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Dynamic Resolution: A Runtime 
Technique for the Parallelization 
of Modifications to Directed 
Acyclic Graphs 

Lorenz H uelsbergen 1 

Static program analysis limits the performance improvements possible from 
compile-time parallelization. Dynamic parallelization shifts a portion of the 
analysis from compile-time to runtime, thereby enabling optimizations whose 
static detection is overly expensive or impossible. Dynamic resolution is a 
dynamic-parallelization technique for finding loop and nonloop parallelism in 
imperative, sequential programs that destructively manipulate dynamic directed 
acyclic graphs (DAGs). Dynamic resolution uses runtime reference counts on 
heap data, a runtime linearization of threads, and a simple static analysis to 
dynamically detect potential heap aliases and to correctly coordinate parallel 
access to shared structures. We describe dynamic resolution in the context of 
two imperative procedures: DAG rewrite and destructive quicksort. The descrip- 
tion is couched in the pointer-safe language ML; with some programmer asser- 
tions and custom macros for pointer and memory manipulation, dynamic 
resolution is applicable to pointer-unsafe languages (C extended with threads) 
as well. Furthermore, with programmer identification of cyclic structure, 
dynamic resolution can be used to find parallelism in programs that manipulate 
cyclic structures. Shared-memory implementations of dynamic resolution for 
ML and C have attained parallel speedup for nontrivial sequential procedures 
such as destructive quicksort; empirical speedup results obtained on fast con- 
temporary machines are given. 
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1. I N T R O D U C T I O N  

Parallelization of irregular computations involving mutable dynamic data 
structures is difficult for programmers and compilers alike. Programmers 
must reason about shared substructures in a program's dynamic data to 
correctly synchronize parallel access to shared state. Parallelizing com- 
pilers, moreover, must statically infer structure sharing and produce a safe 
evaluation and synchronization schedule. (8'22) The difficulty lies in the 
dynamic nature of irregular computations--shared structure appears and 
disappears dynamically. Hence, the available parallelism, and its attendant 
synchronization requirements, necessarily vary during program execution. 

This article describes the design of a dynamic-parallelization techni- 
queS3, 4) called dynamic resolution (DR). In pointer-safe languages (such as 
ML t5)) dynamic resolution can automatically parallelize program proce- 
dures that destructively manipulate directed acyclic graphs (DAGs). For 
programs that manipulate cyclic structures, dynamic resolution--in con- 
junction with programmer identification of cyclic and acyclic struc- 
tures--can also find parallelism in the program's computations on acyclic 
data. 

Dynamic resolution dynamically detects and dynamically schedules 
potentially conflicting DAG modifications; it preserves the program's 
sequential semantics by resolving conflicts at runtime. Dynamic resolution 
is interprocedural and higher order in that it finds expression-level 
parallelism across procedure calls. Coupled with another dynamic- 
parallelization technique called 2-tagging, ~ DR can furthermore find 
such parallelism in the presence of higher-order functions (2-tagging is a 
general technique for dynamically propagating properties of a function as 
a tag on its runtime closure.) In pointer-unsafe languages (such as C t6) with 
user-level threads), DR, along with programmer assertions on data types 
and custom macros for memory and pointer manipulation, can be used to 
dynamically detect and exploit parallelism. 

Static pointer analyses (e.g., Refs. 1, 2, 7-11) cannot provide precise 
parallelization information in the presence of dynamic structure 
sharing--such analyses must conservatively assume that /f sharing can 
occur, then it always occurs. Hence dynamic approaches are needed to 
parallelize programs that may statically share structure when in fact they 
do not dynamically share structure. 

Dynamic resolution is a hybrid: a static component computes inexpen- 
sive, but partial, information about the program at compile time; a 
dynamic component gathers and maintains information about the program's 
heap structure at runtime. The combination of static and dynamic informa- 
tion is then used to find and utilize parallelism necessarily obscured by 
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compile-time approaches. DR's hybrid structure can discover and effec- 
tively utilize parallelism in nontrivial imperative procedures such as 
destructive quicksort. ~ ~2~ 

Implementations of DR have been built for the Standard ML of New 
Jersey (t3) ML compiler and for C with user-level threads. Details of the ML 
implementation--and the experiments conducted therein--have been pre- 
viously reported. ~ This article serves to first codify DR and its exten- 
sions in an implementation-independent manner; and then to present 
measurements of C parallelized via DR annotations. In particular, we pre- 
sent empirical measurements that compare C with DR to hand-paraUelized 
C (unsafe parallelism) and to sequential C on a contemporaneously fast 
shared-memory multiprocessor. On the programs we examine, we find that 
DR--although it incurs runtime overheads--already "breaks even" with 
only a few processors; that is, parallelism discovered by DR readily offsets 
DR's runtime costs and enables it to outperform its sequential counter- 
parts. Furthermore, we show that dynamic resolution is competitive with 
explicitly parallel versions of the C programs. 

This article also studies the impact of shared structure on the perfor- 
mance of dynamic resolution. Concurrent access to shared structure 
dynamically selects sequential execution under the dynamic-resolution 
evaluation model. Dynamic sharing can therefore inhibit DR paralleliza- 
tion. In contrast, completely static techniques must conclude that if sharing 
can occur, then it always occurs. DR instead adapts to the actual sharing 
present at runtime. It is our assumption that sharing occurs in programs, 
but in many programs does so only infrequently, Empirical evidence 
suggests that DR can tolerate some sharing and still outperform a sequen- 
tial implementation. 

The next section is an overview of the problem dynamic resolution 
addresses; it provides the main example used throughout the paper. Sec- 
tion 3 provides definitions and notation. Section 4 explains the idea under- 
lying dynamic resolution. Sections 5 and 6 respectively describe DR's static 
and dynamic components. Extensions and optimizations are in Section 7. 
Section 8 contains an example of DR applied to quicksort. Section 9 briefly 
describes application of DR in pointer-unsafe languages. Implementation 
and measurements of C-based dynamic resolution are described and reported 
in Section 10. Related work is in Section 11 and Section 12 concludes. 

2. O V E R V I E W  

Parallel evaluation of program expressions that read (get) and modify 
(set) shared data-~lata that multiple expressions may concurrently 
access--must prevent read/write and write/write conflicts from violating 
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the sequential semantics of the language. A program's data-sharing charac- 
teristics, however, depend on the program's dynamic data structures which 
often depend on the program's input. Not surprisingly, dynamic data struc- 
tures are difficult to precisely analyze at compile time. <7' 10, 11, 14-17) 

A compiler may statically deduce, for example, that a list l of mutable 
items (reference values in ML) may contain the same element a more than 
once (thereby sharing a). This forces the compiler to perform operations on 
individual elements of l sequentially because, at compile time, it is not 
known when (at runtime) or where (in 1) such shared elements exist. For 
a given dynamic instance of 1, however, l's elements may be disjoint so that 
their concurrent access and modification is safe. Furthermore, even if s o m e  

elements of I are identical (shared), others can still be safely modified con- 
currently if sharing detection and expression scheduling are dynamic. 
Dynamic resolution performs sharing detection and expression scheduling 
at runtime. 

The inenode function of Fig. 1 illustrates the problem and will serve 
as the example of automatic parallelization using dynamic resolution. The 
incnode function operates on dynamic data of the tree datatype. Function 
incnode's single parameter has type int tree; that is, internal nodes contain 
integer reference values and two subtrees. When supplied a leaf node, the 
incnode function does nothing. Otherwise, when supplied an internal node, 
inenode first increments the integer reference value at that node and then 
recursively descends into the node's left and right subtrees. 

