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Scalar performance on processors with instruction level parallelism (ILP) is 
often limited by control and data dependences. This paper describes a family of 
compiler techniques, called Critical Path Reduction (CPR) techniques, which 
reduce the length of critical paths through control and data dependences. 
Control CPR reduces the number of branches on the critical path and improves 
the performance of branch intensive codes on processors with inadequate 
branch throughput or excessive branch latency. Data CPR reduces the number 
of arithmetic operations on the critical path. Optimization and scheduling are 
adapted to support CPR. 

KEY WORDS:  Critical path reduction; control height reduction; data height 
reduction; blocked control substituting; instruction level parallelism. 

1. I N T R O D U C T I O N  

Critical paths through control and data dependences in scalar programs 
limit performance on processors with Instruction-Level Parallelism (ILP). 
Performance limits caused by critical paths in a program can be avoided 
using transformations which reduce the height of critical paths. Critical 
Path Reduction (CPR) represents a collection of techniques specifically 
designed to reduce dependence height in program graphs. CPR provides 
three main benefits when a program follows a predicted path through its 
control flow graph: it decreases the dependence height of program critical 
paths; it reduces the number of operations which must be executed; and it 
improves the scheduler's freedom in scheduling operations. This paper 
presents a systematic approach for obtaining height-reduced and optimized 
code for branch-intensive scalar programs with predictable control flow. 
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The paper represents a starting point in understanding CPR for scalar 
programs. Programs contain a mix of control and data dependences, and 
CPR techniques are needed for both. Further work is needed to adapt 
these techniques to more general scalar requirements and to quantify the 
benefits of CPR. 

Data dependences limit program performance when sequentially 
chained arithmetic operations are executed on processors with substantial 
ILP. Data CPR uses properties such as the associative property in order to 
re-organize code and improve performance. Data CPR must be applied 
with careful attention to both critical path height and operation count. 

Control dependences limit performance when executing branch inten- 
sive code. There is little previous work in developing optimizations for 
branch intensive code which alleviate performance limits due to control 
dependence. This paper develops a theory of control CPR which explains 
how branch intensive code can be reorganized and shows the benefits using 
specific examples. Control CPR decreases the height of critical paths due to 
control dependences and reduces the amount of computation by moving 
rarely taken branches off-trace. 

Complex actions on programs, such as CPR or scheduling, are best 
performed on modest sized regions selected from a program. A region 
consists of a subset of the control flow graph of the program which has 
been selected to maximize subsequent opportunities in optimization and 
scheduling./1) Previous ILP compilers have identified the loop body as key 
region for optimization and scheduling/~ The loop body is scheduled 
using software pipelining which overlaps multiple iterations of the loop. In 
previous work, we have shown the applicability of data and control CPR 
to loops. (3' 4) In this work, we extend data and control CPR to the scalar 
case. 

A "trace ''(5'6~ has been used as a scheduling region to enhance 
available parallelism in scalar programs (loops can be treated by unroll- 
ing). When program control flow branches from a basic block to a most 
probable subsequent block, the flow follows the trace path, or remains on- 
trace. Traces are selected using branch profile statistics. Newly formed traces 
can branch into the middle of previously formed traces. Thus, in general, 
traces are linear program regions with multiple entries and multiple exits. 

The superblock ~7) is similar to a trace except that branches are not 
allowed into the middle of previously formed superblocks. Each superblock 
has a single entry with potentially multiple exits. The single entry property 
for superblocks is maintained using tail duplication. Whenever a branch 
within a newly formed superblock jumps into the middle of a previous 
superblock, necessary code within the previous superblock is replicated 
into the new superblock. The process of tail duplication systematically 
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eliminates program merges from superblocks and simplifies the engineering 
of ILP compilers. 

This paper assumes that predominate program flow paths can be iden- 
tified (8) after which superblocks (or hyperblocks) are formed, optimized 
and scheduled. CPR techniques are presented which expedite the path from 
the region entry to a primary or on-trace exit. Computation required on- 
trace is carefully separated from computation required off-trace. After com- 
putation required to reach the primary exit is isolated, other computations 
which were traditionally trapped on-trace can now move off-trace. 

Predicated execution, as supported in PlayDoh, ~9) has been histori- 
cally used to eliminate branches using if-conversion. (1~ 1~ If-conversion by 
itself can reduce dependence height, for example, by allowing the parallel 
execution of a sequence of in-then-else constructs. Superblocks have been 
enhanced to allow if-conversion within a region called a hyperblock. (12~ 

We illustrate a rather different use of predicates. For each basic block 
in the control flow graph of a region, we calculate a fully-resolved predicate 
(FRP). Each FRP is computed using a Boolean-valued expression which is 
evaluated when flow of control traverses the region. Intuitively, the FRP 
for any block is a boolean expression of branch conditions describing the 
exact condition, relative to region entry, under which the block executes. 
The FRP for any block is true if the program's execution on this entry to 
the region traverses that block; otherwise, the FRP for that block is false. 
The computation of FRPs is accelerated using data CPR and with hard- 
ware features provided by PlayDoh. 

When an operation is guarded using its FRP it can be moved upward 
across preceding branches within the region during scheduling. The opera- 
tion continues to execute under conditions which are faithful to the original 
program due to the guarding action of its fully resolved predicate. The 
scheduler's freedom in placing operations is enhanced by allowing flexible 
motion of operations (including branches) across previous branches. 
Superblock scheduling is adapted to support CPR. Operations which are 
not necessary on-trace naturally move off-trace. However, code moved off- 
trace is kept local to the scheduling region. Operations which are required 
for less important (off-trace) exits can fill in unused space within the on- 
trace schedule. The approach simplifies compiler engineering because code 
generation and optimization are decoupled from scheduling. 

The rest of the paper is organized as follows. Section 2 presents archi- 
tectural assumptions upon which examples are based. Section 3 presents the 
principles of control CPR in superblocks. Section 4 presents a scheduling 
approach adapted to take advantage of CPR. Section 5 discusses other 
transformations that must be applied after CPR to get the best code 
quality. Section 6 provides a detailed example. Section 7 presents more 
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general CPR techniques for the treatment of single entry acyclic regions. 
Section 8 discusses CPR for processor architectures without predicated 
execution. Section 9 discusses related work, and Section 10 contains con- 
cluding remarks. 

2. A R C H I T E C T U R A L  A S S U M P T I O N S  

This paper uses the HPL PlayDoh architecture (9) to explain CPR con- 
cepts. PlayDoh supports predicated execution of operations. Predication 
support in PlayDoh is an enhanced version of the predication capabilities 
provided by the Cydra 5 processor, m'13) Predicated execution uses a 
Boolean data operand to guard an operation. For example, the generic 
operation "rl =op(r2, r3) if p l "  executes when pl is true and is nullified 
when pl  is false. A key constraint here is that if an operation is nullified, 
it is as if the operation never executed. This could, for example, be carried 
out by executing the operation and nullifying only the write-back into the 
register file as well as any possible exceptions. Omitting the predicate 
specifier for an operation is equivalent to executing the operation using the 
constant predicate true (unconditionally executing the operation). 

PlayDoh introduces a family of compare-to-predicate operations 
which are designed to efficiently support the computation of predicates. 
Two predicate targets can be computed within a single compare operation. 
The two targets are often used to compute predicates corresponding to the 
taken and not-taken sense of a branch allowing operations from either 
block subsequent to the branch to be moved prior to the branch. PlayDoh 
also introduces compare operations which support the parallel computa- 
tion of high fan-in logical operations. Examples within this paper primarily 
use the unconditional and wired-and compare forms which are described 
later. The general form of a compare operation appears as: 

pl, p2 = CMPP.( Dl-action).( D2-action)(rl(cond) r2) if p3 

The operation is interpreted as follows: 

- -  p l ,  p2: target predicates set by the operation; 

- -  CMPP: generic compare op-code; 

- -  (Dl -ac t ion) ,  (D2-act ion):  actions for the two targets; 

- -  rl ,  r2: data operands to be compared; 

cond)  : compare condition; 

- -  p3: predicate input. 
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A single target compare is specified by omitting one target operand and 
one target action. 

