
International Journal of Parallel Programming, VoL 25, No. 5, 1997

Dynamic Resolution: A Runtime
Technique for the Parallelization
of Modifications to Directed
Acyclic Graphs

Lorenz H uelsbergen 1

Static program analysis limits the performance improvements possible from
compile-time parallelization. Dynamic parallelization shifts a portion of the
analysis from compile-time to runtime, thereby enabling optimizations whose
static detection is overly expensive or impossible. Dynamic resolution is a
dynamic-parallelization technique for finding loop and nonloop parallelism in
imperative, sequential programs that destructively manipulate dynamic directed
acyclic graphs (DAGs). Dynamic resolution uses runtime reference counts on
heap data, a runtime linearization of threads, and a simple static analysis to
dynamically detect potential heap aliases and to correctly coordinate parallel
access to shared structures. We describe dynamic resolution in the context of
two imperative procedures: DAG rewrite and destructive quicksort. The descrip-
tion is couched in the pointer-safe language ML; with some programmer asser-
tions and custom macros for pointer and memory manipulation, dynamic
resolution is applicable to pointer-unsafe languages (C extended with threads)
as well. Furthermore, with programmer identification of cyclic structure,
dynamic resolution can be used to find parallelism in programs that manipulate
cyclic structures. Shared-memory implementations of dynamic resolution for
ML and C have attained parallel speedup for nontrivial sequential procedures
such as destructive quicksort; empirical speedup results obtained on fast con-
temporary machines are given.

KEY WORDS: Dynamic language parallelization; runtime pointer analysis;
medium-grain parallelism; automatic compiler parallelization.

1Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, New Jersey,
07974. E-mail: lorenz@research.bell-labs.com.

385

0885-7458/97/1000-0385512.50/0 �9 1997 Plenum Publishing Corporation

386 Huelsbergen

1. I N T R O D U C T I O N

Parallelization of irregular computations involving mutable dynamic data
structures is difficult for programmers and compilers alike. Programmers
must reason about shared substructures in a program's dynamic data to
correctly synchronize parallel access to shared state. Parallelizing com-
pilers, moreover, must statically infer structure sharing and produce a safe
evaluation and synchronization schedule. (8'22) The difficulty lies in the
dynamic nature of irregular computations--shared structure appears and
disappears dynamically. Hence, the available parallelism, and its attendant
synchronization requirements, necessarily vary during program execution.

This article describes the design of a dynamic-parallelization techni-
queS3, 4) called dynamic resolution (DR). In pointer-safe languages (such as
ML t5)) dynamic resolution can automatically parallelize program proce-
dures that destructively manipulate directed acyclic graphs (DAGs). For
programs that manipulate cyclic structures, dynamic resolution--in con-
junction with programmer identification of cyclic and acyclic struc-
tures--can also find parallelism in the program's computations on acyclic
data.

Dynamic resolution dynamically detects and dynamically schedules
potentially conflicting DAG modifications; it preserves the program's
sequential semantics by resolving conflicts at runtime. Dynamic resolution
is interprocedural and higher order in that it finds expression-level
parallelism across procedure calls. Coupled with another dynamic-
parallelization technique called 2-tagging, ~ DR can furthermore find
such parallelism in the presence of higher-order functions (2-tagging is a
general technique for dynamically propagating properties of a function as
a tag on its runtime closure.) In pointer-unsafe languages (such as C t6) with
user-level threads), DR, along with programmer assertions on data types
and custom macros for memory and pointer manipulation, can be used to
dynamically detect and exploit parallelism.

Static pointer analyses (e.g., Refs. 1, 2, 7-11) cannot provide precise
parallelization information in the presence of dynamic structure
sharing--such analyses must conservatively assume that /f sharing can
occur, then it always occurs. Hence dynamic approaches are needed to
parallelize programs that may statically share structure when in fact they
do not dynamically share structure.

Dynamic resolution is a hybrid: a static component computes inexpen-
sive, but partial, information about the program at compile time; a
dynamic component gathers and maintains information about the program's
heap structure at runtime. The combination of static and dynamic informa-
tion is then used to find and utilize parallelism necessarily obscured by

Dynamic Resolution for DAGs 387

compile-time approaches. DR's hybrid structure can discover and effec-
tively utilize parallelism in nontrivial imperative procedures such as
destructive quicksort. ~ ~2~

Implementations of DR have been built for the Standard ML of New
Jersey (t3) ML compiler and for C with user-level threads. Details of the ML
implementation--and the experiments conducted therein--have been pre-
viously reported. ~ This article serves to first codify DR and its exten-
sions in an implementation-independent manner; and then to present
measurements of C parallelized via DR annotations. In particular, we pre-
sent empirical measurements that compare C with DR to hand-paraUelized
C (unsafe parallelism) and to sequential C on a contemporaneously fast
shared-memory multiprocessor. On the programs we examine, we find that
DR--although it incurs runtime overheads--already "breaks even" with
only a few processors; that is, parallelism discovered by DR readily offsets
DR's runtime costs and enables it to outperform its sequential counter-
parts. Furthermore, we show that dynamic resolution is competitive with
explicitly parallel versions of the C programs.

This article also studies the impact of shared structure on the perfor-
mance of dynamic resolution. Concurrent access to shared structure
dynamically selects sequential execution under the dynamic-resolution
evaluation model. Dynamic sharing can therefore inhibit DR paralleliza-
tion. In contrast, completely static techniques must conclude that if sharing
can occur, then it always occurs. DR instead adapts to the actual sharing
present at runtime. It is our assumption that sharing occurs in programs,
but in many programs does so only infrequently, Empirical evidence
suggests that DR can tolerate some sharing and still outperform a sequen-
tial implementation.

The next section is an overview of the problem dynamic resolution
addresses; it provides the main example used throughout the paper. Sec-
tion 3 provides definitions and notation. Section 4 explains the idea under-
lying dynamic resolution. Sections 5 and 6 respectively describe DR's static
and dynamic components. Extensions and optimizations are in Section 7.
Section 8 contains an example of DR applied to quicksort. Section 9 briefly
describes application of DR in pointer-unsafe languages. Implementation
and measurements of C-based dynamic resolution are described and reported
in Section 10. Related work is in Section 11 and Section 12 concludes.

2. O V E R V I E W

Parallel evaluation of program expressions that read (get) and modify
(set) shared data-~lata that multiple expressions may concurrently
access--must prevent read/write and write/write conflicts from violating

388 H uelsbergen

the sequential semantics of the language. A program's data-sharing charac-
teristics, however, depend on the program's dynamic data structures which
often depend on the program's input. Not surprisingly, dynamic data struc-
tures are difficult to precisely analyze at compile time. <7' 10, 11, 14-17)

A compiler may statically deduce, for example, that a list l of mutable
items (reference values in ML) may contain the same element a more than
once (thereby sharing a). This forces the compiler to perform operations on
individual elements of l sequentially because, at compile time, it is not
known when (at runtime) or where (in 1) such shared elements exist. For
a given dynamic instance of 1, however, l's elements may be disjoint so that
their concurrent access and modification is safe. Furthermore, even if s o m e

elements of I are identical (shared), others can still be safely modified con-
currently if sharing detection and expression scheduling are dynamic.
Dynamic resolution performs sharing detection and expression scheduling
at runtime.

The inenode function of Fig. 1 illustrates the problem and will serve
as the example of automatic parallelization using dynamic resolution. The
incnode function operates on dynamic data of the tree datatype. Function
incnode's single parameter has type int tree; that is, internal nodes contain
integer reference values and two subtrees. When supplied a leaf node, the
incnode function does nothing. Otherwise, when supplied an internal node,
inenode first increments the integer reference value at that node and then
recursively descends into the node's left and right subtrees.

The sequential semantics of ML requires that all modification (with
set) of a reference value r by the expression (inenode left) occur before
expression (inenode right) accesses r. Similarly (inenode right) may not
set r until (incnode left) completes its last access of r. Parallel evaluation
of (inenode left) and (incnode right) is however safe when (inenode left)
and (incnode right) access disjoint sets of reference values, i.e., when the
dynamic data bound to left and right do not share structure. Static detec-
tion of this parallelism, however, requires the compiler to ascertain whether
(and where) sharing exists in inenode's argument.

d a t a t y p e ~ t r e e - L e a f ~ Node o f (~ r e f * ~ t r e e * ~ t r e e)

f u n i n c n o d e L e a f = ()

I i n c n o d e (N o d e (x , l e f t , r i g h t)) - (s e t x (1 + (s e t x)) ; i n c n o d e l e f t ; i n c n o d e r i g h t)

Fig. 1. The tree datatype and the incnode function. A tree is a Leaf or a Node. Leaf is a
nullary constructor; Node is a ternary constructor. A Node contains a mutable reference of
type ~t and two subtrees. Note that DAGs can also be constructed from this datatype.
Dynamic resolution can safely evaluate expressions (inenode left) and (inenode right) in
parallel since it detects conflicts, due to potential sharing in inenode 's argument (of type int
tree), dynamically.