The sequential semantics of ML requires that all modification (with 
set) of a reference value r by the expression (inenode left) occur before 
expression (inenode right) accesses r. Similarly (inenode right) may not 
set r until (incnode left) completes its last access of r. Parallel evaluation 
of (inenode left) and (incnode right) is however safe when (inenode left) 
and (incnode right) access disjoint sets of reference values, i.e., when the 
dynamic data bound to left and right do not share structure. Static detec- 
tion of this parallelism, however, requires the compiler to ascertain whether 
(and where) sharing exists in inenode's argument. 

d a t a t y p e  ~ t r e e  - L e a f  ~ Node o f  ( ~  r e f  * ~ t r e e  * ~ t r e e )  

f u n  i n c n o d e  L e a f  = ( )  

I i n c n o d e  ( N o d e ( x , l e f t , r i g h t ) )  - ( s e t  x (1  + ( s e t  x ) ) ;  i n c n o d e  l e f t  ; i n c n o d e  r i g h t )  

Fig. 1. The tree datatype and the incnode function. A tree is a Leaf or a Node. Leaf is a 
nullary constructor; Node is a ternary constructor. A Node contains a mutable reference of 
type ~t and two subtrees. Note  that  DAGs can also be constructed from this datatype. 
Dynamic resolution can safely evaluate expressions ( inenode  left) and ( inenode  right) in 
parallel since it detects conflicts, due to potential sharing in inenode 's  argument (of type int 
tree), dynamically. 
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Static extraction of parallelism from incnode is difficult because the 
tree datatype can be used to both construct DAGs as well as trees. For 
example, the expression 

l e t  v a l  n = Node(re f  O , n l , n 2 )  
in  

Node(re f  O,n,n)  
end 

creates a DAG with sharing using the tree datatype. Figure 2 depicts valid 
arguments to inenode with and without sharing: a tree and a DAG (the 
one constructed in this let expression). [Note: cyclic structures cannot be 
arguments to incnode since ML's type system prohibits the introduction of 
a cycle into a structure of type int tree.] A naive parallel version of 
incnode that simply evaluates expressions (incnode left) and (incnode 
right) concurrently without coordinating internal-node accesses cannot 
ensure correct results in the references. Because of race conditions, con- 
current get and set operations to shared structure may produce indeter- 
minate values. With naive parallel evaluation, for example, incnode 
applied to the �9 node in the DAG of Fig. 2 may produce indeterminate 
results since expressions can concurrently access the same reference 
values--references in and below the �9 node. 

Even when a data structure contains sharing, it is still possible to 
(dynamically) discover and utilize parallelism in expressions that access 
portions of the structure that are not shared; e.g., incnode can safely 
modify the nodes of disjoint trees that are subgraphs within a DAG (such 
as in the structure below the �9 node in Fig. 2). Since static methods that 
approximate the structure of a program's dynamic data can, in general, 
only do so imprecisely, it is possible to design a program using incnode 
that a given static technique cannot parallelize: incnode applied to a DAG 
whose size and shape (i.e., connectivity) exceeds the static technique's limit 

O 

/ \  
O O 

/ \ /  

0 

/ ' \  
~ e e  DAG 

Fig. 2. Possible structures of type ~ tree. DR is able to 
find parallelism in DAGs with sharing. 
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of precise approximation (see Section 1). As another example of such a 
program, consider the tree and DAG of Fig. 2 both reaching an application 
of inenode via a conditional whose predicate is statically unknown--in this 
case, static techniques forgo parallelism in inenode since they must conserva- 
tively approximate inenode's argument as always containing shared nodes. 

The dynamic-resolution technique described herein can automatically 
extract parallelism from inenode. 

3. P R E L I M I N A R I E S  

In this section we provide definitions for describing heap structure. 
They are used in the presentations of dynamic resolution's static and 
dynamic components in the subsequent sections. 

ML datatype constructors build dynamic values--values that reside in 
dynamically-allocated storage in the program's heap. Dynamic values are 
references, tuples, and recursive data structures created with (non-nullary) 
data constructors. We denote the heap as ~ff. Implementations represent a 
program's: dynamic values as nodes in ,,W. A node h e Jr representing a 
dynamically-allocated value, contains basic values directly (e.g., integers 
and nullary constructors) and links to other nodes in ~ .  For example, the 
expression N odeIref 0, Loaf, I_eaf), using the tree datatype of Fig. 1, creates 
the structure 

NOde ( , Leaf, Leaf ) 

R e f ( 0 )  

in ~ that consists of two heap nodes and one link. The heap ~'ff is a direc- 
ted graph with nodes as its vertices and links as its edges. A node h's in- 
degree, in-degree(h), is the number of links incident on h. 

Def ini t ion 1 (Simple Node). Node he  ~ is a simple node if in- 
degree(h) ~ 1. 

Definition 2 (Join Node). Node h e ~  is a join node if in- 
degree(h) > 1. 

Join nodes will serve as indicators of potentially shared dynamic data. 

Definition 3 (Path). A path of length n in g is a sequence of 
nodes, (hi,..., h , ) e  ~,~ where n > l, such that Vi, 1 ~< i < n, there exists a 
link from hi to hi+l. 
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Denote the existence of a path from h e ~ to h' e ~ as h =, h'. The 
nonexistence of a path from h to h' is noted h ~ h'. If h :=. h', then node h 
is said to reach node h'. 

Definition 4 (Simple Path). A simple path of length n in A~ is a 
sequence of nodes, (h ,  ..... h , ) e ~  where n>~l, such that Vi, l<~i<n, 
there exists a link from hi to h~+~, and Vi, l ~< i~< n, node h; is simple. 

Denote the existence of a simple path from h e ~ to h' e A~ as h --} h'. 
The notation h 7~ h' denotes that no such path exists. If h ~ h', then node 
h is said to simply reach node h'. 

The relations =~, ~ ,  --+, and A collectively comprise the reaching rela- 
tions for heap nodes. 

Definition 5 (Acyclic Node). Node h e A~ is an acyclic node if all 
paths from h to h have length 1. 

That is, h is acyclic when it does not lie on a cycle in A~. Dynamic 
resolution's static component determines when a dynamic value is always 
represented by an acyclic node. 

Identification of the free variables of an expression that can bind 
dynamic values or functions will also be necessary. As usual, let FV(e) be 
the set of free variables in e. The free dynamic variables of an expression e 
are: 

FDV(e) = {x e FV(e) I x can bind a dynamic value} 

In ML, an identifier's type indicates whether it can bind dynamic values. 
The free function variables of an expression e are: 

FFV(e) = { f e  FV(e) ] f h a s  type T ~ z'} 

That is, a free variable f in e is a free function variable if it can be used as 
a function (i.e., can be applied). Finally, characterize a function f as true if 
all dynamic values accessible in f are either created in f or are parameters 
to f.  Otherwise, f is said to be untrue. 

D e f i n i t i o n  6 (True Function). Function f is a true function if 
FDV(f )  = ~ and if Vge F F V ( f ) \ { f }  the function g is a true function. 

That is, f is a true function when f does not contain free dynamic 
variables and does not apply free functions that contain free dynamic 
variables. For example, in the function definition 
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fun f (Cons(x,xs))  = 
l e t  fun g y = Cons(y+l ,xs)  
in 

g x  
end 

f is true since FDV(f) = ~ and FFV(f) = { Cons, + }. (The list constructor 
(Cons) and integer addition ( + )  are true functions.) Function g is an 
untrue function since it accesses the dynamic value bound to xs; i.e., 
FDV(g)  = {xs}. 

4. DYNAMIC RESOLUTION PROPERTY 

In this section we describe the basic idea underlying dynamic resolution. 
To safely evaluate two expressions e and e' that update a dynamic 

data structure (e.g., a DAG) in parallel, it is necessary to identify the 
dynamic data that is potentially reachable by both expressions, and to 
correctly coordinate accesses to this data. Initially, evaluation of the two 
expressions can proceed in parallel with e having priority over e' in the 
following sense. Upon detection of an access to any shared data by e', all 
further evaluation occurs sequentially; i.e., e' must suspend on an access to 
shared data and may not resume until e completes. When a processor 
suspends an expression's evaluation, it need (and must) not idle but should 
rather evaluate other available expressions. Suspending e' on access to 
shared data is a means of preserving the language's sequential semantics. 
Note that in the absence of shared data, dynamic resolution will evaluate 
both expressions completely in parallel. 

