
International Journal of Parallel Programming, Vol. 25, No. 5, 1997

Recovery Requirements of
Branch Prediction Storage
Structures in the Presence of
Mispredicted-Path Execution

St6phan Jourdan, 1"2 Jared Stark, 1
Tse-Hao Hsing, ~ and Yale N. Patt ~

Execution along mispredicted paths may or may not affect the accuracy of sub-
sequent branch predictions if recovery mechanisms are not provided to undo the
erroneous information that is acquired by the branch prediction storage struc-
tures. In this paper, we study four elements of the Two-Level Branch Predictor:
the Branch Target Buffer (BTB), the Branch History Register (BHR), the
Pattern History Tables (PHTs), and the Return Address Stack (RAS). For each
we determine whether a recovery mechanism is needed, and, if so, show how to
design a cost-effective one. Using five benchmarks from the SPECint92 suite, we
show that there is no need to provide recovery mechanisms for the BTB and the
PHTs, but that performance is degraded by an average of 30% if recovery
mechanisms are not provided for the BHR and RAS.

KEY WORDS: Architecture; processor design; branch prediction; speculative
execution; superscalar.

1. INTRODUCTION

Speculative execution, even with a great branch predictor, from time to
time results in instruction execution along a mispredicted path. We refer to

1 Department of Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, Michigan 48109-2122.

2Institut de Recherche en lnformatique de Toulouse, Universit6 Paul Sabatier, 31062
Toulouse, France.

363

0885-7458/97/1000-0363512.50/0 "~ 1997 Plenum Publishing Corporation

364 Jourdan, Stark, Hsing, and Patt

the execution of such instructions as wrong-path instructions. Instructions
executed along the correct path we call correct-path instructions.

Wrong-path instructions can affect machine performance substantially,
sometimes for good, sometimes for not good. Caches, for example, will
cause pollution due to load misses that never should have been processed.
The effect of this pollution, however, is sometimes beneficial, t~-3)

Wrong-path instructions may compete with correct-path instructions
for functional units, thus delaying the execution of correct-path instruc-
tions. This is particularly annoying (although not particularly harmful (l))
in the case of nonpipelined functional units where a scarce resource can be
tied up for an inordinate amount of time. Because our execution model
uses oldest-ready dynamic scheduling (4) and pipelined functional units,
correct-path instructions are always given scheduling priority over wrong-
path instructions, and so correct-path instructions are never delayed.

Wrong-path instructions also affect the storage mechanisms of the
Two-Level Branch Predictors. (5) Two-Level Branch Predictors use two
levels of history to make branch predictions. The first-level history
records the outcomes of the most recently executed branches and the
second-level history keeps track of the more likely direction of a branch
when a particular pattern is ~ncountered in the first level history. The
2-level branch predictor uses one or more k-bit shift registers, called
Branch History Registers (BHRs), to record the branch outcomes of the
most recent k branches. It uses one or more arrays of 2-bit saturating up-
down counters, called Pattern History Tables (PHTs), to keep track of
the more-likely direction for branches. The lower bits of the branch
address select the appropriate PHT and the value in the BHR selects the
appropriate 2-bit counter to use within that PHT. Processing wrong-path
instructions causes the storage mechanisms of the Two-Level Branch
Predictors to acquire incorrect branch information. This can pollute the
Branch Target Buffer (BTB), the BHRs, the PHTs, and the Return
Address Stack (RAS).

Example 1 illustrates the effect of wrong-path instructions on the RAS
if no misprediction recovery mechanism is provided.

If the conditional b ranch/ f ((condition)) is predicted taken, control
is redirected to subroutine() and its return address (say, RA) is pushed on the
RAS. Suppose this prediction is incorrect, and further, that it is discovered
before subroutine() completes. Control proceeds down the correct path, i.e.,
to return (value). The branch predictor predicts the return address for
return (value) by popping RAS. Unfortunately, the address at the top of
RAS is RA, which is the return address for subroutine(), and not for func-
tion(). What is even worse is that ALL the remaining entries on the RAS
will produce incorrect predictions.

Branch Prediction Storage Structures

i n t f ~ c r

{

void subroutine()

{

, . .

