculative and
also can move upward across previous branches.

For superblocks, FRPs are defined as follows: The FRP for the entry
block is defined to be true. The FRP for any current block (except the
entry) is the conjunction of the FRP for the preceding block and the fall-
through condition for the branch which reaches the current block. The
FRP for each exit edge is the conjunction of the FRP for the block in

Techniques for Critical Path Reduction of Scalar Programs 157

which the branch resides and the branch condition under which the branch
is taken. Note that the FRP for each block takes into account the entire
sequence of branch conditions needed to reach that block from region entry.

In Fig. 5, an FRP is computed for every basic block and for every exit
branch. FRPs for basic blocks are labeled f0 , f l , f2 , f3 , and exit FRPs
are labeled el, e2, e3. Each block computes FRPs for its on-trace successor
block and its exit branch using a single unconditional compare operation;
for example, the compare in block ! calculates two results as follows:

f 2 = (xl = y l) A f l and e2 = (!(xl = y l)) A f

Note that the FRP for the fall-through exit (J3) is not used because the
superblock has no code after the last branch.

When FRPs are used within superblocks, branch dependences as
presented in Fig. 3 can be partially relaxed. In Fig. 3b, the column marked
"FRP" defines branch dependences for code using fully-resolved predicates.
Again the presence of an X indicates that the dependence must be honored.
Note that anti-dependence edges out of a branch as well as inter branch
dependence edges between branches can now be ignored.

The dependence graph for the superblock code with FRPs is shown in
Fig. 6. Each two target compare operation is shown as a pair of and gates
which use the compare value in both true (for exit FRP), and complement
(for fall-through FRP) forms. Again, for Fig. 6, speculative execution is not
considered as indicated by showing only stores within the basic blocks.
Data flow edges and live-out flow edges to a branch are enforced just as
when predicates were not fully-resolved.

The use of FRPs eliminates data anti-dependence edges and live-out
anti-dependence edges, because when a branch takes, subsequent FRP

f0 =true; /* FRP for block 0 is true */
<block 0 body> if f0;
fl,el =CMPP.UC.UN(x0=y0) if f0;
branch E1 if el;
<block 1 body> if fl;
f2,e2 =CMPP.UC.UN(x 1 =y 1) if fl ;
branch E2 if e2;
<block 2 body> if f2;
f3,e3 =CMPP.UC.UN(x2=y2) if f2;

branch E3 if e3;

E4: /* fall-through code*/

Fig. 5. Superblock code with FRPs.

158 Schlansker and Kathail

fO=T

to B3, B2, B1

to B3~,';~2

toB~ ~ e3

E4

Fig. 6. Dependence graph for superblock with FRPs.

guarded anti-dependent operations do not execute even when moved above
the branch. Thus, stores and assignments to live-outs are allowed to move
above branches upon which they were anti-dependent in conventional
code. Similarly, inter-branch dependence edges are not needed. On each
entry into a superblock, only a single exit branch is taken. The use of FRPs
as branch conditions ensures that branches are mutually exclusive. After,
inter-branch edges are eliminated, branches can move across other branches
without compensation code. Consider, for example, the exit to label E3. If
the FRP for the branch to E3 is true, code at E3 may begin execution
irrespective of previous branches. Exit branches guarded by FRPs may be
scheduled simultaneously on PlayDoh because only one will take.

3.3. Fully Parallel Computation of FRPs

The use of FRPs allows the parallel execution of branches, but the com-
putation of the FRPs themselves remains sequential. The FRP for each basic
block is one AND operation removed from the previous FRP in the

Techniques for Critical Path Reduction of Scalar Programs 159

sequence (see Fig. 6). The FRP computation can be performed in parallel by
expressing an FRP as a multi-input AND of constituent branch conditions.

Figure 7 shows the code for computing all FRPs in parallel. FRPs
corresponding to all interior basic blocks and exits are computed
separately using a single wide AND macro operation. We call this the fully
parallel form of the code. Each compare value (e.g., xi = yi in Fig. 5) is now
abbreviated as ci to simplify the presentation. The dependence graph for
FRP computation in superblocks with full CPR is shown in Fig. 8.

The implementation of the wide AND operation varies from one pro-
cessor architecture to another. In conventional architectures, a height-
reduced tree of two input AND operations may be used. In PlayDoh,
wired-and compares are used to further reduce the height of an F RP com-
putation. Each AND macro operation is expanded into an initialization
operation and subsequent wired-and compare operations as described earlier.
Note that two-target compares allow block and exit predicates to be com-
puted together, thus reducing the number of compares. For example, f 2
and e2 can be computed together using two target compares.

The fully parallel form computes all FRPs by applying CPR separately
to all paths using redundant computation. This requires O(n 2) operations
and is prohibitively expensive for processors with limited amounts of ILP.

3.4. B locked C o n t r o l S u b s t i t u t i o n to C o m p u t e FRPs

This paper uses an approach, called blocked control substitution, which
reduces the amount of redundant computation. Blocked control substitution
accelerates some on-trace FRPs while intervening FRPs are computed
sequentially. The technique is an adaptation of the blocked back-substitution
technique used for height-reduction of control recurrences in while loops. 14)

f0=true;
<block 0 body> if f0;
fl=!c0;
e 1 =cO;
branch E1 if el;
<block 1 body> if fl ;
f2=AND(!c0,!c 1);
e2=AND(!c0,cl);
branch E2 if e2;
<block 2 body> if f2;
c3=AND(!c0,tcl,c2);
branch E3 if e3;

Fig. 7. Code for FRPs with full CPR.

160 Schlansker and Kathail

B B

c2 c l cO
I I I

c l cO
I I

e~
m

c l cO

store 2

/

p
B2

cO
I

cO

p'f
B2 B1

~1 ~

B2 B1 BO

Fig. 8. Superblock graph with full CPR.

Blocked control substitution is shown in Fig. 9. After formation of a
previous block, a heuristic is used to form a subsequent block by selecting
a lookahead distance k. An expedited FRP, fi+k, is evaluated directly from
the previous expedited FRP, f,, in a single wide AND operation. Inter-
mediate FRPs are evaluated sequentially. The wide AND operation can be
implemented in a number of ways; however, its implementation should
minimize the path length from f~ to f~+ k. It can be implemented using two
input AND operations by associating the tree of operations so that a single
AND separates ~+k from f,. On PlayDoh, wired-and compares readily
accommodate the late arrival of branch condition values and simplify inter-
action between code generation and scheduling. PlayDoh code to compute
FRPs for blocked control substitution is shown in the right hand side of
Fig. 9.

