
AFFINE QUIVERS AND CANONICAL BASES 

G. LUSZTIG 

Introduction 

Let U be the quantized enveloping algebra attached by Drinfeld and Jimbo to a 
symmetric generalized Cartan matrix (see [D]); let U = U + | U ~ | U -  be its triangular 
decomposition. 

In [L], a purely geometric construction of U "< = U ~ N U -  (as a Hopf algebra) was 
given in terms of perverse sheaves on the moduli space of representations of a quiver; 
the construction gave at the same time a canonical basis of U-  with very favourable 
properties. (This amounts, in principle, to a geometric construction of U, since by 
Drinfeld's quantum double construction [D, w the Hopf algebra U can be 
reconstructed in a simple way from the I topf  algebra U ~.) 

In the generality of [L], the simple perverse sheaves which enter in the canonical 
basis of U -  are only defined in an abstract way, but are not known in a concrete 
form, except in the simplest case (type A, D, E) when they are exactly the simple 
perverse sheaves corresponding to orbits. 

One of the aims of this paper is to describe in concrete terms the simple perverse 
sheaves which form the canonical basis in the affine case (that is, the case of a 
symmetric affine Cartan matrix). 

According to an observation of McKay [MK], there is a natural 1 - 1 correspon- 
dence between symmetric affine Cartan matrices and finite subgroups F of SL (p), 

where P is a two dimensional C-vector space. 
We will show that the construction of U "< given in [L] can be reformulated in 

the affine case entirely in terms of the corresponding finite group F. Thus, in the 
affine case, U~(and hence, as explained above, U) are constructed directly in terms 

of F. 
We now describe the content of this paper in some detail. Let F be as above; 

assume that F contains the non-trivial element c in the centre of SL (9). 
Section 1 is concerned with the study of affine roots in terms of the representation 

theory of F; some results in [DR, w 1] are recovered. 
In section 2 we give a new treatment of the known theory of representation of 

affine quivers, emphasizing its connection with the corresponding finite subgroup of 
SL (p); I believe that this is simpler than the earlier treatments. 

For type At, this theory is due to Kronecker [Kr], who attributes some partial 
results to Weierstrass. Kronecker's work was concerned with the classification of linear 
pencils of bilinear forms on a pair of vector spaces. This is equivalent to classifying, 
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for any two finite dimensional C-vector spaces M +, M , the orbits of the natural 
action of GL (M +) x GL (M-)  on the vector space of all C-linear maps 

(a) M + | 9 ~ M - .  

It is also equivalent to the problem of classifying orbits of pairs of linear maps from 
M + to M -  under the action of the same group, which are just the isomorphism 
classes of representations of an affine quiver of type A 1. 

The classification of (indecomposable) representations of arbitrary affine quivers 
was given in [GP], [N], [DF], [DR], [R3]. In these references the finite group F is not 
present. The theory becomes much simpler if everything is developed in terms of F. 
In particular, the problem of classifying representations of an affine quiver is the same 
as classifying the orbits of GLr(M +) x GLv(M ) on the space of F-equivariant linear 
maps (a), for any pair M+, M -  of F-modules on which c acts as the identity (resp. 
minus identity). Hence this problem can be regarded as a F-equivariant version of the 
problem studied by Kronecker. 

Section 3 collects together some definitions and results of [L] in a form suitable 
for the purposes of this paper. It also contains a new result (3.6) which is a prerequisite 
for section 4. 

Section 4 is concerned with the study of certain Lagrangian varieties introduced 
in [L]; we classify the irreducible components of these Lagrangians in the setup of 
section 2 and show that they index a basis of the (non-quantum) U- .  (This last fact 
has been conjectured in [L, 12.14].) 

The case of cyclic F has a special role in the theory; it is studied in section 5, 
which includes the case where F has odd order (excluded in the rest of the paper). 

In section 6 we describe explicitly (enumerate) the perverse sheaves which form 
the canonical basis of U-  in the affine case, by indicating their support and the 
corresponding local systems in the framework of section 2; this is the main result of 
the paper. 

