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Multithreaded architectures provide an opportunity for efficiently executing 
programs with irregular parallelism and/or irregular locality. This paper 
presents a strategy that makes use of the multithreaded execution model 
without exposing multithreading to the programmer. Our approach is to design 
simple extensions to C, and to provide compiler support that automatically 
translates high-level C programs into lower-level threaded programs. In this 
paper we present EARTH-C our extended C language which contains simple 
constructs for specifying control parallelism, data locality, shared variables and 
atomic operations. Based on EARTH-C, we describe compiler techniques that 
are used for translating to lower-level Threaded-C programs for the EARTH 
multithreaded architecture. We demonstrate our approach with six benchmark 
programs. We show that even naive EARTH-C programs can lead to reasonable 
perfornrance, and that more advanced EARTH-C programs can give perfor- 
mance very close to hand-coded threated-C programs. 

KEY W O R D S :  Parallel languages; multithreaded architecture; compiling for 
parallel architectures. 

1. INTRODUCTION 

Multithreaded architectures provide one approach to high-performance 
parallel computing. By supporting many threads of control and fast 
switching among threads, multithreaded architectures can tolerate inherent 
communication and synchronization latencies by switching to a new ready 
thread of control whenever a long-latency operation is encountered/1-5) As 
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long as there is enough parallelism in an application, a multithreaded 
architecture can hide these latencies and effectively utilize available com- 
munication bandwidth. However, providing support for multithreading at 
the architecture level is not enough, we must also be able to effectively 
program such architectures. One alternative is to make the threads and 
synchronization between threads explicit in the programming language, 
and ask the programmer to handle all of the details of thread creation, 
communication, and synchronization between threads. While this approach 
gives the full flexibility of multithreading to the user, it tends to introduce 
many low-level details that are hard for the programmer to handle. Thus, 
it is unlikely that such a programming model would become generally 
acceptable. A preferable approach is to give the programmer a more tradi- 
tional high-level language that does not explicitly support threads, and to 
use selected language extensions and compilation techniques to automat- 
ically translate high-level programs into lower-level threaded programs. 
Thus, with minimal effort, the programmer should be able to benefit from 
at least some of the power of multithreading. 

In this paper we present EARTH-C, our parallel dialect of C, and we 
address the problem of translating programs written in EARTH-C into 
lower-level Threaded-C programs that run on the EARTH (Efficient 
Architecture for Running Threads) multiprocessor/6-8~ Our goal is to 
provide simple language extensions along with advanced compilation 
techniques that allow us to automatically produce reasonably efficient 
threaded programs. Our solution is based on the design of parallel exten- 
sions to C and compilation techniques. 

Our main emphasis has been on compiling benchmarks that have 
irregular parallelism, and those that use dynamic data structures. These 
types of applications are difficult to deal with using standard techniques 
that rely on static computation and data partitioning. Our programs have 
inherently dynamic behavior, and thus to execute our class of benchmarks, 
we need an architecture that can tolerate a reasonable amount of com- 
munication, and can adapt to uneven loads. This is precisely the kind of 
programs for which multithreaded architectures should be useful. However, 
as we noted earlier, we do not want to require the programmer to specify 
the threads explicitly. Rather, we want to capture the correct high-level 
language features that allow the compiler to generate the appropriate 
threads. 

As multithreaded architectures use parallelism (multiple threads per 
processor) to mask communication latency, we need to be able to find all 
possible parallelism in a program. EARTH-C supports constructs for 
specifying control parallelism in the form of a parallel forall loop and 
parallel statement sequences. The programmer uses these constructs to 
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specify coarse-grain parallelism, while the compiler uses dependence 
analysis to detect fine-grain parallelism. The main programming paradigm 
in EARTH-C is fork/join type parallelism where the parallel computations 
must not interfere (one computation cannot write a location read or 
written by the other computation). We relax this restriction for the case of 
shared variables which must be accessed via atomic operations. We have 
made these restrictions to keep the language simple for the programmer, 
and to allow us to safely apply our advanced dependence analyses to the 
EARTH-C programs. 

Even with multithreading, it is often advantageous to reduce (although 
not necessarily minimize) communication. Thus, the EARTH-C type system 
distinguishes between local and remote memory references. Thus, if the 
programmer wants to improve performance, he/she can use appropriate 
type declarations plus dynamic data and computation allocation to reduce 
communication. As multithreading can tolerate some communication, and 
some unevenness in load, the programmer need not spend a lot of effort to 
get the best distribution, a reasonable distribution should give reasonable 
performance. 

The EARTH-C language extensions are not radical and should be easy 
for programmers to grasp. The main point is not the novelty of the exten- 
sions themselves, but rather the fact that such simple extensions are enough 
to allow the compiler to generate reasonable threaded programs. 

We have implemented a version of the McCAT C compiler that accepts 
EARTH-C programs as input, and generates Threaded-C programs. The 
McCAT C compiler was designed to support parallelization and optimiza- 
tion, (9) and it provides: a simple high-level intermediate representation for 
dataflow analysis; ~1~ advanced pointer analyses; ~11-13~ and array dependence 
testing.(14, 15) Threaded-C is a lower-level language where the programmer 
specifies all threads and synchronization among threads/6~ [See Fig. 13c 
for an example of Threaded-C code. ] The McCAT compiler uses automatic 
paralMization techniques to augment the coarse-grain parallelism specified 
by the programmer. The compiler also uses loop transformations and 
thread-generation strategies to produce threaded code with the appropriate 
synchronization inserted. The EARTH runtime system handles the actual 
scheduling of threads find load-balancing among processors. 

In order to evaluate our approach, we have examined six benchmark 
programs. We examine how much performance we can achieve with a naive 
and advanced EARTH-C version of the benchmark. The naive version 
corresponds to minimal programmer effort, where the programmer 
expresses simple control parallelism using EARTH-C constructs. The 
advanced version corresponds to more programmer effort, where the 
programmer refines the naive version by introducing the appropriate type 
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declarations to expose data locality, and some dynamic data and computa- 
tion allocation. For each benchmark we compare the speedup of the two 
EARTH C versions relative to a sequential version and a hand-coded low- 
level Threaded-C version. Our results show that reasonable speedup can be 
achieved by the naive EARTH-C versions, where only minimal pro- 
grammer effort was required. However, in some cases, the additional effort 
spent developing the advanced EARTH-C version results in significantly 
better performance. Furthermore, the advanced EARTH-C versions come 
close to matching the performance of the hand-coded Threaded-C versions, 
but with less programmer effort than is required for the Threaded-C 
versions. 

The remainder of this paper is organized as follows. Section 2 gives an 
overview of our EARTH-C language, including several small examples. 
Section 3 provides an overview of the EARTH-McCAT compiler, and 
describes the parallelization and thread-generation strategies that we have 
developed. Our benchmarks and experimental results are presented in 
Section 4, a discussion of related work is given in Section 5, and con- 
clusions are given in Section 6. 

2. T H E  E A R T H - C  L A N G U A G E  

The design of EARTH-C has been driven by two factors: (1) the desire 
to keep the extensions to C simple, but yet expressive; (2) the need to 
provide some information about control parallelism and data locality to 
the compiler. Another design criteria is that we want to be able to correctly 
compile C programs that contain no EARTH-C extensions. Thus, the 
programmer should be able to start with a sequential C program, and let 
the compiler produce a parallel threaded program. If the programmer is 
not satisfied with the performance, he/she can then incrementally improve 
the original C program by using the appropriate EARTH-C constructs that 
expose parallelism and improve locality. The following subsections describe 
the features of EARTH-C, and explain the purpose of the features. 