Blocked control substitution uses control CPR to expose parallelism
and allows the degree of parallelism to be adjusted using the lookahead
distance. When program traces are predictable, longer lookahead can be
used to increase the parallelism. Blocked control substitution expedites an
entire sequence of FRPs when using multiple stages of blocking. While

T e c h n i q u e s f o r C r i t i c a l P a t h R e d u c t i o n o f S c a l a r P r o g r a m s 161

I LOCKn'
r fi

BLOCK n . r

Ci+l ei'~l

/_ ~ - 1 [

I"'O"n-'

. ~ 1 7 6

/* FRP computation for block n-1 */

/* FRP computation for block n
/* sequential FRPs for block n
fi+l ,el+ 1 =CMPP.UC.UN(ci);
fi+2,ei+2=CMPP.UC-UN(ci+I);

ei+k=CMPP.UN(ci+k- 1);

*/
*/

/* lookahead FRP for block n */
/* uses "wired-and style" multiple assignment */
/* fi+k = AND(fi, !ci, !Ci+l !Ci+k-1) */

fi+k=fi; /* initialize result */

fi+k=CMPP.AC(ci); /* AND minterms */
fi+k=CMPP-AC(ci+ 1);

fi+k=CMPP.AC(ci+k - 1);

'* FRP computation for block n + l */
. . .

Fig. 9. Blocked control substi tution.

nonlookahead FRPs are computed sequentially within each block, they
benefit from CPR across previous blocks.

Sequential FRP evaluation uses n operations to traverse n branches.
Fully parallel evaluation requires O(n 2) operations. Blocked control sub-
stitution requires 2n operations or a factor of two in operation count over
sequential evaluation. To expedite a superblock of length n, n 1 opera-
tions compute the sequential FRPs, and n + 1 operations compute the
lookahead FRP. When code is carefully organized as shown in Section 3.6,
only the lookahead FRP is computed on-trace and FRP evaluation is
irredundant.

3.5. On-trace CPR Using Fall-Through Branch

Consider the superblock in Fig. 5. Each execution of the superblock
either takes an exit branch or falls through to the subsequent code (i.e., the
code at E4). Up to this point, the treatment of fall-through path has dif-
fered from that of the other exits. The code at label E4 begins executing
only after all the exit branches fall-through. In Fig. 6, this is shown by
branch dependence edges from all exit branches to the code at label E4.

162 Schlansker and Kathail

To examine the fall-through path in more detail, consider the code
shown in Fig. 10a. The code is a version of the superblock in Fig. 5 in
which block bodies have been replaced by assignments to 11, 12, 13, and 14.
Assume that 11, 12, 13, and 14 are live-out on superblock exits El , E2, E3,
and E4, respectively. Much of the live-out computation can be done
speculatively, and it may take a varying amount of time to compute each
live-out. If predicates are fully-resolved, each branch can be scheduled as
early as corresponding live-outs are available.

The fall-through path presents a special problem. Even when the
FRP for the fall-through path (i.e., f 3) can be quickly calculated, the fall
through successor is not reached until all preceding exit branches fail. This
problem arises due to the fact that in a conventional superblock with n
exits (including the primary fall-through exit) there are only n - 1 exit
branches. In this situation, it can only be determined that the program
reaches its final fall-through target after all n 1 exit branches fail to take.
Thus, the fall through path accommodates live-out computations for all
preceding exits. This interferes with on-trace CPR and requires that the
fall-through schedule provide time to compute all live-outs.

The introduction of a fully-resolved branch, called a fall-through
branch, allows all exits to be treated identically. Figure 10b shows the code
after the introduction of a fall-through branch. The FRP for the fall-
through branch (f3) is a conjunction of conditions which ensure that all
exit branches fall-through (i.e., the superblock exits at the bottom). The
evaluation of f 3 can be expedited just as other FRPs were evaluated in
Fig. 8. Now, if the live-out for the fall-through path can be calculated
quickly, the fall-through branch is free to move above branches and live-
out computations for preceding exits.

11~...
fl,eI=CMPP.UC.UN(c0)
branch E1 if el;
12
f2,e2=CMPP.UC.UN(c 1)
branch E2 if e2;
13
14
f3,e3=CMPP.UC.UN(c2)
branch E3 if e3;

E4:/* fall-through path*/

fl,e 1 =CMPP.UC.UN(c0)
branch E 1 if e 1 ;
12
f2,e2=CMPP.UC.UN(c 1)
branch E2 if e2;
13
14
f3,e3=CMPP.UC.UN(c2)
branch E3 if e3;
branch E4 if f3;
E4:/* fall-through path*/

Fig. 10.

(a) (b)

Introducing a fall-through branch. (a) Code without fail-through branch;
(b) code with fall-through branch.

Techniques for Critical Path Reduction of Scalar Programs 163

3.6 . P r e d i c a t e S p l i t t i n g

Using blocked-control substitution to expedite a lookahead predicate
may not remove sequential FRP evaluation from the critical path. Consider
the program graph of Fig. 11 a. It shows the dependence graph for a super-
block after blocked control substitution has been applied and the fall-
through branch has been inserted. The FRP for the fall-through branch has
been expedited while the computation of other FRPs remains sequential.
Assume that a store operation at exit E4 is guarded using the fall-through
branch and aliases with previous stores guarded under FRPs f0, f l , and
j2. The store at E4 is trapped below previous stores which have sequen-
tially computed FRP operands. The benefits of blocked control substitu-
tion have been thwarted and sequential FRP evaluation remains on-trace.

Predicate splitting eliminates the need for sequentially computed FRPs
on the on-trace control flow path. Predicate splitting also decreases the
number of required on-trace FRP evaluations. The cost to compute on-
trace FRPs is reduced by evaluating only the lookahead FRP but not
intervening sequential FRPs.

Predicate splitting has been used for the acceleration of control depen-
dences in loops with conditional exits/4} This paper adapts the technique
to scalar code. Predicate splitting can be compared to the following control
flow transformation. A heuristic selects lookahead branches within a super-
block. After splitting, each nonspeculative operation will be positioned
either before all branches or immediately after a lookahead branch. Opera-
tions which are not correctly positioned must be moved just below the next
lookahead branch. As operations move down, they are copied oil-trace at
each branch below which they move.