The allowed compare conditions exactly parallel those provided by the 
HP PA-RISC architecture. These include " = , "  " < , "  " <  = , "  and other 
traditional tests on data. The Boolean result of a comparison is called its 
compare value. The compare value is used in combination with the target 
action to determine the target predicate result. 

The actions allowed on each target predicate are as follows: uncondi- 
tionally set (UN or UC), conditionally set (CN or CC), wired-or (ON 
or OC), and wired-and (AN or AC). The second character (N or C) 
indicates whether the compare value is used in "normal mode" (N), or 
"complemented mode" (C). In complemented mode, the compare value is 
complemented before performing an action on the target predicate. 

Figure 1 provides a predicate result table for four combinations of 
input predicate and compare value as specified by the four rows below the 
horizontal double line, and eight target actions as specified by the eight 
columns to the right of the vertical double line. Each cell within the table 
specifies a result corresponding to an input combination indicated by its 
row, and an action indicated by its column. A cell's row is identified in the 
two columns to the left of the double lines which specify a choice of input 
predicate and compare value. A cell's column is identified immediately 
above the double lines where a choice of destination action is specified. The 
cell specifies one of three results for the target predicate: set to 0, set to 1, 
or leave untouched (shown as " - " ) .  

The wired-and action (AN) is used to execute high fan-in AND opera- 
tions. A careful inspection of Fig. 1 shows that when the AN specifier is 
used the predicate result is set to false exactly when its input predicate is 
true and its compare value is false. In all other cases, the result is left 
unchanged. A wired-and is accomplished as follows: (1) initialize the 
predicate result register to true; (2) execute n compare operations in 
parallel or in arbitrary order, each of which uses AN action (or AC if 
the condition is to be complemented) to conditionally set the common 

input compare 

predicate value 

0 0 

0 1 

1 0 

1 1 

On result [ On complement 

UN [ CN [ ON [ AN I UC [ CC [ OC [ AC 
0 0 

0 0 

0 0 0 1 1 1 

1 1 1 0 0 0 

Fig. I. Result table for compare-to-predicate operations. 
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predicate result to false. After all compares have executed, the conjunction 
is available in the predicate result. The "wired-or" uses a similar approach 
in which the result is initialized to false and then conditionally set to true. 

As an example, assume that data  values i0, i l , / 2  and i3 are to be 
tested to see if all four are equal to zero, and the Boolean result is to be 
placed in r. The result is computed with the following code sequence: 

r = TRUE;  

r = CMPP.AN(i0  = 0); 

r = CMPP.AN(i2  = 0); 

r = C M P P . A N ( i l  = 0); 

r = CMPP.AN(i3  = 0); 

The first assignment initializes the result to true and precedes the wired-and 
compares. The predicate input for each compare  is true and is omitted in 
the code. The wired-and compares can execute in any order or in parallel 
since each conditionally clears the result if the test for equality fails. When 
multiple compares  clear the result in the same cycle, the mult iported 
register hardware must  ensure that the result is in fact cleared. We will 
sometimes denote such a sequence for computing A N D  by a high-level 
macro written as follows: 

r = AND(i0 = 0, il = 0,/'2 = 0, i3 = 0) 

The use of wired-and compares  provides two benefits. I t  allows constituent 
compares to be re-ordered during scheduling, and it allows the retirement 
of multiple terms in the conjunction within a single cycle. 

P layDoh supports multiple branches in a single cycle, but does not  
support  dependent parallel branches; that is, when multiple branches take 
in the same execution cycle, the semantics is undefined. However, compare  
operations can be used to compute mutually exclusive branch conditions so 
that  independent branches execute either simultaneously or in an over- 
lapped manner. 

3. C O N T R O L  CPR IN S U P E R B L O C K S  

This section introduces control CPR for superblock scheduling. Each 
superblock has a number  of unlikely (secondary) exits and a single most  
probable  (primary) exit. Control  CPR reduces the dependence height 
through the critical path  as well as the number  of operations required to 
reach the pr imary exit. The critical path 's  dependence height is based on 
individual dependences or precedence constraints which are defined in the 
context of a scheduling model. We begin with a discussion of conventional 
superblock scheduling. By introducing fully-resolved predicates, we relax 
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normal dependence constraints and reduce the critical path length to the 
primary exit. One or more fall through branches are introduced in order to 
allow the motion of code off trace. The improved motion of branches 
across branches allows code, including secondary exit branches as well as 
other noncritical operations, to move below the primary exit and off-trace. 
In addition, the use of fully-resolved predicates converts branch dependen- 
ces into data dependences whose height can be reduced using data CPR. 
Additional techniques are presented to reduce the number of redundant 
operations which are introduced when using data CPR. 

3.1. Branch  D e p e n d e n c e s  

During scheduling, branches may impose restrictions on code-motion. 
The precise definition of the restrictions depends upon the scheduling 
strategy and the code generation schema. This section discusses the code- 
motion restrictions imposed by branches in superblocks. 

An example superblock is shown in Fig. 2. The superblock consists 
of three basic blocks, each of which contains the following: some number 
of instructions (denoted by {block n b o d y ) ) ,  a compare operation to 
calculate a branch condition, and a branch operation. All operations are 
within their original basic block and are executed using true predicate. The 
code uses PlayDoh compare operations to compute conventional branch 
conditions. For  example, the compare operation in basic block 0 calculates 
the Boolean condition x0 = y0 and stores the result in el. 

The restrictions imposed by branches are defined using a dependence 
graph. Edges in the dependence graph describe data dependences as well as 
any scheduling constraints due to branches. Data dependences are conven- 
tional flow, anti, and output dependences between operations. Edges that 

<block 0 body> if T; 
el =CMPP.UN(x0=y0) if T; 
branch E1 if el; 
<block 1 body> if T; 
e2 =CMPP.UN(x l=y 1) if T; 
branch E2 if e2; 
<block 2 body> if T; 
e3=CMPP.UN(x2=y2) if T; 
branch E3 if e3; 

E4: /* fall-through code*/ 

/* Basic block 0 */ 

/* Basic block 1"/ 

/* Basic block 2*/ 

Fig. 2. Example Superblock. 



154 Sch lansker  and Kathai l  

represent scheduling constraints due to branches will be called branch 
dependences. Branch dependences will first be used to enforce the rules of 
code motion traditionally used in superblock scheduling. 

Figure 3a shows various types of edges to and from a branch. A branch 
has a number of properties: it uses a branch condition, and it transfers flow 
of control. As a user of a branch condition, it has a flow dependence edge 
from an operation that generates the condition, and it may have a anti- 
dependence edge to an operation which over-writes the condition. These 
traditional data dependence edges are shown as solid edges between 
branches and other operations. Dotted lines represent branch dependences. 
Branch dependences maintain order among branches or between branches 
and other operations as needed to support the scheduling scheme. 

Speculative execution can be used to move operations above branches, 
and exceptions from speculative operations can be ignored with proper 
hardware support/9,14) However, some operations cannot be executed 
speculatively without disrupting program semantics. Within this discussion, 
operations which write to a location in memory are nonspeculative. Opera- 
tions which write to a register which is live out at a previous exit branch 
are also considered nonspeculative. Other operations can be executed 
speculatively. In Fig. 3a, "live-out anti" edge from a branch to a side-effect- 
ing operation ensures that the live-outs and memory are not overwritten 
before the branch takes. 

Superblock scheduling avoids compensation code generation in order 
to simplit}r compiler engineering. This paper also assumes that compensa- 
tion code is kept local to the current scheduling unit. If an operation 
calculates a value that is live-out at a branch, then it is not allowed to 

~ "  ~ ~ - ~ l i v e - o u t  ~ 

data anti . 
anti ~ - - , .~ 

~ (cond ..... .  ite I Lside-effect op ] 
inter- data ~ ~ 

branch, f l ow l ive -ou t "  ~ 

~ f l o w  

(a) 

edges g 
out of branch ~o ~ "o 

data anti X 
inter-branch X 
live-out anti X 

edges ~ 
into branch ~ -o 

" o  

I data f l ow  IxlXl 
i.ter-branch IX l  I 
live-out flow I X l X l  

(b) 

Fig. 3. Branch dependences. 
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move below the branch. In other words, all live-out values are calculated 
before exiting the region. Similarly, stores are not allowed to move below 
a branch. The "live-out flow" edge from a side-effecting operation to 
branch ensures that these conditions are satisfied. 