2.1. S t a t e m e n t  S e q u e n c e s  

EARTH-C supports three kinds of statement sequence: ordinary, 
parallel, and strictly sequential Figure 1 illustrates the three cases. In 
ordinary sequences, denoted using the standard C block syntax {...}, 
statements may be executed in any order, as long as all data dependences 
are obeyed. In Fig. l(a) an ordinary sequence is given. In this case 
a =I (b) ;  must precede foo(a) because of the flow-dependence on a. It is 
expected that programmers will usually use ordinary statement sequences, 
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{ a : f(b); 
foo (a) ; 
goo (b) ; 

} 

(a) ordinary  

{^ f (t->left) ; 
f (t->right) ; 

(b) parallel 

{! a = f(x) ; 

b = g(y) ; 

foo (a,b) ; 

(c) s t r ic t ly  
sequential  

Fig. 1. Types of statement sequences. 

and leave it to the compiler to infer most of the statement-level parallelism. 
In the case of ordinary C (no EARTH-C constructs) programs as input, all 
statement sequences will be ordinary. 

However, in some cases a programmer may want to explicitly specify 
parallel or strictly sequential sequences. Figure lb gives a typical use of a 
parallel sequence, denoted using the syntactic construct { A ... A}. Parallel 
statement sequences are used to explicitly specify that there are no 
dependences among the statements (except dependences on shared 
variables as explained in Section 2.6), and they may be safely executed in 
parallel. This conduct is used primarily when the compiler's dependence 
analysis cannot detect the parallelism automatically. In Fig. lb it is used to 
specify that the function calls to f can be done in parallel (i.e., the pro- 
grammer guarantees that there is no interference between the calls). 

Figure lc gives an example of a strictly sequential sequence, as 
denoted by the syntactic construct {!... !}. In strictly sequential sequences, 
statements must be executed in their lexical order. They are used when the 
data dependences would allow the compiler to rearrange the statements, 
but the programmer wants to ensure a specific order (for example, they 
may want to limit the amount of parallelism exposed). In Fig. lc the 
programmer is specifying that the call to f must be executed before the call 
to g, even though there is no dependence between the two calls. 

The different sorts of statement sequences can be used to group any 
type of statements, including compositional statements such as if, switch, 
while, for, and do statements. Figure 2a gives an example of two for loops 

_ 

-} 

for (i1=0; il < n/2; i1++) 
f(il); 

for (i2:n/2+1; i2<n; i2++) 
f(i2); 

(a) sequence of f o r  s t a t emen t s  

Fig. 2. 

{ t_l = t->left; 
t_r = t->right; 
{ "  f ( t _ l )  ; 

f ( t _ r )  ; 
~} 

} 

(b) nes ted  sequences 

Examples of statement sequences. 
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that can execute in parallel. Furthermore, just like blocks in C, statement 
sequences can be arbitrarily nested. Fig. 2b gives an example with a parallel 
sequence nested inside an ordinary sequence. 

2.2. Parallel Loops 

EARTH-C supports a foral l  loop in which the header may have inter- 
iteration dependences, but the loop body must have no inter-iteration 
dependences. [ Dependence within an iteration are allowed as the compiler 
will perform the appropriate renaming in the parallelization phases.] We 
can express the forall loop construct as follows: 

forall (v = i n i k  expr; tes t_expr(  v ) ; v = upda te_expr (  v ) ) loop_body(v )  

The operational semantics of the foral l  loop can be stated as follows. 
Let vt ... v, be the values generated by executing the loop header. Then 
all loop bodies loop_body(Vl ) ,  loop_body(v2), . . . ,  l oop_body (v , )  may be 
executed in parallel. Figure 3 gives two examples of forall loops. The first, 
in Fig. 3a, is a typical parallel loop in scientific computing where the 
different iteration values for i can be computed with a closed form. The 
second example, in Fig. 3b, gives an example of traversing a linked list, 
where the different values of p must be calculated sequentially, but many 
iterations of the body may proceed in parallel. 

2.3. Local and Remote  M e m o r y  Accesses 

In the underlying EARTH execution model we assume that memory is 
physically distributed among the processors, and so there is a crucial dif- 
ference in the cost of remote  memory accesses (on a different processor) 
and local memory accesses (memory is on the local processor). From the 
compiler's view, it is always safe to treat memory accesses as remote. 
However, for efficiency, the compiler should recognize when memory 
accesses are local whenever possible. If the programmer uses standard C 
declarations using no EARTH-C extensions, then the compiler assumes the 
following: 

forall (i=O; i<N; i++) 
{ a[i] = b[i] * s; } 

(a) completely parallel 

forall (p=hd; p!=NULL; p=p->next) 
{ f (p) ; } 

(b) with sequential header 

Fig. 3. Examples of forall loops. 
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�9 Global Variables: All global variables are by default allocated on 
processor 0. Thus, all direct references (i.e., references via the name of the 
variable, and not  indirect references through pointers) to global variables 
are considered to be remote. 

�9 Formal Parameters  and Local Variables: All formal parameters  and 
local variables for a function invocation are allocated in an activation 
frame that resides in the memory  of the processor executing the invocation. 
Thus, all direct references to parameters  and local variables are to local 
memory. 

�9 Indirect References via Pointers: Pointer  dereferences may  refer to 
globals, to local variables outside of the current function activation, or to 
heap allocated objects. Thus, the most  conservative assumption is that  all 
pointer dereferences refer to remote memory.  Of  course, pointer analyses 
can be used to improve upon this conservative rule. 

The p rogrammer  with these assumptions can write their p rogram 
using ordinary C declarations, and the compiler is guaranteed to produce 
correct, al though possibly inefficient, code. Consider the example in Fig. 4. 
In main, the references to local variables i and zeros are local memory  
accesses, but the references to the global array a are remote memory  
accesses. [ O f  course, if the compiler can determine that  main is always 
invoked on processor 0, then the reference to a could be considered a local 
memory  access.] In count_k, references to formal parameters  n and k, and 
to locals i and coun t  are all local memory  accesses. However,  the indirect 
accesses via pointer x are remote memory  accesses. 

int a[lO]; /* global variable declaration */ 

/* find number of times k occurs in the first n items of array x */ 
int count_k(int *x, int n, int k) 
{ int i, count=O; 

for(i=O; i<n; i++) if (x[i] == k) count++; 
return(count); 

} 

int main() 
{ int i, zeros; 

/* init array a */ 
for(i=O; i<lO; i++) a[i] = init_val(); 

/* find number of zeros in a */ 
zeros = count_k(a,lO,O); 

Fig. 4. Example of local vs. remote memory accesses. 
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Note that the communication in EARTH-C is implicit. For  example, 
in the program in Fig. 4, the programmer referenced remote memory read 
via the use o f x [ i l  and a remote memory write via the assignment to a[i] .  
However, the underlying communication is hidden, and it is the EARTH-C 
compiler's responsibility to produce the correct threads and communica- 
tion code. 

We have extended the type system in EARTH-C to allow the user to 
provide additional information about  data mapping and locality. There are 
two extensions, the first extends the type declarations for global variables, 
while the second gives new types for pointers. 

2.3. 1. Global Variables 

Global variables can be declared as ordinary global variables or 
replicated global variables. An ordinary global variable has only one copy, 
and by default it is located on processor 0. If the user wishes to allocate 
the variable on another processor, then they must provide the processor 
number along with the declaration. Consider the declaration of globals a 
and b in Fig. 5a. Array a will be allocated in processor 0, whereas array b 
will be allocated in processor MA• Accesses to ordinary globals are local 
from the processor on which they reside, but remote from all other 
processors. 

A replicated global variable is indicated by the storage class keyword 
replicated, and a copy of the global variable is allocated on each processor. 
An example is the declaration of array e in Fig. 5a. Accesses to a replicated 
global are always made to the local copy of the global, and so the compiler 
considers them to be local accesses. Note  that once declared as replicated 
global variables, the compiler treats each copy of the global as a distinct 
variable, and so there is no consistency between the copies. 