Let us now replace F by a closed, reductive, infinite subgroup of SL (9). (There 
are three such F up to conjugacy: a maximal torus, its normalizer, or the full SL (9).) 
This leads to an infinite graph: of type A~ (infinite in both directions), of type D~, 
or of type A~ (infinite in one direction, finite in the other). Most results of this paper 
extend in an obvious way to the infinite case. In fact, some of the difficulties present 
in the finite case disappear in the infinite case, so that the infinite case is actually 
simpler. 

I wish to thank Ringel for useful discussions and also for explaining to me the 
results of [DR]. 

Connections with earlier work. The fact that the algebra U -  can be constructed 
in terms of affine quivers has been first shown by Ringel; a brief announcement of 
his results is in [R2]. The details of his construction are not yet written up, except for 
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affine type A, discussed in his preprint [R4], which I have received one year after 
submitting this paper. Ringel's construction is quite different from ours; it does not 
lead to a canonical basis. 

This paper has been influenced by ideas in Kronheimer 's  paper [K]. In [K], 
Kronheimer  has studied the action of  GL r (M) on the space of  F-equivariant maps (a) 
in the case where M = M + = M -  is the regular representation of F, and used this to 
show that the corresponding two-dimensional Kleinian singularity admits a hyper- 
K/ihler structure. 

1. Roots 

1.1. Throughout  this paper, p denotes a fixed two dimensional C-vector space with 
a given non-degenerate symplectic form ( , ). 

Let F be a finite subgroup of  the special linear group SL (p) which contains the 
unique non-trivial element c in the centre of  SL (9). 

By a F-module we understand a finite dimensional C-vector space with a given 
linear action of F. Note that 9 is naturally a F-module. 

Let I be the set of  isomorphism classes of simple F-modules. For  each i e I  we 
assume given a simple F-module pi in the class i. 

Following McKay  [MK], we regard I as set of  vertices of a graph as follows. 
For  any i r  in I, we set T~= Hom r (Pi | 9, 9j). We have dim T~. = dim T 1 e { 0, 1,2 }. If  
d imT~=0,  then i, j are not joined in the graph; if d imT~= 1, then i ,j  are joined by 
exactly one edge; if dim T~=2 (which only happens when F = {  1,c}), then i , j  are 
joined by exactly two edges. 

This is an affine Coxeter graph. Hence the corresponding (affine) roots are defined. 
The purpose of this section is to reexamine the (known) properties of  affine roots 
from a non-standard point of  view, namely from the point of  view suggested by 
McKay's  correspondence. 

1.2. For  two F-modules M, M' we define (M: M ' ) = d i m  Hom r (M,  M'). We also 
define 

(M, M') = (M | C 2 : M') - (M | p : M') 

where  C 2 is taken with the trivial F-action. 
Let fgF be the Grothendieck group of  F-modules. The elements 9i (iE I) form a 

Z-basis of  f~F. 

Note that ( : ) and ( , )  extend uniquely to symmetric bilinear pairings fgF x .ayF ~ Z. 
Now (M, M) is an even integer for any M e ffF (since (9i, 91) = 2). We have 
(a) (M, M) ~> 0 for any M ~ .C~F and 
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(b) (M, M ) =  0 if and only if M = n r for some integer n where r = C [F], regarded 
as a F-module for the left translation. 

Indeed, if M, M ' e  fCF, we have 

(c) (M, M') = ] F [-1 ~ tr (Y, M) tr (Y- 1, M') (2 - tr (Y, 9)). 
y e F  

Now 2 - tr (Y, 9) E R >_. o and tr (Y, M) tr (Y- 1, M) E R >. o for all Y, and (a) follows. We 
also see that (M, M ) =  0 if and only if for each Y r 1 we have tr (Y, M ) =  0, and (b) 
follows. 

If M is a F-module,  we denote by M* the dual space of M with its natural 
F-module structure; this defines a homomorphism M --+ M* of  ~ F  onto itself. 

1.3. Let R be the set of  all vectors a E f~F such that (a, a ) =  2. The elements of R 
are called roots. 

We denote by f~F+ the subset of  fCF consisting of  elements which can be 
represented by actual F-modules. We have 

(a) R c aJF+ U ( - a J F + ) .  