The detection of shared data and the coordination of accesses to this 
data (i.e., deciding which expression to suspend) occurs dynamically. A 
dynamic-resolution compiler can automatically insert code into the 
program text to detect potential sharing at runtime; and, the DR runtime 
system can govern which expressions may access shared data. Static 
analysis is used to select, for parallel evaluation, expressions whose shared 
reachable data can always be detected at runtime. This analysis relies on 
the following property concerning paths and nodes. 

Property 1. Let h,h' be nodes in heap ~ .  I f h ~ h  a n d h ' ~ h ,  
then for all h " e  ~ such that h =~ h" and h'=~ h", the following relations 
hold: h ~ h" and h' ~ h". 

That is, if all paths from h to h' and from h' to h contain a join node, 
then all paths from h or h' to any shared node h" (accessible from both h 
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and h') must contain a join node. This property enables the static selection 
of program expressions for which all shared data can be detected 
dynamically. 

Figure 3 illustrates this property. If it is known that node h cannot 
simply reach h' (and vice versa), then all shared structure reachable from 
h and h' is always delimited by a join node (node a in the diagram). Note 
that simple nodes (e.g., node b) as well as join nodes may be shared; 
however, evaluation of an expression will always traverse a join node 
before encountering a shared simple node, thereby providing a means for 
detecting sharing dynamically. 

Statically, dynamic resolution locates program identifiers that always 
bind nodes h, h' ~ J~ such that this property (h ~ h' ̂  h' ~ h) holds. Sup- 
pose that the only dynamic values accessible to expression e are those 
reachable from h. Similarly, suppose that the only dynamic values 
accessible to expression e' arc those reachable from h'. Furthermore, 
assume e and e' are candidates for parallel evaluation, but potentially con- 
flict (due to read/write or write/write conflicts). If the sequential semantics 
requires evaluation of e before e', then e and e' may be safely evaluated in 
parallel with the following restriction: e' may not access any join node until 
e completes (e, however, may access all--join or simple---nodes that it can 
reach). 

When e and e' do not share structure (e.g., ~h" e J~ such that 
h~h" ^ h' =~h") then it is possible for e and e' to completely evaluate in 

h h '  
o 0 

a e 

Fig. 3. The nonexistence of simple 
paths from nodes h to h' and from h' to 
h imply that the shared structure 
reachable from h and h' (boxed region) is 
always guarded by a join node (node a). 
Dynamic resolution detects potential 
sharing by checking for join nodes at run- 
time. 
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parallel with dynamic resolution. Otherwise, DR evaluation of e' will 
suspend upon access to a join node--a node potentially shared with e- -  
until e's evaluation completes. Note that in the presence of sharing, some 
evaluation of e' may still be concurrent with that of e. Dynamically, the 
program detects accesses to join nodes and correctly schedules e and e' 
(Section 6). 

Dynamic resolution's static component identifies program identifiers 
that satisfy the conditions of this property, and uses the information to 
select expressions for parallel evaluation. The dynamic component detects 
join nodes and dynamically schedules (suspends and restarts) expressions 
as necessary. We now fully describe DR's static and dynamic components. 

5. STATIC COMPONENT 

Here we first informally describe DR's static component. Sections 
5.1-5.4 supply the technical detail. 

Informally, the goal of dynamic resolution's static component is to 
find two expressions e and e' whose safe parallel evaluation is impeded by 
sot operations to dynamic data potentially shared by both expressions. The 
static component ensures that all shared nodes reachable by e and e' can 
be detected dynamically. That is, it infers if the DR property holds. For 
such expressions, access to shared data can be detected and correctly coor- 
dinated at runtime. 

Static DR paraUelization occurs at the function level. For a function 
f, the static component first identifies the data constructors in f ' s  patterns 
that always (dynamically) bind acyclic nodes (Section 3). [Note: Patterns 
(see e.g., Ref. 18) match dynamic values against datatype constructors, 
constants, and variables. A pattern gives information about the reaching 
relations among its variables: it is a positional notation that reveals the 
positions of a pattern's variable relative to the pattern's other variables and 
constructors.] Static classification of a datatype constructor as acyclic (i.e., 
it only matches acyclic nodes) in turn enables static inference of the reach- 
ing relations among a pattern's variables. In particular, static classification 
of a data constructor as acyclic allows the static inference (Section 5.2) of 
strong (i.e., ~ )  reaching relations among the constructor's variables. Such 
reaching relations permit DR parallelization because shared structure 
accessible from these variables can be dynamically detected by DR's 
dynamic component (Section 6). Given such reaching relations, expressions 
are statically selected and restructured (Section 5.3) for concurrent DR 
evaluation. Finally, the static component places checks into the program 
that examine a node's status (join or simple) in expressions that can access 
its contents (Section 5.4). [Note: without loss of generality, we assume that 



Dynamic Resolution for DAGs 395 

the contents of a node can be accessed only by matching (deconstructing) 
it in a pattern. ] 

We first describe how to statically determine whether a data construc- 
tor in a pattern matches only acyclic nodes, and then how to use this infor- 
mation to infer the reaching relations among a function's variables. Lastly, 
we describe how to select candidate DR expressions and where, in the 
program text, to place the checks that detect sharing. 

5,1, D a t a - C o n s t r u c t o r  Classi f icat ion 

A DR compiler must statically classify data constructors in patterns as 
cyclic or acyclic depending on whether the nodes that the constructor 
dynamically matches can lie on cyclic structures in the heap. Acyclic con- 
structors admit DR parallelization; cyclic constructors inhibit DR 
parallelization because the shared structure reachable from a cyclic con- 
structor's variables cannot always be dynamically detected with join nodes. 
For simplicity, we first assume all patterns in the program contain at most 
one data constructor--this restriction is relaxed in Section 5.2. The form of 
such a pattern is 

p =- C(xl  ,..., x , )  

where C is a data constructor and the xi, 0 < i ~< n, are variables that are 
bound when p is matched. [Note: the language's constants (e.g., integers) 
may also appear in pattern. However, since they are not dynamic values 
they cannot reach shared data and hence require no special treatment.] 
For example, the pattern Node(x, left,right) of the tree datatype (Fig. 1) 
contains the data constructor Node and variables x, left and right. 

For a pattern p of therefore above, DR's static component classifies 
p's constructor C as cyclic or acyclic. We describe two possible methods 
of attaining this classification: from static type information (inferred 
automatically in ML) or from programmer-supplied assertions. 

5.1.1. Classification from Static Types 

Identification of a datatype constructor in pattern p as acyclic is often 
possible from p's type. In a call-by-value language, cyclic data structures 
arise only from the re-assignment of a reference value that resides in a 
dynamic data structure. Furthermore, to introduce a cycle, the contents of 
this reference value must be a dynamic value; i.e., the reference value must 
have a dynamic-value type at compile time. A pattern's type, therefore, 
indicates whether the data it can match contains reference values. Hence, 
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type information can identify pattern constructors that always match 
acyclic nodes. 

For example, the pattern p==-(Node(x, laft,right)) in the inenode 
function (Fig. 1) has type int tree since the contents of x is used in an 
integer addition. Pattern p's dynamic variables (loft and right) also have 
type int tree. This type information insures that p always dynamically 
matches an acyclic node in the heap since the reference values in a struc- 
ture of p's type can only contain integers. 

5.1.2. Classification from Assertions 

In a language with polymorphic datatypes (ML), static determination 
of whether a constructor only builds acyclic nodes is not always possible. 
In a language without strong static typing, this is furthermore often 
impossible. Since dynamic resolution is applicable only to acyclic data, we 
describe an assertion mechanism that allows a programmer to declare a 
recursive ML data structure as acyclic. With assertions for acyclic data, 
DR may be applied to programs that compute with cyclic struc- 
tures--paraUelism discovered via DR is restricted to that in functions 
traversing only acyclic data. 