2.3.2. Pointers 

The rules for locally-scoped and global variables allow the compiler to 
determine if a direct memory reference is local or remote. In summary, 
references to locally-scoped variables (local declaration or formal 

int a[4], b[4]@MAXP; 

replicated int c[4]; 

(a) global declarations 

int * p ; 

int local * q; 

int * * r; 

int * local * s; 

int local * local * t; 

(b) local-pointer declarations 

Fig. 5. Examples of declarations. 
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parameter),  and replicated globals are local references, while references to 
ordinary globals are remote references. However, this does not solve the 
problem when memory  references are made via indirections (i.e., *p, p - >  f, 
or p[i] ,  where p is a pointer type). In order to be able to express the case 
when a pointer is guaranteed to point to local memory,  we have introduced 
an extension to pointer types in C. Each pointer type can be either remote 
or local. By default a pointer is remote and can point to a remote memory  
location. Local pointers point to local memory  locations, and are created 
by using local * instead of * in type declarations. As pointer declarations 
are read from right to left in C, in Fig. 5b we are declaring p to be a remote 
pointer, q to be a local pointer, r to be an remote pointer to a remote 
pointer, s to be a local pointer to a remote pointer, and t to be a local 
pointer to a local pointer. Thus, assuming that p, q, r, s, and t are locally- 
scoped variables, the memory  accesses to p, q, *q, r, s, *s, t, *t, and **t 
would be local, whereas the memory  accesses to *p, *r, **r, and **s would 
be remote. A typical example of the use of local pointers is given in Fig. 6. 
In this case, the parameter  root in the function incr_tree can be declared 
as a local pointer since incr_tree is always invoked on the processor owning 
the node pointed to by root. We will return to this example when discussing 
function invocations in Section 2.4. 

2.4. Remote  and Basic Funct ions 

In order to support  parallel execution of programs,  it is necessary to 
be able to invoke functions on different processors. In fact, function invoca- 
tion is the only way for an EAR TH-C  programmer  to explicitly send 
computat ion to another processor. 

Remote  functions are declared as normal  C functions, they may  be 
invoked on any processor, and the function invocation may  access remote 

void incr_tree(NODE local * root, int k) 
{ if (root != NULL) 

{^ incr_tree(root->left,k)@OWNER_OF(root->left); 
incr_tree(root->right,k)@OWNER_OF(root->right); 
incr_node(root,k); 

^} 
} 

basic void incr_node(NODE * node, int k) 
{ node->key = node->key + k; 
} 

Fig. 6. Example of local pointers and basic functions. 
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memory  locations. If  a call to a remote function does not  specify on which 
processor to invoke the function, then the run-time load balancer makes 
the assignment to a processor. If  the p rogrammer  wants to invoke a 
function on a specific processor, then the call may be decorated with an 
expression that denotes the processor number  (i.e., f o o ( a l ,  a 2 ) @ p ,  
bar(a1, a2)@my_ld_balancer() or baz(al)@OWNER-OF(al)). The 
expression after the @ symbol must denote an integer value where a 
positive value, p ~> 0, will cause the function to be invoked on processor p, 
whereas a negative value, p < 0, indicates that  the run-time load balancer 
should be used to select the appropriate  processor. 

Of  course, there is a substantial overhead associated with invoking 
functions on other processors, so we have defined basic functions which 
have more restrictions, but less overhead. In general, the p rogrammer  
should make a function basic if it contains no useful parallelism and it 
accesses only local memory.  Basic functions are indicated by including the 
keyword basic at the beginning of the function declaration. A basic func- 
tion will be invoked on the processor from which it was called, and thus 
calls to basic functions may  be inlined. Furthermore,  basic functions must  
access only memory  local to the current processor, and they may only call 
basic functions. If  the p rogrammer  states that a function is basic, then the 
compiler may assume that  all direct and indirect memory  references are 
local. 

Consider a typical example in Fig. 6. In this example, the function 
incr_tree is a remote function that traverses a binary tree, incrementing the 
key field of each node by k. The two recursive calls to iner_tree are 
invoked on the processors that own the roots of the left and right sub-trees 
using the built-in primitive OWNER_OF which returns the processor that  
owns the address. The function iner_node is declared as a basic function, 
so it will be invoked on the current processor, and all memory  accesses to 
root will be assumed to be local. Note  that  inside basic functions all 
memory  references are implicitly local, so we do not need to explicitly give 
a local pointer type to the parameter  node  in the function incr_node, 
although it would also be correct to give the explicit local declaration. 

The main idea of the p rogram in Fig. 6 is that the remote  invocations 
for the recursive traversal via incr_tree expose parallelism and send com- 
putat ion to the processor owning the data, thus it is worth  the extra over- 
head. Whereas, it is preferable to make the computat ion for inc r -node  less 
expensive by indicating that  it is a basic function. If  we had omitted the 
keyword basic in the declaration of incr_node then the p rogram is still 
correct, but  the call to incr_node would be more expensive and would be 
assigned by the runtime load-balancer, the call could not  be inlined, and 
some memory  accesses would be assumed to be remote. 
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2.5. EARTH Library Funct ions and Pr imi t ives 

The programmer may sometimes want to access blocks of data, and to 
copy blocks of data between processors. For  these cases we provide the 
primitive blkmov(source ,  dest, nbytes)  which is used primarily to copy 
arrays and records between processors. F rom the programmer's  perspec- 
tive, blkmov is the EARTH-C version of the usual C library function 
memcpy. 

Other useful built-in primitives include OWNER_OF(addr)  which 
returns the processor owning the a ddr, N ODE_ID which returns the pro- 
cessor number currently executing, and N UM_NODES that returns the 
number of processors allocated to the program. 

2.6. Shared Var iables and A tomic  Funct ions 

As indicated in Sections 2.1 and 2.2, EARTH-C computations that are 
executed in parallel must not interfere. That  is, statements S1 and $2 can- 
not be executed in parallel if S1 writes to a location read or written by $2, 
or if $2 writes to a location read or written by S1. This restriction leads to 
a very simple language, and it also allows us to apply our advanced pointer 
and dependence analyses to EARTH-C programs. If we allowed interfering 
computations, then our flow analysis would have to allow for arbitrary 
interleavings of updates to program variables in parallel computations. 
However, this restriction also limits the expressibility of EARTH-C. Thus, 
we have extended the core EARTH-C language to include support  for 
shared variables and atomic functions. The basic idea is that statements S1 
and $2 may be executed in parallel if they interfere only on shared 
variables. Further, shared variables may only be read or written using 
atomic operations. We provide built-in atomic operations to read, write 
and perform simple arithmetic/logical operations on shared variables. We 
also provide a mechanism for user-defined atomic functions which operate 
on shared variables. We first give two simple examples, and then give a 
more detailed account of shared variables and user-defined atomic 
functions. 

2.6. 1. Simple Examples 

Consider the function find_sum in Fig. 7a. The for loop in this func- 
tion must be executed sequentially since there is a loop-carried dependence 
on the variable sum. However, the order in which the elements are 
summed is immaterial. If we could provide a way of updating sum atom- 
ically, then the iterations could proceed in parallel. Figure 7b gives the 
parallel EARTH-C program that uses a forall loop. Note that the variable 
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double find_sum(double a[], int n) 
{ int i; 

double sum; 

sum = O; 
for (i=O; i<n; i++) 

sum += a[i]; 

return(sum); 

(a) Sequential Version 

double find_sum(double a[], int n) 
{ int i; 

shared double sum; 

writeto (~sum, O) ; 
forall (i=O; i<n; i++) 

addto (~sum, a [i] ) ; 

return(valueof (~sum)) ; 
} 

(b) Parallel Version 

Fig. 7. Summing an array using a shared variable. 

sum has been declared as shared, and thus the loop can be considered a 
parallel loop, even though there are loop-carried dependences on sum. 
Also note that all reads and writes to sum must be done via atomic func- 
tions. In this case the initialization of sum is done via writeto, the addition 
to sum has been done via a built-in atomic primitive called addto and the 
final value of sum is accessed via the built-in primitive value_of. 