Dynamic Resolution for DAGs 389

Static extraction of parallelism from incnode is difficult because the
tree datatype can be used to both construct DAGs as well as trees. For
example, the expression

l e t v a l n = Node(re f O , n l , n 2)
in

Node(re f O,n,n)
end

creates a DAG with sharing using the tree datatype. Figure 2 depicts valid
arguments to inenode with and without sharing: a tree and a DAG (the
one constructed in this let expression). [Note: cyclic structures cannot be
arguments to incnode since ML's type system prohibits the introduction of
a cycle into a structure of type int tree.] A naive parallel version of
incnode that simply evaluates expressions (incnode left) and (incnode
right) concurrently without coordinating internal-node accesses cannot
ensure correct results in the references. Because of race conditions, con-
current get and set operations to shared structure may produce indeter-
minate values. With naive parallel evaluation, for example, incnode
applied to the �9 node in the DAG of Fig. 2 may produce indeterminate
results since expressions can concurrently access the same reference
values--references in and below the �9 node.

Even when a data structure contains sharing, it is still possible to
(dynamically) discover and utilize parallelism in expressions that access
portions of the structure that are not shared; e.g., incnode can safely
modify the nodes of disjoint trees that are subgraphs within a DAG (such
as in the structure below the �9 node in Fig. 2). Since static methods that
approximate the structure of a program's dynamic data can, in general,
only do so imprecisely, it is possible to design a program using incnode
that a given static technique cannot parallelize: incnode applied to a DAG
whose size and shape (i.e., connectivity) exceeds the static technique's limit

O

/ \
O O

/ \ /

0

/ ' \
~ e e DAG

Fig. 2. Possible structures of type ~ tree. DR is able to
find parallelism in DAGs with sharing.

390 Huelsbergen

of precise approximation (see Section 1). As another example of such a
program, consider the tree and DAG of Fig. 2 both reaching an application
of inenode via a conditional whose predicate is statically unknown--in this
case, static techniques forgo parallelism in inenode since they must conserva-
tively approximate inenode's argument as always containing shared nodes.

The dynamic-resolution technique described herein can automatically
extract parallelism from inenode.

3. P R E L I M I N A R I E S

In this section we provide definitions for describing heap structure.
They are used in the presentations of dynamic resolution's static and
dynamic components in the subsequent sections.

ML datatype constructors build dynamic values--values that reside in
dynamically-allocated storage in the program's heap. Dynamic values are
references, tuples, and recursive data structures created with (non-nullary)
data constructors. We denote the heap as ~ff. Implementations represent a
program's: dynamic values as nodes in ,,W. A node h e Jr representing a
dynamically-allocated value, contains basic values directly (e.g., integers
and nullary constructors) and links to other nodes in ~ . For example, the
expression N odeIref 0, Loaf, I_eaf), using the tree datatype of Fig. 1, creates
the structure

NOde (, Leaf, Leaf)

R e f (0)

in ~ that consists of two heap nodes and one link. The heap ~'ff is a direc-
ted graph with nodes as its vertices and links as its edges. A node h's in-
degree, in-degree(h), is the number of links incident on h.

Def ini t ion 1 (Simple Node). Node he ~ is a simple node if in-
degree(h) ~ 1.

Definition 2 (Join Node). Node h e ~ is a join node if in-
degree(h) > 1.

Join nodes will serve as indicators of potentially shared dynamic data.

Definition 3 (Path). A path of length n in g is a sequence of
nodes, (hi,..., h ,) e ~,~ where n > l, such that Vi, 1 ~< i < n, there exists a
link from hi to hi+l.

Dynamic Resolution for DAGs 391

Denote the existence of a path from h e ~ to h' e ~ as h =, h'. The
nonexistence of a path from h to h' is noted h ~ h'. If h :=. h', then node h
is said to reach node h'.

Definition 4 (Simple Path). A simple path of length n in A~ is a
sequence of nodes, (h , h ,) e ~ where n>~l, such that Vi, l<~i<n,
there exists a link from hi to h~+~, and Vi, l ~< i~< n, node h; is simple.

Denote the existence of a simple path from h e ~ to h' e A~ as h --} h'.
The notation h 7~ h' denotes that no such path exists. If h ~ h', then node
h is said to simply reach node h'.

The relations =~, ~ , --+, and A collectively comprise the reaching rela-
tions for heap nodes.

Definition 5 (Acyclic Node). Node h e A~ is an acyclic node if all
paths from h to h have length 1.

That is, h is acyclic when it does not lie on a cycle in A~. Dynamic
resolution's static component determines when a dynamic value is always
represented by an acyclic node.

Identification of the free variables of an expression that can bind
dynamic values or functions will also be necessary. As usual, let FV(e) be
the set of free variables in e. The free dynamic variables of an expression e
are:

FDV(e) = {x e FV(e) I x can bind a dynamic value}

In ML, an identifier's type indicates whether it can bind dynamic values.
The free function variables of an expression e are:

FFV(e) = { f e FV(e)] f h a s type T ~ z'}

That is, a free variable f in e is a free function variable if it can be used as
a function (i.e., can be applied). Finally, characterize a function f as true if
all dynamic values accessible in f are either created in f or are parameters
to f. Otherwise, f is said to be untrue.

D e f i n i t i o n 6 (True Function). Function f is a true function if
FDV(f) = ~ and if Vge F F V (f) \ { f } the function g is a true function.

That is, f is a true function when f does not contain free dynamic
variables and does not apply free functions that contain free dynamic
variables. For example, in the function definition

392 Huelsbergen

fun f (Cons(x,xs)) =
l e t fun g y = Cons(y+l ,xs)
in

g x
end

f is true since FDV(f) = ~ and FFV(f) = { Cons, + }. (The list constructor
(Cons) and integer addition (+) are true functions.) Function g is an
untrue function since it accesses the dynamic value bound to xs; i.e.,
FDV(g) = {xs}.

4. DYNAMIC RESOLUTION PROPERTY

In this section we describe the basic idea underlying dynamic resolution.
To safely evaluate two expressions e and e' that update a dynamic

data structure (e.g., a DAG) in parallel, it is necessary to identify the
dynamic data that is potentially reachable by both expressions, and to
correctly coordinate accesses to this data. Initially, evaluation of the two
expressions can proceed in parallel with e having priority over e' in the
following sense. Upon detection of an access to any shared data by e', all
further evaluation occurs sequentially; i.e., e' must suspend on an access to
shared data and may not resume until e completes. When a processor
suspends an expression's evaluation, it need (and must) not idle but should
rather evaluate other available expressions. Suspending e' on access to
shared data is a means of preserving the language's sequential semantics.
Note that in the absence of shared data, dynamic resolution will evaluate
both expressions completely in parallel.

The detection of shared data and the coordination of accesses to this
data (i.e., deciding which expression to suspend) occurs dynamically. A
dynamic-resolution compiler can automatically insert code into the
program text to detect potential sharing at runtime; and, the DR runtime
system can govern which expressions may access shared data. Static
analysis is used to select, for parallel evaluation, expressions whose shared
reachable data can always be detected at runtime. This analysis relies on
the following property concerning paths and nodes.

Property 1. Let h,h' be nodes in heap ~ . I f h ~ h a n d h ' ~ h ,
then for all h " e ~ such that h =~ h" and h'=~ h", the following relations
hold: h ~ h" and h' ~ h".

That is, if all paths from h to h' and from h' to h contain a join node,
then all paths from h or h' to any shared node h" (accessible from both h

Dynamic Resolution for DAGs 393

and h') must contain a join node. This property enables the static selection
of program expressions for which all shared data can be detected
dynamically.

Figure 3 illustrates this property. If it is known that node h cannot
simply reach h' (and vice versa), then all shared structure reachable from
h and h' is always delimited by a join node (node a in the diagram). Note
that simple nodes (e.g., node b) as well as join nodes may be shared;
however, evaluation of an expression will always traverse a join node
before encountering a shared simple node, thereby providing a means for
detecting sharing dynamically.