365

if (<condition>) }

{

subroutine();

>

return(value);

}

Exam~e 1. E ~ c t of mispr~icted-path execution on the Return Address Stack.

We are not aware of any heretofore published studies that have
reported on the effects of wrong-path instructions on branch prediction.
The studies which we are aware of use trace-driven simulation, and assume
perfect recovery mechanisms. One of the most comprehensive studies of
branch prediction (6> uses golden registers to deal with wrong-path effects,
and assumes that branches are resolved in order. Resolving branches in
order simplifies recovery but degrades performance. (7> Although a
moderate amount of speculative execution only degrades performance a
small amount (3% reported in Ref. 7), wider issue widths and deeper
pipelines will result in increased speculative execution, which should make
the performance degradation become much more severe.

This paper focuses on the recovery requirements of branch prediction
storage structures due to adverse effects of wrong-path instructions. Branch
prediction storage structures can be updated speculatively as the predic-
tions occur, or nonspeculatively at retirement time. In the first case,
branches can use the most recent history information in making subsequent
predictions. However, recovery mechanisms must be provided for those
structures that are adversely affected by wrong-path instructions. In the
second case, recovery mechanisms are not needed, but the predictor suffers
badly from not being able to use the latest history information. (8' 9)

366 Jourdan, Stark, Hsing, and Patt

The bottom line is that since high performance requires speculative
updates to the branch prediction storage structures, complex recovery
mechanisms must be provided in those cases where it matters. In this
paper, we determine which of the four structures present in the Two-Level
predictor require complex recovery mechanisms.

The paper is organized as follows: Section 2 describes the execution
model. Section 3 describes the simulation process. Section4 describes
recovery mechanisms. Section 5 reports the measured effectiveness of these
recovery mechanisms. Section 6 provides concluding remarks.

2. EXECUTION MODEL

The model of execution used for this study exploits instruction level
parallelism through speculative execution and dynamic scheduling. We call
this model of execution the High Performance Substrate (HPS)J 1~ Many
elements of HPS are embodied in today's high end microprocessors, for
example, the Intel P6, tll) the PowerPC 620, t~2) and the Digital Alpha
21264. ti3)

Execution in HPS flows as follows: each cycle multiple instructions are
issued, and, using the information in the current copy of the Register Alias
Table, the instructions are merged into the reservation stations, which we
call Node Tables, much like the Tomasulo algorithm merges operations
into reservation stations of the IBM 360/91. t~4) Associated with each
instruction (node) are the source operands for that instruction (or iden-
tifiers for obtaining the operands), and destination information. Each node
is stored in its proper node table independent of and decoupled from all
other nodes currently awaiting dependencies in the datapath until all its
operands are available, at which point the node is eligible for firing. Each
cycle, the oldest firable node of each node table is scheduled, i.e., it is
shipped to a pipelined functional unit for execution. Each cycle, functional
units complete execution of nodes and distribute the results to nodes
waiting for these results, which then may become firable.

For memory operations, a node is firable only if all of its operands are
available, if it is not dependent on any previous memory operations, and
if there are no previous memory operations to unknown addresses that
may interfere with the execution of the node. This dynamic memory disam-
biguation requires that, in the case of load operations, no previous stores
are to unknown addresses. Likewise, for store operations, any previous
loads or stores to unknown addresses will stall the store operation. In
addition, stores are always performed nonspeculatively.

The processor simulated has an issue width of 8. We modeled a 32k
byte, 8-way set-associative instruction cache with a 64 byte line size, as in

Branch Prediction Storage Structures 367

the PowerPC 620. The data cache modeled was 32k byte, nonblocking,
write back, write no-allocate, 8-way set-associative, with a 16 byte line size.
Banking of the caches was not modeled. A perfect second level unified
cache was assumed. In the event of a first level cache miss, eight cycles were
required to return the data from the second level cache.