Lastly, the "inter-branch" edge from branch to branch ensures correct 
branch order. Branch conditions in conventional superblock code don' t  
take the effect of previous branches into account. Consider, for example, 
the second branch in Fig. 2. It should branch to E2 only if the first branch 
falls through and its compare value (xl  = y l  ) is true. The second branch's 
compare value alone is not sufficient to decide whether the second branch 
takes. Assume that the computation of the compare value (xl  = y l )  is 
speculatively moved above the first branch. Also, assume that compare 
values for both the first and the second exit branch are true. The program 
should branch to E1 and not to E2 even though the compare value for the 
second branch is true. If we naively interchange branches, an incorrect 
program results. Branches can be re-ordered using the approach described 
in Ref. 15. However, the approach requires compensation code and may 
not help reduce the critical path. Section 9 discusses this further. 

In Fig. 3b, two tables are provided which describe the necessary edges 
both out of and into each branch within a superblock. The rows of each 
table are labeled within the left hand column and indicate the type of edge 
under consideration. The columns of each table indicate the scheduling 
model under consideration with the "no FRP"  scheduling model sum- 
marizing branch dependences for conventional superblock code. The 
column marked "FRP"  will be discussed in Section 3.2. Each cell within the 
table is either marked with an X indicating that the dependence must be 
considered to generate correct code or the cell is blank indicating that the 
dependence can be ignored. 

The relevant parts of the dependence graph for the superblock example 
are shown in Fig. 4. To simplify the presentation, we focus on store opera- 
tions in each basic block. The dependence graph shows that branches are 
ordered and stores are trapped between branches when the no F RP  or con- 
ventional scheduling model is employed. 

3.2. F u l l y - R e s o l v e d  Pred ica tes  

Given a single entry acyclic region within a control flow graph, a fully- 
resolved predicate (FRP)  2 can be defined for every basic block within the 
region and for every control flow edge within or exiting the region. The 
FRP for any block (edge) is true only if the program's control flow path 

2 Fully-resolved predicates were called fully-qualified predicates in Ref. 4. 
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Fig. 4. Dependence graph for superb|ock. 

on this entry to the region traverses that block (edge); otherwise, the FRP 
for that block (edge) is false. The use of an FRP allows an action to be 
correctly guarded using predicates and without relying on control flow. 
Because FRPs can guard operations without relying on control flow, they 
can be used to liberalize the rules of code motion. Block FRPs are used to 
predicate operations which can move upward across one or more previous 
branches. Speculatively executed operations are guarded by predicates 
other than their block FRPs (e.g., unconditionally executed when guarded 
using predicate true). On the other hand, nonspeculative operations such 
as stores and live-out overwrites are guarded using their block's FRP. Edge 
FRPs are used to predicate branches which are always nonspeculative and 
also can move upward across previous branches. 

For superblocks, FRPs are defined as follows: The FRP for the entry 
block is defined to be true. The FRP for any current block (except the 
entry) is the conjunction of the FRP for the preceding block and the fall- 
through condition for the branch which reaches the current block. The 
FRP for each exit edge is the conjunction of the FRP for the block in 
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which the branch resides and the branch condition under which the branch 
is taken. Note that the FRP for each block takes into account the entire 
sequence of branch conditions needed to reach that block from region entry. 

In Fig. 5, an FRP is computed for every basic block and for every exit 
branch. FRPs for basic blocks are labeled f0 ,  f l ,  f2 ,  f3 ,  and exit FRPs 
are labeled el, e2, e3. Each block computes FRPs for its on-trace successor 
block and its exit branch using a single unconditional compare operation; 
for example, the compare in block ! calculates two results as follows: 

f 2  = (xl  = y l )  A f l  and e2 = (!(xl  = y l ) )  A f  

Note that the FRP for the fall-through exit (J3) is not used because the 
superblock has no code after the last branch. 

When FRPs are used within superblocks, branch dependences as 
presented in Fig. 3 can be partially relaxed. In Fig. 3b, the column marked 
"FRP"  defines branch dependences for code using fully-resolved predicates. 
Again the presence of an X indicates that the dependence must be honored. 
Note that anti-dependence edges out of a branch as well as inter branch 
dependence edges between branches can now be ignored. 

The dependence graph for the superblock code with FRPs is shown in 
Fig. 6. Each two target compare operation is shown as a pair of and gates 
which use the compare value in both true (for exit FRP),  and complement 
(for fall-through FRP)  forms. Again, for Fig. 6, speculative execution is not 
considered as indicated by showing only stores within the basic blocks. 
Data flow edges and live-out flow edges to a branch are enforced just as 
when predicates were not fully-resolved. 

The use of FRPs eliminates data anti-dependence edges and live-out 
anti-dependence edges, because when a branch takes, subsequent FRP 

f0 =true; /* FRP for block 0 is true */ 
<block 0 body> if f0; 
fl,el =CMPP.UC.UN(x0=y0) if f0; 
branch E1 if el; 
<block 1 body> if fl; 
f2,e2 =CMPP.UC.UN(x 1 =y 1) if fl ; 
branch E2 if e2; 
<block 2 body> if f2; 
f3,e3 =CMPP.UC.UN(x2=y2) if f2; 

branch E3 if e3; 

E4: /* fall-through code*/ 

Fig. 5. Superblock code with FRPs. 
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Fig. 6. Dependence graph for superblock with FRPs. 

guarded anti-dependent operations do not execute even when moved above 
the branch. Thus, stores and assignments to live-outs are allowed to move 
above branches upon which they were anti-dependent in conventional 
code. Similarly, inter-branch dependence edges are not needed. On each 
entry into a superblock, only a single exit branch is taken. The use of FRPs 
as branch conditions ensures that branches are mutually exclusive. After, 
inter-branch edges are eliminated, branches can move across other branches 
without compensation code. Consider, for example, the exit to label E3. If 
the FRP for the branch to E3 is true, code at E3 may begin execution 
irrespective of previous branches. Exit branches guarded by FRPs may be 
scheduled simultaneously on PlayDoh because only one will take. 

3.3. Fully Parallel Computation of FRPs 

The use of FRPs allows the parallel execution of branches, but the com- 
putation of the FRPs themselves remains sequential. The FRP for each basic 
block is one AND operation removed from the previous FRP in the 
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sequence (see Fig. 6). The FRP  computation can be performed in parallel by 
expressing an FRP as a multi-input AND of constituent branch conditions. 

Figure 7 shows the code for computing all FRPs in parallel. FRPs 
corresponding to all interior basic blocks and exits are computed 
separately using a single wide AND macro operation. We call this the fully 
parallel form of the code. Each compare value (e.g., xi = yi in Fig. 5) is now 
abbreviated as ci to simplify the presentation. The dependence graph for 
FRP computation in superblocks with full CPR is shown in Fig. 8. 

The implementation of the wide AND operation varies from one pro- 
cessor architecture to another. In conventional architectures, a height- 
reduced tree of two input AND operations may be used. In PlayDoh, 
wired-and compares are used to further reduce the height of an F RP  com- 
putation. Each AND macro operation is expanded into an initialization 
operation and subsequent wired-and compare operations as described earlier. 
Note that two-target compares allow block and exit predicates to be com- 
puted together, thus reducing the number of compares. For  example, f 2  
and e2 can be computed together using two target compares. 

The fully parallel form computes all FRPs by applying CPR separately 
to all paths using redundant computation. This requires O(n 2) operations 
and is prohibitively expensive for processors with limited amounts of ILP. 