Statically, dynamic resolution locates program identifiers that always
bind nodes h, h' ~ J~ such that this property (h ~ h' ̂ h' ~ h) holds. Sup-
pose that the only dynamic values accessible to expression e are those
reachable from h. Similarly, suppose that the only dynamic values
accessible to expression e' arc those reachable from h'. Furthermore,
assume e and e' are candidates for parallel evaluation, but potentially con-
flict (due to read/write or write/write conflicts). If the sequential semantics
requires evaluation of e before e', then e and e' may be safely evaluated in
parallel with the following restriction: e' may not access any join node until
e completes (e, however, may access all--join or simple---nodes that it can
reach).

When e and e' do not share structure (e.g., ~h" e J~ such that
h~h" ^ h' =~h") then it is possible for e and e' to completely evaluate in

h h '
o 0

a e

Fig. 3. The nonexistence of simple
paths from nodes h to h' and from h' to
h imply that the shared structure
reachable from h and h' (boxed region) is
always guarded by a join node (node a).
Dynamic resolution detects potential
sharing by checking for join nodes at run-
time.

394 Huelsbergen

parallel with dynamic resolution. Otherwise, DR evaluation of e' will
suspend upon access to a join node--a node potentially shared with e- -
until e's evaluation completes. Note that in the presence of sharing, some
evaluation of e' may still be concurrent with that of e. Dynamically, the
program detects accesses to join nodes and correctly schedules e and e'
(Section 6).

Dynamic resolution's static component identifies program identifiers
that satisfy the conditions of this property, and uses the information to
select expressions for parallel evaluation. The dynamic component detects
join nodes and dynamically schedules (suspends and restarts) expressions
as necessary. We now fully describe DR's static and dynamic components.

5. STATIC COMPONENT

Here we first informally describe DR's static component. Sections
5.1-5.4 supply the technical detail.

Informally, the goal of dynamic resolution's static component is to
find two expressions e and e' whose safe parallel evaluation is impeded by
sot operations to dynamic data potentially shared by both expressions. The
static component ensures that all shared nodes reachable by e and e' can
be detected dynamically. That is, it infers if the DR property holds. For
such expressions, access to shared data can be detected and correctly coor-
dinated at runtime.

Static DR paraUelization occurs at the function level. For a function
f, the static component first identifies the data constructors in f ' s patterns
that always (dynamically) bind acyclic nodes (Section 3). [Note: Patterns
(see e.g., Ref. 18) match dynamic values against datatype constructors,
constants, and variables. A pattern gives information about the reaching
relations among its variables: it is a positional notation that reveals the
positions of a pattern's variable relative to the pattern's other variables and
constructors.] Static classification of a datatype constructor as acyclic (i.e.,
it only matches acyclic nodes) in turn enables static inference of the reach-
ing relations among a pattern's variables. In particular, static classification
of a data constructor as acyclic allows the static inference (Section 5.2) of
strong (i.e., ~) reaching relations among the constructor's variables. Such
reaching relations permit DR parallelization because shared structure
accessible from these variables can be dynamically detected by DR's
dynamic component (Section 6). Given such reaching relations, expressions
are statically selected and restructured (Section 5.3) for concurrent DR
evaluation. Finally, the static component places checks into the program
that examine a node's status (join or simple) in expressions that can access
its contents (Section 5.4). [Note: without loss of generality, we assume that

Dynamic Resolution for DAGs 395

the contents of a node can be accessed only by matching (deconstructing)
it in a pattern.]

We first describe how to statically determine whether a data construc-
tor in a pattern matches only acyclic nodes, and then how to use this infor-
mation to infer the reaching relations among a function's variables. Lastly,
we describe how to select candidate DR expressions and where, in the
program text, to place the checks that detect sharing.

5,1, D a t a - C o n s t r u c t o r Classi f icat ion

A DR compiler must statically classify data constructors in patterns as
cyclic or acyclic depending on whether the nodes that the constructor
dynamically matches can lie on cyclic structures in the heap. Acyclic con-
structors admit DR parallelization; cyclic constructors inhibit DR
parallelization because the shared structure reachable from a cyclic con-
structor's variables cannot always be dynamically detected with join nodes.
For simplicity, we first assume all patterns in the program contain at most
one data constructor--this restriction is relaxed in Section 5.2. The form of
such a pattern is

p =- C(xl ,..., x ,)

where C is a data constructor and the xi, 0 < i ~< n, are variables that are
bound when p is matched. [Note: the language's constants (e.g., integers)
may also appear in pattern. However, since they are not dynamic values
they cannot reach shared data and hence require no special treatment.]
For example, the pattern Node(x, left,right) of the tree datatype (Fig. 1)
contains the data constructor Node and variables x, left and right.

For a pattern p of therefore above, DR's static component classifies
p's constructor C as cyclic or acyclic. We describe two possible methods
of attaining this classification: from static type information (inferred
automatically in ML) or from programmer-supplied assertions.

5.1.1. Classification from Static Types

Identification of a datatype constructor in pattern p as acyclic is often
possible from p's type. In a call-by-value language, cyclic data structures
arise only from the re-assignment of a reference value that resides in a
dynamic data structure. Furthermore, to introduce a cycle, the contents of
this reference value must be a dynamic value; i.e., the reference value must
have a dynamic-value type at compile time. A pattern's type, therefore,
indicates whether the data it can match contains reference values. Hence,

396 Huelsbergen

type information can identify pattern constructors that always match
acyclic nodes.

For example, the pattern p==-(Node(x, laft,right)) in the inenode
function (Fig. 1) has type int tree since the contents of x is used in an
integer addition. Pattern p's dynamic variables (loft and right) also have
type int tree. This type information insures that p always dynamically
matches an acyclic node in the heap since the reference values in a struc-
ture of p's type can only contain integers.

5.1.2. Classification from Assertions

In a language with polymorphic datatypes (ML), static determination
of whether a constructor only builds acyclic nodes is not always possible.
In a language without strong static typing, this is furthermore often
impossible. Since dynamic resolution is applicable only to acyclic data, we
describe an assertion mechanism that allows a programmer to declare a
recursive ML data structure as acyclic. With assertions for acyclic data,
DR may be applied to programs that compute with cyclic struc-
tures--paraUelism discovered via DR is restricted to that in functions
traversing only acyclic data.

Constructors in patterns that cannot be classified as acyclic inhibit
parallelization with dynamic resolution because the compiler will not be
able to infer strong (i.e., ~) reaching relations for the variables of cyclic
constructors (see Section 5.2 next). For example, the Cons constructor of
the conventional list datatype declaration

datatype alist = Nil [Cons of (a , alist)

can create cyclic nodes. The program

datatype t = T of t list ref [S

let val x = T (ref IS])

val (T 7) = x
in

set y Ix] ;

get y

end

returns a list l whose single element (of type t) contains a reference value
with contents 1 (e.g., the list in Fig. 4). A compiler cannot generally infer
that the list-constructor Cons matches acyclic nodes. For example, l is a
valid argument to the standard map function (see e.g., Ref. 18 for its

Dynamic Resolution for DAGs 397

------P-Cons (~ ,Nil)

(5,
Fig. 4. Cyclic list constructed with con-

ventional Cons.

definition)--accordingly, map's pattern does not contain acyclic construc-
tors, and dynamic resolution cannot parallelize the map function.

A programmer-supplied assertion can be used to identify acyclic con-
structors in the presence of polymorphism. Programmers are typically
aware of cyclic data since precautions must be taken when traversing
it--lists, tuples, trees, and DAGs can often be identified as acyclic by the
programmer. We introduce the acyclic qualifier for programmer assertion
that a datatype's constructors are used only to create acyclic nodes.

For example, the acyclic modifier can be used to declare a
polymorphic acyclic-list type:

acyclic datatype alist' = Nil'

I Cons~ of (a * czlist')

The programmer must ensure that list nodes constructed with the acyclic
Cons' constructor never lie on a cycle in the heap. Note that this restric-
tion concerns only the spine of a list thus constructed. Elements of an
acyclic list, however, may be cyclic structures; elements may also share
structure (Fig. 5). The list of Fig. 4, however, is not a valid acyclic list since
it violates the declaration of acyclic. Note that the compiler cannot in
general detect such violations; incorrect usage of the acyclic declarator can
cause indeterminate program behavior.