Predicate splitting replaces a computation guarded by predicate p with
multiple copies of the computation guarded by predicates ql qn

provided the following conditions are satisfied:

1. q l v . . . v q n = p .

2. No more than one of ql,..., qn evaluates to true.

After splitting, the effect of the multiple copies of the computation under
predicates ql qn is the same as the effect of the original computation
under p. This predicate transformation simulates the motion of a computa-
tion below a branch. The second condition can be relaxed for certain types
of computations, e.g., computations that don't overwrite their input
operands.

Figure l lb shows the effect of predicate splitting. As a result of the
downward motion simulated by predicate splitting, each operation is split
into two components: an on-trace operation guarded with the lookahead

828/25/3 2

164 Schlansker and Kathail

I
fo

BF f
f3 (ignored)

c2 c l c 0 f0

lookahead FRP

I E4
T

(a)

E1

E2

E3

Fig. 11. Superblock graph with split predicates. (a) Code after blocked control sub-
stitution, (b) code with split predicates.

FRP, and an oil-trace operation. The benefits of predicate splitting can be
seen by examining the code required within the on-trace code component
of Fig. l lb . The lookahead FRP provides an expedited guard for store
operations as well as a branch condition for the fall-through branch. Only
the fall-through branch and the corresponding lookahead FRPs must be
computed on-trace, remaining FRPs and exit branches can be computed
off-trace.

This paper assumes that only one of the components of a split opera-
tion may execute. Thus, off-trace operations are carefully guarded to avoid
redundant execution. Two ways to accomplish this are simultaneously
illustrated in Fig. 1 lb.

In the first approach, the complement of the lookahead FRP is used
as the initial predicate for the chain of off-trace FRP conjunctions. Note

Techniques for Critical Path Reduction of Scalar Programs

on-trace code
fO

f3

I
! E4

1
pin=~ off-trace code

Bt;L

B3 ~ E 3

(b)

Fig. l l (Continued)

165

that the complement o f f 3 is used as the predicate input ("pin") to the
sequence of compare operations which compute off-trace FRPs. Thus,
FRPs for off-trace operations are false when the lookahead predicate is
true, and split operations can be moved back on-.trace without redundant
execution. This approach will be used to demonstrate the motion of oft'-
trace code back on trace during scheduling as presented in Section 4.

In the second approach, off-trace operations are dependent on the fall-
through branch to prevent them from moving back on-trace. This is
illustrated with the branch dependence from the fall-through branch to the
off-trace code. In this case, "pin" can be set to true because the branch
dependence precludes redundant execution.

Predicate splitting can only be applied to stores which are separable (4~
with respect to a lookahead branch (or the corresponding lookahead
FRP). Consider a store within a superblock. The store is separable with
respect to some subsequent branch if the store can be moved below that
branch without violating a dependence to a load which is used to evaluate

166 Schlansker and Kathail

the branch condition for any branch traversed by the store's motion. After
predicate splitting, stores use a lookahead FRP. No load operation
depending on these stores can be used to compute a condition needed for
lookahead F R P evaluation; otherwise, there is a cycle in the computation
which cannot be executed.

Blocked control substitution (see Section 3.4) requires a heuristic to
select lookahead FRPs. However, lookahead FR P selection interacts with
predicate splitting. The selection of lookahead FRPs should not require
that predicates are split for operations which are non-separable with
respect to the lookahead predicate. This leads to the following condition
for selecting lookahead FRPs: Given a current lookahead FRP, select the
next lookahead FRP so that predicate splitting can be applied to inter-
vening stores. To illustrate that this is always possible, consider the limiting
case where every FRP is chosen as a lookahead FRP. In this case,
lookahead proceeds across only a single branch. Each lookahead FRP is
calculated as the conjunction of a previous lookahead FRP and its fall-
through condition. Since all FRPs are computed, every store is properly
guarded by a lookahead FRP and does not need to be split. The code
degenerates to un-split and irredundant code.

4. S C H E D U L I N G FOR S U P E R B L O C K CPR

This section describes a scheduling approach adapted to code
produced by CPR. It is similar to superblock scheduling (7) and uses well
understood list scheduling techniques.

4.1. Basic Schedul ing Approach

The approach takes advantage of the scheduling freedom offered by the
use of FRPs and the fall-through branch. The basic idea is this. Assuming
that the fall-through branch is the most probable, its placement in the
schedule divides the schedule into two parts. The code scheduled above the
fall-through branch is part of the on-trace path. The code scheduled below
the fall-through branch is not executed on-trace and is considered to be the
off-trace code component.

The scheduling approach is illustrated in Fig. 12. Part (a) shows a
superblock selected from the control flow graph for a program. The fall-
through exit E4 is assumed to be the most probable. Part (b) shows a
VLIW schedule with columns representing three function units and rows
representing time proceeding top to bottom. The fall-through branch for
E4 has been introduced and is scheduled like any other branch.

T e c h n i q u e s f o r C r i t i c a l P a t h R e d u c t i o n o f S c a l a r P r o g r a m s 167

[

r'~E3 E4
(a)

exit
branch

fall-through I exit
branch branch [

off-trace
a m | i

component exit
~=~1 =~=X~=~__ X branch

~ ' ~ code at target of ,
\ ~ \ fal l- through branch ',
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

(b)

- - I ~ E1

- - I ~ E2

- - I~ E3

on-trace code

exit
branch

fail-through exit E1
branch branch E2

off-trace component
code at target of

\ fal l- through branch \

branch

(c)

E3

Fig. 12. Scheduling model. (a) Flow graph, (b) conceptual schedule, (c) linal code.

The scheduling model is compatible with list scheduling. ~5/ The
heuristic described here applies list scheduling separately to each exit and
all operations that must precede the exit. Exits, including the fall-through
branch, are scheduled in a priority order based on the exit probabilities.
First, the fall-through branch and the operations needed on trace are
scheduled. Then, the scheduler places the next probable exit and the opera-
tions that must precede this exit. At this time, the scheduler fills any unused
spaces in the schedule for the on-trace code with the as yet unscheduled
operations to support the next probable exit. This process is repeated until
all exits and associated code have been scheduled. Note that the example
schedule in Fig. 12b shows that the order of the branches has been inter-
changed. Moreover, two branches have been scheduled concurrently.