A checkpointing mechanism was used to repair the machine state in
the event of a branch misprediction, tlS' 16) An issue packet is a group of
consecutive instructions within the dynamic instruction stream. A packet is
fetched from the instruction cache using at most one prediction from the
branch predictor, and issued as a whole into the node tables. Each fetch
attempted to access two consecutive instruction cache lines and pull the
desired instructions from these lines. Instruction issue was restricted to
issuing one packet of instructions per cycle. The issue packet was broken
after either the first control flow instruction, or the eighth instruction,
depending on which came first. Node tables had a capacity of 32 issue
packets, that is, 32 by 8 instructions, or 256 instructions. Issue stalled when
node tables were at capacity. Issue packets were removed (retired) from the
node tables in the order in which they were issued. All instructions in the
issue packet had to complete execution before the packet could be retired.

Eight fully pipelined execution units were modeled. Table I shows the
instruction classes and their simulated execution latencies, along with a
description of the instructions that belong to that class. Table II shows the
functional unit configuration simulated, where the functional units are
defined by what instruction classes they can execute. Functional units
handling memory operations were capable of performing an address
calculation in parallel with another nonaddress calculation. Thus, both an
address calculation node and a nonaddress calculation could be fired to a
functional unit in the same cycle.

Table I. Instruction Classes and Latencies

Inst. Class Lat. Description

Integer 1 INT add, sub and logic ops

Bit Field 1 Shift, and bit testing

FP Add 3 FP add, sub, and convert

Multiply 3 FP mul and INT mul

Divide 8 FP div and INT div

Load 2 Memory loads

Store 2 Memory Stores

Branch 1 Control instructions

368

Table I I .

Functional
Unit Number

Jourdan, Stark, Hsing, and Part

Simulated Machine Configuration

Instruction Classes Executed

1 FP Add, Integer
2 Multiply, Integer
3 Divide, Integer
4 Branch, Integer
5 Branch, Integer
6 Load/Store, Bit Field, Integer
7 Load/Store, Bit Field, Integer
8 Load/Store, Bit Field, Integer

Finally, the branch predictor was a modified Two-Level Global Adap-
tive Branch Predictor (GAg (5)) scheme which exclusive-ORs a global
history with the fetch address to select the appropriate PHT entry
(gshare~ We used a 16-bit global BHR. This results in a 64k-entry
PHT. The RAS featured 32 entries. We used a 2048-entry, 4-way set-
associative BTB.

3. SIMULATION METHODOLOGY

3.1. Benchmarks

Five benchmarks from the SPECint92 suite were used. All benchmarks
were compiled for the Motorola 88k instruction set using the gcc v2.4.3
compiler with all optimizations turned on. Due to our time consuming
simulation technique, benchmarks were only simulated for the first 100
million instructions, except for compress, which completes in 86.4 million
instructions. Table III lists the five benchmarks, their data sets, and the
number of instructions simulated.

Table III. Benchmark Summary

Benchmark Data Set Inst

008.espresso bca 100 M
022.1i li-input.lsp 100 M
023.eqntott int_pri_3.eqn 100 M
026.compress in 86.4 M
085.gcc stmt.i 100 M

Branch Prediction Storage Structures 369

3.2. Simulation Environment

Two simulators were used for the study: an instruction level simulator
provided by Motorola (archsim) and our HPS execution driven simulator
(fullsim). Fullsim is a stand-alone simulator which reads in the executable
image of a benchmark, and then performs a cycle-by-cycle simulation of
the executable. This simulation includes the execution of any instructions
along mispredicted paths. (This simulation technique is much more time
consuming than trace driven simulation.) Archsim was used to verify the
correctness offullsim. Archsim produces a trace containing the instruction
addresses and the corresponding instruction data for the instructions along
the correct path of execution. As instructions were committed from the
node tables offullsim (only instructions along the correct path of execution
commit), they were compared to the corresponding instruction in the trace
produced by archsim. Any difference in instruction data or instruction
address caused fullsim to abort the simulation.

4. RECOVERY MECHANISMS

In this section, we first introduce state recovery mechanisms required
to correctly resume execution in dynamically-scheduled processors. The
state recovery mechanisms presented include the history buffer, the reorder
buffer, the future file, ~ts~ the checkpoint repair mechanism. "4~ In dynam-
ically-scheduled processors, logic must be provided to keep track of the
location of each architectural register. Additionally, logic must also be
provided to restore the architectural state of the register file should a mis-
prediction occur. In the next few paragraphs, we will briefly describe how
each of these recovery mechanisms can be used to repair this architectural
state. Following that, we will describe how these mechanisms can be
applied to the BTB, the PHTs, the BHR, and the RAS to discard the effect
of wrong-path execution.