The function map' of Fig. 6 is an acyclic version of map that can only
be applied to lists of type 0dist'. The dynamic-resolution technique can be
applied here because Cons' may only bind acyclic nodes. Hence, the com-
piler can infer strong reaching relations for its variables (x ~ xs and
xs 7~ x). Even if the higher-order parameter f performs imperative get and
sot operations it may still be possible to evaluate the expressions of map'
in parallel; static effect inference "9) may ascertain at compile time that f's
effects admit parallelization or a 2-tag (3~ may-convey this information at
runtime. 2-tagging is general technique for propagating properties of a
function f with f ' s closures at runtime..In this situation, the ;t-tag carries

398 Huelsbergen

o / .
0

Fig. 5. An acyclic list suitable for dynamic resolution. An element of an acyclic list may
reach tail elements, list elements may themselves be cyclic structures, and multiple list
elements may reach shared structure.

a boolean value indicating that the higher-order function admits dynamic
resolution. Compiler-generated code checks the 2-tags of higher-order func-
tion parameters (f) to function g on entry to g and selects parallel DR
evaluation only when f is amenable to dynamic resolution. 2-tags are
assigned statically, when possible; otherwise, they are computed (from the
2-tags of other functions) when a closure for f is created (cf. Section 8).

5.2. Reaching-Relation Inference

Static classification of the data constructors in patterns as acyclic
allows the automatic inference of reaching relations among a pattern's
variables. When data constructor C in pattern p is acyclic, the nodes
dynamically bound to C's variables x;, 0 < x ~< n, cannot reach one another
via simple paths. That is, when C is acyclic, the compiler can safely infer
that xj 7~ xk for all pairs of C's variables xj and xk, where 0 < j, k ~< n and
j # k. Proof of this follows. Let h, h' e ~ denote the nodes bound to two of
C's variables xj and xk (where 0 < j, k ~< n and j # k) when p matches
dynamically. When h and h' are the same node (h = h ') then h (and h') are
join nodes due to the two links from C's node. Alternately, when h # h' a

fun map' f Nil' = Nil'

I map' f (Cons'(x,xs)) = C o n s ' (f x,map' f xs)

Fig. 6. The map' function for acyclic lists.

Dynamic Resolution for DAGs

a

0

/\
O -1~O X i Xj

Fig. 7. Node a is an acyclic data-con-
structor node. Nodes xi and xj are
directly reachable--via a single link from
a. Any path from xi to xj is not simple
because it always contains a join node
(xj). Such a path cannot use the link from
a to xj since a is acyclic. Black nodes are
join nodes; gray nodes represent any
(simple or join) node.

399

simple path cannot exist from h to h' (i.e., h 7~ h'). Suppose a simple path
from h to h' exists. Node h' then has at least two links: one from C's node
and one from the node preceding h' on the path from h to h' (this path can-
not pass through C's node since C's node is acyclic; hence this path cannot
use links from C's node). Since h' has at least two incident links, it must
be a join node. This, however, contradicts the supposition. Therefore, a
simple path cannot exist from h to h'. Similarly, a simple path cannot exist
from h' to h (i.e., h' ~ h).

Figure 7 depicts the relationship between an acyclic node a (corre-
sponding to an acyclic constructor) and the nodes xi and xj directly
accessible from a. If x; can reach xj via any path, then that path must
contain a join node (xj). Since the constructor node a is acyclic, the path
from xi to xj cannot pass through a and hence cannot include the link from
a t o xj.

Reaching relations that assert the nonexistence of simple paths
between pattern variables enable dynamic resolution--sharing in the struc-
ture bound to these variables can be detected at runtime because a join
node is always encountered before an expression reaches any shared
structure.

In Section 5.1, the program's patterns were restricted to contain at
most one data constructor. Relaxing this restriction is straightforward and
doing so admits nested data constructors in patterns. If the constructors C
and C' in the general pattern

p"~- C (x I x n a s C'(y l Ym))

82S/25/5-6

400 Huelsbergen

are acyclic, the reaching relations

x j ~ x k O < j , k < ~ n A j ~ k

x j ~ y g O<j<nAO<k<~m

x. :::~Yk O<k<~m

can be inferred. Any path from a variable xj to a variable y~ cannot be
simple because C is acyclic; however, a simple path can exist from variable
x, to a variable Yk because the nodes (dynamically) corresponding to the
constructors C, C', and to variables y~ may all be simple. This occurs, for
example, when p matches an unshared tree.

5.3. Expression Selection

Static analysis propagates the reaching relations induced by a pattern
into the pattern's scope. Static selection of expressions for parallelization
with dynamic resolution then commences as follows.

Two expressions, e and e', whose safe parallel evaluation is con-
strained only by read/write or write/write conflicts, are candidates for
parallel evaluation using dynamic resolution if they meet three criteria:

1. VxeFDV(e) and Vx'eFDV(e') the relations X T~ x' and x'7~ x
hold.

2. Vx~FFV(e), f is a true function; and, Vf'e FFV(e'), f ' is a true
function.

3. Vx~FDV(e), x does not contain untrue functions; and, Vx'~
FDV(e'), x' does not contain untrue functions.

The first criterion requires that all dynamic values bound to the free
variables in e cannot reach, via a simple path, dynamic values bound to the
free variables in e'. It thereby ensures that all shared data accessible to both
e and e' can be detected dynamically (Section6). The second criterion
restricts the functions in e and e' to not have access, through their free
variables, to dynamic values other than those available as free variables in
e and e'. Since DR admits higher-order functions, the last criterion requires
e and e' to not apply untrue functions contained in their accessible
dynamic data; it thereby prohibits access to (arbitrary) dynamic values
through the free variables of higher-order untrue functions stored in
dynamic data. [-Note: the type of a free dynamic variable indicates whether
any structure is may bind can contain functions.]

Dynamic Resolution for DAGs 401

The example incnode function contains two expressions that can
safely evaluate concurrently using dynamic resolution: e = incnode left and
e '= incnode right. The pattern p=(Node(x, left,right)) in incnode
induces the set {x r ylx, ye {x, left,right} ^ x#y} of relations for p's
corresponding function body. Thus, since FDV(e)= { left} and FDV(e') =
{right}, expressions e and e' meet the first criterion. Furthermore, since e
and e' do not apply untrue functions (incnode is a true function) and do
not have access to data containing untrue functions (left and right cannot
contain functions), expressions e and e' meet the second and third criteria.
Figure 8 reflects the selection of (inenode left) and (incnode right) for
parallel evaluation provided that all shared data is dynamically detected
and access to this data dynamically coordinated. This detection and coor-
dination is performed by dynamic resolution's dynamic component,
described later. We use the sequence separator ;Itdr to specify parallel
evaluation with sharing detection of the expressions it separates.

5.4. Check Placement

The last responsibility of dynamic resolution's static component is the
identification, in the program text, of all heap-node accesses so that sharing
can be dynamically detected. In particular, a check to determine if a node
is a join node (and hence potentially accessible to other concurrent expres-
sions) is placed immediately before a datum is deconstructed when it
matches a datatype constructor (either cyclic or acyclic) in a pattern. Plac-
ing a check on every dynamic-value access ensures that sharing (i.e., a join
node) is dynamically detected along any path in the dynamic data that the
program traverses. These checks examine the status (join or simple) of the
node matching the constructor. In Fig. 8, the (de)constructor Node must
check the status of the nodes it matches before it accesses any of their
fields. The result of this check (join or simple) governs the program's subse-
quent behavior; the full dynamic operation of these checks is discussed in
Section 6.3

fun incnodeDR Leaf = ()
I incnodeDR CN-'~-e(x, lef t , r ight)) = (se t x (1 + (get x)) ;

(incnodeDR left ;lld~ incnodeDR right))

Fig. 8. The inenode function with annotations for dynamic resolution. The expressions
(incnodeDR loft) and (incnodeDR right) are evaluated in parallel using dynamic resolution.
An overlined constructor requires a check for sharing of the matched heap node before any
access of its components.

402 H uelsbergen

6. DYNAMIC COMPONENT

Dynamic resolution's runtime component does two things: it detects
when an expression is about to access potentially shared data and it con-
trols which expression may access such data. Shared data is detected by
checking, upon a heap-node access, whether the node being accessed is a
simple node or a join node. To control access, DR maintains a total order
of all concurrently-evaluating threads which reflects the evaluation
order--with respect to side-effects--required by the language's sequential
semantics. (An expression is dynamically scheduled for concurrent evalua-
tion as a thread) This linearization governs only the order in which threads
side-effect potentially shared structure; it does not restrict the parallel
evaluation of expressions that perform no side effects or that alter only
unshared state. Before access to potentially shared data, an expression
examines its position in the thread linearization to determine whether it
may access the data or must wait for the evaluation of other expressions
(threads earlier in the order) to complete.