3.4. B locked  C o n t r o l  S u b s t i t u t i o n  to  C o m p u t e  FRPs 

This paper uses an approach, called blocked control substitution, which 
reduces the amount  of redundant computation. Blocked control substitution 
accelerates some on-trace FRPs while intervening FRPs are computed 
sequentially. The technique is an adaptation of the blocked back-substitution 
technique used for height-reduction of control recurrences in while loops. 14) 

f0=true; 
<block 0 body> if f0; 
fl=!c0; 
e 1 =cO; 
branch E1 if el; 
<block 1 body> if fl ; 
f2=AND(!c0,!c 1); 
e2=AND(!c0,cl); 
branch E2 if e2; 
<block 2 body> if f2; 
c3=AND(!c0,tcl,c2); 
branch E3 if e3; 

Fig. 7. Code for FRPs with full CPR. 
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Blocked control substitution is shown in Fig. 9. After formation of a 
previous block, a heuristic is used to form a subsequent block by selecting 
a lookahead distance k. An expedited FRP, fi+k, is evaluated directly from 
the previous expedited FRP, f,, in a single wide AND operation. Inter- 
mediate FRPs are evaluated sequentially. The wide AND operation can be 
implemented in a number of ways; however, its implementation should 
minimize the path length from f~ to f~+ k. It can be implemented using two 
input AND operations by associating the tree of operations so that a single 
AND separates ~+k from f,. On PlayDoh, wired-and compares readily 
accommodate the late arrival of branch condition values and simplify inter- 
action between code generation and scheduling. PlayDoh code to compute 
FRPs for blocked control substitution is shown in the right hand side of 
Fig. 9. 

Blocked control substitution uses control CPR to expose parallelism 
and allows the degree of parallelism to be adjusted using the lookahead 
distance. When program traces are predictable, longer lookahead can be 
used to increase the parallelism. Blocked control substitution expedites an 
entire sequence of FRPs when using multiple stages of blocking. While 
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/* FRP computation for block n-1 */ 

/* FRP computation for block n 
/* sequential FRPs for block n 
fi+l ,el+ 1 =CMPP.UC.UN(ci); 
fi+2,ei+2=CMPP.UC-UN(ci+I); 

ei+k=CMPP.UN(ci+k- 1); 

*/ 
*/ 

/* lookahead FRP for block n */ 
/* uses "wired-and style" multiple assignment */ 
/* fi+k = AND(fi, !ci, !Ci+l . . . . .  !Ci+k-1) */ 

fi+k=fi; /* initialize result */ 

fi+k=CMPP.AC(ci); /* AND minterms */ 
fi+k=CMPP-AC(ci+ 1 ); 

fi+k=CMPP.AC(ci+k - 1); 

'* FRP computation for block n + l  */ 
. . .  

Fig. 9. Blocked control  substi tution. 

nonlookahead FRPs are computed sequentially within each block, they 
benefit from CPR across previous blocks. 

Sequential FRP evaluation uses n operations to traverse n branches. 
Fully parallel evaluation requires O(n 2) operations. Blocked control sub- 
stitution requires 2n operations or a factor of two in operation count over 
sequential evaluation. To expedite a superblock of length n, n 1 opera- 
tions compute the sequential FRPs, and n + 1 operations compute the 
lookahead FRP. When code is carefully organized as shown in Section 3.6, 
only the lookahead FRP is computed on-trace and FRP evaluation is 
irredundant. 

3.5. On-trace CPR Using Fall-Through Branch 

Consider the superblock in Fig. 5. Each execution of the superblock 
either takes an exit branch or falls through to the subsequent code (i.e., the 
code at E4). Up to this point, the treatment of fall-through path has dif- 
fered from that of the other exits. The code at label E4 begins executing 
only after all the exit branches fall-through. In Fig. 6, this is shown by 
branch dependence edges from all exit branches to the code at label E4. 
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To examine the fall-through path in more detail, consider the code 
shown in Fig. 10a. The code is a version of the superblock in Fig. 5 in 
which block bodies have been replaced by assignments to 11, 12, 13, and 14. 
Assume that 11, 12, 13, and 14 are live-out on superblock exits El ,  E2, E3, 
and E4, respectively. Much of the live-out computation can be done 
speculatively, and it may take a varying amount  of time to compute each 
live-out. If predicates are fully-resolved, each branch can be scheduled as 
early as corresponding live-outs are available. 

The fall-through path presents a special problem. Even when the 
FRP  for the fall-through path (i.e., f 3 )  can be quickly calculated, the fall 
through successor is not reached until all preceding exit branches fail. This 
problem arises due to the fact that in a conventional superblock with n 
exits (including the primary fall-through exit) there are only n -  1 exit 
branches. In this situation, it can only be determined that the program 
reaches its final fall-through target after all n 1 exit branches fail to take. 
Thus, the fall through path accommodates live-out computations for all 
preceding exits. This interferes with on-trace CPR and requires that the 
fall-through schedule provide time to compute all live-outs. 

The introduction of a fully-resolved branch, called a fall-through 
branch, allows all exits to be treated identically. Figure 10b shows the code 
after the introduction of a fall-through branch. The FRP for the fall- 
through branch ( f3)  is a conjunction of conditions which ensure that all 
exit branches fall-through (i.e., the superblock exits at the bottom). The 
evaluation of f 3  can be expedited just as other FRPs were evaluated in 
Fig. 8. Now, if the live-out for the fall-through path can be calculated 
quickly, the fall-through branch is free to move above branches and live- 
out computations for preceding exits. 

11~... 
fl,eI=CMPP.UC.UN(c0) 
branch E1 if el; 
12 .. . .  
f2,e2=CMPP.UC.UN(c 1) 
branch E2 if e2; 
13 . . . .  
14 . . . .  
f3,e3=CMPP.UC.UN(c2) 
branch E3 if e3; 

E4:/* fall-through path*/ 

fl,e 1 =CMPP.UC.UN(c0) 
branch E 1 if e 1 ; 
12 . . . .  
f2,e2=CMPP.UC.UN(c 1) 
branch E2 if e2; 
13 . . . .  
14 . . . .  
f3,e3=CMPP.UC.UN(c2) 
branch E3 if e3; 
branch E4 if f3; 
E4:/* fall-through path*/ 

Fig. 10. 

(a) (b) 

Introducing a fall-through branch. (a) Code without fail-through branch; 
(b) code with fall-through branch. 
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3.6 .  P r e d i c a t e  S p l i t t i n g  

Using blocked-control substitution to expedite a lookahead predicate 
may not remove sequential FRP evaluation from the critical path. Consider 
the program graph of Fig. 11 a. It shows the dependence graph for a super- 
block after blocked control substitution has been applied and the fall- 
through branch has been inserted. The FRP for the fall-through branch has 
been expedited while the computation of other FRPs remains sequential. 
Assume that a store operation at exit E4 is guarded using the fall-through 
branch and aliases with previous stores guarded under FRPs f0,  f l ,  and 
j2. The store at E4 is trapped below previous stores which have sequen- 
tially computed FRP operands. The benefits of blocked control substitu- 
tion have been thwarted and sequential FRP evaluation remains on-trace. 

Predicate splitting eliminates the need for sequentially computed FRPs 
on the on-trace control flow path. Predicate splitting also decreases the 
number of required on-trace FRP evaluations. The cost to compute on- 
trace FRPs is reduced by evaluating only the lookahead FRP but not 
intervening sequential FRPs. 

Predicate splitting has been used for the acceleration of control depen- 
dences in loops with conditional exits/4} This paper adapts the technique 
to scalar code. Predicate splitting can be compared to the following control 
flow transformation. A heuristic selects lookahead branches within a super- 
block. After splitting, each nonspeculative operation will be positioned 
either before all branches or immediately after a lookahead branch. Opera- 
tions which are not correctly positioned must be moved just below the next 
lookahead branch. As operations move down, they are copied oil-trace at 
each branch below which they move. 

Predicate splitting replaces a computation guarded by predicate p with 
multiple copies of the computation guarded by predicates ql ..... qn 

provided the following conditions are satisfied: 

1. q l  v . . .  v q n = p .  