Constructors in patterns that cannot be classified as acyclic inhibit 
parallelization with dynamic resolution because the compiler will not be 
able to infer strong (i.e., ~ )  reaching relations for the variables of cyclic 
constructors (see Section 5.2 next). For example, the Cons constructor of 
the conventional list datatype declaration 

datatype alist = Nil [ Cons of (a , alist) 

can create cyclic nodes. The program 

datatype t = T of t list ref [ S 

let val x = T (ref IS]) 

val (T 7) = x 
in 

set y Ix] ; 

get y 

end 

returns a list l whose single element (of type t) contains a reference value 
with contents 1 (e.g., the list in Fig. 4). A compiler cannot generally infer 
that the list-constructor Cons matches acyclic nodes. For example, l is a 
valid argument to the standard map function (see e.g., Ref. 18 for its 
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------P-Cons (~ ,Nil) 

(5, 
Fig. 4. Cyclic list constructed with con- 

ventional Cons. 

definition)--accordingly, map's pattern does not contain acyclic construc- 
tors, and dynamic resolution cannot parallelize the map function. 

A programmer-supplied assertion can be used to identify acyclic con- 
structors in the presence of polymorphism. Programmers are typically 
aware of cyclic data since precautions must be taken when traversing 
it--lists, tuples, trees, and DAGs can often be identified as acyclic by the 
programmer. We introduce the acyclic qualifier for programmer assertion 
that a datatype's constructors are used only to create acyclic nodes. 

For example, the acyclic modifier can be used to declare a 
polymorphic acyclic-list type: 

acyclic datatype alist' = Nil' 

I Cons~ of (a * czlist') 

The programmer must ensure that list nodes constructed with the acyclic 
Cons' constructor never lie on a cycle in the heap. Note that this restric- 
tion concerns only the spine of a list thus constructed. Elements of an 
acyclic list, however, may be cyclic structures; elements may also share 
structure (Fig. 5). The list of Fig. 4, however, is not a valid acyclic list since 
it violates the declaration of acyclic. Note that the compiler cannot in 
general detect such violations; incorrect usage of the acyclic declarator can 
cause indeterminate program behavior. 

The function map'  of Fig. 6 is an acyclic version of map that can only 
be applied to lists of type 0dist'. The dynamic-resolution technique can be 
applied here because Cons'  may only bind acyclic nodes. Hence, the com- 
piler can infer strong reaching relations for its variables (x ~ xs and 
xs 7~ x). Even if the higher-order parameter f performs imperative get and 
sot operations it may still be possible to evaluate the expressions of map'  
in parallel; static effect inference "9) may ascertain at compile time that f's 
effects admit parallelization or a 2-tag (3~ may-convey this information at 
runtime. 2-tagging is general technique for propagating properties of a 
function f with f ' s  closures at runtime..In this situation, the ;t-tag carries 
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o / .  
0 

Fig. 5. An acyclic list suitable for dynamic resolution. An element of an acyclic list may 
reach tail elements, list elements may themselves be cyclic structures, and multiple list 
elements may reach shared structure. 

a boolean value indicating that the higher-order function admits dynamic 
resolution. Compiler-generated code checks the 2-tags of higher-order func- 
tion parameters ( f )  to function g on entry to g and selects parallel DR 
evaluation only when f is amenable to dynamic resolution. 2-tags are 
assigned statically, when possible; otherwise, they are computed (from the 
2-tags of other functions) when a closure for f is created (cf. Section 8). 

5.2. Reaching-Relation Inference 

Static classification of the data constructors in patterns as acyclic 
allows the automatic inference of reaching relations among a pattern's 
variables. When data constructor C in pattern p is acyclic, the nodes 
dynamically bound to C's variables x;, 0 < x ~< n, cannot reach one another 
via simple paths. That  is, when C is acyclic, the compiler can safely infer 
that xj 7~ xk for all pairs of C's variables xj and xk, where 0 < j, k ~< n and 
j # k. Proof  of this follows. Let h, h' e ~ denote the nodes bound to two of 
C's variables xj and xk (where 0 < j, k ~< n and j # k) when p matches 
dynamically. When h and h' are the same node (h = h ' )  then h (and h') are 
join nodes due to the two links from C's node. Alternately, when h # h' a 

fun map' f Nil' = Nil' 

I map' f (Cons'(x,xs)) = C o n s ' ( f  x,map' f xs) 

Fig. 6. The map' function for acyclic lists. 
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a 

0 

/\ 
O -1~O X i Xj 

Fig. 7. Node a is an acyclic data-con- 
structor node. Nodes xi and xj are 
directly reachable--via a single link from 
a. Any path from xi to xj is not simple 
because it always contains a join node 
(xj). Such a path cannot use the link from 
a to xj since a is acyclic. Black nodes are 
join nodes; gray nodes represent any 
(simple or join) node. 
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simple path cannot exist from h to h' (i.e., h 7~ h'). Suppose a simple path 
from h to h' exists. Node h' then has at least two links: one from C's node 
and one from the node preceding h' on the path from h to h' (this path can- 
not pass through C's node since C's node is acyclic; hence this path cannot 
use links from C's node). Since h' has at least two incident links, it must 
be a join node. This, however, contradicts the supposition. Therefore, a 
simple path cannot exist from h to h'. Similarly, a simple path cannot exist 
from h' to h (i.e., h' ~ h). 

Figure 7 depicts the relationship between an acyclic node a (corre- 
sponding to an acyclic constructor) and the nodes xi and xj directly 
accessible from a. If x; can reach xj via any path, then that path must 
contain a join node (xj). Since the constructor node a is acyclic, the path 
from xi to xj cannot pass through a and hence cannot include the link from 
a t o  xj. 

Reaching relations that assert the nonexistence of simple paths 
between pattern variables enable dynamic resolution--sharing in the struc- 
ture bound to these variables can be detected at runtime because a join 
node is always encountered before an expression reaches any shared 
structure. 

In Section 5.1, the program's patterns were restricted to contain at 
most one data constructor. Relaxing this restriction is straightforward and 
doing so admits nested data constructors in patterns. If the constructors C 
and C' in the general pattern 

p"~- C ( x  I . . . . .  x n a s  C'(y l  ..... Ym) ) 

82S/25/5-6 
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are acyclic, the reaching relations 

x j ~ x k  O < j , k < ~ n A j ~ k  

x j ~ y g  O<j<nAO<k<~m 

x. :::~Yk O<k<~m 

can be inferred. Any path from a variable xj to a variable y~ cannot be 
simple because C is acyclic; however, a simple path can exist from variable 
x, to a variable Yk because the nodes (dynamically) corresponding to the 
constructors C, C', and to variables y~ may all be simple. This occurs, for 
example, when p matches an unshared tree. 

5.3. Expression Selection 

Static analysis propagates the reaching relations induced by a pattern 
into the pattern's scope. Static selection of expressions for parallelization 
with dynamic resolution then commences as follows. 

Two expressions, e and e', whose safe parallel evaluation is con- 
strained only by read/write or write/write conflicts, are candidates for 
parallel evaluation using dynamic resolution if they meet three criteria: 

1. VxeFDV(e) and Vx'eFDV(e') the relations X T~ x' and x'7~ x 
hold. 

2. Vx~FFV(e), f is a true function; and, Vf'e FFV(e'), f '  is a true 
function. 

3. Vx~FDV(e), x does not contain untrue functions; and, Vx'~ 
FDV(e'), x' does not contain untrue functions. 

The first criterion requires that all dynamic values bound to the free 
variables in e cannot reach, via a simple path, dynamic values bound to the 
free variables in e'. It thereby ensures that all shared data accessible to both 
e and e' can be detected dynamically (Section6). The second criterion 
restricts the functions in e and e' to not have access, through their free 
variables, to dynamic values other than those available as free variables in 
e and e'. Since DR admits higher-order functions, the last criterion requires 
e and e' to not apply untrue functions contained in their accessible 
dynamic data; it thereby prohibits access to (arbitrary) dynamic values 
through the free variables of higher-order untrue functions stored in 
dynamic data. [-Note: the type of a free dynamic variable indicates whether 
any structure is may bind can contain functions.] 
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The example incnode function contains two expressions that can 
safely evaluate concurrently using dynamic resolution: e = incnode left and 
e '= incnode  right. The pattern p=(Node(x, left,right)) in incnode 
induces the set {x r ylx, ye {x, left,right} ^ x#y} of relations for p's 
corresponding function body. Thus, since FDV(e)= { left} and FDV(e') = 
{right}, expressions e and e' meet the first criterion. Furthermore, since e 
and e' do not apply untrue functions (incnode is a true function) and do 
not have access to data containing untrue functions (left and right cannot 
contain functions), expressions e and e' meet the second and third criteria. 
Figure 8 reflects the selection of (inenode left) and (incnode right) for 
parallel evaluation provided that all shared data is dynamically detected 
and access to this data dynamically coordinated. This detection and coor- 
dination is performed by dynamic resolution's dynamic component, 
described later. We use the sequence separator ;Itdr to specify parallel 
evaluation with sharing detection of the expressions it separates. 