The history buffer is a stack which contains a record of older architec-
tural register locations. Whenever the location for an architectural register
changes, the previous location is recorded in the history buffer. Should a
misprediction occur, the recovery process consists of restoring the architec-
tural register locations from the history buffer. Once done, execution can
resume. The major drawback of such a recovery mechanism is that it
requires several cycles to restore the architectural state from the entries in
the history buffer. Butter and PaW ~9) report that this significantly impacts
performance.

The reorder buffer is a queue which contains the speculatively allocated
architectural register locations. The committed register file maintains the

370 Jourdan, Stark, Hsing, and Patt

location of each non-speculative architectural register. The architectural
state is maintained by both the reorder buffer and the committed register
file: an associative look-up of the reorder buffer is required to find the most
recent location for a given architectural register. To recover from' a mis-
prediction, the processor flushes subsequent recorded locations from the
reorder buffer. For wide-issue dynamically-scheduled processors, a large
number of reorder buffer entries may be required (over 100(2~ Addi-
tionally, the number of read ports is twice the issue width. Both these fac-
tors may adversely affect the cycle time.

An alternative to avoiding the costly associative look-ups in the
reorder buffer is to explicitly identify the architectural state by means of a
future file. Associative look-ups are no longer required. On misprediction,
this architectural state must be repaired. The straightforward way to repair
is to wait for the retirement of all the remaining speculative instructions.
Hence, in addition to the extra space needed for the future file, this scheme
requires several cycles to start the recovery process. However the recovery
process is immediate since the committed register file is the architectural
state required to resume. Butler and Patt (19) report that the delay before
recovery impairs performance as much as the history buffer scheme.

The checkpoint repair mechanism establishes snapshots or checkpoints
of the architectural state whenever a branch is predicted. If mispredic-
tion occurs, the checkpoint established for that branch will become the
architectural state. When using this mechanism to repair the architectural
state of the register file, the recovery process is immediate. However, this
mechanism is space-consuming since each checkpoint records the architec-
tural state of the register file. Several optimizations are based on the fact
that the contents of these checkpoints differ by only a few locations, and
mappings are cheaper to record than register values, tl6' 21)

In the following sections, we describe how these recovery mechanisms
can be applied to the BTB, the PHTs, the BHR, and the RAS to discard
the effect of wrong-path execution.

4.1. Branch Target Buf fer

Each BTB entry contains a valid bit, an address tag, a taken target
address, a fall-through target address, and the branch type (unconditional
branch, conditional branch, subroutine call, or subroutine return). The
BTB is accessed in parallel with the instruction cache. The BTB determines
whether branches are present in the block of instructions being fetched
from the instruction cache. As stated in the introduction, the effect of mis-
predicted path execution on the BTB is the allocation and the replacement
of BTB entries which would not have occurred had the machine executed

Branch Prediction Storage Structures 371

only correct-path instructions. This effect can be either beneficial or
detrimental. Mispredicted path execution may serve as a form of BTB
prefetching, increasing the BTB hit rate. On the other hand, the replace-
ment of BTB entries results in the loss of information about the branch.
Thus, the misprediction rate may increase. It is possible for both the BTB
hit rate and the branch misprediction rate to increase as a result of
mispredicted path execution.

Checkpointing the BTB to avoid the effects of mispredicted path
execution is not viable because of the large amount of information needed
for each checkpoint. Providing buffers to maintain the pending BTB entry
updates (reorder buffer) or to record the overwritten BTB entries (history
buffer) is a way to discard the effects of mispredicted path execution on the
BTB. However, it comes at the expense of the extra buffer and the addi-
tional logic required either to read the buffer in parallel with the BTB
(reorder buffer), or to handle the recovery of the BTB (history buffer).
Depending on the impact of mispredicted path execution, it might be more
cost-effective to provide more entries in the BTB.