Before describing the details of DR's dynamic component, we note that
sharing detection and thread scheduling constitute the runtime overhead of
dynamic resolution. Additional parallelism discovered by DR must offset
its cost for DR to be effective. Note that DR overhead is itself "parallel;"
its cost distributes over available processors. Experimental measurements
of DR implementations exhibit this behavior (Section 10 and Refs. 3, 4).

6.1. Join-Node Detection

Reference counts are used to dynamically distinguish join nodes from
simple nodes. The reference count of a node h counts the number of links
from other nodes incident on h--thereby, reference counts reveal informa-
tion about the heap's structure. A nonlink pointer to a node h (e.g., a local
variable pointing to h) is not included in h's reference count because it does
not reveal information about the connectivity of the data structure in
which h resides. A node with a reference count ~< 1 is simple; a node with
reference count > 1 is a join node. A join node is an indicator of potential
sharing because concurrent threads may potentially access the same nodes
from a join node. Therefore, coordination of accesses to join nodes is
necessary to preserve the program's semantics. [Note: a program can have
access to a node with a reference count of zero through pointers (e.g., from
local variables) to that node since nonlink pointers are not included in the
node's reference count.]

If a thread has access to a simple node, no other thread has concurrent
access to this node. Expression selection (Section 5.3), in cooperation with

Dynamic Resolution for DAGs 403

DR's dynamic component, establishes this invariant. Recall that the static
component selects expressions e and e' for parallel evaluation using
dynamic resolution only when the evaluation of e and that of e' will always
encounter a join node before reaching shared data accessible to either
expression.

Building new data (e.g., consing an element onto a list) increments
reference counts. Assignment to a reference value increments the count of
the (dynamic) value being assigned; assignment also decrements the count
of the (dynamic) value being overwritten with the following proviso:
reference counts are sticky---counts of two never change. Therefore, a join
node can never become simple. Sticky reference counts circumvent the
following problem. Suppose an expression e makes a local binding to the
contents v of a dynamic reference value r and then reassigns r's value. If
reference counts are not sticky, this would violate the invariant that a
simple node is accessible to at most one concurrent thread because the
thread evaluating e has access to v (through the local binding). Another
thread may now also have (uncoordinated) access to v since the assignment
to r removes a link to v and can therefore make v simple. For example, if
reference counts were to not stick, then in the expression

l e t v a l (r e f y) = x

i n

s e t x z ;

Y
end

the reference count on the node bound to y may drop to one (making it
simple and accessible) since the link to y from the reference value bound
to x is removed (set x z); yet the thread evaluating the let expression still
has access to y. A concurrent thread, however, may encounter and access
y's simple node--this, in turn, may produce indeterminate behavior. Not
decrementing reference counts that are > 1 prevents a thread from inadver-
tently granting a concurrent thread access to its simple nodes. It is possible
to use garbage collection to reconstitute reference counts that have become
imprecise; Section 7.3 describes such an approach.

Atomicity is not necessary for the reference-count increment and decre-
ment operations. This is because of the invariant that simple nodes are not
concurrently accessible. Since the reference counts of join nodes are never
decremented, changing the reference count on a join node also requires no
synchronization. [Note that a reference count that is greater than the
actual number of links incident on a node is conservative--such a count

404 H uelsbergen

may indicate sharing where none exists, but it cannot admit incorrect
uncoordinated access to a join node.]

6.2. Parallel-Thread Linearization

Dynamic resolution's runtime system imposes a total order on the
program's concurrently evaluating expressions (threads) with respect to
side-effects. A linked list of thread descriptors forms a linearization that
implements this order on threads. This linearization dictates which thread
may access join nodes and which threads must suspend on access to join
nodes. It serves solely to order side-effects to shared data-- i t does not con-
strain parallel evaluation of threads that are side-effect free or that mutate
unshared data.

A thread descriptor has three fields: the thread, the thread's run state,
and a pointer to the next thread descriptor. A thread can be in one of three
run states: active, suspended, or finished. The DR runtime system also main-
tains a single global pointer to the head of the linearization (the head
thread).

Threads are inserted into the linearization as follows. A thread t
evaluating the expression (e;,dre') creates a new thread t' to evaluate e'.
Thread t continues with the evaluation of e. A descriptor is created for t'
that is inserted into the list directly behind the descriptor of t in the
linearization. This will force t to complete before it may access mutable
shared state. Upon creation, a thread descriptor's run state is set to active.

When the head thread finishes, the head is moved to the next thread
descriptor in the linearization that has not finished. If the associated thread
is in the suspended state it is restarted. The computation is complete when
the head reaches the end of the linearization.

It is important to note that the linearization is a concurrent data
structure--insertions of thread descriptors by different threads occur in
parallel without synchronization. As such, the linearization does not
sequentialize the program.

6.3. Expression Scheduling

The head thread in the linearization may freely access any node (join
or simple) that it can reach. Nonhead threads later in the linearization,
however, must suspend on access to a join node since i t - -and all nodes
accessible from it--are potentially shared with other concurrent threads. A
thread t may not access a join node until it is the head thread; i.e., until
all prior threads have completed. On access to a join node, a nonhead
thread sets the run state in its thread descriptor to suspended and then

Dynamic Resolution for DAGs 405

suspends itself. [The processor that suspends a thread proceeds to evaluate
the (nonsuspended) threads.] A nonhead thread that completes without
accessing a join node sets its descriptor's run state to finished. When the
head thread completes, the next uncompleted (run state # finished) thread
in the linearization becomes the head thread. If this thread is suspended, it
is restarted and may now access any join node it can reach--if it is com-
puting, it continues to do so. Since the head thread always makes progress,
deadlock cannot occur.

This scheduling scheme preserves the language's sequential semantics
because, in an expression (e;lldre'), e (and threads created by e) may access
all data potentially shared with e' (and threads created by e') before e' is
given access to this data. In the absence of sharing, e and e' evaluate con-
currently without synchronization under dynamic resolution.

Figure 9 depicts dynamic resolution of an application of the example
inenode function (Fig. 8) applied to a DAG. Straight uni-directional
arrows (---), join nodes (�9), and simple nodes (O) constitute inenode's

DAG argument. The ~ are thread descriptors in the linearization.

Text labels indicate a thread's run state: "A" denotes active and "S" denotes
suspended In the linearization, bi-directional arrows (~-~) represent the
next-prev link between adjacent descriptors. Curved solid arrows ('~--"~)
emanating from descriptors point to the heap node which the thread's

/ /Xo -

Fig. 9. Operation of the thread linearization during dynamic resolution of inenode applied
to a DAG. Boxes denote active (A) and suspended (S) thread descriptors; circles and straight
uni-directional arrows comprise the argument DAG.

406 H uelsbergen

expression is accessing. Curved dashed arrows (,-~/-,,-) emanating from
descriptors designate the node at which the descriptor's thread was created.

In Fig. 9, the thread currently at the head of the linearization is the
thread that initially applied inenode. Therefore, no arrow to its point of
creation is shown. Note that the head thread created threads at all nodes
on the path from the DAG's root to its current evaluation point; e.g., the
computing thread immediately to the right of the head thread was created
(and its descriptor inserted into the linearization) when the head thread
encountered the DAG's left-most simple node. Two threads are suspended:
the thread accessing the DAG's (only) join node from the left and the
thread accessing this join node from the right. They will be restarted when
all the threads before them in the linearization complete. Finally, note that
the last thread t in the linearization will imminently create a new thread for
the evaluation of incnode applied to the right child of t's current
node--the thread descriptor for this new thread will be inserted at the tail
of the linearization.

7. EXTENSIONS

Several extensions to dynamic resolution can potentially improve its
performance and precision (i.e., the amount of parallelism it finds).

7.1. Specialized Function Versions

With dynamic resolution, deconstructing a pattern p upon its success-
ful match to a dynamic value (node) incurs the additional cost of examin-
ing the matched node to determine whether it is a join or a simple node.
As described, dynamic resolution always incurs this cost even when no DR
parallelism exists. To curtail this expense, a compiler can generate two ver-
sions of a program function f : fseq and far. Version f , eq is the conventional
sequential version of f Version far is dynamically parallel and contains
checks to nodes as required by dynamic resolution. Functions applied by
the far version of f must themselves be dynamically parallel. Only when
parallel DR threads are present need the dynamic versions of functions be
used. [Note: the PARCEL system similarly creates multiple, specialized
function versions.] ")

7.2. Head-Thread Optimization

Given sequential and dynamically-parallel function versions, an addi-
tional optimization is possible. Since the head thread in the linearization

Dynamic Resolution for DAGs 407

may unconditionally access any node, it never needs to check whether a
node is a join node or a simple node. Therefore, the head thread may safely
use the sequential code that does not examine node reference counts--it is
important that the head thread evaluate quickly since suspended threads in
the linearization are awaiting its completion. Nonhead threads, however,
must still check reference counts and suspend their evaluation on access to
join nodes.