5.4. Check Placement 

The last responsibility of dynamic resolution's static component is the 
identification, in the program text, of all heap-node accesses so that sharing 
can be dynamically detected. In particular, a check to determine if a node 
is a join node (and hence potentially accessible to other concurrent expres- 
sions) is placed immediately before a datum is deconstructed when it 
matches a datatype constructor (either cyclic or acyclic) in a pattern. Plac- 
ing a check on every dynamic-value access ensures that sharing (i.e., a join 
node) is dynamically detected along any path in the dynamic data that the 
program traverses. These checks examine the status (join or simple) of the 
node matching the constructor. In Fig. 8, the (de)constructor Node must 
check the status of the nodes it matches before it accesses any of their 
fields. The result of this check (join or simple) governs the program's subse- 
quent behavior; the full dynamic operation of these checks is discussed in 
Section 6.3 

fun incnodeDR Leaf = () 
I incnodeDR CN-'~-e(x, lef t , r ight))  = ( se t  x (1 + (get  x) ) ;  

(incnodeDR left ;lld~ incnodeDR right)) 

Fig. 8. The inenode function with annotations for dynamic resolution. The expressions 
(incnodeDR loft) and ( incnodeDR right) are evaluated in parallel using dynamic resolution. 
An overlined constructor requires a check for sharing of  the matched heap node before any 
access of its components. 
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6. DYNAMIC COMPONENT 

Dynamic resolution's runtime component does two things: it detects 
when an expression is about to access potentially shared data and it con- 
trols which expression may access such data. Shared data is detected by 
checking, upon a heap-node access, whether the node being accessed is a 
simple node or a join node. To control access, DR maintains a total order 
of all concurrently-evaluating threads which reflects the evaluation 
order--with respect to side-effects--required by the language's sequential 
semantics. (An expression is dynamically scheduled for concurrent evalua- 
tion as a thread) This linearization governs only the order in which threads 
side-effect potentially shared structure; it does not restrict the parallel 
evaluation of expressions that perform no side effects or that alter only 
unshared state. Before access to potentially shared data, an expression 
examines its position in the thread linearization to determine whether it 
may access the data or must wait for the evaluation of other expressions 
(threads earlier in the order) to complete. 

Before describing the details of DR's dynamic component, we note that 
sharing detection and thread scheduling constitute the runtime overhead of 
dynamic resolution. Additional parallelism discovered by DR must offset 
its cost for DR to be effective. Note that DR overhead is itself "parallel;" 
its cost distributes over available processors. Experimental measurements 
of DR implementations exhibit this behavior (Section 10 and Refs. 3, 4). 

6.1. Join-Node Detection 

Reference counts are used to dynamically distinguish join nodes from 
simple nodes. The reference count of a node h counts the number of links 
from other nodes incident on h--thereby, reference counts reveal informa- 
tion about the heap's structure. A nonlink pointer to a node h (e.g., a local 
variable pointing to h) is not included in h's reference count because it does 
not reveal information about the connectivity of the data structure in 
which h resides. A node with a reference count ~< 1 is simple; a node with 
reference count > 1 is a join node. A join node is an indicator of potential 
sharing because concurrent threads may potentially access the same nodes 
from a join node. Therefore, coordination of accesses to join nodes is 
necessary to preserve the program's semantics. [ Note: a program can have 
access to a node with a reference count of zero through pointers (e.g., from 
local variables) to that node since nonlink pointers are not included in the 
node's reference count.] 

If a thread has access to a simple node, no other thread has concurrent 
access to this node. Expression selection (Section 5.3), in cooperation with 
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DR's dynamic component, establishes this invariant. Recall that the static 
component selects expressions e and e' for parallel evaluation using 
dynamic resolution only when the evaluation of e and that of e' will always 
encounter a join node before reaching shared data accessible to either 
expression. 

Building new data (e.g., consing an element onto a list) increments 
reference counts. Assignment to a reference value increments the count of 
the (dynamic) value being assigned; assignment also decrements the count 
of the (dynamic) value being overwritten with the following proviso: 
reference counts are sticky---counts of two never change. Therefore, a join 
node can never become simple. Sticky reference counts circumvent the 
following problem. Suppose an expression e makes a local binding to the 
contents v of a dynamic reference value r and then reassigns r's value. If 
reference counts are not sticky, this would violate the invariant that a 
simple node is accessible to at most one concurrent thread because the 
thread evaluating e has access to v (through the local binding). Another 
thread may now also have (uncoordinated) access to v since the assignment 
to r removes a link to v and can therefore make v simple. For  example, if 
reference counts were to not stick, then in the expression 

l e t  v a l  ( r e f  y )  = x 

i n  

s e t  x z ;  

Y 
end  

the reference count on the node bound to y may drop to one (making it 
simple and accessible) since the link to y from the reference value bound 
to x is removed (set x z); yet the thread evaluating the let expression still 
has access to y. A concurrent thread, however, may encounter and access 
y's simple node--this,  in turn, may produce indeterminate behavior. Not  
decrementing reference counts that are > 1 prevents a thread from inadver- 
tently granting a concurrent thread access to its simple nodes. It is possible 
to use garbage collection to reconstitute reference counts that have become 
imprecise; Section 7.3 describes such an approach. 

Atomicity is not necessary for the reference-count increment and decre- 
ment operations. This is because of the invariant that simple nodes are not 
concurrently accessible. Since the reference counts of join nodes are never 
decremented, changing the reference count on a join node also requires no 
synchronization. [Note  that a reference count that is greater than the 
actual number of links incident on a node is conservative--such a count 
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may indicate sharing where none exists, but it cannot admit incorrect 
uncoordinated access to a join node. ] 

6.2. Parallel-Thread Linearization 

Dynamic resolution's runtime system imposes a total order on the 
program's concurrently evaluating expressions (threads) with respect to 
side-effects. A linked list of thread descriptors forms a linearization that 
implements this order on threads. This linearization dictates which thread 
may access join nodes and which threads must suspend on access to join 
nodes. It serves solely to order side-effects to shared data-- i t  does not con- 
strain parallel evaluation of threads that are side-effect free or that mutate 
unshared data. 

A thread descriptor has three fields: the thread, the thread's run state, 
and a pointer to the next thread descriptor. A thread can be in one of three 
run states: active, suspended, or finished. The DR runtime system also main- 
tains a single global pointer to the head of the linearization (the head 
thread). 

Threads are inserted into the linearization as follows. A thread t 
evaluating the expression (e;,dre') creates a new thread t' to evaluate e'. 
Thread t continues with the evaluation of e. A descriptor is created for t' 
that is inserted into the list directly behind the descriptor of t in the 
linearization. This will force t to complete before it may access mutable 
shared state. Upon creation, a thread descriptor's run state is set to active. 

When the head thread finishes, the head is moved to the next thread 
descriptor in the linearization that has not finished. If the associated thread 
is in the suspended state it is restarted. The computation is complete when 
the head reaches the end of the linearization. 

It is important to note that the linearization is a concurrent data 
structure--insertions of thread descriptors by different threads occur in 
parallel without synchronization. As such, the linearization does not 
sequentialize the program. 