In many cases simple uses of shared variables, and built-in atomic 
operations are sufficient. However, the programmer may sometimes want 
to specify a more complex atomic function. Consider the example in 
Fig. 8a. The function find_furthest_distance iterates through an array of 
points, updating the variable furthest_distance each time d i s t a n c e ( p i l l )  
is greater than the current value of furthest_distance. In order to perform 
this loop in parallel it is necessary to declare fur thes t -dis tance  as a shared 
variable (since there is a loop-carried dependence), and to perform the 
check and update on fur thes t -dis tance atomically. The EARTH-C solu- 
tion is given in Fig. 8b. Note that the parallel version defines an atomic 
function, update_furthest ,  that checks and updates the shared variable 
furthest-distance.  Also note that outside of the atomic function the shared 
variable must be written/read using the built-in operations writeto/valueof.  

2.6.2. Declaring shared Variables 

In general, shared variables are declared using the keyword shared 
which is a type-modifier which affects the type to its left. The syntax of 
declaring a shared variable is as follows: ( t y p e )  shared (var_ id) .  Exam- 
ples of different declarations of shared variables are given in Fig. 9. The 
first group of declarations shows examples of basic types like int, double, 
char, etc. The second group of declarations gives examples of pointers and 
shared variables. Note that p points to a shared integer. Thus, *p is con- 
sidered to be a shared variable and the programmer must use atomic 
operations to operate on *p. The declaration of pl  is a shared pointer to 
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an integer. Hence, *pl  is not a shared object and we can access it without 
using atomic operations. However,  we have first to get the value of p l 
through an atomic operation, then we can de-reference the result. Another 
example is p2, which is a shared pointer to a shared integer. In this case, 
p2 and *p2 are considered shared objects and their access should be done 
through atomic functions. The fourth group of declarations is for shared 
arrays. When we specify an array to be shared, that means that the array 
elements are shared. In the last group of declarations, we have a shared 
structure and a pointer to a shared structure. In this case, we have each 
field of  the structure as shared. We do not  support  any operations on the 
structure as a whole; we can not assign a normal  structure to a shared 
structure. 

Shared variables must  be accessed via built-in atomic operations or 
user-defined atomic functions. Further, shared pointers may  not be copied 
or cast to non-shared pointers. All such errors are caught at compile-time 
by the E A R T H - C  compiler. 

2.6.3. User-Defined atomic Functions 

As illustrated in Fig. 8b, it is possible for the user to define a tomic  
functions. In order to guarantee that the underlying E A R T H  runtime 
system can execute the function atomically, we place the following restric- 
tions on any atomic function. An atomic function F must  have the 
following properties: 

1. F must  have a declaration of the form: 
a tomic ReturnType F (Type shared *S, Q1,..., Q,), where: 

�9 The first parameter,  S must  be a pointer to a shared variable. 
�9 The ReturnType and the types of parameters  Q1,. . . ,  Qn must  

N O T  be structures or shared variables. 

int shared y; /* shared integer */ 
double shared r; /* shared double */ 

int shared * p; 
int * shared pl; 
int shared * shared p2; 

/* pointer to a shared integer */ 
/* shared pointer to int */ 
/* shared pointer to shared int */ 

i n t  s h a r e d  M [100]; /*  
char  sha r e d  * names[10] ;  /*  
int * shared values[5]; /* 

struct ss shared * p_st ;/* 
struct ss shared my st; /* 

array of shared integers */ 
array of pointers to shared characters */ 
array of shared pointers to integers */ 

pointer to a shared structure */ 
shared structure */ 

Fig. 9. Examples of shared variable declarations. 
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2. The body of F must not contain any remote accesses. 

3. The body of F must not contain any calls to remote functions or 
other atomic functions. It may, however, contain calls to basic 
functions. 

4. F may not be called using a user-specified call site (i.e., a call of 
the form F( . . . )@exp  is not allowed). F will always be automat- 
ically invoked at the owner of the shared variable given as the first 
argument to F. 

These restrictions on atomic functions guarantee that the generated 
code will be a single thread, and will thus be executed atomically. 

3. T H E  E A R T H - C  C O M P I L E R  

We have implemented a version of the McCAT compiler, called 
EARTH-McCAT, that translates EARTH-C programs into low-level 
Threaded-C programs. As illustrated in Fig. 10, the compiler can be 
divided into three main phases. Phase I is composed of the standard 

Fig. 10. Overall structure of the compiler. 
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McCAT transformations and analyses that have been slightly modified to 
handle EARTH-C extensions. Although these analyses are very important 
for the subsequent phases, they are not the main point of this paper. The 
important point to note is that after this first phase we have a structured 
intermediate representation called SIMPLE-EARTH-C and appropriate 
dependence information for scalars, indirect references via pointers, and 
array references. S IMPLE-EARTH-C is a slight extension of SIMPLE, the 
standard intermediate representation for McCAT. [Here,  we will use the 
terms SIMPLE and SIMPLE-EARTH-C interchangeably.] The salient 
features here are: the program is now compositional (Ootos have been 
eliminated); each statement has a simple form which has at most one 
indirection or array reference; expressions in the tests of conditional and 
loop constructs are simplified so that they refer only to scalar values; and 
arguments to functions are either constants or scalar variables. 

In phase II we detect for loops that can be safely transformed to forall 
loops, and we restructure some forall loops so they expose function-level 
and/or thread-level parallelism. The main focus of this paper is on phase 
III, the translation from SIMPLE-EARTH-C to Threaded-C. This process 
consists of partitioning the program into appropriate threads, and then 
generating the target Threaded-C code. In order to understand the con- 
straints on generating threads, it is important to understand the underlying 
EARTH execution model, 

3.1. EARTH Execution Model and EARTH/MANNA 

In the EARTH model, a multiprocessor consists of multiple EARTH 
nodes and an interconnection network. (6' s) As illustrated in Fig. 11, each 
EARTH node consists of an Execution Unit (EU) and a Synchronization 
Unit (SU), linked together by buffers. The SU and EU share a local 
memory, which is part of a distributed shared memory architecture in which 
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Fig. 11. The EARTH architecture. 
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the aggregate of the local memories of all the nodes represents a global 
memory address space. The EU processes instructions in an active thread, 
where an active thread is initiated for execution when the EU fetches its 
thread id from the ready queue. The EU executes a thread to completion 
before moving to another thread. It interacts with the SU and the network 
by placing messages in the event queue. The SU fetches these messages, 
plus messages coming from remote processors via the network. The SU 
responds to remote synchronization commands and requests for data, and 
also determines which threads are to be run and adds their thread ids to 
the ready queue. 

Our experiments have been done using a multithreaded emulator built 
on top of the MANNA parallel machine. (~6) Each MA N N A  node consists 
of two Intel i860 XP CPUs, clocked at 50 MHz, 32 MB of dynamic RAM 
and a bidirectional network interface capable of transferring 50 MB/S in 
each direction. The two processors on each node are mapped to the 
EARTH EU and SU. The EARTH runtime system supports efficient 
remote operations. Sequentially, loading a remote word takes about 7/~s, 
calling a remote function can be performed in 9/~s, and spawning a new 
remote thread takes about 4/ is .  When issued in a pipeline these operation 
take only one third of these times. Thus, placing many independent remote 
operations into one thread and issuing them in a pipeline may reduce the 
total execution time. However, even when pipelined, each remote operation 
and each spawn does impose significant overhead. Thus, the thread-gener- 
ator must try and reduce the number of remote operations and the number 
of threads, while attempting to overlap communication with computation. 