7.3. Reconstitution of Reference Counts

Reference counts on nodes become inaccurate for two reasons: (1)
when a node becomes a join node it remains a join node (reference counts
stick at two), although the actual oount of the node's incident links may be
less than two, and; (2) some of the program's dynamic data is temporary
and may quickly become inaccessible to the program, but links from this
inaccessible data are still reflected in the reference counts of accessible data.
Imprecise reference counts restrict parallelization with dynamic resolution
because they can (falsely) indicate sharing where none exists.

It is possible to periodically reconstitute a node's reference count to its
actual value. A language implementation's garbage collector (2~ 2~) reclaims
and recycles the program's discarded data; it is a natural place in an
implementation for performing reference-count reconstitution. Reference-
count reconstitution requires a collection algorithm that traverses all live
links in the heap. During traversal, the collector counts and records (as the
reconstituted reference count) the number of links incident on a live node.
In a mark-&-sweep collector, for example, the mark phase visits all links
and can thus restore accurate reference counts during its traversal. Here,
we fully describe reference-count reconstitution for a copying collector (e.g.,
Refs. 22 and 23).

Reference-count reconstitution, in a copying collector, works as
follows. A pointer (e.g., a node bound to a program variable as opposed to
a link in the heap) held by the program to an uncopied node causes the
node to be copied. This copy is given a reference count of zero. A link to
an uncopied node also causes the node to be copied; however, the initial
reference count of a copy initiated by a link is one. The reference count in
this copy is one due to the single link that initially caused it to be copied
(other links to the node have not yet been encountered; if a link had pre-
viously been encountered, a copy of the node would already exist). When
a link to a previously-copied node is encountered, the reference count in
the node's copy is incremented. Since the reference counts required by
dynamic resolution are sticky, reconstitution need not increment reference
counts past two.

408 Huelsbergen

Note that this method of reference-count reconstitution is valid only
during a sequential phase in the program; i.e., when no parallel DR threads
exist. This restriction is necessary because of the problem described in
Section 6.1: a thread may not make a node h simple if it has a binding
(pointer) to h since bindings to h are not reflected in h's reference
count--reconstitution during parallel DR evaluation can (incorrectly)
make a node, with active pointers to it, simple.

8. EXAMPLE

The ML program in Fig. 10 provides a further example of DR's opera-
tion. The mqs function destructively sorts a list of elements using the
quicksort algorithm. (]2) It performs the sort in place; that is, the links of
the argument list's runtime representation are modified during the sort. The
programmer has declared two acyclic datatypes: 0cpair and 0cmlist. The
acyclic 0c pair datatype constructs binary tuples of identically-typed values.
The 0clist datatype constructs mutable lists with elements of type ~--the
lists are mutable because their link fields (to the next list element) are
reference values. With the acyclic declaration the programmer indicates
that the mCons constructor is used only to create acyclic lists.

The mqs function has type

mqs : (~, a --~ bool) --~ a mlist --~ a mlist

and works as follows. The first parameter is a binary boolean predicate
that compares elements of the second parameter, the mutable list to be
sorted. The function returns a sorted mutable list. If the list to sort is empty
(mNil), the empty list is returned. Otherwise, the argument list is decom-
posed-via pattern match--to the list's head (x) and tail (xs'). The
auxiliary function split partitions its argument list (I) with respect to a
pivot element into two lists: the elements that satisfy predicate p (the " < "
relation on integers, for example) and the elements that do not satisfy p. In
mqs proper, the tail of the list to be sorted (xs') is partitioned using the
head (x) as the pivot. Quicksort is then recursively applied to the two lists
returned from split. Sorted sublists are reattached with the call to
mAppend to form mqs's result.

Dynamic resolution's static component (Section 5.4) identifies the
constructors in the program's patterns (overlined in Fig. 10). When
dynamically matched, these constructors require a runtime check to the
underlying node representing the datum before any access to the datum's
components. This check determines whether the node is a join or simple
node (Section 6.1). Note that functions applied by mqs (e.g., the mAppend

Dynamic Resolution for D A G s

acyclic datatype ~ p a i r = Pa i r of (~ * ~)

acyclic datatype ~mlisr = mNil [mCons of (~ * ~mlist ref)

fun mAppend mNil y = y

[mAppend x mNil = x

I mAppend x y =

let fun aux (m~o~(_,r as r-~ mNil)) = r := y
I aux (m ~ ' s (_ , r - e ' f s)) = aux S

in
aux x ;
x

end

409

fun mqs p mNil = toni1

I =qs p (m-~-C~(x,xs as ~-~ x s ')) :
let fun split pivot 1 =

let fun split' mNil less greater = Pair(less,greater)

[s p l i t ' (1 as ~C--~(y ,ys as r - ~ y s ')) l e s s g r e a t e r =
if p(pivot,y) then

(ys := l e s s ;
split' ys' 1 greater)

else

(ys := g r e a t e r ;
split' ys' less i)

in

split' 1 mNil mNil

end

val = xs := mNil

val Pair(1,g) = split x xs'

val P-a~(l',g') = Pair(mqs p l,mqs p g)lh,
in

end

sO.ppend i ' (mCons(x,ref g '))

Fig. 10. Imperative quicksort (mqs) with annotations for dynamic resolution.

function that destructively appends two mutable lists) also perform these
checks.

In mqs, dynamic resolution finds parallelism in the concurrent evalua-
tion of the recursive applications of mqs that sort the sublists produced by
the auxiliary split function:

val Pair(l',g') = Pair(mqs p 1,mqs p g)ll~,

The liar annotation indicates that the tuple's expressions, (mqs p I) and
(mqs p g), may evaluate in parallel with dynamic resolution. By the
criteria of Section 5.3, these expressions are candidates for DR evaluation:
mqs is a true function. I can only reach g via paths that always contain

410 Huelsbergen

a join node, and g can only reach I via paths that always contain a join
node. Note that the predicate p must also be a true function. If it is stati-
cally unknown whether p is true, this can be determined dynamically; for
example, a 2-tag (3'4) (see Section 5.1) can be used to carry a function's
status (either true or untrue) during runtime. Here we assume that p is
(statically or dynamically) known to be a true function.

A further optimization of mqs is required for DR to find parallelism.
The Pair constructor is used only to build temporary data--data that is
inaccessible outside of mqs. This construction of temporary pairs, however,
generates reference counts that (falsely) indicate sharing. Since mqs does
not place Pairs in data structures, and Pairs are not accessible outside of
mqs, it is safe to decrement [as before, reference counts stick at two] the
reference counts on a pair's components upon its deconstruction. For
example, in the expression

val Pair(1,g) = split x xs'

the reference counts on the nodes bound to I and g can be safely decremented
after Pair matches. This optimization prevents temporary dynamic struc-
tures from obscuring safe parallelism.

If the elements of mqs's argument list are not shared, sublists---created
with split--will also not contain sharing. This permits dynamic resolution
to evaluate the recursive calls to mqs in parallel without suspending
threads. On the other hand, if the argument list does contain elements with
reference-counts greater than one, this will curb some (but not necessarily
all) parallelization of quicksort. Since mqs is polymorphic, it can sort
(mutable) lists of many types, including lists whose elements are, perhaps
cyclic, dynamic structures. Any sharing between elements is detected during
application of the predicate p, which--as all functions in the program--
detects access to shared data.

9. DYNAMIC RESOLUTION IN POINTER-UNSAFE
LANGUAGES

In this section we briefly describe how dynamic resolution may be
applied to programs written in pointer-unsafe languages. In particular, we
consider DR in the context of C (6) with user-level threads. A framework for
DR in C programs has been built (Section 10 and Ref. 24) that
demonstrates parallel speedup for the inenode (Section 2) and destructive
quicksort (Section 8) functions. Application of DR in a C program requires
programmer assistance (for the static component) and the programmer's

Dynamic Resolution for DAGs 411

use of custom macros for thread creation, memory allocation, and pointer
manipulation.