The code positioned below the branch to E4 but above its target,
shown between the thick lines, is no t part of the on-trace path. This is the
off-trace component of the schedule. After scheduling, the schedule is

168 Schlansker and Kathai l

reorganized so that the predominant path does not branch. The FRP for
the fall-through branch is negated and made to branch to the beginning of
the off-trace component as shown in Fig. 12c.

4.2. Use of Multiple Fall-Through Branches

CPR requires at least one fall-through branch for the last lookahead
FRP (corresponding to the on-trace exit). The use of a single fall-through
branch, which gets converted to an off-trace exit after scheduling, requires
that branch conditions for all intervening branches must be available to
resolve the fall-through branch. This may unnecessarily delay exits from the
superblock when a single fall-through branch is used in conjunction with
a long sequence of exit branches.

The scheduling approach described earlier can accommodate multiple
fall-through branches. Blocked control substitution is used to expedite
multiple lookahead FRPs for the on-trace path. The complement of any
lookahead FRP can serve as the predicate for a fall-through branch. We
insert one fall-through branch for each lookahead FRP.

Figure 13 illustrates the use of multiple fall-through branches. The
scheduling region in Fig. 13a contains 4 oil-trace exits and two fall-through
branches. Two of the off-trace exits precede the first falls through branch,
and the other two are between the first and the second fall-through branch.

Figure 13b uses shading to show the allowed placement of the code
needed for each exit. All code required for the two fall-through branches
must remain on-trace (white region). Code for the first two off-trace exits
can remain on-trace or migrate into a compensation block at the first fall-
through branch. Similarly, the code for the off-trace exits E3 and E4 can

E2

FT1 ~ E3

v E4 FT2

(a)

FT1

FT2

I ~ E I

~ ~ E4

E3

(b)

Fig. 13. Use of multiple fall-through branches. (a) Two fall-through branches, (b) example
schedule.

Techniques for Critical Path Reduction of Scalar Programs 169

remain on-trace or migrate into the compensation block at the second fall-
through branch. In this example, on-trace code including both fall-through
branches has been scheduled first. The code for exit E1 was placed as the
scheduler filled in empty spaces after completing the on-trace schedule. All
code for E1 landed on trace. Then, code for exits E2, E3, and E4 were
scheduled and migrated partially off-trace. In some cases, code for all exits
may fit in the on-trace schedule, and compensation blocks are empty and
never visited.

The scheduling approach described in this section offers a number of
advantages. First, by scheduling exits in priority order, the on-trace path is
scheduled without regard for off-trace requirements. This allows a minimal
length on-trace schedule. Operations scheduled to support lower priority
exits naturally fill in unused space within the prior schedule of operations
supporting higher priority exits. Second, all compensation code is kept
local to the region of scheduling. An operation naturally moves off-trace
when a fall-through branch is scheduled above it. However, it need not
move to an adjacent scheduling region. It is naturally scheduled in an off-
trace component of the current scheduling region. Third, the scheduling
approach requires only simple interaction between code generation,
optimization and scheduling. In the most general case, every code motion
step during scheduling can be followed by an optimization step. This leads
to very complex scheduler/optimizer interaction. By selecting lookahead
FRPs and splitting predicates, CPR freezes key decisions about code
motion and allows optimization to take advantage of these decisions.
Scheduling proceeds without additional optimization.

5. O T H E R CPR T R A N S F O R M A T I O N S

While control CPR has been discussed earlier, this section identifies a
number of other techniques which must be applied to achieve the best
possible performance.

5.1. P red ica te S p e c u l a t i o n

Because of the small size of basic blocks, speculation is essential for
exploiting ILP. Traditionally, it has been applied in the context of branch-
ing code. In the case of predicated code, speculation is performed by sub-
stituting a speculative guard predicate for the original guard predicate for
an operation. A speculative guard is a predicate for a basic block which
dominates the original block. In a superblock, a speculative guard
corresponds to the predicate for a block which precedes the original block.

170 Schlansker and Kathail

Typically, the speculative guard is available earlier than the original guard,
and the transformation provides CPR. We use predicate speculation as
described in Ref. 12, which closely mirrors speculative code motion within
control flow graphs.

5.2. D a t a C P R

ILP compilers have used data CPR to reduce the length of critical
paths. (2'6'7) For example, consider the following sequence in which
cl, c2, c3 are constants:

x=w+cl; y=x+c2;z= y+c3

It can be rewritten as:

x = w + cl; y = w + (cl + c2); z = w + (cl + c 2 + c3)

The same number of operations execute after constants are folded, but now
they can be executed in parallel. These techniques can be applied prior to
control CPR and subsequent optimizations.

Blocked back-substitution was used to accelerate data recurrences in
loops. (3~ This paper introduces a similar technique for scalar code, called
blocked data substitution. It can be applied when a chain of dependent
associative operations computes a sequence of terms. Consider, for exam-
ple, the following code:

s l = s 0 + t 0 ; s2=sl+tl; s3=s2+t2; s4=s3+t3

s 5 = s 4 + t 4 ; s 6 = s 5 + t 5 , s 7 = s 6 + t 6 ; s 8 = s 7 + t 7

Initially, the code executes sequentially. We could perform full data CPR
for each term in the sequence using an independent height-reduced expres-
sion for each term. This, however, requires O(n 2) operations.

In blocked data substitution, a heuristic selects lookahead terms in the
sequence. Each lookahead term is computed from a previous lookahead
term using CPR. Non-lookahead terms are computed sequentially. Assume
that s4 and s8 are selected as lookahead terms. The reorganized code con-
sists of two lookahead expressions:

s4=sO+((tO+tl)+(t2+t3)) and sS=s4+((t4+t5)+(t6+t7))

In addition, there are six conventional expressions:

sl=sO+tO; s2 - s l+ t l ; s3=s2+t2

s 5 = s 4 + t 4 ; s 6 = s 5 + t 5 ; s 7 = s 6 + t 6

Techniques for Critical Path Reduction of Scalar Programs 171

Lookahead expressions are associated assuming that the lookahead input
is critically late. Assume that L is the latency of an add operation. The criti-
cal path from sO to s8 is reduced from 8L to 2L, and the worst case path
length from any input to s8 is reduced from 8L to 4L.

Blocked data substitution provides substantial CPR with a maximum
two fold increase in operation count. In some cases, the lookahead terms
in the sequence (e.g., s4, s8) are the only terms that are live-out on the on-
trace path. In this case, the computation of nonlookahead terms may be
moved off-trace leaving no redundant code on trace.