Another constraint on the thread generator is that all remote memory 
accesses are handled in a split-phase manner. That  is, a remote memory 
request is made by one thread, and when the request is satisfied a syn- 
chronization is made with another thread that uses the value. The request 
and the use must be in different threads. Remote function calls are also 
handled in a split-phase manner, the function call is issued, and when the 
invocation terminates it signals its completion. Thus, when a remote func- 
tion (i.e., not a basic function) is invoked, its invocation is issued (most 
likely to another processor) as a new thread, and control moves 
immediately to the next statement in the current thread. When the result 
of the function is ready, a synchronization is made with a thread that uses 
the value. Consider the example C program in Fig. 12a. In this program the 
remote operations are the reads from array x and the calls to function g. 
All other operations are local since they refer to formal parameters or local 
variables. 

Consider how the threads must be generated in order to satisfy the 
constraints due to split-phase memory operations and remote function 
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calls. The request (remote read/write, or function invocation) must appear 
in a different thread from the use or redefinition of the value, and the 
correct synchronization must be made. Figure 12b shows a naive thread 
generation. In this case the body of the function was processed from top to 
bottom, and a thread boundary was inserted each time a statement used or 
redefined the result of a split-phase operation that appears in the current 
thread. For example, the end of Thread 0 was placed just before the for 
loop because the for loop uses a which is the result of a split-phase read 
of x[i]  within Thread 0. Similarly, the end of Thread 1 was placed just 
before the assignment to sum because it uses b which is the result of a split 
phase read o f x [ j ]  from within Thread 1. Finally, the end of Thread 2 was 
placed just before the assignment to result because it uses rl and r2 which 
are results of function calls to O which occurred within Thread 2. 

Following the EARTH model, synchronization between threads is 
implemented via so-called synchronization slots attached to each thread. 
The number in each slot determines how many signals must be received 
before the thread can execute, while the arcs associate split-phase operations 

int f(int *x, int i, int j) 
{ int a,b,sum,prod,fact; 

int rl ,r2,r3,result ; 

/* compute fact */ 

a = x[i] ; 

fact -- 1 ; 

for(i=l; i<a; i++) 

fact = fact * i; 

/* compute sum ~ prod */ 

b = x [ j ]  ; 
sum = a + b; 

prod = a * b; 

/* apply g */ 

rl = g(sum) ; 

r2 = g(prod) ; 

r3 = g(fact) ; 

/* sum results */ 

result = rl + r2; 

result = result + r3; 
return(result) ; 

(a) E A R T H  C 

Thread0: 

T h r e a d l : [ ~ - ~ ' t ~  
for ( i=l; i<a ; i++ ) I 

fact; fact* i, I 

"v 
Thread2: [7] 

sum= a + b; I 
prod = a * b; I 
rl = g(sum);~ I 
r2 = g(p rod) ,~  I 

I r3 = g(fact);~ 

Thread3: I 3 I 
I 

result = rl + r2; I 
result = result + r3;I 
return ( result ) ; ] 

(b) T h r e a d s  a n d  Slots 

Fig, 12. Naive thread creation. 
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with their appropriate slot. For example, the completion of the remote read 
of x[i] in Thread 0 signals Thread 1. Thread 1 is ready as soon as it 
receives one signal. In this naive scheme, the slot for Threadt is associated 
with all the split-phase operations that occur in Threadi_ 1. 

3.2. Thread Creation via List Scheduling 

We can improve upon the thread creation scheme given in the pre- 
vious section using a list scheduling strategy. For each statement sequence 
we build a Data Dependence Graph (DDG) with one node for each state- 
ment, and arcs showing dependences between the statements (transitive 
edges are removed). Currently the dependences are calculated using the 
results of Read/Write and points-to analysis. (11) This gives us quite precise 
DDGs, and exposes parallelism even in the presence of pointers. Each node 
in the DDG is given two labels: statement type and earliest thread number. 
Figure 13a gives the labeled D D G  for the example program from Fig. 12a. 
The rules for computing the labels and methods for generating the 
threaded-C code are described in the following subsections. 

Statement Type: Each node is labeled with one of the types sum- 
marized in Table I. The basic idea is that a statement is given a LOCAL 
type if it requires no split-phase operations, whereas any statement con- 
taining a split-phase operation (remote read, remote write, remote function 
call) is given a REMOTE type. We can determine the type of each state- 
ment by looking at the type and scope of each variable referenced. Direct 
references to ordinary globals, and indirect references via ordinary pointers 
are remote. Direct references to replicated globals, locals, parameters, and 
indirect references via local pointers are local. If a statement contains any 
variable reference that is remote, the statement is labeled as REMOTE. The 
DDG along with the statement types for the example program of Fig. 12a 
is given in Fig. 13a. Note that each statement of the main body of the func- 
tion is represented by one node (even compositional statements, like the for 
loop. The for loop in this program contains only local operations, so it is 
given the type LOCAL_COMPOUND. If it had contained a split-phase 
operation, it would be given the type RE M OTE-CO M PO U N D, and the list 
scheduler would be recursively applied to it. 

Earliest Thread Number: In addition to a statement type, each node 
in the DDG is labeled with a number corresponding to the earliest thread 
in which the statement could be placed. The fundamental observation is 
that if a node P has a REMOTE type, and thread_num(P)= i, then the 
earliest thread number for all successors of P is thread i + 1. Similarly, if 
node Q has many REMOTE ancestors, say P~,..., Pk, then the earliest 
thread number for Q is max(thread_num(P~)+ 1,..., thread_num(Pk)+ 1). 

828/25/'4-6 
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Table I. S ta tement  Types for Schedul ing 

Statement Type Description 

LOCAL_SIMPLE (LS) 
LOCAL-FN-CALL (LF) 
LOCAL-COMPOUND (LC) 

REMOTE-READ (RR) 
REMOTE_WRITE (RW) 
REMOTE_FN_CALL (RF) 
REMOTE-COMPOUND (RC) 

a simple assignment statement accessing only local memory 

a call to a local function 
a condit ional / loop stmt. that  accesses only local memory & 

calls only local functions 

an assignment statement that reads a remote value 

an assignment statement that  writes a remote value 
a call to a remote function 

a condit ional / loop statement that  accesses remote memory 
or calls a remote function 

Based on these observations, we can assign earliest thread numbers to each 
node in the DDG using a top-down search, assigning the maximum thread 
numbers based on the thread numbers of the predecessors. An example of 
applying our algorithm is given in Fig. 14 (each node in the DDG is 
labeled with its earliest thread number, nodes with REMOTE type are 
shaded). Since this algorithm places each statement in the earliest possible 
thread, then total number of threads needed for the statement sequence is 
minimized and thus the average thread length is maximized. 

After assigning the earliest thread number and statement type, we use 
a list scheduling strategy to actually form the threads, and to calculate the 

Fig. 14. Earliest thread number  assignment. 
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synchronization counts. Statements with the smallest thread number are 
chosen first. This implies that all statements with earliest thread number i 
will be scheduled before statements with earliest thread number i+  1. 
Furthermore, we schedule all statements with the same earliest thread 
number i together into thread number i. If there are many operations ready 
with the same thread number, the statement with the lowest statement type 
is chosen. The ordering on statement types is: REMOTE_READ< 
REMOTE_WRITE < REMOTE_FN_CALL  < LOCAL_S IMPLE < 
REMOTE_ C O M P O U N D  < L O C A L _ C O M P O U N D  < LOCAL_FN_ 
CALL. The basic idea behind this ordering is that we want to issue the split 
phase operations as early as possible, and then do all the computation that 
is local. By issuing REMOTE_READ and REMOTE_WRITE statements 
early, local computation is overlapped with the communication. By issuing 
R E M OTE_F N-CAL k statements early, function-level parallelism is exposed 
as early as possible. We place LOCAL_SIMPLE statements quite early in 
the ordering since they take very little time to execute, and scheduling them 
early often "uncovers" important RE MOTE operations. Local computa- 
tions that likely take a lot of time (LOCAL_FN_CALL and LOCAL_ 
CO M P O O N D) are scheduled last. The actual scheduling algorithm is given 
in Fig. 15. Note that when we schedule a remote operation in thread i, we 
must increment the synchronization count of the earliest thread which 
depends on the result of the remote operation. This can be done by looking 
at all successors in the DDG, and taking the smallest of the earliest thread 
numbers stored in those successors. 