6.3. Expression Scheduling 

The head thread in the linearization may freely access any node (join 
or simple) that it can reach. Nonhead threads later in the linearization, 
however, must suspend on access to a join node since i t - -and all nodes 
accessible from it--are potentially shared with other concurrent threads. A 
thread t may not access a join node until it is the head thread; i.e., until 
all prior threads have completed. On access to a join node, a nonhead 
thread sets the run state in its thread descriptor to suspended and then 
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suspends itself. [ The processor that suspends a thread proceeds to evaluate 
the (nonsuspended) threads.] A nonhead thread that completes without 
accessing a join node sets its descriptor's run state to finished. When the 
head thread completes, the next uncompleted (run state # finished) thread 
in the linearization becomes the head thread. If this thread is suspended, it 
is restarted and may now access any join node it can reach--if it is com- 
puting, it continues to do so. Since the head thread always makes progress, 
deadlock cannot occur. 

This scheduling scheme preserves the language's sequential semantics 
because, in an expression (e;lldre'), e (and threads created by e) may access 
all data potentially shared with e' (and threads created by e') before e' is 
given access to this data. In the absence of sharing, e and e' evaluate con- 
currently without synchronization under dynamic resolution. 

Figure 9 depicts dynamic resolution of an application of the example 
inenode function (Fig. 8) applied to a DAG. Straight uni-directional 
arrows ( --- ), join nodes ( �9 ), and simple nodes (O)  constitute inenode's 

DAG argument. The ~ are thread descriptors in the linearization. 

Text labels indicate a thread's run state: "A" denotes active and "S" denotes 
suspended In the linearization, bi-directional arrows (~-~) represent the 
next-prev link between adjacent descriptors. Curved solid arrows ( '~--"~) 
emanating from descriptors point to the heap node which the thread's 

/ /Xo - 

Fig. 9. Operation of the thread linearization during dynamic resolution of inenode applied 
to a DAG. Boxes denote active (A) and suspended (S) thread descriptors; circles and straight 
uni-directional arrows comprise the argument DAG. 
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expression is accessing. Curved dashed arrows (,-~/-,,-) emanating from 
descriptors designate the node at which the descriptor's thread was created. 

In Fig. 9, the thread currently at the head of the linearization is the 
thread that initially applied inenode. Therefore, no arrow to its point of 
creation is shown. Note that the head thread created threads at all nodes 
on the path from the DAG's root to its current evaluation point; e.g., the 
computing thread immediately to the right of the head thread was created 
(and its descriptor inserted into the linearization) when the head thread 
encountered the DAG's left-most simple node. Two threads are suspended: 
the thread accessing the DAG's (only) join node from the left and the 
thread accessing this join node from the right. They will be restarted when 
all the threads before them in the linearization complete. Finally, note that 
the last thread t in the linearization will imminently create a new thread for 
the evaluation of incnode applied to the right child of t's current 
node--the thread descriptor for this new thread will be inserted at the tail 
of the linearization. 

7. EXTENSIONS 

Several extensions to dynamic resolution can potentially improve its 
performance and precision (i.e., the amount of parallelism it finds). 

7.1. Specialized Function Versions 

With dynamic resolution, deconstructing a pattern p upon its success- 
ful match to a dynamic value (node) incurs the additional cost of examin- 
ing the matched node to determine whether it is a join or a simple node. 
As described, dynamic resolution always incurs this cost even when no DR 
parallelism exists. To curtail this expense, a compiler can generate two ver- 
sions of a program function f :  fseq and far. Version f ,  eq is the conventional 
sequential version of f Version far is dynamically parallel and contains 
checks to nodes as required by dynamic resolution. Functions applied by 
the far version of f must themselves be dynamically parallel. Only when 
parallel DR threads are present need the dynamic versions of functions be 
used. [Note: the PARCEL system similarly creates multiple, specialized 
function versions. ] ") 

7.2. Head-Thread Optimization 

Given sequential and dynamically-parallel function versions, an addi- 
tional optimization is possible. Since the head thread in the linearization 
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may unconditionally access any node, it never needs to check whether a 
node is a join node or a simple node. Therefore, the head thread may safely 
use the sequential code that does not examine node reference counts--it  is 
important that the head thread evaluate quickly since suspended threads in 
the linearization are awaiting its completion. Nonhead threads, however, 
must still check reference counts and suspend their evaluation on access to 
join nodes. 

7.3. Reconstitution of Reference Counts 

Reference counts on nodes become inaccurate for two reasons: (1) 
when a node becomes a join node it remains a join node (reference counts 
stick at two), although the actual oount of the node's incident links may be 
less than two, and; (2) some of the program's dynamic data is temporary 
and may quickly become inaccessible to the program, but links from this 
inaccessible data are still reflected in the reference counts of accessible data. 
Imprecise reference counts restrict parallelization with dynamic resolution 
because they can (falsely) indicate sharing where none exists. 

It is possible to periodically reconstitute a node's reference count to its 
actual value. A language implementation's garbage collector (2~ 2~) reclaims 
and recycles the program's discarded data; it is a natural place in an 
implementation for performing reference-count reconstitution. Reference- 
count reconstitution requires a collection algorithm that traverses all live 
links in the heap. During traversal, the collector counts and records (as the 
reconstituted reference count) the number of links incident on a live node. 
In a mark-&-sweep collector, for example, the mark phase visits all links 
and can thus restore accurate reference counts during its traversal. Here, 
we fully describe reference-count reconstitution for a copying collector (e.g., 
Refs. 22 and 23). 

Reference-count reconstitution, in a copying collector, works as 
follows. A pointer (e.g., a node bound to a program variable as opposed to 
a link in the heap) held by the program to an uncopied node causes the 
node to be copied. This copy is given a reference count of zero. A link to 
an uncopied node also causes the node to be copied; however, the initial 
reference count of a copy initiated by a link is one. The reference count in 
this copy is one due to the single link that initially caused it to be copied 
(other links to the node have not yet been encountered; if a link had pre- 
viously been encountered, a copy of the node would already exist). When 
a link to a previously-copied node is encountered, the reference count in 
the node's copy is incremented. Since the reference counts required by 
dynamic resolution are sticky, reconstitution need not increment reference 
counts past two. 
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Note that this method of reference-count reconstitution is valid only 
during a sequential phase in the program; i.e., when no parallel DR threads 
exist. This restriction is necessary because of the problem described in 
Section 6.1: a thread may not make a node h simple if it has a binding 
(pointer) to h since bindings to h are not reflected in h's reference 
count--reconstitution during parallel DR evaluation can (incorrectly) 
make a node, with active pointers to it, simple. 

8. EXAMPLE 

The ML program in Fig. 10 provides a further example of DR's opera- 
tion. The mqs function destructively sorts a list of elements using the 
quicksort algorithm. (]2) It performs the sort in place; that is, the links of 
the argument list's runtime representation are modified during the sort. The 
programmer has declared two acyclic datatypes: 0cpair and 0cmlist. The 
acyclic 0c pair datatype constructs binary tuples of identically-typed values. 
The 0clist datatype constructs mutable lists with elements of type ~--the 
lists are mutable because their link fields (to the next list element) are 
reference values. With the acyclic declaration the programmer indicates 
that the mCons constructor is used only to create acyclic lists. 

The mqs function has type 

mqs : (~, a --~ bool) --~ a mlist --~ a mlist 

and works as follows. The first parameter is a binary boolean predicate 
that compares elements of the second parameter, the mutable list to be 
sorted. The function returns a sorted mutable list. If the list to sort is empty 
(mNil), the empty list is returned. Otherwise, the argument list is decom- 
posed-via  pattern match--to the list's head (x) and tail (xs'). The 
auxiliary function split partitions its argument list (I) with respect to a 
pivot element into two lists: the elements that satisfy predicate p (the " < "  
relation on integers, for example) and the elements that do not satisfy p. In 
mqs proper, the tail of the list to be sorted (xs') is partitioned using the 
head (x) as the pivot. Quicksort is then recursively applied to the two lists 
returned from split. Sorted sublists are reattached with the call to 
mAppend to form mqs's result. 