2. No more than one of ql,..., qn evaluates to true. 

After splitting, the effect of the multiple copies of the computation under 
predicates ql ..... qn is the same as the effect of the original computation 
under p. This predicate transformation simulates the motion of a computa- 
tion below a branch. The second condition can be relaxed for certain types 
of computations, e.g., computations that don't overwrite their input 
operands. 

Figure l lb shows the effect of predicate splitting. As a result of the 
downward motion simulated by predicate splitting, each operation is split 
into two components: an on-trace operation guarded with the lookahead 

828/25/3 2 
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I E4  
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(a) 

E1 

E2 

E3 

Fig. 11. Superblock graph with split predicates. (a) Code after blocked control sub- 
stitution, (b) code with split predicates. 

FRP, and an oil-trace operation. The benefits of predicate splitting can be 
seen by examining the code required within the on-trace code component 
of Fig. l lb .  The lookahead FRP provides an expedited guard for store 
operations as well as a branch condition for the fall-through branch. Only 
the fall-through branch and the corresponding lookahead FRPs must be 
computed on-trace, remaining FRPs  and exit branches can be computed 
off-trace. 

This paper assumes that only one of the components of a split opera- 
tion may execute. Thus, off-trace operations are carefully guarded to avoid 
redundant execution. Two ways to accomplish this are simultaneously 
illustrated in Fig. 1 lb. 

In the first approach, the complement of the lookahead FRP is used 
as the initial predicate for the chain of off-trace FRP conjunctions. Note 
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Fig. l l  (Continued) 

165 

that the complement o f f 3  is used as the predicate input ("pin") to the 
sequence of compare operations which compute off-trace FRPs. Thus, 
FRPs for off-trace operations are false when the lookahead predicate is 
true, and split operations can be moved back on-.trace without redundant 
execution. This approach will be used to demonstrate the motion of oft'- 
trace code back on trace during scheduling as presented in Section 4. 

In the second approach, off-trace operations are dependent on the fall- 
through branch to prevent them from moving back on-trace. This is 
illustrated with the branch dependence from the fall-through branch to the 
off-trace code. In this case, "pin" can be set to true because the branch 
dependence precludes redundant execution. 

Predicate splitting can only be applied to stores which are separable (4~ 
with respect to a lookahead branch (or the corresponding lookahead 
FRP). Consider a store within a superblock. The store is separable with 
respect to some subsequent branch if the store can be moved below that 
branch without violating a dependence to a load which is used to evaluate 
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the branch condition for any branch traversed by the store's motion. After 
predicate splitting, stores use a lookahead FRP. No load operation 
depending on these stores can be used to compute a condition needed for 
lookahead F R P  evaluation; otherwise, there is a cycle in the computation 
which cannot be executed. 

Blocked control substitution (see Section 3.4) requires a heuristic to 
select lookahead FRPs. However, lookahead FR P  selection interacts with 
predicate splitting. The selection of lookahead FRPs should not require 
that predicates are split for operations which are non-separable with 
respect to the lookahead predicate. This leads to the following condition 
for selecting lookahead FRPs: Given a current lookahead FRP, select the 
next lookahead FRP so that predicate splitting can be applied to inter- 
vening stores. To illustrate that this is always possible, consider the limiting 
case where every FRP is chosen as a lookahead FRP. In this case, 
lookahead proceeds across only a single branch. Each lookahead FRP is 
calculated as the conjunction of a previous lookahead FRP and its fall- 
through condition. Since all FRPs are computed, every store is properly 
guarded by a lookahead FRP and does not need to be split. The code 
degenerates to un-split and irredundant code. 

4. S C H E D U L I N G  FOR S U P E R B L O C K  CPR 

This section describes a scheduling approach adapted to code 
produced by CPR. It is similar to superblock scheduling (7) and uses well 
understood list scheduling techniques. 

4.1. Basic Schedul ing Approach 

The approach takes advantage of the scheduling freedom offered by the 
use of FRPs and the fall-through branch. The basic idea is this. Assuming 
that the fall-through branch is the most probable, its placement in the 
schedule divides the schedule into two parts. The code scheduled above the 
fall-through branch is part of the on-trace path. The code scheduled below 
the fall-through branch is not executed on-trace and is considered to be the 
off-trace code component. 

The scheduling approach is illustrated in Fig. 12. Part  (a) shows a 
superblock selected from the control flow graph for a program. The fall- 
through exit E4 is assumed to be the most probable. Part  (b) shows a 
VLIW schedule with columns representing three function units and rows 
representing time proceeding top to bottom. The fall-through branch for 
E4 has been introduced and is scheduled like any other branch. 



T e c h n i q u e s  f o r  C r i t i c a l  P a t h  R e d u c t i o n  o f  S c a l a r  P r o g r a m s  167 

[ 

r'~E3 E4 
(a) 

exit 
branch 

fall-through I exit 
branch branch [ 

off-trace 
a m |  i 

component exit 
~=~1 =~=X~=~__ X branch 

~ ' ~  code at target of , 
\ ~ \  fal l- through branch ', 
~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  

(b) 

- - I ~  E1 

- - I ~  E2 

- - I~  E3 

on-trace code 

exit 
branch 

fail-through exit E1 
branch branch E2 

off-trace component  
code at target of 

\ fal l- through branch \ 

branch 

(c) 

E3 

Fig. 12. Scheduling model. (a) Flow graph, (b) conceptual schedule, (c) linal code. 

The scheduling model is compatible with list scheduling. ~5/ The 
heuristic described here applies list scheduling separately to each exit and 
all operations that must precede the exit. Exits, including the fall-through 
branch, are scheduled in a priority order based on the exit probabilities. 
First, the fall-through branch and the operations needed on trace are 
scheduled. Then, the scheduler places the next probable exit and the opera- 
tions that must precede this exit. At this time, the scheduler fills any unused 
spaces in the schedule for the on-trace code with the as yet unscheduled 
operations to support the next probable exit. This process is repeated until 
all exits and associated code have been scheduled. Note that the example 
schedule in Fig. 12b shows that the order of the branches has been inter- 
changed. Moreover, two branches have been scheduled concurrently. 

The code positioned below the branch to E4 but above its target, 
shown between the thick lines, is no t  part of the on-trace path. This is the 
off-trace component  of the schedule. After scheduling, the schedule is 
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reorganized so that the predominant path does not branch. The FRP for 
the fall-through branch is negated and made to branch to the beginning of 
the off-trace component  as shown in Fig. 12c. 

4.2. Use of Multiple Fall-Through Branches 

CPR requires at least one fall-through branch for the last lookahead 
FRP  (corresponding to the on-trace exit). The use of a single fall-through 
branch, which gets converted to an off-trace exit after scheduling, requires 
that branch conditions for all intervening branches must be available to 
resolve the fall-through branch. This may unnecessarily delay exits from the 
superblock when a single fall-through branch is used in conjunction with 
a long sequence of exit branches. 

The scheduling approach described earlier can accommodate multiple 
fall-through branches. Blocked control substitution is used to expedite 
multiple lookahead FRPs for the on-trace path. The complement of any 
lookahead FRP can serve as the predicate for a fall-through branch. We 
insert one fall-through branch for each lookahead FRP. 

Figure 13 illustrates the use of multiple fall-through branches. The 
scheduling region in Fig. 13a contains 4 oil-trace exits and two fall-through 
branches. Two of the off-trace exits precede the first falls through branch, 
and the other two are between the first and the second fall-through branch. 

Figure 13b uses shading to show the allowed placement of the code 
needed for each exit. All code required for the two fall-through branches 
must remain on-trace (white region). Code for the first two off-trace exits 
can remain on-trace or migrate into a compensation block at the first fall- 
through branch. Similarly, the code for the off-trace exits E3 and E4 can 

E2 

FT1 ~ E3 

v E4 FT2 

(a) 

FT1 

FT2 

I ~ E I  

~ ~  E4 

E3 

(b) 

Fig. 13. Use of multiple fall-through branches. (a) Two fall-through branches, (b) example 
schedule. 
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remain on-trace or migrate into the compensation block at the second fall- 
through branch. In this example, on-trace code including both fall-through 
branches has been scheduled first. The code for exit E1 was placed as the 
scheduler filled in empty spaces after completing the on-trace schedule. All 
code for E1 landed on trace. Then, code for exits E2, E3, and E4 were 
scheduled and migrated partially off-trace. In some cases, code for all exits 
may fit in the on-trace schedule, and compensation blocks are empty and 
never visited. 