Otherwise, we can find ~ e R and two F-modules M, M' which are non-zero and 
disjoint such that ~ = M - M'. We have (M, M') = - (M | 9 : M')  ~< 0. Moreover,  since 
M, M' are disjoint, neither of  them can be an integer multiple of  r; using 1.2 (a), (b), 
it follows that ( M , M ) > 0 ,  ( M ' , M ' ) > 0  and, these being even integers, we have 
(M,M)~>2, (M',M')~>2. Thus 2 = ( ~ , ~ ) =  ( M , M ) + ( M ' , M ' ) - 2 ( M , M ' ) ~ > 2 + 2 + 0 ,  a 
contradiction; this proves (a). 

By (a), we have a partition 

(b) R = R+ U R_ 

where R + = R ~ f ~ F  + a n d  R _ = R ~ ( - ~ F +) .  

The elements of R+ are said to be positive roots. For example, PieR+ for all 
i~I.  

1.4. For  5 = • 1, let I a be the set of  all i e I  such that the central element c e F  (of 
order two) acts on 9i as multiplication by 8. We have a partition I = 11 U I 1. 

Consider the homomorphism v : fr F --+ Z given by v (M) = tr (c, M). 
Let +R+ be the set of  all 0tER+ such that v (~ )>0 .  Similarly, let - R +  be the set 

of  all ~ E R +  such that v ( a ) < 0 ;  let ~ be the set of  all ~ E R +  such that v (~ )=0 .  

Thus we have a partition 

R+ = - R +  LI +R+ LI OR+. 
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1.5.  If  M is a F-module  and ~ = 4- 1, we denote by M a the 6-eigenspace of  c : M ---, M. 
Then we have a F-module decomposit ion M = M 1 G  M -~. Note  that 9=9 -1. N o w  
M ~ M ~ extends by linearity to virtual representations; hence it may be regarded as a 

homomorphism f# F ~ ~ F. 
We define a homomorphism c~ : f# F ~ f# F by 

(a) c a ( M ) = M  a - M - ~ + M  ~ | p. 

If  M 1 satisfies M I = M ~  -a, we have c~(M1) = - M 1 .  On the other hand, if M 2 
satisfies M ~ | 1 7 4  2, then c ~ ( M 2 ) = M  2. N o w  for any M we have 

2 M = M I + M 2  with M, ,  M2 as above. (We have M ~ = M - a | 1 7 4  and 
M2 = MS | C2 + Ma | P.) It follows that 

(b) c 2 = 1. 

Moreover,  using the fact that (M1, M 2 ) =  0 for any M1, M 2 as above, we see that 

(c a (M), ca (M')) = (M, M') 

for any M, M'. In particular, we have 

(c) c a (R) c R. 

From the definitions we have 

( d )  v (ca (x ) )  = - v ( x )  

and 

(e) dim (e a (x)) = dim (x) + 2 6v (x) 

for all x e f# F. (Here dim denotes the dimension of  a virtual module.) 

1.6.  Let M e R+.  The following conditions are equivalent. 

(a) % M e R _ .  

(b) M = Pi for some i e I -  a. 

(c) c a M = - M. 

Indeed, if (a) holds, then (ea M ) a = M a e f g F _  hence M a = 0 .  Thus we have 
M = ~ n i Pi where i runs over I -a  and ni are integers ~> 0. For  i, i' distinct elements of  

i 

I -~ we have (p~, pi , )=0;  hence 2 = ( M , M ) = ~ 2 n ~  z. It follows that n~=l  for some 
i 

index i and nj = 0 for all other indices, so that M = P~. Thus, (b) holds. 

Conversely, if (b) holds, then from the definition we have e6 M = - M  so that (c) 

holds. The fact that (c) implies (a) is obvious. 
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1.7 .  F o r  a n y i e I a n d a n y r e N ,  w e s e t  

(a) ~( i , r )=C(_x)r-~ ~ . . . c _ ~ c ~ p i e N F  

where  6 is such that  i e I s and the p r o d u c t  has r factors.  

W e  have 

(b) r)= | (S 0 | S 0) 

where  S ~ P denotes  the r-th symmetr ic  power  o f  P (as a F -modu le )  with the conven t ion  
that  S-1  P = 0. This fol lows immedia te ly  f rom the definit ion, by  induct ion  on  r, using 
the ident i ty  S r p | P = S ' -  a P ~ Sr + 1 p. 

F r o m  (b) we see that  

(c) v (0t (i, r)) = ( - 1)' v (p/). 