4.2. Pattern History Tables

Each PHT entry contains a saturating 2-bit counter. PHTs are
updated at retirement time for a correctly predicted branch. PHTs do not
need to be updated speculatively, because subsequent conditional branches
accessing the same PHT entry will be predicted in the same way due to the
2-bit counter algorithm. Thus, delaying the PHT update until retirement
gives the same up-to-date information as would updating the PHT entry
speculatively. PHTs are updated at execute time for a mispredicted branch.
Since only correct-path branches can retire, mispredicted path execution
does not affect the PHTs for branches that have been resolved as correct.
However, if branches are executed out-of-order, the effects of mispredicted
path execution on the PHTs can be observed when a mispredicted wrong-
path branch is executed prior to the mispredicted correct-path branch.
Note that since misprediction rates are low in Two-Level Adaptive Branch
Prediction Schemes, this occurs infrequently. Furthermore, recovering
from this pollution effect is simple if required. Since only a few incorrect
updates occur, a history buffer based recovery mechanism is appropriate.
To resume execution, the processor does not wait for the history buffer to
restore the PHTs, as is required for the register file. The PHT entries in
the history buffer can be restored whenever there is a cycle in which no
branch is retired. Therefore, an extra write port to the PHTs is not
required.

828/25/5-3

372 Jourdan, Stark, Hsing, and Patt

4.3. Branch History Registers

In a global scheme, the BHR maintains the history of past conditional
branches. Hao et al. ~9~ report that the predictor should use the most up-to-
date history to achieve low misprediction rates. Therefore, the BHR is
updated immediately after the prediction is made. The update is speculative
and thus the effect of mispredicted branches can be observed if no recovery
mechanism is provided. If no recovery mechanism is provided, each wrong-
path conditional branch that is fetched inserts a bit into the BHR. These
wrongly inserted bits remain in the BHR, resulting in poor conditional
branch prediction accuracy. A recovery mechanism for a global predictor
is simple to implement.

The history buffer used to restore the architectural state of the register
file could (depending on the implementation) be used to restore the BHR.
Conditional branch instructions do not specify a destination register. The
history buffer entry that would have been allocated to hold the result of
the branch instruction can be used instead to hold the BHR. During the
restore process, both architectural register and the BHR are corrected in
the same way. A similar technique can be used if the architectural state is
maintained with a reorder buffer. However, the most appropriate recovery
mechanism for the BHR is checkpointing, since there is little information
to record. An alternative to the common checkpointing scheme is to use a
wider circular BHR which maintains the outcomes of speculative branches
and non-speculative history. Based on the checkpoint number corre-
sponding to the checkpoint holding the mispredicted branch, the subse-
quent speculative predictions can be shifted out from this wider history
register on misprediction.

The history buffer used to restore the architectural state of the register
file can still be used to restore the BHRs for the per-address prediction
scheme, t2~ A similar technique can still be used if the architectural state is
maintained with a reorder buffer. Checkpointing will be costly because of
the amount of information required for each checkpoint (number of BTB
entries times the width of the history registers). Therefore, for the per-
address scheme, a reorder buffer or a history buffer is more appropriate.

4.4. Return Address Stack

The RAS is used to predict the targets of return instructions. For each
subroutine call, the return address is pushed onto the RAS. For each sub-
routine return, the target is predicted by popping the RAS. To provide a
recovery mechanism for the RAS, we can checkpoint the pointers used to
access the RAS. In the following paragraphs, we explain the design of such
a Checkpointed RAS.

Branch Prediction Storage Structures 373

Figure 1 is a diagram of a Checkpointed RAS. A Checkpointed RAS
contains three components: register file RAS, register TOS (top of stack),
and register NEXT. RAS contains the return addresses for the most recent
subroutine calls. TOS points to the entry in RAS needed to predict the next
subroutine return. NEXT points to the entry in RAS to be written for the
next subroutine call. Each entry in RAS has two fields: NOS (next on
stack) and ADDRESS. The NOS field of an entry points to the RAS entry
that is logically next on the stack after that entry. For example, the NOS
field of the RAS entry pointed to by TOS is the RAS entry for the second
item on the stack.

The NEXT counter is incremented for each subroutine call. The
NEXT counter is not decremented for subroutine returns. If the RAS con-
tains 8 entries, as in the figure, a unique RAS entry will be allocated for the
8 most recently encountered subroutine calls. On overflow, the NEXT
counter wraps around to point to the entry which was allocated for the
least recently encountered subroutine call in the RAS.