Figure 13b shows the result of our list scheduling algorithm when 
applied to the DDG in Fig. 13a. Note that compared to the naive thread 
generation approach of Fig. 12b, our list scheduling approach gives only 3 
threads rather than 4. Furthermore, many of the remote operations are 
issued earlier than in the naive schedule: For example, the statement 
b = y [ i ] ;  has moved from Thread 1 in the naive schedule to Thread 0 in 
the good schedule. Furthermore, the invocations r l = g ( s u m ) ;  and 
r2 = g( prod ); are scheduled earlier in the good schedule. 

This basic list scheduling approach is applied hierarchically in order to 
generate threads for each function body. The scheduler is applied first to 
the outermost statement list, and then recursively applied to the bodies of 
any statement with type R E M OTE_CO M P O U N D. A small variation on the 
strategy is used when compiling the bodies of forall loops. If the number 
of loop iterations can be computed before the loop executes, the syn- 
chronization associated with the last thread in the body is moved outside 
of the loop. Thus, for loops which have only one thread in the body, mul- 
tiple iterations can run in parallel and a barrier synchronization is enforced 
at the end of the loop. 
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proc  list_schedule(D) 
/ ,  Given a DDG, generate threads using the 

earliest thread number and statement type. */ 
{ put all roots of D on the ready_list; 

init all threads with sync count = O; 
i = O; /* start with thread 0 */ 
start thread O; 
while (not empty(ready_list)) do 

{ N = node from ready_list with rain value; 
/* check to see if a new thread should be started */ 
if (N.thread_num != i) then 

{ mark the end of thread i; 
i++; / ,  increment thread counter , /  
start thread i; 

} 
add N to thread i; 
add successors of N that are now ready to ready_list; 
/* 'if a remote op, then increment sync count of 

earliest thread to depend on result of this op */ 
if  N.type = 1R then 

{ s_thread_num = min thread_num of successors of N; 
increment sync count of s_thread_num; 

} 
} 

/* mark end of last thread */ 
mark the end of thread i; 

Fig. 15. List scheduling algorithm. 

3.3.  C o d e  G e n e r a t i o n  

Once the threads have been partitioned, and the synchronization 
counts computed, the threaded-C code is generated. Each remote function 
is compiled as a THREADED function, using the keyword THREADED at 
the beginning and EN D_FU NCTION at the end. The threaded code for our 
example p rogram is given in Fig. 13c. Each threaded function has two extra 
parameters:  ret_parm which points to the destination for the return value, 
and *rsync_parm that  points to the synchronization slot associated with 
the caller of  the function. In addition to all the regular local variable decla- 
rations, we declare an array of synchronization slots, one per thread 
(Thread 0 starts at the beginning of the body, and it has no synchroniza- 
tion slot). These slots are initialized using the INIT_SYNC threaded-C 
instruction. For  example, in our generated code INIT_SYNC(0,  2, 2, 1 ) is 
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used to indicate that Thread 1 is associated with SLOT 0, and it should 
have an initial synchronization count of 2, and a reset synchronization 
count of 2. Each thread starts with the appropriate thread label, and ter- 
minated with the END_TH READ();  statement. Each remote read is trans- 
lated into a Threaded-C GET_SYNC and each remote write is translated 
into a DATA_SYNC. Calls to basic functions are not modified, but calls to 
remote functions are compiled into TOKEN or INVOKE calls. The TOKEN 
mechanism is used when the runtime load balancer should be used, and the 
INVOKE mechanism is used when an explicit processor number is given. 

Shared variables and atomic functions are handled slightly differently. 
Built-in shared operations like addto  are compiled into the appropriate 
primitive based on the type of the argument. For  example, a statement of 
the form add to (~x ,  3) is transformed into addto_i(MAKE_GPTR(&x,  
O W N E R _ O F ( x ) ) , 3 ) @ O W N E R - O F ( x ) ,  where addto- i  is a built-in 
atomic function for integers. Atomic functions are translated into 
THREADED functions, and the body of each atomic function is compiled 
into exactly one thread. Since atomic functions are always executed on the 
processor owning the shared variable, and atomic functions execute as one 
uninterrupted thread, we can guarantee atomic computations on the shared 
variable. 

4. E X P E R I M E N T A L  R E S U L T S  

In this section we examine the effectiveness of our approach. To 
evaluate the core part of EARTH-C (as described in Sections 2.1 to 2.5), 
we have experimented with six benchmarks as described in Table II. The 
first four benchmarks are representative of our target class of benchmarks 
as they use recursion and/or dynamic data structures. The last two 
benchmarks, tumult and tomcatv  are small examples more typical of 
scientific codes. 

Tablell. Benchmark Programs 

Benchmark Description Problem Size 

tsp Find sub-optimal tour for travelling salesperson problem 32 K cites 
power Optimization Problem based on a variable k-nary tree 10,000 leaves 

nqueens Search for all legal queen configurations on a chess board 12 x 12 
quicksort Parallel version of quicksort 512 K integers 
mmult Matrix Multiplication 512 x 512 floats 

tomcatv SPEC benchmark 258 x 258 
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Tablell l ,  Benchmark Features: Compiler (Q), Naive ( � 9  ( �9 

EARTH-C Features 

Local 
{ A . . .  A} Basic Functions Pointers & 

for Funct ion-  Iorall for Block Move O W N E R  O F  
Bench- level Loop-Level for Collective for Thrott l ing for Data  for Data  
mark  Parallelism Parallelism Communica t ion  Parallelism Locality Locality 

power �9 �9 �9 �9 
queens 0 �9 �9 0 
tsp �9 �9 �9 �9 (2) C) 
quicksort �9 �9 �9 �9 �9 

For the first four benchmarks, we started with the original sequential 
programs and introduced EARTH constructs for parallelism and locality. 
In Table III, we summarize the EARTH-C features used in this group of 
benchmarks. We give two versions for each benchmark, a naive version and 
an advanced version. In the naive versions we made relatively few changes 
to the original sequential programs, and we used only the most relevant 
EARTH-C features that concentrated on exposing parallelism. For the 
advanced versions we changed the program more dramatically, using more 
EARTH-C constructs, most often by adding appropriate uses of local 
pointer declarations and/or basic functions. 

For each benchmark we executed the original sequential version, the 
naive and advanced EARTH-C versions, and a hand-coded Threaded-C 
benchmark. For the benchmarks queens, mmult, and tomcatv we used 
Threaded-C codes developed and hand-optimized by other programmers. 
For power, tsp, and quicksort we .had to develop and optimize our own 
Threaded-C programs. Table IV gives the results for program size and 
program performance. The column labeled sequential C gives the time for 
running the original sequential version, whereas the columns labeled Naive 
EARTH-C, Advanced EARTH-C, and Threaded-C give the speedups for 1, 
8, and 16 processors (speedup relative to the sequential program). The last 
two columns give the ratio of the time for the EARTH-C versions with 
respect to the hand-coded Threaded-C versions. 