F r o m  (b), (c) and 1.5 (c) we see that  

(d) c~(i ,r)e +R+ if i e I  ~-~1', and  o ~ ( i , r ) ~ - R +  if i e I  -~-~)* 

Proposi t ion 1 .8 .  - (a) I f  i, i" ~ I and r, r' e N,  we have ~ (i, r) = ~ (i' ,  r') i f  and only 

i f  i = i '  and r = r ' .  

( b ) + R + consists o f  the e lements  ot ( i, r) f o r  various r ~ N and i ~ I ~- 1),. 

(c) - R + consists o f  the e lements  ~ (i, r) f o r  various r e N and i e I -  ~ - x)r 

W e  first p rove  (a). Assume  that  ~ (i, r ) =  0t (i', r') and  that  i e I s, i 'E I s'. We  ma y  
assume that  r ~> r'. We  have v ( ~ ( i ,  r ) ) = v ( ~ ( i ' ,  r')), hence, f rom 1 .7  (c), 
( -  1) r 6 dim Pi = ( -  1) r' 6' d im Pi,. The  two sides of  this equal i ty  must  have the same 
sign: ( - 1 ) ~ 6 = (  - 1) ~' 6'. Therefore  f rom our  a s sumpt ion  and  the defini t ion it follows 

that  ot (i, r - r ' ) =  ~ (i' ,  r ' - r ' ) .  Thus  we are reduced  to the case where  r ' =  0. 
I f  r > 0 ,  then bo th  ~ ( i , r )  a and ot(i,r) -1 are non-zero  (they are, up  to order,  

Pi | S r P, Pi | S ' -  a P). On the o ther  hand,  ~ (i', 0)-~' = 0. Hence  ~ (i, r) canno t  be equal  
to ~ (i', 0) for  r > 0. Thus  we have r = r ' =  0. This clearly implies i =  i'; (a) is proved.  

We  n o w prove  (b). Let  ~ e + R +. We  define a sequence o f  roots  0~ [s] (s = 0, 1 , . . .  ) 
by  ~ [ 0 ] = ~ ,  c~[s]=e(_t)sC~[s-1] for  s~> 1. It  is enough  to show that  there exists s~>0 

such that  ~ [s] = Pi for  some ie  P- t l~  
F r o m  1 .5  (d), (e), it fol lows by  induct ion  on s that ,  for  any s>~0, we have 

v (c~ [s]) = ( - 1) s v (~) and dim ~ [s] = dim ~ - 2 s v (~). 
The  last quan t i ty  is > 0 for  s = 0 and is < 0 for  sufficiently large s (since v ( ~ ) >  0). 

Hence  there exists an s~>0 such that  dim ~ [ s ' ]>0  for  s ' = 0 , 1 , . . . , s  and 
dim ~ [s + l] ~< 0. We then have ~ [ s ] e R +  and ~ [ s + l ] e R _ .  We  have 

e(_~)~+l ~ [ s ]e  R _ ,  hence, by  1.6,  ~ [ s ] =  p~ for  some i e I  ( - ~ .  Thus,  (b) is proved.  

We  n o w prove  (c). Let  Q t E - R + .  I f  e l ( 0 t ) e R _  then, by 1.6,  we have a t=p ,  for 

some iEI  -~ so that  0 t=~( i ,  0), as required.  Assume  now that  e ~ ( ~ ) e R + .  By 1 .5  (d), 
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we have v ( e l ( ~ ) ) = - v ( ~ ) > 0 ,  hence e l ( ~ ) e + R + .  By (b) we have c l ( ~ ) = ~ ( i , r  ) for 
some r e N and some i e I (- 1)r. We then have ~ = e 1 (~ (i, r)) = ~ (i, r + 1). This proves (c). 

1.9. In this subsection we assume that F is cyclic of  order 2n. Let M e ffF; we can 
write M - - ~ p i  p~; from the definitions we see that (M, M ) =  ~ (p~ _pj)2 where the sum 

is taken over all edges of the graph attached to F in 1.1 and i, j denote the two ends 
of  an edge. We see that M e R precisely when there are two edges such that ]p~-pj] = 1 
and for all other edges we have pz=pj. If n =  1 it follows that R+ consists of  the 

elements spi+(s+l) 9i, and (s+l)pi+sPi, for various s e N ,  where I = { i , i ' } ;  in 
particular, ~ is empty. 