Consider what would happen if the NEXT counter was decremented
for subroutine returns. If the NEXT counter was decremented for sub-
routine returns, the NEXT pointer would always be equal to the TOS
pointer. This would result in behavior identical to that of a noncheck-
pointed RAS. Suppose the following branches are encountered in the
following order: a subroutine call, a conditional branch, a subroutine
return, and another subroutine call. If the NEXT counter was decremented
for subroutine returns, the second subroutine call would be allocated the
same RAS entry as the first subroutine call. Thus, the return address for
the first subroutine call would be overwritten with the return address for
the second subroutine call. If the conditional branch is mispredicted, the
return address for the first subroutine call will be needed to predict the sub-
routine return. Unfortunately, this return address would no longer be
present in the RAS. The problem is solved by not decrementing the NEXT
counter for subroutine returns.

For a subroutine call, the following steps are taken:

1. Return address of the subroutine call is written into the
ADDRESS field of the RAS entry indicated by NEXT.

2. TOS is written into the NOS field of the RAS entry indicated by
NEXT. Thus, the NOS field provides a link to the old top of stack.

3. NEXT is copied into TOS.

4. NEXT is incremented.

3"/4 Jourdan, Stark, Hsing, and Patt

(
=
0

I z 0 0 0 0 0 0 0 0 ,~'
Z Z Z Z Z Z

<

_ i

1~1 a-~l -J T

<

0

Branch Prediction Storage Structures 375

For a subroutine return:

1. Predict the return address using the ADDRESS field of the RAS
entry indicated by TOS.

2. Copy NOS field of the RAS entry indicated by TOS into TOS.

The values of TOS and NEXT are used to checkpoint the state of the
Checkpointed RAS. Associated with each branch prediction are the values
of TOS and NEXT that were valid before the branch prediction was made.
To recover from a branch misprediction, the values TOS and NEXT values
associated with the mispredicted branch are reloaded into the TOP and
NEXT registers.

5. SIMULATION RESULTS

In the previous section, we investigated several recovery mechanisms
for the different structures in the Two-Level Adaptive Branch Predictor.
In this section, we report the impact that providing these recovery
mechanisms has on the processor performance. For all experiments, we
used a 16-bit gshare scheme with a 32-entry RAS, and a 2048-entry 4-way
set-associative BTB. Figures 2-5 show our experimental results.

Figure 2 compares the overall performance, expressed in Instructions
Retired per Cycle (IPC), between a processor with recovery mechanisms
for all the branch prediction structures, and a processor without any
recovery mechanism for the branch prediction structures. It also shows the
conditional branch misprediction rate (due to both misprediction and
target address misfetch), the return misprediction rate, and the BTB miss
rate. Only correct-path instructions are used to calculate these rates
because only correct-path instructions actually contribute to performance.
From the IPC numbers, we observe that without any recovery mechanisms
for its branch prediction structures, the processor suffers a significant per-
formance loss (on average, performance drops from 2.70 IPC to 1.90 IPC).
This is a consequence of the large increases in the conditional branch mis-
prediction rate (5.60% to 22.62%) and the return misprediction rate
(2.80% to 44.17%). It is interesting to note the prefetching effect due to
wrong-path execution for cache-like structures mentioned in Refs. 1-3, is
also observed for the BTB when running gcc. This indicates that wrong-
path branch instructions actually allocate BTB entries that are subse-
quently accessed by correct-path branches. For gcc, the BTB miss rate
drops from 2.58 % to 2.20% when no recovery mechanism is provided;
however, this does not offset the negative impact of the increased mis-
prediction rate. Since other benchmarks do not have large numbers of

828/25/5-4

376 Jourdan, Stark, Hsing, and Patt

Q
" 3

�9 - - 0

~E

.@

Branch Prediction Storage Structures 377

static branches, their BTB miss rates remain about the same. From these
results, we conclude that recovery mechanisms for branch prediction struc-
tures are necessary to avoid performance degradation.