The scheduling approach described in this section offers a number of 
advantages. First, by scheduling exits in priority order, the on-trace path is 
scheduled without regard for off-trace requirements. This allows a minimal 
length on-trace schedule. Operations scheduled to support lower priority 
exits naturally fill in unused space within the prior schedule of operations 
supporting higher priority exits. Second, all compensation code is kept 
local to the region of scheduling. An operation naturally moves off-trace 
when a fall-through branch is scheduled above it. However, it need not 
move to an adjacent scheduling region. It is naturally scheduled in an off- 
trace component of the current scheduling region. Third, the scheduling 
approach requires only simple interaction between code generation, 
optimization and scheduling. In the most general case, every code motion 
step during scheduling can be followed by an optimization step. This leads 
to very complex scheduler/optimizer interaction. By selecting lookahead 
FRPs and splitting predicates, CPR freezes key decisions about code 
motion and allows optimization to take advantage of these decisions. 
Scheduling proceeds without additional optimization. 

5. O T H E R  CPR T R A N S F O R M A T I O N S  

While control CPR has been discussed earlier, this section identifies a 
number of other techniques which must be applied to achieve the best 
possible performance. 

5.1. P red ica te  S p e c u l a t i o n  

Because of the small size of basic blocks, speculation is essential for 
exploiting ILP. Traditionally, it has been applied in the context of branch- 
ing code. In the case of predicated code, speculation is performed by sub- 
stituting a speculative guard predicate for the original guard predicate for 
an operation. A speculative guard is a predicate for a basic block which 
dominates the original block. In a superblock, a speculative guard 
corresponds to the predicate for a block which precedes the original block. 



170 Schlansker and Kathail 

Typically, the speculative guard is available earlier than the original guard, 
and the transformation provides CPR. We use predicate speculation as 
described in Ref. 12, which closely mirrors speculative code motion within 
control flow graphs. 

5.2.  D a t a  C P R  

ILP compilers have used data CPR to reduce the length of critical 
paths. (2'6'7) For  example, consider the following sequence in which 
cl, c2, c3 are constants: 

x=w+cl;  y=x+c2;z= y+c3 

It can be rewritten as: 

x =  w +  cl; y = w +  (cl + c2); z =  w +  (cl + c 2 +  c3) 

The same number of operations execute after constants are folded, but now 
they can be executed in parallel. These techniques can be applied prior to 
control CPR and subsequent optimizations. 

Blocked back-substitution was used to accelerate data recurrences in 
loops. (3~ This paper introduces a similar technique for scalar code, called 
blocked data substitution. It can be applied when a chain of dependent 
associative operations computes a sequence of terms. Consider, for exam- 
ple, the following code: 

s l = s 0 + t 0 ;  s2=sl+tl; s3=s2+t2; s4=s3+t3 

s 5 = s 4 + t 4 ;  s 6 = s 5 + t 5 ,  s 7 = s 6 + t 6 ;  s 8 = s 7 + t 7  

Initially, the code executes sequentially. We could perform full data CPR 
for each term in the sequence using an independent height-reduced expres- 
sion for each term. This, however, requires O(n 2) operations. 

In blocked data substitution, a heuristic selects lookahead terms in the 
sequence. Each lookahead term is computed from a previous lookahead 
term using CPR. Non-lookahead terms are computed sequentially. Assume 
that s4 and s8 are selected as lookahead terms. The reorganized code con- 
sists of two lookahead expressions: 

s4=sO+((tO+tl)+(t2+t3)) and sS=s4+((t4+t5)+(t6+t7)) 

In addition, there are six conventional expressions: 

sl=sO+tO; s2 - s l+ t l ;  s3=s2+t2 

s 5 = s 4 + t 4 ;  s 6 = s 5 + t 5 ;  s 7 = s 6 + t 6  
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Lookahead expressions are associated assuming that the lookahead input 
is critically late. Assume that L is the latency of an add operation. The criti- 
cal path from sO to s8 is reduced from 8L to 2L, and the worst case path 
length from any input to s8 is reduced from 8L to 4L. 

Blocked data substitution provides substantial CPR with a maximum 
two fold increase in operation count. In some cases, the lookahead terms 
in the sequence (e.g., s4, s8) are the only terms that are live-out on the on- 
trace path. In this case, the computation of nonlookahead terms may be 
moved off-trace leaving no redundant code on trace. 

5.3. O n - T r a c e / O f f - T r a c e  O p t i m i z a t i o n  

On-trace/off-trace optimization is an optimization framework which 
minimizes off-trace requirements for on-trace code. It can be viewed as an 
extension of blocked data and control substitution. Conceptually, on-trace/ 
off-trace optimization replicates original code with two copies: on-trace 
and off-trace counterparts. Optimization is performed in multiple passes. 
First, CPR and optimization is applied to the on-trace code ignoring the 
requirements of the off-trace code. Then, the off-trace code is optimized 
with knowledge of the resultant on-trace code. Expressions computed on- 
trace need not be recomputed off-trace. 

On-trace/off-trace optimization provides a viewpoint which systemati- 
cally provides the lowest latency and fewest operations on trace. A number 
of on-trace/off-trace optimizations are used in the example discussed in 
Section 6. When conventional optimizations (such as copy elimination, 
dead code elimination, constant folding, load/store elimination) are applied 
first on-trace and then off-trace, improved on-trace code quality results. 

Store elimination provides an important  example of on-trace/off-trace 
optimization. Using predicate splitting, on-trace stores are moved to a 
lookahead FRP where they execute under a common predicate. If they 
overwrite a common location, redundant stores are removed, and only a 
final store remains on trace. The Multiflow compiler achieved a similar 
effect for live-out assignments. It moved them downward and into compen- 
sation blocks leaving a single assignment on trace. (6t 

6. E X A M P L E  OF S U P E R B L O C K  CPR 

This section provides an example to demonstrate CPR concepts intro- 
duced in this paper. The example C + + source program is shown in 
Fig. 14. The main program shown in Part  (a) invokes sum2 twice to add 
the top three stack elements. The sum2 function shown in Part  (b) pops the 
top two stack elements, adds them, and pushes the result back on the 
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void main0{ 
stack q; 

/* initialize stack */ 

fiadd top 3 elem.*/ 
q.sum20; 
q.sum20; 

, , -  } 

void 
stack::sum20{ 

x = pop(); 
y = pop(); 
push(x+y); 
retum; } 

int stack::pop0 { 
int r; 
if(p<=ep) goto empty; 
r--*p; 
p-=l; 
retum r; 

empty: 
�9 - -  } 

stack::push(int a) { 
if(p>= fp) goto full; 
p+=l; 
*p=a; 
return; 

full: 
�9 . .  } 

/*ep & fp are empty and 
full pointer limits*/ 

p0=load(p); 
c0=cmpp.un(p0<=ep); 
branch empty if cO; 
x0=load(p0); 
pl=sub(p0,1); /*O p0=sub(p0,1)*/ 
store(p, p 1); 
c 1 =cmpp.un(p 1 <=ep); 
branch empty if c 1; 
y0=load(p 1); 
p2=sub(p0,2); /*O p0=sub(p0,1)*/ 
store(p, p2); 
v0=add(x0,y0); 
c2=cmpp.un(p2>=fp); 
branch full if c2; 
p3=p I; /*O p0=add(p0,1) */ 
store(p, p3); 
store(p3, v0); 

(a) (b) (c) (d) 

Fig. 14. Stack example. (a) Main program, (b) sum2, (c) pop and push, (d) inlined sum2. 

stack. Part (c) shows the relevant code for push and pop subroutines. The 
variables ep and J)) are the low- and high-bounds for the stack. Assume 
that any branch to "full" or "empty" within push or pop is rare. 