Power System Optimization: The power benchmark solves a power 
system optimization by computing the best price for the benefit of the 
community3 ly~ The problem is based on a four-level tree structure, with 
different branching widths at each level. The program executes a series of 
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Table IV. Experimental Measurements 

Sequential Naive Advanced Threaded Naive/ Advanced/ 
Benchmark C EARTH-C EARTH-C C Threaded-C Threaded-C 

power 1 proc 62.4 sec 0.92 0.96 0.99 0.93 0.97 
8 procs 6.61 7.13 7.35 0.90 0.97 

16 procs 12.76 13.26 14.17 0.90 0.94 
1 proc 37.7 sec 0.96 0.96 1.00 0.96 0.96 

8 procs 7.65 7.65 8.01 0.96 0.96 
16 procs 15.10 15.21 15.89 0.95 0.96 

1 proc 23.8 sec 0.72 0.99 0.99 0.73 1.00 
8 procs 3.86 6.37 6.67 0.58 0.96 

16 procs 4.70 9.66 11.31 0.42 0.85 
1 proc 2.6 sec 0.77 0.99 1.00 0.77 0.99 

8 procs 1.73 3.18 3.21 0.54 0.99 
16 procs 1.81 3.30 3.40 0.53 0.97 

1 proc 17.1 sec 0.99 0.99 0.99 1.00 1.00 
8 procs 7.28 7.28 7.28 1.00 1.00 

16 procs 12.99 13.14 13.14 0.99 1.00 
1 proc 45.7 sec 0.82 0.85 0.94 0.87 0.90 
8 procs 6.35 6.56 6.76 0.94 0.97 

16 procs 12.46 12.86 12.61 0.99 1.02 

queens 

tsp 

quicksort 

mmult 

tomcatv 

phases  unt i l  convergence  is reached.  In  each  phase,  a t o p - d o w n  pass  b r o a d -  
casts the pr ice i n fo rma t ion  to the  leaves while  b o t t o m - u p  pass  sends the 
consumers '  d e m a n d  up  to the  root .  In  the  na ive  E A R T H - C  vers ion,  we 
specified the pa ra l l e l i sm at  each level in the tree us ing the { A ... A} con-  
s truct  for recursive calls, a n d  forall  cons t ruc t  for i t e r a t ion  over  a r rays  of  
po in te r s  to children.  This  leads  to 10,000 para l le l  leaf  c o m p u t a t i o n s  which  
are  ba l anced  by  the E A R T H  run t ime  system. As the run t ime  sys tem does  
the  a l loca t ion  for l oad -ba l anc ing ,  d a t a  loca l i ty  is no t  exploi ted .  In  the 
advanced  vers ion  we explo i t  d a t a  locali ty,  a n d  only  e x p a n d  the pa ra l l e l i sm 
on the first two levels giving 200 sub-trees.  The  c o m p u t a t i o n  on  the sub- 
trees is a l loca ted  to the p roces so r  owning  the comple t e  sub-tree.  Thus,  
c o m p u t a t i o n s  on the lower  two levels are  specified as b a s i c  functions.  

The  results  in Tab le  IV is qui te  encourag ing .  Even the naive  vers ion  
gets 90 % of  t h e  pe r fo rmance  o f  the h a n d c o d e d  T h r e a d e d - C  version.  Thus,  
the p r o g r a m m e r  can  get  very  g o o d  speedup  wi th  on ly  m i n i m a l  p ro -  
g r a m m i n g  effort. F u r t h e r m o r e ,  it  appea r s  tha t  by  expos ing  a lot  of  pa ra l -  
lelism, the E A R T H  run t ime  sys tem d id  m a s k  mos t  of  the c o m m u n i c a t i o n ,  
and  d id  a g o o d  j o b  of  l o a d  ba lanc ing .  The  resul t  for the  a d v a n c e d  vers ion  
is even bet ter ,  achieving 9 4 %  to 9 7 %  of  the  speedup  o f  the  h a n d - c o d e d  
T h r e a d e d - C  version.  Thus ,  it  seems tha t  m a p p i n g  the c o m p u t a t i o n  to the 
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owner of the data works well in this case (as has been previously reported 
in Ref. 18). It should be noted that it was very simple to change the 
EARTH-C program to try different variations of this benchmark. 

Queens: The queens benchmark is a classic AI search benchmark 
which requires N queens to be put on a N x N  chess board so that no 
queen may be taken by another. We use a recursive descent search to find 
all legal queen positions. At each search step, a small array recording the 
partial search space is copied from a parent node to a child. The 
parallelism in this benchmark is recognized by the compiler automatically 
(of course, it could also be specified using { A ... A } ). For  the naive version, 
we use blkmov to copy the partial search space, and we invoke basic ver- 
sions of the functions to throttle parallelism at a specified search depth. In 
the advanced version, we optimize the solution by recognizing when a 
parent and child are on the same processor. In this case we avoid the 
remote blkmov and use a local memcpy  instead. The results in Table IV 
show that both EARTH-C versions perform very well, with almost perfect 
speedup and at least 95 % of the performance of the Threaded-C version. 
It appears that the optimization done in the advanced version is not very 
important. 

Heuristic Traveling Salesperson: The tsp benchmark is a typical NP-  
complete problem. Our benchmark uses a heuristic divide-and-conquer 
approach based on close-point algorithm/~9'2~ This heuristic algorithm 
first searches a suboptimal tour for each subtree(region) and then merges 
subtours into bigger ones. The tour found is built as a circular linked list 
sitting on top of the root nodes of subtrees, The linked lists are distributed 
in segments and there are only few links across processors. This provides 
a great opportunity to use data locality. The advanced version makes full 
use of this partial data locality using the OWNER_OF primitive and local 
pointers. Both the naive and advanced versions use basic functions to 
throttle the recursive parallelism. The data in Table IV indicates that the 
locality optimization in the advanced version is important, and it becomes 
more important as the number of processors increases. With 16 processors 
the naive version gets only 42 % of the performance of the Threaded-C ver- 
sion, whereas the advanced version achieves 85 %. The Threaded-C version 
appears to perform better as it does even more locality optimization and it 
takes advantage of a cheaper procedure call mechanism when calling a 
remote function on the same processor. 

Quieksort: This benchmark is a parallel implementation of the 
standard quicksort algorithm. The naive version simply invokes the two 
recursive calls in parallel, with no explicit processor assignment (the EARTH 
runtime system does the assignment). The advanced version keeps the bigger 
partition on the local processor to reduce interprocessor communication. 
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Because the size of subarrays in each recursive sorting phase is unknown 
in advance, dynamically allocated arrays are employed. In the advanced 
version, local pointers are used to point to the dynamically-allocated arrays 
and memcpy is used if the source and destination are found locating in the 
same processor. Examining the data in Table IV indicates that all versions 
of quieksort have relatively poor speedup (as was expected). However, the 
advanced EARTH version performs almost as well as the Threaded-C ver- 
sion, and is considerably better than the naive version. Both the tsp and 
quieksort benchmarks demonstrate that the locality features in EARTH-C 
are very important. 

Matrix Multiplication and Tomeatv: Unlike the previous bench- 
marks, where we started with the sequential algorithm, and made relatively 
few changes to the algorithm for the EARTH-C versions, the mmult and 
tomeatv benchmarks needed explicit blocking and partitioning. Our 
EARTH-C versions were inspired from the algorithms found in the existing 
Threaded-C versions. In general, for both mmult and tomeatv, the per- 
formance of the EARTH-C versions is quite reasonable. Furthermore, we 
found that the EARTH-C versions were simpler to express, and easier to 
read. Thus, there appears to be no big advantage in programming in 
Threaded-C for this type of benchmark. 

4.1. Using S h a r e d  Var iab les  and A t o m i c  Funct ions  

We have also experimented with using shared variables and atomic 
functions. We found that two of our benchmarks, power and tomeatv 
could use shared variables to simplify the code. In power, a shared variable 
is used to accumulate the sum of several subcomputations that proceed in 
parallel. In tomeatv shared variables are used to accumulate the maximum 
of several parallel subcomputations. In both cases the original version used 
an array to store partial sums/maximums for the parallel computations, 
and then computed the final sum/maximum by iterating through this array. 
We found that using a shared variable made the program more readable, 
and had very little impact on performance. 