5.3. O n - T r a c e / O f f - T r a c e O p t i m i z a t i o n

On-trace/off-trace optimization is an optimization framework which
minimizes off-trace requirements for on-trace code. It can be viewed as an
extension of blocked data and control substitution. Conceptually, on-trace/
off-trace optimization replicates original code with two copies: on-trace
and off-trace counterparts. Optimization is performed in multiple passes.
First, CPR and optimization is applied to the on-trace code ignoring the
requirements of the off-trace code. Then, the off-trace code is optimized
with knowledge of the resultant on-trace code. Expressions computed on-
trace need not be recomputed off-trace.

On-trace/off-trace optimization provides a viewpoint which systemati-
cally provides the lowest latency and fewest operations on trace. A number
of on-trace/off-trace optimizations are used in the example discussed in
Section 6. When conventional optimizations (such as copy elimination,
dead code elimination, constant folding, load/store elimination) are applied
first on-trace and then off-trace, improved on-trace code quality results.

Store elimination provides an important example of on-trace/off-trace
optimization. Using predicate splitting, on-trace stores are moved to a
lookahead FRP where they execute under a common predicate. If they
overwrite a common location, redundant stores are removed, and only a
final store remains on trace. The Multiflow compiler achieved a similar
effect for live-out assignments. It moved them downward and into compen-
sation blocks leaving a single assignment on trace. (6t

6. E X A M P L E OF S U P E R B L O C K CPR

This section provides an example to demonstrate CPR concepts intro-
duced in this paper. The example C + + source program is shown in
Fig. 14. The main program shown in Part (a) invokes sum2 twice to add
the top three stack elements. The sum2 function shown in Part (b) pops the
top two stack elements, adds them, and pushes the result back on the

172 Schlansker and Kathail

void main0{
stack q;

/* initialize stack */

fiadd top 3 elem.*/
q.sum20;
q.sum20;

, , - }

void
stack::sum20{

x = pop();
y = pop();
push(x+y);
retum; }

int stack::pop0 {
int r;
if(p<=ep) goto empty;
r--*p;
p-=l;
retum r;

empty:
�9 - - }

stack::push(int a) {
if(p>= fp) goto full;
p+=l;
*p=a;
return;

full:
�9 . . }

/*ep & fp are empty and
full pointer limits*/

p0=load(p);
c0=cmpp.un(p0<=ep);
branch empty if cO;
x0=load(p0);
pl=sub(p0,1); /*O p0=sub(p0,1)*/
store(p, p 1);
c 1 =cmpp.un(p 1 <=ep);
branch empty if c 1;
y0=load(p 1);
p2=sub(p0,2); /*O p0=sub(p0,1)*/
store(p, p2);
v0=add(x0,y0);
c2=cmpp.un(p2>=fp);
branch full if c2;
p3=p I; /*O p0=add(p0,1) */
store(p, p3);
store(p3, v0);

(a) (b) (c) (d)

Fig. 14. Stack example. (a) Main program, (b) sum2, (c) pop and push, (d) inlined sum2.

stack. Part (c) shows the relevant code for push and pop subroutines. The
variables ep and J)) are the low- and high-bounds for the stack. Assume
that any branch to "full" or "empty" within push or pop is rare.

The scope over which analysis, optimization and scheduling are per-
formed must be large enough to reveal significant ILP. Inlining is used to
enlarge the scope. Figure 14d shows the code for sum2 after inlining push
and pop and applying certain optimizations. For example, loads from p for
the second call to pop and the call to push have been eliminated. Also, the
sequential chain of assignments to p has been parallelized by renaming and
substitution. Original code is sometimes shown in comments /*O.. .*/ to
help explain the inlined code. Extra copies have been left in the code to
simplify presentation, assume that these will be eliminated.

Figure 15 shows the code after applying control CPR and on-trace
optimizations. Stores and operations that write live-outs are nonspeculative
and guarded using FRPs. Other operations can be executed speculatively.
For example, loads and other speculative operations frequently execute
with true (omitted) predicate.

The sequence of optimization steps and the actual placement of opera-
tions in the final schedule are not shown. To simplify presentation, the code
is split into two parts, one for each call to sum2. Each part shows the on-
trace code as well as the related compensation code generated by the
scheduler. We assume that the heuristic for blocked control substitution
and fall-through branch insertion picks FRPs that correspond to complet-
ing the first and second invocations of sum2.

Consider the optimized on-trace code for the first call to sum2. The
lookahead FRP, f3 , is expedited, and its complement is used as the

Techniques for Critical Path Reduction of Scalar Programs 173

off-trace branch condition. Predicate splitting followed by redundant store
elimination results in a single on-trace store to stack pointer p; the other
two stores move off-trace. Careful optimization of the computation o f f 3
eliminates the p0 < = ep test, since it is subsumed by the p l < = ep test.
Also, note that three branches in the original code have been replaced by
a single branch to off-trace code.

The code for the second call to sum2 is similar to that for the first call;
see Fig. 15b. We have renamed operands with trailing % to distinguish
them from the corresponding ones in the first invocation. All optimizations
applied to the code for first call also apply to the code for the second call.
In addition, there are new optimization opportunities. For example, the
pointer p0% is equal to the previously calculated p l and the value x0%,
which was read from memory, is the same as the value v0 calculated in the
first call.

CPR has exposed substantial parallelism not available in the original
code. The second invocation of sum2 overlaps almost entirely with the first

f0=-true; /* entry predicate fur first sum2 is true*/
p0=load(p);
pl=sub(pO, 1);
p2=sub(p0, 2);
p3 = pl;
x0=load(pO);
y0=load(p 1);
v0=add(xO, yO);

/* compute lookahead FRP */
13=f0;

/*O f3=cmpp.an(pO<= ep); *!
f3=cmpp.an(p 1 <=ep);
f3=cmpp.an(p2>= fp);

/* 13 guarded code */
store(p2,v0) if 13;
store(p,p3) if f3;
branch OT1 if !13;