In particular, the C programmer must assert that the data structures
accessed by a C function using dynamic resolution have the acyclic
property as required by DR's static component (Section 5). Additionally,
the programmer must identify the statements that should evaluate in
parallel using dynamic resolution. For a C version of the inenode function
of Section 2, for example, the programmer must assert that the data struc-
ture passed to the function is acyclic and must explicitly fork the recursive
calls to inenode as separate threads. Improvements in the design and static
analyses of pointer-unsafe languages (e.g., Refs. 17 and 25) may help shift
the analysis required by DR's static component from the programmer to
the compiler.

Since DR requires heap nodes to hold reference counts, a custom
macro for memory allocation must be used that allocates storage for--and
properly initializes--the reference counts. Furthermore, since heap pointers
to heap nodes must be reflected in reference counts, macros that manipulate
reference counts must be used in heap-node pointer assignments. In the
example of the C version of inenode, reference counts must be incremented
as new nodes are inserted into the argument DAG during its construction.
Access to a node must be checked for join or simple status (Section 5.4).
Again, this can be accomplished by a set of macros for accessing com-
ponents of a C structure; such macros perform the checks (and requisite
actions) before accessing a node's component fields.

Finally, the thread system must be extended to provide a thread-fork
operation that maintains a linearization of threads (Section 6.2) as required
by dynamic resolution.

10. IMPLEMENTATION AND RESULTS

Dynamic resolution was previously implemented ~3" 4) for an early ver-
sion of the SML/NJ optimizing ML compiler ~3'221 on a shared-memory
Sequent multiprocessor. Although this implementation achieved speedup
over sequential ML, it did not improve on optimized sequential C; that is,
ML, even with parallelism due to dynamic resolution, did not outperform
sequential C. Here we report measurements of a C-based implementation
of dynamic resolution. By using C in our experiments, we can make direct
comparisons with explicitly parallel and sequential C programs.

C-based dynamic resolution was implemented for the two example
programs presented in this article: for DAG rewrite (inenode) and for
destructive list quicksort (mqs). Programs were compiled with optimiza-
tion enabled (-O) and used assembly-language synchronization routines.

412 Huelsbergen

All measurements were taken on an unloaded bus-based shared-memory
SGI Challenge machine with one gigabyte of shared memory and eight
150 Mhz MIPS R4400 processors.

We compare three versions of each program: a sequential version, an
unsafe-parallel version that operates correctly only on data guaranteed not
to contain shared structure, and a dynamic-resolution version that
correctly handles sharing. For the sequential programs, recursive and non-
recursive implementations were compared--the results of the faster
implementation are reported here.

The unsafe-parallel and the dynamic-resolution versions both use a simple
work-queue scheme (e.g., Refs. 26 and 27) to distribute work. Each processor
has a thread queue into which it inserts the new threads that it creates. When
a processor exhausts the work in its queue, it steals work from other pro-
cessors if possible. A C macro is used to demarcate C statements that are to
evaluate in parallel; it inserts newly created threads into DR's linearization.

The dynamic-resolution versions of the programs differ from the
unsafe-parallel versions in three respects. The DR versions maintain
reference counts on dynamic data, they linearize all threads using a linked-
list of thread descriptors, and, when necessary, they conditionally suspend
threads on access to potentially shared data (i.e., they check reference
counts on node access).

A collection of DR C macros was used for manipulating dynamic data
as described in Section 9. In particular, a node-creation macro allocates
storage for the node along with a reference count. Pointer-linkage macros
for installing and removing pointers update reference counts as necessary.
Node-access macros check for join nodes and, on access to such a node,
consult the linearization to either continue or suspend the current thread's
execution. In safe languages, the actions performed by the macros can be
built into the compiler---dynamic resolution was implemented in the
SML/q'qJ compiler in this manner, t3)

The first program measured is incnode (Figs. 1 and 8) applied to a
balanced tree with 2 21 unshared internal nodes. The absolute execution
times in Table I show that DR already outperforms the sequential version
with only two processors. With four processors DR achieves a speedup of
2.3. Furthermore, the additional overhead with respect to unsafe-parallel is
only 13 %. Surprisingly, with more than five processors dynamic resolution
outperforms unsafe-parallel. This is because termination detection with DR
is trivial. A DR computation is complete when the head of the linearization
becomes empty. Unsafe-parallel, on the other hand, has no thread
linearization so it must reach agreement that all processors have no more
work--the time required to reach agreement seems to be a function of the
number of processors.

Dynamic Resolution for DAGs 413

Table I. Timing Results for DAG Rewrite (incnode)"

incnode (Balanced Tree of Height 222)

SC b 1.36
U P b 1.96 0.97 0.67 0.52 0.48 0.42 0.39 0.36
DR b 2.27 1.16 0.77 0.59 0.48 0.40 0.35 0.33

Processors 1 2 3 4 5 6 7 8

Values in seconds.
b SC is sequential C; U P is unsafe-parallel C; and DR is C with dynamic-resolution

annotations.

The second program we measured is a destructive (in place) quicksort
for lists. This is another program for which dynamic resolution automati-
cally finds expression-level parallelism. The program sorted lists of 10 6 r a n -

d o m integers. List elements were not shared within the list or with other
data structures. The timing results for the three versions (sequential,
unsafe-parallel, dynamic-resolution) are in Table II. Again, dynamic resolu-
tion outperforms the sequential program with two processors. At four pro-
cessors, DR incurs overhead of 21% relative to the unsafe-parallel version;
this overhead drops to 17 % at eight processors.

To ascertain the parallelism-inhibiting effects of sharing, we introduced
sharing into the argument DAG to inenode. We simulated sharing by
selecting nodes of d at random and setting their reference count to two.
Table III contains the absolute execution times on six processors for the
dynamic-resolution version of inenode applied to a DAG of 22~ internal
nodes with varying degrees of sharing. Since the choice of which nodes to
share can greatly influence performance, the reported numbers are the

Table II. Timing Results for Destructive Quicksort (mqs)"

mqs (List of 10 6 Random Integers)

SC b 26.2
U P b 29.6 18.5 18.2 15.1 13.6 11.6 11.1 10.7
DR b 3.37 23.2 23.3 18.4 16.7 14.8 13.6 12.6

Processors 1 2 3 4 5 6 7 8

"Values in seconds.
b SC is sequential C; U P is unsafe-parallel C; and DR is C with dynamic-resolution

annotations.

414

Table III.

Huelsbergen

Timing Results for DAG Rewrite (incnode) with Varying Degrees of
Sharing in the Argument DAG on 6 Processors"

Percentage of Shared Nodes

0.5% 1.0% 1.5% 2.00 2.5% 3.0% 3.5% 4.0%

0.50 0.64 0.80 0.96 1.05 1.22 1.27 1.38

mean of ten trials, each selecting a different set of random nodes. For this
problem, DR can tolerate some sharing (by performing some subcomputa-
tions sequentially) and still outperform its sequential counterpart.

11. RELATED WORK

Dynamic resolution was suggested by Huelsbergen and Larus; (4) sub-
sequently, it was further developed by Huelsbergen as part of a thesis ~
and into an implementation for pointer-unsafe languages. ~24)

Work related to the parallelization of languages with dynamic data
structure falls into two classes: static-dynamic techniques and solely static
techniques.

Tinker and Katz propose to model a Scheme implementation as a
database in their ParaTran system. ~28" 29) Concurrent reads and writes are
concurrent transactions under this model. Evaluation in Paratran proceeds
optimistically. Upon dynamic detection of a conflict, the computation must
be rolled back to a point where the linear access order is intact. Reversing
large computations is expensive. By contrast, dynamic resolution suspends
a potentially conflicting expression before the conflict and can immediately
process pending work. The amount of runtime information required by
dynamic resolution is also small (reference counts, thread descriptors) in
comparison to the complex time-stamps Paratran maintains for heap
objects. Paratran has not demonstrated effective speed-up.

Lu, (3~ and Lu and Chen, 13~) describe runtime methods for paralleliz-
ing loops with indirect array accesses (in Fortran and C) and (restricted)
pointer accesses (in C). Their methods preoexecute a loop nest at runtime
to find data dependences between program statements in the loop. The
compiler, using static analysis, generates a scheduler for the loop's itera-
tions. At runtime, this scheduler dynamically records references to dynamic
data and, using the reference patterns thus collected, allocates loop itera-
tions to individual processors for parallel evaluation. Unlike dynamic
resolution, Lu and Chen's method does not handle procedure calls,
modification of existing data structure links, or the allocation of new data.