The scope over which analysis, optimization and scheduling are per- 
formed must be large enough to reveal significant ILP. Inlining is used to 
enlarge the scope. Figure 14d shows the code for sum2 after inlining push 
and pop and applying certain optimizations. For example, loads from p for 
the second call to pop and the call to push have been eliminated. Also, the 
sequential chain of assignments to p has been parallelized by renaming and 
substitution. Original code is sometimes shown in comments /*O.. .*/  to 
help explain the inlined code. Extra copies have been left in the code to 
simplify presentation, assume that these will be eliminated. 

Figure 15 shows the code after applying control CPR and on-trace 
optimizations. Stores and operations that write live-outs are nonspeculative 
and guarded using FRPs. Other operations can be executed speculatively. 
For example, loads and other speculative operations frequently execute 
with true (omitted) predicate. 

The sequence of optimization steps and the actual placement of opera- 
tions in the final schedule are not shown. To simplify presentation, the code 
is split into two parts, one for each call to sum2. Each part shows the on- 
trace code as well as the related compensation code generated by the 
scheduler. We assume that the heuristic for blocked control substitution 
and fall-through branch insertion picks FRPs that correspond to complet- 
ing the first and second invocations of sum2. 

Consider the optimized on-trace code for the first call to sum2. The 
lookahead FRP, f3 ,  is expedited, and its complement is used as the 
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off-trace branch condition. Predicate splitting followed by redundant store 
elimination results in a single on-trace store to stack pointer p; the other 
two stores move off-trace. Careful optimization of the computation o f f 3  
eliminates the p0 < =  ep test, since it is subsumed by the p l  < =  ep test. 
Also, note that three branches in the original code have been replaced by 
a single branch to off-trace code. 

The code for the second call to sum2 is similar to that for the first call; 
see Fig. 15b. We have renamed operands with trailing % to distinguish 
them from the corresponding ones in the first invocation. All optimizations 
applied to the code for first call also apply to the code for the second call. 
In addition, there are new optimization opportunities. For example, the 
pointer p0% is equal to the previously calculated p l  and the value x0%, 
which was read from memory, is the same as the value v0 calculated in the 
first call. 

CPR has exposed substantial parallelism not available in the original 
code. The second invocation of sum2 overlaps almost entirely with the first 

f0=-true; /* entry predicate fur first sum2 is true*/ 
p0=load(p); 
pl=sub(pO, 1); 
p2=sub(p0, 2); 
p3 = pl; 
x0=load(pO); 
y0=load(p 1 ); 
v0=add(xO, yO); 

/* compute lookahead FRP */ 
13=f0; 

/*O f3=cmpp.an(pO<= ep); *! 
f3=cmpp.an(p 1 <=ep); 
f3=cmpp.an(p2>= fp); 

/* 13 guarded code */ 
store(p2,v0) if 13; 
store(p,p3) if f3; 
branch OT1 if !13; 

/*continue on-trace with second sum2 invocation*/ 

OT 1 : /* first compensation area */ 
otp=!f3; /* complement lookahead pred */ 
fl,el =cmpp.uc.un(p0<=ep) if otp; 
f2,e2 =cmpp.uc.un(p l<=ep) if fl ; 
store(p,pl) i f f l ;  
store(p,p2) if 12; 
branch empty if e 1; 
branch empty if e2; 
branch full if 12; 

f0% = 13;/* entry predicate for second sum2 is 
13"/ 
p0% = pl; /*O pO%=load(p); */ 
pl% = p2; /*O pl%=sub(p0%,l); */ 
p2% = sub(p0, 3); /*O p2%=sub(p0%,2); */ 
p3% = p2; /*O p3%=pI% */ 
x0% = v0; /*O x0%=load(p0%); */ 
y0%=load(p 1%); 
v0%=add(x0%,yO%); 

/* compute lookahead FRP */ 
f3%=F0%; 

/*O 13%=cmpp.an(p0<= ep); */ 
f3%=cmpp.an(p 1%<=ep); 
f3%=cmpp.an(p2%>= fp); 

/* 13% guarded code */ 
store(p2%,v0%) if 13%; 
store(p,p3%) if 13%; 
branch OT2 if !13%; 

/*continue on-trace with next superblock*/ 

OT2: /* second compensation area*/  
otp% = !13%; /*complement lookahead pred */ 
fl %,e 1% =cmpp.uc.un(p0%<= ep) if otp%; 
f2%,e2% =cmpp.uc.un(p 1 <= ep) if fl %; 
store(p,p 1%) if fl %; 
store(p,p2%) if 12%; 
branch empty if e 1%; 
branch empty if e2%; 
branch full if 12%; 

(a) (b) 

Fig. 15. CPR Optimized stack example. (a) First sum2 invocation, (b) second sum2 invocat ion .  
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invocation in spite of the presence of three branches in the original code. 
A single wired-and (also a single branch) separates the completion of the 
second invocation from the completion of the first. The use of wired-and is 
not necessary; properly associated two input AND operations give similar 
results. Additional control parallelism can be exposed using larger 
lookahead distance and fewer fall-through branches along the critical path. 

In this example, control and data CPR provide substantial benefit to 
on-trace code. Control CPR has reduced six on-trace branches to two. 
Much of the branch resolution and branch target formation is performed 
only off-trace as needed. ON-trace/off-trace optimization simplifies the 
evaluation of on-trace compare conditions needed for the on-trace FRP. 
Multiple stores to p are replaced with a single on-trace store. Data height 
through arithmetic sequences is reduced; for example, the final value of the 
pointer p is evaluated in a single subtract. 

7. C O N T R O L  CPR FOR G E N E R A L  S I N G L E  E N T R Y  A C Y C L I C  
R E G I O N S  

This section generalizes the CPR techniques to single entry regions 
with acyclic flow of control, called Single Entry Acyclic Regions or SEAR 
for short. The overall approach is as follows: compute FRPs for blocks and 
exits in a SEAR, use these FRPs to if-convert the SEAR so that the region 
is a block of predicated code with no internal control flow, and use blocked 
control substitution to expedite computation of certain FRPs. This section 
describes the computation of FRPs in a SEAR and extends blocked control 
substitution to SEARs. 

7.1. C o m p u t i n g  FRPs in a SEAR 

FRPs for a SEAR can be computed sequentially using its control flow 
graph. Program branches correspond to predicate ANDs and program 
merges correspond to predicate ORs. However, this does not take advan- 
tage of additional parallelism that can be exposed using the control 
dependence graph. The concept of control dependence was defined in 
Ref. 16. More recent work defines efficient algorithms for computing con- 
trol dependences/17) If-conversion of single entry and single exit regions 
using the control dependence graph is described in Ref. 18. If-conversion 
was extended to support hyperblock scheduling in Ref. 12; but the 
approach ignores exits and does not compute fully-resolved predicates. 

To illustrate the computation of FRPs for basic blocks and exits 
within a SEAR, consider the example in Fig. 16a. Nodes correspond to 
basic blocks. Nodes in the control flow graph are numbered 1 8 with entry 
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Fig. 16. Computing RRPs lor a SEAR. (a) Example SEAR control llow group, (b) example 
SEAR FRPs, (c) CPR of a complex SEAR. 

node numbered 1. We assume that an entry predicate is set to true on entry 
to the region. A pseudo node is introduced for each region exit; these are 
denoted by 9, 10, 11. Every branch has an uppercase letter corresponding 
to the branch condition which determines its direction of flow. By conven- 
tion, branches go left on true and right on false condition. 