/*continue on-trace with second sum2 invocation*/

OT 1 : /* first compensation area */
otp=!f3; /* complement lookahead pred */
fl,el =cmpp.uc.un(p0<=ep) if otp;
f2,e2 =cmpp.uc.un(p l<=ep) if fl ;
store(p,pl) i f f l ;
store(p,p2) if 12;
branch empty if e 1;
branch empty if e2;
branch full if 12;

f0% = 13;/* entry predicate for second sum2 is
13"/
p0% = pl; /*O pO%=load(p); */
pl% = p2; /*O pl%=sub(p0%,l); */
p2% = sub(p0, 3); /*O p2%=sub(p0%,2); */
p3% = p2; /*O p3%=pI% */
x0% = v0; /*O x0%=load(p0%); */
y0%=load(p 1%);
v0%=add(x0%,yO%);

/* compute lookahead FRP */
f3%=F0%;

/*O 13%=cmpp.an(p0<= ep); */
f3%=cmpp.an(p 1%<=ep);
f3%=cmpp.an(p2%>= fp);

/* 13% guarded code */
store(p2%,v0%) if 13%;
store(p,p3%) if 13%;
branch OT2 if !13%;

/*continue on-trace with next superblock*/

OT2: /* second compensation area*/
otp% = !13%; /*complement lookahead pred */
fl %,e 1% =cmpp.uc.un(p0%<= ep) if otp%;
f2%,e2% =cmpp.uc.un(p 1 <= ep) if fl %;
store(p,p 1%) if fl %;
store(p,p2%) if 12%;
branch empty if e 1%;
branch empty if e2%;
branch full if 12%;

(a) (b)

Fig. 15. CPR Optimized stack example. (a) First sum2 invocation, (b) second sum2 invocat ion .

174 Schlansker and Kathail

invocation in spite of the presence of three branches in the original code.
A single wired-and (also a single branch) separates the completion of the
second invocation from the completion of the first. The use of wired-and is
not necessary; properly associated two input AND operations give similar
results. Additional control parallelism can be exposed using larger
lookahead distance and fewer fall-through branches along the critical path.

In this example, control and data CPR provide substantial benefit to
on-trace code. Control CPR has reduced six on-trace branches to two.
Much of the branch resolution and branch target formation is performed
only off-trace as needed. ON-trace/off-trace optimization simplifies the
evaluation of on-trace compare conditions needed for the on-trace FRP.
Multiple stores to p are replaced with a single on-trace store. Data height
through arithmetic sequences is reduced; for example, the final value of the
pointer p is evaluated in a single subtract.

7. C O N T R O L CPR FOR G E N E R A L S I N G L E E N T R Y A C Y C L I C
R E G I O N S

This section generalizes the CPR techniques to single entry regions
with acyclic flow of control, called Single Entry Acyclic Regions or SEAR
for short. The overall approach is as follows: compute FRPs for blocks and
exits in a SEAR, use these FRPs to if-convert the SEAR so that the region
is a block of predicated code with no internal control flow, and use blocked
control substitution to expedite computation of certain FRPs. This section
describes the computation of FRPs in a SEAR and extends blocked control
substitution to SEARs.

7.1. C o m p u t i n g FRPs in a SEAR

FRPs for a SEAR can be computed sequentially using its control flow
graph. Program branches correspond to predicate ANDs and program
merges correspond to predicate ORs. However, this does not take advan-
tage of additional parallelism that can be exposed using the control
dependence graph. The concept of control dependence was defined in
Ref. 16. More recent work defines efficient algorithms for computing con-
trol dependences/17) If-conversion of single entry and single exit regions
using the control dependence graph is described in Ref. 18. If-conversion
was extended to support hyperblock scheduling in Ref. 12; but the
approach ignores exits and does not compute fully-resolved predicates.

To illustrate the computation of FRPs for basic blocks and exits
within a SEAR, consider the example in Fig. 16a. Nodes correspond to
basic blocks. Nodes in the control flow graph are numbered 1 8 with entry

Techniques for Critical Path Reduction of Scalar Programs 175

F

i

I

7-" -

]

1 = en t ry p red ica te

2-1A
3=1~.
4=2+3=1
5=4g= lg
6= 5UZ
7 - 5C

8 = 6+7D

9 = 4 B = I B

1 0 - 7 D

11-8

I SESE al I

Pl ~>

I sEsE I

P2

P3 ~

P4

I sEsE I

(a) (b) (c)

Fig. 16. Computing RRPs lor a SEAR. (a) Example SEAR control llow group, (b) example
SEAR FRPs, (c) CPR of a complex SEAR.

node numbered 1. We assume that an entry predicate is set to true on entry
to the region. A pseudo node is introduced for each region exit; these are
denoted by 9, 10, 11. Every branch has an uppercase letter corresponding
to the branch condition which determines its direction of flow. By conven-
tion, branches go left on true and right on false condition.

The control dependence graph for a p rogram defines two key concepts
required to efficiently compute FRPs. First is the concept of control equiv-
alence: two nodes x and y are control equivalent when a control flow path
through the program visits x if and only if it also visits y. Second is the
notion that a basic block in the control flow graph is control dependent on
an edge in the control flow graph: a basic block x in the control flow graph
is control dependent on the edge from basic block y to basic block z if x
does not post-dominate y but x does post-dominate z. (~7)

The code to compute predicates for the example SEAR is shown in
Fig. 16b. Within each expression, a numeral represents the FRP corre-
sponding to the identically numbered basic block. An upper case character
corresponds to a branch condition which may be complemented. The juxta-
position of an FRP and a branch condition denotes a Boolean conjunction.

176 Schlansker and Kathail

Thus, 1A denotes the conjunction of the FRP for basic block one and the
branch condition labeled A. The + operation denotes Boolean or. One or
more expressions is provided to compute each FRP. The first expression
(after the first =), is calculated directly from control flow. For example
4 = 2 + 3 indicates that the OR of the FRPs for blocks 2 and 3 correctly
computes the FRP for block 4. A second expression (after the second =)
is provided when FRP computation using control dependence differs from
FRP computation using control flow. For example 4 = 2 + 3 = 1 indicates
that control dependence directly uses the FRP for block 1 as the F RP for
block 4.

The expression for each FRP in the example is derived using the
following procedure. To compute the FRP for a given node, a set of edges
upon which the node is control dependent is identified. Each edge in the set
provides one term in the FRP expression. An edge term is calculated using
the FRP for the edge's origin node ANDed with the branch condition
which traverses the edge. The FRP expression for a node is the OR of all
terms for edges on which the node is control dependent. When nodes are
control equivalent, multiple nodes have identical FRP expressions; for
example, see nodes 4 and 1.