However, further experiments showed that one must be careful in the 
use of shared variables. We experimented with shared variables in the 
perimeter benchmark, which finds the perimeter of a raster imagage that is 
encoded using a quad-tree/2~'22) There are two places where shared 
variables can be used. The first is in a recursive routine that computes the 
number of leaf nodes in the quadtree, and the second is in actually com- 
puting the perimeter. We found that using a shared variable for computing 
the number of nodes resulted in a slight performance loss, whereas using 
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shared variables for computing the perimeter resulted in a slight per- 
formance gain. 

In the case of computing the number of nodes, the code was not sim- 
plified by using shared variables. The performance loss was due to conten- 
tion for the shared variable, and the overhead of many accesses to shared 
variables. Since each access to a shared variable is compiled into a function 
call to a THREADED function, one must be careful not  to overuse shared 
variables, particularly when a local variable can be used instead (as was the 
case in this benchmark). 

In the case of computing the perimeter, the code using shared 
variables was simpler and smaller than the code without shared variables. 
The performance gain was due to the reduction in the amount  of code that 
needed to be executed (for example, a loop summing the results of four 
recursive calls was not needed in the shared variable version). 

We also experimented with using shared variables and atomic func- 
tions to implement a version of Barnes-Hut that uses a master/slave type 
of synchronization. For  this experiment we took a Threaded-C program 
that implemented this mechanism, and developed a similar higher-level 
EARTH-C program using shared variables in atomic operations. One 
interesting result was that our EARTH-C version was about  20% 30% 
faster than the hand-coded Threaded-C version. This appears to be because 
the hand-coded version had not been fine-tuned for performance, whereas 
our EARTH-C compiler generated reasonably good threads automatically. 

In summary, it seems that shared variables and atomic functions are 
quite useful in simplifying some types of computations, and in allowing the 
user to express more parallel paradigms. However, with the current 
implementation of shared variables and atomic functions, there is a definite 
cost for each access to a shared variable, and they should be used with 
care. A more detailed description of experiments using shared variables 
may be found in Ref. 23. 

5. R E L A T E D  W O R K  

In this section, we outline some related work, focusing mostly on 
language extensions based on C with multithreading as target program 
execution models. 

Split-C is a parallel extension to C and provides shared-memory, 
message-passing, and data parallel abstractions to programmers. (24~ Split-C 
provides a global address space supporting both local and global pointers. 
Split-C follows an SPMD model of program execution. The authors state 
that Split C "is in stark contrast to languages that rely on extensive 
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program transformation at compile time to obtain performance on parallel 
machines." 

Cid is designed to be a parallel, shared-memory superset of C. (25) Cid 
provides global and local pointers similar to Split-C. Cid also supports 
fork-join parallel control structures. Load balancing can be directly con- 
trolled by programmers through explicit specification of sites of function 
invocations. Latency of remote forks and remote accesses is made visible by 
making them asynchronous operations. 

Cilk is a C-based language and runtime system for multithreaded 
parallel programming, (26~ especially for explicit continuation-passing style 
programming/27) It is more like our target language Threaded-C, with a 
rich set of thread scheduling primitives to assist in load balancing. Like 
EARTH-C, it has basic function and local pointer concepts and pro- 
grammers can use call sites to control load balance. Since it is based on 
explicit continuation-passing programming model, continuations must be 
explicitly specified by the programmer. 

EM-C is a parallel extension of the C languages designed for efficient 
parallel programming in the EM-4 multiprocessor. (28) It provides simple 
data distribution to support global data memory and the I-structures for 
global data synchronization. It supports parallel sequences and forall 
parallel constructs similar to those in EARTH-C, in addition to several 
other parallel block extensions. Remote accesses and synchronization must 
be explicitly specified by the programmer. 

Olden is a compiler and runtime system for C programs on distributed 
memory machines. (18'22, 29) The philosophy of the design of Olden is very 
similar to that of EARTH-C. In both cases they were designed to minimize 
the burden on the programmer, and to have the compiler automatically 
handle communication and synchronization. In Olden, the programmer 
uses a future notation to expose parallelism, and the Olden compiler uses 
sophisticated compile-time techniques to combine computation migration 
and software caching to exploit localitY. Unlike EARTH-C, Olden is not 
specifically targeted towards a multithreaded architecture. Thus, the com- 
pilation problems are different in the two approaches. In compiling 
EARTH-C, a large part of the problem is in generating the appropriate 
threads, whereas in Olden it is deciding when to use software caching and 
when to do computation migration. The target applications of the two 
projects are quite similar, and many of the benchmarks used in our 
experiments come from the Olden benchmark suite. 

Overall, a distinct feature of EARTH-C is that it provides the 
programmer a more traditional high-level language that does not explicitly 
support threads, and it uses selected language extensions as well as com- 
pilation techniques to automatically translate high-level programs into 
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lower-level threaded programs. Another unique experience with the 
EARTH-C development is that the language extensions have been evolving 
through an integrated project in which the EARTH architecture and run- 
time system, and the EARTH-C compiler are developed together, along 
with the parallel development of a substantial suite of benchmarks in both 
EARTH-C and Threaded-C. This experience has helped us to understand 
what is essential for users to express parallelism in their programs, and 
what the compiler should do to generate efficient code and exploit the 
power of the EARTH architecture and its program execution model. 

6. C O N C L U S I O N S  A N D  F U R T H E R  W O R K  

We have presented a methodology for programming multithreaded 
architectures. We have focused on providing a simple parallel dialect of C, 
called EARTH-C, that exposes parallelism and locality to the programmer, 
but does not expose threads or communication. By using only very simple 
extensions to C, we provide a straight-forward programming model for the 
programmer, and a language that can be effectively analyzed by the com- 
piler. Thus, the programmer can focus on high-level issues like specifying 
coarse-grain parallelism and improving locality, while the compiler does 
the work of detecting fine-grain parallelism and creating the lower-level 
threads and synchronization. We presented a thread generation strategy 
based on list scheduling that minimizes the number of threads, and 
schedules remote operations as early as possible. 

We tested our approach with six benchmark programs, and we found 
that the EARTH-C programs were simple to write, and that it was easy to 
create different versions of programs that explored the effect of throttling 
parallelism, exploiting locality, collective communication, and so on. Thus, 
it seems to be a good language for rapid prototyping. 

Even with naive EARTH-C versions of the benchmarks, where we did 
not focus on maximizing data locality, we achieved very good speedup in 
some cases, and reasonable speedup in others. This was, in part, due to the 
fact that the underlying multithreaded model can tolerate some com- 
munication if there exists adequate parallelism. Thus, the programmer need 
not always worry about data locality. 

Our advanced EARTH-C versions of the benchmarks did use more 
locality, and in several cases this does result in significant performance 
improvement. Thus, the features for expressing locality in EARTH-C were 
useful, and are definitely necessary. Finally, we found that the advanced 
EARTH-C versions almost match the performance of the hand-coded 
Threaded-C versions. Thus, for this class of benchmarks, there is no significant 
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performance penalty for programming in the EARTH-C language that 
hides the underlying multithreaded architecture. 

Our experiments with shared variables and atomic operations showed 
that these features did help in simplifying some programs, and in providing 
support for new parallel paradigms. We also showed that shared variables 
must be used carefully, and overuse can cause performance degradation. 

Based on our experiences we plan to improve the compiler to do more 
locality analysis and collective communication automatically. We are 
currently implementing a dataflow analysis based on type inference that 
detects when pointer variables must be local, must be remote, or could be 
either local or remote. This analysis will be used to decrease the number of 
split-phase operations required, and to selectively clone procedures to 
improve locality and automatically create basic procedures. We would also 
like to study more variations on our list-scheduling heuristics. These addi- 
tions should further improve the performance of naive EARTH-C 
programs. 
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