The control dependence graph for a p rogram defines two key concepts 
required to efficiently compute  FRPs. First is the concept of control equiv- 
alence: two nodes x and y are control equivalent when a control flow path  
through the program visits x if and only if it also visits y. Second is the 
notion that a basic block in the control flow graph is control dependent on 
an edge in the control flow graph: a basic block x in the control flow graph 
is control dependent on the edge from basic block y to basic block z if x 
does not post-dominate y but x does post-dominate z. (~7) 

The code to compute predicates for the example SEAR is shown in 
Fig. 16b. Within each expression, a numeral  represents the FRP  corre- 
sponding to the identically numbered basic block. An upper  case character 
corresponds to a branch condition which may be complemented. The juxta- 
position of an FRP  and a branch condition denotes a Boolean conjunction. 
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Thus, 1A denotes the conjunction of the FRP for basic block one and the 
branch condition labeled A. The + operation denotes Boolean or. One or 
more expressions is provided to compute each FRP. The first expression 
(after the first = ), is calculated directly from control flow. For  example 
4 = 2 + 3 indicates that the OR of the FRPs for blocks 2 and 3 correctly 
computes the FRP for block 4. A second expression (after the second = ) 
is provided when FRP computation using control dependence differs from 
FRP computation using control flow. For  example 4 = 2 + 3 = 1 indicates 
that control dependence directly uses the FRP for block 1 as the F RP  for 
block 4. 

The expression for each FRP in the example is derived using the 
following procedure. To compute the FRP for a given node, a set of edges 
upon which the node is control dependent is identified. Each edge in the set 
provides one term in the FRP expression. An edge term is calculated using 
the FRP for the edge's origin node ANDed with the branch condition 
which traverses the edge. The FRP expression for a node is the OR of all 
terms for edges on which the node is control dependent. When nodes are 
control equivalent, multiple nodes have identical FRP expressions; for 
example, see nodes 4 and 1. 

7.2.  B l o c k e d  C o n t r o l  S u b s t i t u t i o n  for  a S E A R  

The procedure described in Section7.1 naturally parallelizes a 
sequence of if-then-else expressions but does not provide CPR across a 
sequence of exit branches. This is addressed using the following observa- 
tion: if all exit branches in a SEAR dominate the fall-through exit, CPR for 
the fall-through FRP can be performed exactly as for superblocks. Note 
that in Fig. 16a, the branch within node 4 dominates the fall-through 
branch while the branch within node 7 does not. 

Consider the abstraction of a SEAR shown in Fig. 16c. The SEAR is 
broken into subgraphs separated by branches which dominate the fall- 
through exit. These branches decompose the SEAR into a sequence of two 
subgraph types: single entry single exit (SESE) subgraphs (e.g., R1, R2, 
R4), and more general SEAR subgraphs (e. g., R3). Blocked control sub- 
stitution, as in the superblock case, can be used to expedite FRPs across 
sequences of exit dominating branches spanning SESE regions. But, 
lookahead cannot be used across SEAR subgraphs because they have exit 
branches which do not dominate the fall-through path. 

For  example, P2 can be expedited, by re-writing its expression in 
terms of P0 and the conditions for the first two exit dominating branches. 
Branches internal to the intervening SESE regions are ignored. Similarly, 
P5 can be expedited in terms of P3 and intervening branch conditions. The 
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exit predicate for SEAR R3 labeled P3 has already been computed in terms 
of P2 and branch conditions internal to R3. Since P3's computation 
depends on branches internal to R3, this approach does not expedite the 
computation of P3. 

8. A P P L I C A T I O N  TO A R C H I T E C T U R E S  WITH NO PREDICATES 

Although this paper uses predicated execution, control CPR also 
applies to conventional architectures without predicated execution. 
Figure 17 shows an approach which again uses a fall-through branch. In 
Fig. 17a, four nonfully-resolved branches are shown above a fully-resolved 
fall-through branch. All off-trace exits are tested first and, if the fall- 
through branch is reached, it always takes and follows the path to E5. In 
Fig. 17b, off-trace branches are moved below the fall-through branch 
leaving only the fall-through branch on-trace. Like predicate splitting, 
stores trapped between branches in Fig. 17a are replicated and the execu- 
tion of their on-trace components is guarded by the fall-through branch. 
Logical operations (ANDs) necessary for control CPR can execute using a 
conventional ALU. 
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Fig. 17. Branch motion across fall-through branch. (a) FRP for fall-through branch, (b) 
motion of other branches oft-trace. 
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9. RELATED WORK 

There is a substantial body of work on compiler techniques and 
architectural features to alleviate problems caused by program dependences. 
Compiler techniques have been developed to reduce critical paths through 
data dependences. Tree height-reduction has been used to parallelize 
networks of arithmetic operations. (19) Techniques such as renaming, sub- 
stitution, and expression simplification have all been used to break data 
dependence chains. (2' 6, 7) More recent work introduced blocked back sub- 
stitution for CPR of data recurrences in loops. (3t 

Control dependences (16) identify the relationship between a branch 
and the operations which depend upon its resolution. Control  dependences 
correctly identify minimal conditions under which an operation executes 
without speculation. Techniques have been developed to alleviate perfor- 
mance limitations due to control dependences on ILP processors. The use 
of speculative execution is one such technique.~4' ~5, 20 24) Speculative execu- 
tion identifies operations whose side effects can be reversed and moves 
them above branches upon which they depend. 

Branches also limit performance when processors have inadequate 
branch throughput or excessive branch latency. Compiler techniques have 
been developed which move branches across other branches. I ~5, 24) However, 
interchanging branches alone does not alter the number of on-trace branches 
as shown in Fig. 18. Performance limitations due to control dependences 
persist even after interchange. Each time branches are interchanged, code 
is reorganized requiring complex interaction between scheduling and code 
generation. 

~ E 1  

E3 E2 

; 

E3 E1 E2 E1 

Fig. 18. 

(a) (b) 
Interchanging branches. (a) Original branches, (b) interchanged 

branches. 
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Architectural features have been used to reduce the dependence height 
of consecutive branches. The ability to retire multiple dependent branches 
in a single cycle reduces the height of critical paths through control 
dependences/5'15"25~ The Multiflow Trace machine used a hardware 
priority encoder mechanism to enforce sequential dependence among con- 
currently issued branches. The simplest form of multi-way branches cannot 
guard operations trapped between branches, but more sophisticated branch 
architectures have been developed to guard intervening operations. (22, 24, 26) 

Prioritized multi-way branch alone may fail to eliminate bottlenecks 
due to control dependences for several reasons. It is unlikely that multi-way 
branch hardware is as fast as 2-way branch hardware. Many processor 
architectures require that all branch latencies be uniform. In this case, the 
2-way branch latency is matched to the multi-way branch latency: Thus, 
simple 2-way branches are penalized by the support for multi-way 
branches. 

Multi-way branch achieves minimum latency at the expense of branch 
scheduling freedom. Minimizing the critical path may force the traversal of 
multiple branches in a single cycle. Peak branch issue requirements may be 
difficult to satisfy in hardware, especially if branches can not be issued on 
all function units. 

Predicated execution(9 /3, 18,23,27~ provides another approach to 
parallelize programs limited by control dependences. For example, a 
sequence of multiple if-then-else expressions can be parallelized with if-con- 
version. Control CPR for loops with exits has been demonstrated in prior 
work, (4) and the generalization of these techniques to control CPR in scalar 
codes is addressed in this paper. 

10. CONCLUSIONS 

CPR is a collection of techniques which increase the amount of 
parallelism in scalar programs. As processors provide more instruction- 
level parallelism, CPR techniques will become increasingly important. 
Compile time transformations which better tolerate data and control 
dependences allow us to exploit hardware implementations with deeper 
pipelines, wider issue, and simpler support for branches. 

This paper describes transformations which reduce critical path 
lengths in scalar programs. Fully-resolved predicates are introduced to 
eliminate branch dependences. The introduction of FRPs assists in unifying 
CPR techniques for both control and data dependences. Critical paths 
which jointly traverse data and control dependences are height-reduced. 
The application of control CPR allows branches to move off-trace. 
Scheduling and optimization models suitable for use with CPR are also 

828/25/3-3 
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described. This paper illustrates the use of CPR in the context of both 
superblocks and more general single entry acyclic regions. Control CPR is 
illustrated for architectures with and without predicated execution. 

While the use of CPR transformations to enhance parallelism has been 
demonstrated, heuristics for the application of CPR are not yet well under- 
stood, and the benefits of CPR have yet to be quantified. The utility of 
CPR depends upon many factors including the nature of the application 
code and nature of the instruction set architecture. 
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