7.2. B l o c k e d C o n t r o l S u b s t i t u t i o n for a S E A R

The procedure described in Section7.1 naturally parallelizes a
sequence of if-then-else expressions but does not provide CPR across a
sequence of exit branches. This is addressed using the following observa-
tion: if all exit branches in a SEAR dominate the fall-through exit, CPR for
the fall-through FRP can be performed exactly as for superblocks. Note
that in Fig. 16a, the branch within node 4 dominates the fall-through
branch while the branch within node 7 does not.

Consider the abstraction of a SEAR shown in Fig. 16c. The SEAR is
broken into subgraphs separated by branches which dominate the fall-
through exit. These branches decompose the SEAR into a sequence of two
subgraph types: single entry single exit (SESE) subgraphs (e.g., R1, R2,
R4), and more general SEAR subgraphs (e. g., R3). Blocked control sub-
stitution, as in the superblock case, can be used to expedite FRPs across
sequences of exit dominating branches spanning SESE regions. But,
lookahead cannot be used across SEAR subgraphs because they have exit
branches which do not dominate the fall-through path.

For example, P2 can be expedited, by re-writing its expression in
terms of P0 and the conditions for the first two exit dominating branches.
Branches internal to the intervening SESE regions are ignored. Similarly,
P5 can be expedited in terms of P3 and intervening branch conditions. The

Techniques for Critical Path Reduction of Scalar Programs 177

exit predicate for SEAR R3 labeled P3 has already been computed in terms
of P2 and branch conditions internal to R3. Since P3's computation
depends on branches internal to R3, this approach does not expedite the
computation of P3.

8. A P P L I C A T I O N TO A R C H I T E C T U R E S WITH NO PREDICATES

Although this paper uses predicated execution, control CPR also
applies to conventional architectures without predicated execution.
Figure 17 shows an approach which again uses a fall-through branch. In
Fig. 17a, four nonfully-resolved branches are shown above a fully-resolved
fall-through branch. All off-trace exits are tested first and, if the fall-
through branch is reached, it always takes and follows the path to E5. In
Fig. 17b, off-trace branches are moved below the fall-through branch
leaving only the fall-through branch on-trace. Like predicate splitting,
stores trapped between branches in Fig. 17a are replicated and the execu-
tion of their on-trace components is guarded by the fall-through branch.
Logical operations (ANDs) necessary for control CPR can execute using a
conventional ALU.

store I
cO I ,

c l ~ {m -- ~ E2

r

c 2 ~ -- ~ E3

[

',o3~

y to I Es 1, ~

(a)

to
off-trace

code

to
off-trace

code
on-trace " ~ ' ; ; ~ - t

code f V

I I f-trace
01 ~ c o d e

Es ,

c 2 ~ _ ~,, E3

r

(b)

Fig. 17. Branch motion across fall-through branch. (a) FRP for fall-through branch, (b)
motion of other branches oft-trace.

178 Schlansker and Kathai!

9. RELATED WORK

There is a substantial body of work on compiler techniques and
architectural features to alleviate problems caused by program dependences.
Compiler techniques have been developed to reduce critical paths through
data dependences. Tree height-reduction has been used to parallelize
networks of arithmetic operations. (19) Techniques such as renaming, sub-
stitution, and expression simplification have all been used to break data
dependence chains. (2' 6, 7) More recent work introduced blocked back sub-
stitution for CPR of data recurrences in loops. (3t

Control dependences (16) identify the relationship between a branch
and the operations which depend upon its resolution. Control dependences
correctly identify minimal conditions under which an operation executes
without speculation. Techniques have been developed to alleviate perfor-
mance limitations due to control dependences on ILP processors. The use
of speculative execution is one such technique.~4' ~5, 20 24) Speculative execu-
tion identifies operations whose side effects can be reversed and moves
them above branches upon which they depend.

Branches also limit performance when processors have inadequate
branch throughput or excessive branch latency. Compiler techniques have
been developed which move branches across other branches. I ~5, 24) However,
interchanging branches alone does not alter the number of on-trace branches
as shown in Fig. 18. Performance limitations due to control dependences
persist even after interchange. Each time branches are interchanged, code
is reorganized requiring complex interaction between scheduling and code
generation.

~ E 1

E3 E2

;

E3 E1 E2 E1

Fig. 18.

(a) (b)
Interchanging branches. (a) Original branches, (b) interchanged

branches.

Techniques for Critical Path Reduction of Scalar Programs 179

Architectural features have been used to reduce the dependence height
of consecutive branches. The ability to retire multiple dependent branches
in a single cycle reduces the height of critical paths through control
dependences/5'15"25~ The Multiflow Trace machine used a hardware
priority encoder mechanism to enforce sequential dependence among con-
currently issued branches. The simplest form of multi-way branches cannot
guard operations trapped between branches, but more sophisticated branch
architectures have been developed to guard intervening operations. (22, 24, 26)

Prioritized multi-way branch alone may fail to eliminate bottlenecks
due to control dependences for several reasons. It is unlikely that multi-way
branch hardware is as fast as 2-way branch hardware. Many processor
architectures require that all branch latencies be uniform. In this case, the
2-way branch latency is matched to the multi-way branch latency: Thus,
simple 2-way branches are penalized by the support for multi-way
branches.

Multi-way branch achieves minimum latency at the expense of branch
scheduling freedom. Minimizing the critical path may force the traversal of
multiple branches in a single cycle. Peak branch issue requirements may be
difficult to satisfy in hardware, especially if branches can not be issued on
all function units.

Predicated execution(9 /3, 18,23,27~ provides another approach to
parallelize programs limited by control dependences. For example, a
sequence of multiple if-then-else expressions can be parallelized with if-con-
version. Control CPR for loops with exits has been demonstrated in prior
work, (4) and the generalization of these techniques to control CPR in scalar
codes is addressed in this paper.

10. CONCLUSIONS

CPR is a collection of techniques which increase the amount of
parallelism in scalar programs. As processors provide more instruction-
level parallelism, CPR techniques will become increasingly important.
Compile time transformations which better tolerate data and control
dependences allow us to exploit hardware implementations with deeper
pipelines, wider issue, and simpler support for branches.