Dynamic resolution's static component (Section 5.4) identifies the 
constructors in the program's patterns (overlined in Fig. 10). When 
dynamically matched, these constructors require a runtime check to the 
underlying node representing the datum before any access to the datum's 
components. This check determines whether the node is a join or simple 
node (Section 6.1). Note that functions applied by mqs (e.g., the mAppend 
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acyclic datatype ~ p a i r  = Pa i r  of  (~ * ~) 

acyclic datatype ~mlisr = mNil [ mCons of (~ * ~mlist ref) 

fun mAppend mNil y = y 

[ mAppend x mNil = x 

I mAppend x y = 

let fun aux (m~o~(_,r as r-~ mNil)) = r := y 
I aux ( m ~ ' s ( _ , r - e ' f  s ) )  = aux S 

in  
aux x ; 
x 

end 

409 

fun mqs p mNil = toni1 

I =qs p (m-~-C~(x,xs as ~-~ x s ' ) )  : 
let fun split pivot 1 = 

let fun split' mNil less greater = Pair(less,greater) 

[ s p l i t '  (1 as ~C--~(y ,ys  as r - ~  y s ' ) )  l e s s  g r e a t e r  = 
if p(pivot,y) then 

(ys := l e s s ;  
split' ys' 1 greater) 

else 

(ys := g r e a t e r ;  
split' ys' less i) 

in 

split' 1 mNil mNil 

end 

val = xs := mNil 

val Pair(1,g) = split x xs' 

val P-a~(l',g') = Pair(mqs p l,mqs p g)lh,  
in  

end 

sO.ppend i '  (mCons(x,ref  g ' ) )  

Fig. 10. Imperative quicksort (mqs) with annotations for dynamic resolution. 

function that destructively appends two mutable lists) also perform these 
checks. 

In mqs, dynamic resolution finds parallelism in the concurrent evalua- 
tion of the recursive applications of mqs that sort the sublists produced by 
the auxiliary split function: 

val Pair(l',g') = Pair(mqs p 1,mqs p g)ll~, 

The liar annotation indicates that the tuple's expressions, (mqs p I) and 
(mqs p g), may evaluate in parallel with dynamic resolution. By the 
criteria of Section 5.3, these expressions are candidates for DR evaluation: 
mqs is a true function. I can only reach g via paths that always contain 
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a join node, and g can only reach I via paths that always contain a join 
node. Note that the predicate p must also be a true function. If it is stati- 
cally unknown whether p is true, this can be determined dynamically; for 
example, a 2-tag (3'4) (see Section 5.1) can be used to carry a function's 
status (either true or untrue) during runtime. Here we assume that p is 
(statically or dynamically) known to be a true function. 

A further optimization of mqs is required for DR to find parallelism. 
The Pair constructor is used only to build temporary data--data that is 
inaccessible outside of mqs. This construction of temporary pairs, however, 
generates reference counts that (falsely) indicate sharing. Since mqs does 
not place Pairs in data structures, and Pairs are not accessible outside of 
mqs, it is safe to decrement [as before, reference counts stick at two] the 
reference counts on a pair's components upon its deconstruction. For 
example, in the expression 

val Pair(1,g) = split x xs' 

the reference counts on the nodes bound to I and g can be safely decremented 
after Pair matches. This optimization prevents temporary dynamic struc- 
tures from obscuring safe parallelism. 

If the elements of mqs's argument list are not shared, sublists---created 
with split--will also not contain sharing. This permits dynamic resolution 
to evaluate the recursive calls to mqs in parallel without suspending 
threads. On the other hand, if the argument list does contain elements with 
reference-counts greater than one, this will curb some (but not necessarily 
all) parallelization of quicksort. Since mqs is polymorphic, it can sort 
(mutable) lists of many types, including lists whose elements are, perhaps 
cyclic, dynamic structures. Any sharing between elements is detected during 
application of the predicate p, which--as all functions in the program-- 
detects access to shared data. 

9. DYNAMIC RESOLUTION IN POINTER-UNSAFE 
LANGUAGES 

In this section we briefly describe how dynamic resolution may be 
applied to programs written in pointer-unsafe languages. In particular, we 
consider DR in the context of C (6) with user-level threads. A framework for 
DR in C programs has been built (Section 10 and Ref. 24) that 
demonstrates parallel speedup for the inenode (Section 2) and destructive 
quicksort (Section 8) functions. Application of DR in a C program requires 
programmer assistance (for the static component) and the programmer's 
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use of custom macros for thread creation, memory allocation, and pointer 
manipulation. 

In particular, the C programmer must assert that the data structures 
accessed by a C function using dynamic resolution have the acyclic 
property as required by DR's static component (Section 5). Additionally, 
the programmer must identify the statements that should evaluate in 
parallel using dynamic resolution. For a C version of the inenode function 
of Section 2, for example, the programmer must assert that the data struc- 
ture passed to the function is acyclic and must explicitly fork the recursive 
calls to inenode as separate threads. Improvements in the design and static 
analyses of pointer-unsafe languages (e.g., Refs. 17 and 25) may help shift 
the analysis required by DR's static component from the programmer to 
the compiler. 

Since DR requires heap nodes to hold reference counts, a custom 
macro for memory allocation must be used that allocates storage for--and 
properly initializes--the reference counts. Furthermore, since heap pointers 
to heap nodes must be reflected in reference counts, macros that manipulate 
reference counts must be used in heap-node pointer assignments. In the 
example of the C version of inenode, reference counts must be incremented 
as new nodes are inserted into the argument DAG during its construction. 
Access to a node must be checked for join or simple status (Section 5.4). 
Again, this can be accomplished by a set of macros for accessing com- 
ponents of a C structure; such macros perform the checks (and requisite 
actions) before accessing a node's component fields. 

Finally, the thread system must be extended to provide a thread-fork 
operation that maintains a linearization of threads (Section 6.2) as required 
by dynamic resolution. 

10. IMPLEMENTATION AND RESULTS 

Dynamic resolution was previously implemented ~3" 4) for an early ver- 
sion of the SML/NJ optimizing ML compiler ~3'221 on a shared-memory 
Sequent multiprocessor. Although this implementation achieved speedup 
over sequential ML, it did not improve on optimized sequential C; that is, 
ML, even with parallelism due to dynamic resolution, did not outperform 
sequential C. Here we report measurements of a C-based implementation 
of dynamic resolution. By using C in our experiments, we can make direct 
comparisons with explicitly parallel and sequential C programs. 

C-based dynamic resolution was implemented for the two example 
programs presented in this article: for DAG rewrite (inenode) and for 
destructive list quicksort (mqs). Programs were compiled with optimiza- 
tion enabled (-O) and used assembly-language synchronization routines. 
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All measurements were taken on an unloaded bus-based shared-memory 
SGI Challenge machine with one gigabyte of shared memory and eight 
150 Mhz MIPS R4400 processors. 

We compare three versions of each program: a sequential version, an 
unsafe-parallel version that operates correctly only on data guaranteed not 
to contain shared structure, and a dynamic-resolution version that 
correctly handles sharing. For the sequential programs, recursive and non- 
recursive implementations were compared--the results of the faster 
implementation are reported here. 

The unsafe-parallel and the dynamic-resolution versions both use a simple 
work-queue scheme (e.g., Refs. 26 and 27) to distribute work. Each processor 
has a thread queue into which it inserts the new threads that it creates. When 
a processor exhausts the work in its queue, it steals work from other pro- 
cessors if possible. A C macro is used to demarcate C statements that are to 
evaluate in parallel; it inserts newly created threads into DR's linearization. 

The dynamic-resolution versions of the programs differ from the 
unsafe-parallel versions in three respects. The DR versions maintain 
reference counts on dynamic data, they linearize all threads using a linked- 
list of thread descriptors, and, when necessary, they conditionally suspend 
threads on access to potentially shared data (i.e., they check reference 
counts on node access). 