In the remaining part of this section we will take a closer look at
the effect of providing recovery mechanisms for each of the structures of the
Two-Level Adaptive Branch Predictor. The results in Fig. 3 present the
performance difference for BTBs with and without a recovery mechanism.
To isolate the effect of wrong-path execution on the BTB, we do not
pollute the BHR, the PHTs, and the RAS when following a wrong-path.
For all benchmarks, not providing a recovery mechanism for the BTB only
slightly degrades the IPC. This suggests that it is not worthwhile to imple-
ment a recovery mechanism for BTBs. Again, as observed in Fig. 3 for gcc,
wrong-path execution prefetches BTB entries. This prefetching reduces the
BTB miss rate. On the other hand, the replacement of BTB entries results
in the loss of information about the branch. Thus, the misprediction rate
may increase.

The effect of wrong-path execution on the PHTs is shown by Fig. 4.
For this experiment, we assumed recovery mechanisms for the BHR and
the RAS, but not for the BTB. Enabling wrong-path pollution of the PHTs
does not significantly degrade the IPC. The IPC decreases from 2.701 to
2.699 on average. The conditional branch misprediction rate, the return
mispredicted rate, and BTB miss rate remain roughly the same since only
the PHTs are affected. From these results, we conclude that a recovery
mechanism is not required for PHTs.

Figure 5 shows the effect of wrong-path execution on the RAS. For
this experiment, a recovery mechanism was provided for the BHR, but not
for the BTB and PHTs. As pointed out in example 1 of the introduction,
we would expect a significant increase in the return misprediction rate if a
recovery mechanism was not provided. In fact, the average return mis-
prediction rate increases from 2.86% to 19.08% when a recovery
mechanism is not provided. The conditional branch misprediction rate and
the BTB miss rate remain approximately unchanged. For benchmarks with
a small number of subroutine calls and returns, the overall IPC is not
significantly affected even when there is a high return misprediction rate.
On the other hand, for benchmarks that have a large number of subroutine
calls and returns, such as gcc and xlisp, high return misprediction rates can
lead to a significant performance degradation. Since a recovery mechanism
for the RAS is simple to implement (see Section 4.4), we suggest that it be
included in the branch predictor for higher performance.

As can be seen in Fig. 6, wrong-path execution significantly reduces
performance if no recovery mechanism is provided for the BHR. For this
experiment, a recovery mechanism was provided for the RAS, but not for

378 Jourdan, Stark, Hsing, and Patt

0 ~

O

0J

O

Branch Prediction Storage Structures 379

8~

EL

380 Jourdan, Stark, Hsing, and Patt

~ o

0

C~ 0

Branch Prediction Storage Structures 381

8~
~J

O

b.

382 Jourdan, Stark, Hsing, and Patt

the BTB and PHTs. On average, the conditional branch misprediction rate
grows from 5.62% to 20.58%, leading to a drop in the IPC from 2.70 to
2.05 (24% decrease). Based on this result, it is necessary to provide a
recovery mechanism for the BHR.

6. CONCLUDING REMARKS

In this paper, we have examined the effects of mispredicted path execu-
tion on the four storage structures of the Two-Level Adaptive Branch
Predictor: the BTB, the PHTs, the BHR, and the RAS. We have proposed
appropriate recovery mechanisms to disable the effects of mispredicted path
execution on each of these prediction structures. We have run experiments
to justify the extra cost of implementing recovery mechanisms should the
performance be affected by wrong-path execution. We have shown that the
performance drops by an average of 30 % if no recovery mechanisms are
provided for the branch prediction structures. We have also shown that
recovery mechanisms for the BHR and the RAS should be provided to
achieve good performance. When no recovery mechanism is provided for
the BTB, pollution effects slightly outweigh any prefetching effects.
However, the performance degradation caused by the BTB pollution is
small enough that a recovery mechanism is not warranted for the BTB. The
PHTs are not adversely affected by wrong-path execution. For xlisp, we
found that a recovery mechanism would be beneficial for the RAS. We
found that mispredicted path execution severely affects the BHR, resulting
in a 24% degradation in IPC. Finally, we described simple recovery
mechanisms for the RAS and the BHR.

ACKNOWLEDGMENTS

This research was supported in part by gifts from Intel Corporation
and NCR Corporation. Stephan Jourdan's stay at the University of
Michigan was funded by the University of Toulouse. Tse-Hao Hsing was
supported by CNPq--The Brazilian Research Council. We greatfully
acknowledge all of the above support.