This paper describes transformations which reduce critical path
lengths in scalar programs. Fully-resolved predicates are introduced to
eliminate branch dependences. The introduction of FRPs assists in unifying
CPR techniques for both control and data dependences. Critical paths
which jointly traverse data and control dependences are height-reduced.
The application of control CPR allows branches to move off-trace.
Scheduling and optimization models suitable for use with CPR are also

828/25/3-3

180 Schlansker and Kathail

described. This paper illustrates the use of CPR in the context of both
superblocks and more general single entry acyclic regions. Control CPR is
illustrated for architectures with and without predicated execution.

While the use of CPR transformations to enhance parallelism has been
demonstrated, heuristics for the application of CPR are not yet well under-
stood, and the benefits of CPR have yet to be quantified. The utility of
CPR depends upon many factors including the nature of the application
code and nature of the instruction set architecture.

REFERENCES

1. R. Hank, W. W. Hwu, and B. R. Rau, Region-Based Compilation: An Introduction and
Motivation, Proc. 28th Ann. Symp. on Microarchitecture Ann Arbor, Michigan,
pp. 158-168 (1995).

2. J. C. Dehnert and R. A. Towle, Compiling for the Cydra 5, J. Supercomputing 7(1/2):
181 228 (1993).

3. M. Schlansker and V. Kathail, Acceleration of First and Higher Order Recurrel~ces on
Processors with Instruction Level Parallelism, Sixt Int'L Workshop on Lang. Compilers jbr
Parallel Computing, U. Banerjee, et al. (Eds., Springer-Verlag, pp. 406 429 (1993).

4. M. Schlansker, V. Kathail, and S. Anik, Height Reduction of Control Recurrences for ILP
Processors, Proe. 27th Ann. lnt'l. Symp. on Microarchiteeture, San Jose, California,
pp. 40 51 (1994).

5. J. A. Fisher, Very Long Instruction Word Architectures and the ELI-512, Proc. Tenth
Ann. lntql. Symp. Comlmter Architecture, Stockholm, Sweden, pp. 140 150 (1983).

6. G. Lowney et al., The Multiflow Trace Scheduling Compilers, J. Supercomputing
7(1/2):51 142 (1993).

7. W. W. Hwu, et al., The Superblock: An Effective Technique for VLIW and Superscalar
Compilation. J. Supereomputing 7(1/2): 229 248 (1993).

8. J. A. Fisher and S. M. Freudenberger, Predicting Conditional Jump Directions from Pre-
vious Runs of a Program, Proc. FiJ~h Int'l. Conf. Archit. Support ./br Progr. Lang. and
Oper. Syst., Boston, Massachusetts, pp. 85 95 (1992).

9. V. Kathail, M. S. Schlansker, and B. R. Rau, HPL PlayDoh Architecture Specification:
Version 1.0. Technical Report HPL-93-80, Hewlett-Packard Laboratories, Palo Alto,
California (1993).

10. P. Y. T. Hsu and E. S. Davidson. Highly Concurrent Scalar Processing. Proc. 13th Ann.
lnt'l. Syrup. Computer Archit., pp. 386 395 (1986).

11. B. R. Rau et al., The Cydra 5 Departmental Supercomputer: Design Philosophies, Deci-
sions and Trade-Oft~. Computer 22(1):12 35 (1989).

12. S. A. Mahlke, et al., Effective Compiler Support for Predicated Execution Using the
Hyperblock. Proc. 25th Ann. lnt'l. Syrup. Microarchitecture, pp. 45 54 (1992).

13. J. C. Dehnert, P. Y.-T. Hsu, and J. P. Bratt, Overlapped Loop Support in the Cydra 5.
Proc. Third Int'l. Conf Archit. Support for Progr. Lang. Oper. Syst., Boston,
Massachusetts, pp. 26-38 (1989).

14. S. A. Mahlke, et al., Sentinel Scheduling: A Model for Compiler-Controlled Speculative
Execution. ACM Trans. Computer Systems 11(4):376-408 (1993).

15. J. R. Ellis, Bulldog: A Compiler for V L I W Architectures, The MIT Press, Cambridge,
Massachusetts, (1985).

Techniques for Critical Path Reduction of Scalar Programs 181

16. J. Ferrante, K. Ottenstein, and L Warren, The Program Dependence Graph and Its Use
in Optimization. AC M Trans. Progr. Lang. Syst. 9(3):319-349 (1987).

17. K. Pingali and G. Bilardi, APT: A Data Structure for Optimal Control Dependence Com-
putation. Proc. Progr. Lang. Design and Implementation, La Jolla, California (1995).

18. J. C. H. Park and M. S. Schlansker, On Predicated Execution. Technical Report HPL-91-
58, Hewlett-Packard Laboratories, Palo Alto, California (1991).

19. D. J. Kuck, The Structure of Computers and Computations, John Wiley, New York (1978).
20. J. A. Fisher, Trace scheduling: A Technique for Global Microcode Compaction, IEEE

Trans. Computers C-30(7):478~90 (1981).
21. A. Nicolau, Percolation Scheduling: A Parallel Compilation Technique. Technical Report

TR 85-678, Department of Computer Science, Cornell (1985).
22. K. Ebcioglu and A. Nicolau. A Global Resource-Constrained Parallelization Technique.

Proc. Third Int'l. Conf. Supercomputing, Crete, Greece, pp. 154 163 (1989).
23. P. Tirumalai, M. Lee, and M. S. Schlansker, Parallelization of Loops with Exits on

Pipelined Architectures, Proe. Supercomputing, pp. 200-212 (1990).
24. S.-M. Moon and K. Ebcioglu, An Efficient Resource-Constrained Global Scheduling

Technique for Superscalar and VLIW Processors, Proc. 25th Ann. hlt'l. Symp.
Microarchitecture, Portland, Oregon (1992).

25. J. A. Fisher, 2N-way Jump Microinstruction Hardware and an Effective Instruction
Binding Method, Proc. 13th Ann. Workshop on Microprogramming, Colorado Springs,
Colorado, pp. 6z1~75 (1980).

26. K. Ebcioglu and R. Groves, Some Global Compiler Optimization and Architectural
Features for Improving Performance of Superscalars, Technical Report RC16145, IBM
T.J. Watson Research Center, Yorktown Heights, New York (1990).

27. B. R. Rau, M. S. Schlansker, and P. P. Tirumalai, Code Generation Schemas for Modulo
Scheduled DO-Loops and WHILE-Loops. Technical Report HPL-92-47, Hewlett
Packard Laboratories, Palo Alto, California (1992).