A collection of DR C macros was used for manipulating dynamic data 
as described in Section 9. In particular, a node-creation macro allocates 
storage for the node along with a reference count. Pointer-linkage macros 
for installing and removing pointers update reference counts as necessary. 
Node-access macros check for join nodes and, on access to such a node, 
consult the linearization to either continue or suspend the current thread's 
execution. In safe languages, the actions performed by the macros can be 
built into the compiler---dynamic resolution was implemented in the 
SML/q'qJ compiler in this manner, t3) 

The first program measured is incnode (Figs. 1 and 8) applied to a 
balanced tree with 2 21 unshared internal nodes. The absolute execution 
times in Table I show that DR already outperforms the sequential version 
with only two processors. With four processors DR achieves a speedup of 
2.3. Furthermore, the additional overhead with respect to unsafe-parallel is 
only 13 %. Surprisingly, with more than five processors dynamic resolution 
outperforms unsafe-parallel. This is because termination detection with DR 
is trivial. A DR computation is complete when the head of the linearization 
becomes empty. Unsafe-parallel, on the other hand, has no thread 
linearization so it must reach agreement that all processors have no more 
work--the time required to reach agreement seems to be a function of the 
number of processors. 
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Table I. Timing Results for DAG Rewrite (incnode)" 

incnode (Balanced Tree of Height 222) 

SC b 1.36 . . . . . . .  
U P  b 1.96 0.97 0.67 0.52 0.48 0.42 0.39 0.36 
DR b 2.27 1.16 0.77 0.59 0.48 0.40 0.35 0.33 

Processors 1 2 3 4 5 6 7 8 

Values in seconds. 
b SC is sequential C; U P  is unsafe-parallel C; and DR is C with dynamic-resolution 

annotations. 

The second program we measured is a destructive (in place) quicksort 
for lists. This is another program for which dynamic resolution automati- 
cally finds expression-level parallelism. The program sorted lists of 10 6 r a n -  

d o m  integers. List elements were not shared within the list or with other 
data structures. The timing results for the three versions (sequential, 
unsafe-parallel, dynamic-resolution) are in Table II. Again, dynamic resolu- 
tion outperforms the sequential program with two processors. At four pro- 
cessors, DR incurs overhead of 21% relative to the unsafe-parallel version; 
this overhead drops to 17 % at eight processors. 

To ascertain the parallelism-inhibiting effects of sharing, we introduced 
sharing into the argument DAG to inenode. We simulated sharing by 
selecting nodes of d at random and setting their reference count to two. 
Table III contains the absolute execution times on six processors for the 
dynamic-resolution version of inenode applied to a DAG of 22~ internal 
nodes with varying degrees of sharing. Since the choice of which nodes to 
share can greatly influence performance, the reported numbers are the 

Table II. Timing Results for Destructive Quicksort (mqs)" 

mqs (List of  10 6 Random Integers) 

SC b 26.2 . . . . . . .  
U P  b 29.6 18.5 18.2 15.1 13.6 11.6 11.1 10.7 
DR b 3.37 23.2 23.3 18.4 16.7 14.8 13.6 12.6 

Processors 1 2 3 4 5 6 7 8 

"Values in seconds. 
b SC is sequential C; U P  is unsafe-parallel C; and DR is C with dynamic-resolution 

annotations. 
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Table III. 

Huelsbergen 

Timing Results for DAG Rewrite (incnode) with Varying Degrees of 
Sharing in the Argument DAG on 6 Processors" 

Percentage of Shared Nodes 

0.5% 1.0% 1.5% 2.00 2.5% 3.0% 3.5% 4.0% 

0.50 0.64 0.80 0.96 1.05 1.22 1.27 1.38 

mean of ten trials, each selecting a different set of random nodes. For this 
problem, DR can tolerate some sharing (by performing some subcomputa- 
tions sequentially) and still outperform its sequential counterpart. 

11. RELATED WORK 

Dynamic resolution was suggested by Huelsbergen and Larus; (4) sub- 
sequently, it was further developed by Huelsbergen as part of a thesis ~ 
and into an implementation for pointer-unsafe languages. ~24) 

Work related to the parallelization of languages with dynamic data 
structure falls into two classes: static-dynamic techniques and solely static 
techniques. 

Tinker and Katz propose to model a Scheme implementation as a 
database in their ParaTran system. ~28" 29) Concurrent reads and writes are 
concurrent transactions under this model. Evaluation in Paratran proceeds 
optimistically. Upon dynamic detection of a conflict, the computation must 
be rolled back to a point where the linear access order is intact. Reversing 
large computations is expensive. By contrast, dynamic resolution suspends 
a potentially conflicting expression before the conflict and can immediately 
process pending work. The amount of runtime information required by 
dynamic resolution is also small (reference counts, thread descriptors) in 
comparison to the complex time-stamps Paratran maintains for heap 
objects. Paratran has not demonstrated effective speed-up. 

Lu, (3~ and Lu and Chen, 13~) describe runtime methods for paralleliz- 
ing loops with indirect array accesses (in Fortran and C) and (restricted) 
pointer accesses (in C). Their methods preoexecute a loop nest at runtime 
to find data dependences between program statements in the loop. The 
compiler, using static analysis, generates a scheduler for the loop's itera- 
tions. At runtime, this scheduler dynamically records references to dynamic 
data and, using the reference patterns thus collected, allocates loop itera- 
tions to individual processors for parallel evaluation. Unlike dynamic 
resolution, Lu and Chen's method does not handle procedure calls, 
modification of existing data structure links, or the allocation of new data. 
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Their method also depends on extensive pointer analysis that has been 
shown to be expensive in practice. ~2) 

Harrison's PARCEL system "'32) and Larus's Curare ~2) seek paral- 
lelism in sequential Scheme programs using static analyses. Both systems 
compute bounded approximation information intended to allow parallel- 
ization of non-interfering imperative expressions: For large, irregular data, 
such bounded approximation leads to overly conservative parallelization-- 
if sharing can occur dynamically, PARCEL and Curare assume that it 
always occurs. In the presence of sharing some of the parallelism that 
dynamic resolution can find must therefore elude these systems. 

Many approaches to static pointer analysis have been described (e.g., 
Refs. 7, 9-11, and 14-16). These approaches usually use a form of bounded 
approximations (of the heap itself, of the store of heap variables, or a com- 
bination of the two). Bounded approximations are conservative--they must 
account for all possible configurations of the program's dynamic data. In 
contrast, dynamic techniques can adapt to individual instances of 
individual dynamic structures at runtime. Static pointer analyses also 
require expensive interprocedural analyses that curtail their practical use 
(cf. Refs. 2 and 33). With dynamic resolution, interprocedural information 
(i.e., sharing information) dynamically propagates into functions at run- 
time. 

Hendren t9'25~ addresses the problem of parallelizing programs with 
recursive data structures with an algorithm for estimating the relationships 
between accessible nodes in a dynamic data structure. Relationships thus 
attained are then used to (statically) detect interference between program 
statements. Her analysis finds parallelism when it can statically determine 
that trees, rather than DAGs, always reach a given program point. This 
analysis, therefore, cannot discover parallelism in DAGs--the type of 
parallelism that dynamic techniques can find. Hendren's analysis also 
detects when a set of handles (pointers) into a dynamic data structure can- 
not reach common structure. Relationships between handles are similar to 
the reaching relations that dynamic resolution obtains from pattern match- 
ing (Section 5.2). Hendren's analysis can potentially perform the task of 
dynamic resolution's static component in languages that do not support 
patterns. 

12. CONCLUSIONS 

We have described a runtime parallelization technique called dynamic 
resolution. Dynamic resolution extracts parallelism from program proce- 
dures that destructively manipulate DAGs; that is, for procedures that 
modify a DAGs edges or update fields stored in its vertices. Dynamic 

828/25/5-7 
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resolution can find parallelism inaccessible to solely static approaches. 
Dynamic resolution is the first parallelization technique that can automati- 
cally and effectively parallelize the destructive DAG rewrite and destructive 
quicksort problems. 

In the context of pointer-safe languages (such as ML) and programs 
without cyclic structures, dynamic resolution can find parallelism automati- 
cally while preserving the language's sequential semantics. In pointer-unsafe 
languages such as C with threads, some programmer assistance is required 
to realize dynamic resolution. 

Dynamic parallelization in general, and dynamic resolution in par- 
ticular, are viable approaches for the parallelization of imperative 
languages and programs. 
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