REFERENCES

1. M. G. Butler, Aggressive Execution Engines for Surpassing Single Basic Block Execution,
Ph.D. Thesis, University of Michigan, 1993.

2. J. Pierce and T. Mudge, The Effect of Speculative Execution on Cache Performance, Proc.
Int'l Parallel Processing Symp. (April 1994).

3. J. Pierce and T. Mudge, Wrong-Path Instruction Prefetching, Proc. 29th Ann. ACM/IEEE
Int' l Syrup. Microarchitecture (December 1996).

Branch Prediction Storage Structures 383

4. M. G. Butler and Y. N. Patt, An Investigation of the Performance of Various Dynamic
Scheduling Techniques, Proc. 25th Ann. ACM/1EEE lnt'l Syrup. Microarchitecture,
(December 1992).

5. T. Yeh and Y. N. Pat1, Alternative Implementations of Two-Level Adaptive Branch
Prediction, Proc. 19th Ann. Symp. on Computer Architecture (May 1992).

6. T. Yeh, Two-Level Ad~ptive Branch Prediction and Instruction Fetch Mechanisms for
High Performance Supdrscalar Processors, Ph.D. Thesis, University of Michigan (1993).

7. M. Johnson, Superscalar Microprocessor Design, Prentice-Hall (1991).
8. A. R. Talcott, W. Yamamoto, M. J. Serrano, R. C. Wood, and M. Nemirovsky, The

Impact of Unresolved Branches on Branch Prediction Scheme Performance, Proc. 21st
Ann. Int'l Symp. Computer Architecture (April 1994).

9. E. Hao, P-Y Chang, and Y. N. Patt, The effect of Speculatively Updating Branch History
on Branch Prediction Accuracy, Revisited, Proc. 27th Ann. lnt'l Symp. Microarchitecture
(November 1994).

10. Y. N. Patt, W. Hwu, af~d M. Shebanow, HPS, A New Microarchitecture: Rationale and
Introduction, Proc. 18th Ann. Workshop on Microprogramming (December 1985).

1 I. L. Gwennap, lntel's P6 Uses Decoupled Superscalar Design, Microprocessor Report,
Vol. 9 No. 2, 1995.

12. S. Ewedemi, D. Todd, and J. Yen, Design Issues of the High Performance PowerPC 620
Microprocessor, Somerset Design Center (December 1994).

13. L. Gwennap, Digital 21264 Sets New Standard, Microprocessor Report, Vol. 10, No. 14
(1996).

14. R. M. Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units, IBM
J. Res. Develop., Vol. 11 (January 1967).

15. W. Hwu and Y. N. Patt, Checkpoint Repair for Out-of-Order Execution Machines, IEEE
Trans. Comp. (December 1987).

16. M. G. Butler and Y. N. Patt, An Area-Efficient Register Alias Table For Implementing
HPS, Proc. Int'l Conf. Parallel Processing (1990).

17. S. McFarling, Combining Branch Predictors, Technical Report TN-36, Digital Western
Research Laboratory (June 1993).

18. J. E. Smith and A. R. Pleszkun, Implementation of Precise Interrupts in Pipelined
Processors, Proc. 12th Ann. Int'l Syrup. Computer Architecture (June 1989).

19. M. G. Butler and Y. N. Patt, A Comparative Performance Evaluation of Various State
Maintenance Mechanisms, Proc. 26th Ann. ACM/IEEE Int'l Syrup. Microarchitecture
(December 1993).

20. S. Jourdan, P. Sainrat, and D. Litaize, Exploring Configurations of Functional Units in
an Out-of-Order Superscalar Processor, Proc. 22nd Ann. Syrup. Computer Architecture
(June 1995).

21. S. Simone, A. Essen, A. lke, A. Krishnamoorthy, N. Patker, M. Ramaswami, and
V. Thirumalaiswamy, Implementation Trade-offs in Using a Restricted Data Flow Archi-
tecture in a High Performance RISC Microprocessor, Proe. 22nd Ann. Int'l Syrup.
Computer Architecture (June 1995).

828/25/5-5