Dynamic Resolution for DAGs 415

Their method also depends on extensive pointer analysis that has been
shown to be expensive in practice. ~2)

Harrison's PARCEL system "'32) and Larus's Curare ~2) seek paral-
lelism in sequential Scheme programs using static analyses. Both systems
compute bounded approximation information intended to allow parallel-
ization of non-interfering imperative expressions: For large, irregular data,
such bounded approximation leads to overly conservative parallelization--
if sharing can occur dynamically, PARCEL and Curare assume that it
always occurs. In the presence of sharing some of the parallelism that
dynamic resolution can find must therefore elude these systems.

Many approaches to static pointer analysis have been described (e.g.,
Refs. 7, 9-11, and 14-16). These approaches usually use a form of bounded
approximations (of the heap itself, of the store of heap variables, or a com-
bination of the two). Bounded approximations are conservative--they must
account for all possible configurations of the program's dynamic data. In
contrast, dynamic techniques can adapt to individual instances of
individual dynamic structures at runtime. Static pointer analyses also
require expensive interprocedural analyses that curtail their practical use
(cf. Refs. 2 and 33). With dynamic resolution, interprocedural information
(i.e., sharing information) dynamically propagates into functions at run-
time.

Hendren t9'25~ addresses the problem of parallelizing programs with
recursive data structures with an algorithm for estimating the relationships
between accessible nodes in a dynamic data structure. Relationships thus
attained are then used to (statically) detect interference between program
statements. Her analysis finds parallelism when it can statically determine
that trees, rather than DAGs, always reach a given program point. This
analysis, therefore, cannot discover parallelism in DAGs--the type of
parallelism that dynamic techniques can find. Hendren's analysis also
detects when a set of handles (pointers) into a dynamic data structure can-
not reach common structure. Relationships between handles are similar to
the reaching relations that dynamic resolution obtains from pattern match-
ing (Section 5.2). Hendren's analysis can potentially perform the task of
dynamic resolution's static component in languages that do not support
patterns.

12. CONCLUSIONS

We have described a runtime parallelization technique called dynamic
resolution. Dynamic resolution extracts parallelism from program proce-
dures that destructively manipulate DAGs; that is, for procedures that
modify a DAGs edges or update fields stored in its vertices. Dynamic

828/25/5-7

416 Huelsbergen

resolution can find parallelism inaccessible to solely static approaches.
Dynamic resolution is the first parallelization technique that can automati-
cally and effectively parallelize the destructive DAG rewrite and destructive
quicksort problems.

In the context of pointer-safe languages (such as ML) and programs
without cyclic structures, dynamic resolution can find parallelism automati-
cally while preserving the language's sequential semantics. In pointer-unsafe
languages such as C with threads, some programmer assistance is required
to realize dynamic resolution.

Dynamic parallelization in general, and dynamic resolution in par-
ticular, are viable approaches for the parallelization of imperative
languages and programs.

ACKNOWLEDGMENTS

Jim Larus supervised this research in its early stages and helped shape
the ideas therein. As members of the author's thesis committee, Charles
Fischer, Susan Horwitz, and Tom Reps suggested many improvements.
Tom Ball and Phil Pfeiffer spurred refinements in content and presentation.
Anonymous referees provided numerous valuable suggestions.

REFERENCES

1. W. L. Harrison and D. A. Padua, PARCEL: Project for the Automatic Restructuring and
Concurrent Evaluation of Lisp, lnt'l. Conf. Supercomputing, pp. 527-538 (July 1988).

2. J. R. Larus, Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors,
Ph.D. Thesis, University of California, Berkeley, Computer Science Division (May 1989).

3. L. Huelsbergen, Dynamic Language Parallelization, Ph.D. Thesis, University of Wiscon-
sin-Madison (August 1993).

4. L. Huelsbergen and J. R. Larus, Dynamic Program Parallelization. Association for Com-
puting Machinery. Proc. Conf. Lisp and Functional Progr., pp. 311-323 (June 1992).

5. R. Milner, A Theory of Type Polymorphism in Programming, J. Comput. Syst. Sci.
17:348-375 (1978).

6. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Second Edition (1988).

7. A. Deutsch, Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting, Conf.
Progr. Lang. Design and Implementation, Association for Computing Machinery,
pp. 230-241 (June 1994).

8. J. Hummel, L. J. Hendren, and A. Nicolau, A General Data Dependence Test for
Dynamic, Pointer-Based Data Structures. Association for Computing Machinery, Conf.
Progr. Lang. Design and Implementation, pp. 218-229 (June 1994).

9. L. J. Hendren and A. Nicolau, Parallelizing Programs with Recursive Data Structures,
IEEE Trans. Parallel Distrib. Syst. 1(1):35~,7 (January 1990).

10. W. E. Weihl, Interprocedural Data Flow Analysis in the Presence of Pointers, Procedure
Variables, and Label Variables. Association for Computing Machinery, Syrup. Principles
Progr. Lang. pp. 83-94 (January 1980).

Dynamic Resolution for DAGs 417

11. N. D. Jones and S. S. Muchnick, Flow Analysis and Optimization of Lisp-Like Structures.
Association for Computing Machinery, Symp. Principles of Progr. Lang., pp. 244-225
(January 1979).

12. C. A, R. Hoare, Quicksort, Computer Journal 5(1):xx-xx (1962).
13. A. W. Appel and D. B. MacQueen, A Standard ML Compiler, Functional Programming

Languages and Computer Architecture 274:301-324 (1987).
14. D. R. Chase, M. Wegman, and F. K. Zadeck, Analysis of Pointers and Structures.

Association for Computing Machinery, Conf. Progr. Lang. Design and Implementation,
pp. 296-310 (June 1990).

15. J. R. Larus and P. N. Hilfinger, Detecting Conflicts Between Structure Accesses. Associa-
tion for Computing Machinery, Conf. Progr. Lang. Design and Implementation, pp, 21-34
(June 1988).

16. S. Horwitz, P. Pfeiffer, and T. Reps. Dependence Analysis for Pointer Variables, Conf.
Progr. Lang. Design and Implementation. Association for Computing Machinery (June
1989).

17. J. Hummel, L. J. Hendren, and A. Nicolau, Abstract Description of Pointer Data Struc-
tures: An Approach for Improving the Analysis and Optimization of Imperative
Programs, A CM Left. Progr. Lang. and Syst. 1(3):243-260 (September 1992).

18. R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML. MIT Press (1990).
19. J. M. Lucassen and D. K. Gifford, Polymorphic Effect Systems. Association for Comput-

ing Machinary, Syrup. Principles Progr. Lang., pp. 47-57 (January 1988).
20. A, J. Field and P. G. Harrison, Functional Programming, Addison-Wesley (1988).
21. S. P. Jones, The Implemerldation of Functional Programming Languages, Prentice Hall

(1987).
22. A. W. Appel, Compiling with Continuations, Cambridge University Press (1992).
23 R. R, Fenichel and J. C. Yochelson, A Lisp Garbage-Collector for Virtual Memory Com-

puter Systems, Comm. A CM 12(11):611-612 (November 1969).
24. L, Huelsbergen, Dynamic Parallelization of Modifications to Directed Acyclic Graphs,

Proc. Conf. Parallel Architectures and Compilation Techniques, pp. 186-197 (October
1996).

25. L. J. Hendren, Parallelizing Programs with Recursive Data Structures, Ph.D. Thesis,
Cornell University (August 1990).

26. E. Mohr, D. Kranz, and R. H. Halstead, Jr., Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs. Association for Computing Machinery,
Proc. Conf. on Lisp and Functional Progr., pp. 185-197 (June 1990).

27. M. T. Vandevoorde and E. S. Roberts, WorkCrews: An Abstraction for Controlling
Parallelism. 1JPP 17(4):347-366 (1988).

28. P. Tinker and M. Katz, Parallel Execution of Sequential Scheme with ParaTran, Proc.
Conf. on Lisp and Functional Progr., pp. 28-39 (July 1988).

29. M. Katz, ParaTran: A Transparent, Transaction Based Runtime Mechanism for Parallel
Execution of Scheme. Technical Report LCS/TR-454, MIT (July 1989),

30. L. Lu, Loop Transformations for Massive Parallelism, Ph.D. Thesis, Yale University
(November 1992).

31. L. Lu and M. C. Chen, Parallelizing Loops with Indirect Array References or Pointers,
Preliminary Proc. 4th Workshop on Languages and Compilers for Parallel Computing
(August 1991).

32. W. L. Harrison, The Interprocedural Analysis and Automatic Parallelization of Scheme
Programs, Lisp- and Symbolic Computation 2(3/4):179-396 (October 1989).

33. P. E. Pfeiffer, Dependence-Based Representations for Programs with Reference Variables,
P.D. Thesis, University of Wisconsin-Madison (1991).