We now assume that n ~> 2. Then the corresponding graph is a 2 n-gon with set of  
vertices I. 

If  M = ~ p ~  Pi is in R+, then the previous argument  shows that there is an integer 
i 

a~>0 such that the sets J = {  ieilp~=a} and J ' - -{  ieI]p~=a+ 1 } have the following 
properties: 

(a) J, J' are non-empty; 

(b) J, J' form a partition of  I; 

(c) the full subgraphs ( J ) ,  (J') with vertices J or J' are both connected. 

(Conversely, given a ~> 0 and J, J' with the properties just described, they define a 
positive root.) The following fact is easily verified: 

(d) We have M e OR+ if and only if J and J' have even cardinals. 

We now show the following. 

(e) If M e ~  then M # M * .  

Indeed, assume that M = M*. Now 9z ~ 9* defines an involution of  I which takes 
any edge of our graph to an edge; clearly, this involution has exactly two fixed points, 
and they are not joined by an edge. Since M = M*, this involution must map J into 
itself and J' into itself, where J, J' are as above. Hence it defines graph automorphisms 
of  ( J )  and ( J ' )  which are both non-trivial (since the two fixed points on I are not 
joined). Since ( J )  is a graph of  type A,, and m is even (see (d)) our graph automor-  
phism has no fixed points on J. Similarly it has no fixed points on J'. This contradicts 
the fact that it has fixed points on I. 

1.10. For  general F, we define off F as the subgroup of  f F consisting of  all M such 
that v (M) = 0. 

Assume now that F is cyclic of  order 2 n ~>4. We shall write the trivial one- 
dimensional F-module as Pio with ioeI .  Let L', L" be the two F-stable lines in 9. 
Then L', L" are naturally one-dimensional F-modules and we have L ' =  9i,, L " =  Pi,, 
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for well-defined elements i ' # i " o f  I; these are exactty the elements of  I which are 
joined with io in our graph. Note  that  

{ p/] i r  } = {  L '| Jl 0~<j~<2n-  1 } = {  L ''| Jl 0~<j~<2n-  1 }. 

Let ~  (resp. ~  be the subgroup of  ~ F  generated by the elements 
L ' |174 (resp. L"| (z J~ + L"| (2 i+ l)) for O<~j<<.n-1. 

The following properties are easily verified. 

(a) ~162 F = ~162 F + ~162 F. 

(b) ~  O ~  { s r  ] 

(c) (M', M " ) =  0 for any 

(d) The h o m o m o r p h i s m  

We now define OR+ (L') 
OR+ (--1 o~,, F). 

F r o m  the results in 1.9 we see that  

(e) OR+ (L') consists of  the (distinct) elements 

2 r + 2 m - 1  

L'| JeCaF; 
j = 2 r  

OR+ (L") consists of  the (distinct) elements 

2 r + 2 m - 1  

L " |  
j = 2 r  

s ~ Z } .  

M ' e ~  and M " ~ ~  

* : f# F ~ f# F maps  of#, F onto  ofr F. 

(resp. OR+ (L") to be the intersection OR+ ('/of#, F (resp. 

(here r is any integer in [0, n - 1] and m >~ 1 is an integer not  divisible by n). 

1.11.  We still assume that  F is cyclic of  order 2n>~4. Let M e ~  be such that  
M * = M  and ( I : M )  is even. By 1.10(a) ,  we can write M = ~ ' + ~ "  where ~ ' c ~  
and ~ " e  ~ F (notat ion of  1.10) F r o m  M = M* we deduce cz ' -~"*  = ~ ' * -  ~"; using 
1.10 (d), we see that  both  sides of  the last expression are contained in 0f~, F ('/0f~,, F 
hence, by 1.10(b) ,  they are of  the form s r  for some integer s. We have the following 
equalities modu lo  2: 

s = ( l :  s r ) = ( 1  : cz')-(1 : cz"*)=(1 : cz')+(1 : ~" )=(1  : M ) = 0 .  

Thus we have s = 2 s "  for some integer s'. Replacing ~', cz" by ~ ' - s ' r ,  ~ " + s ' r  
respectively, we see that  we may  assume that  s = 0 so that  ~ " =  cz'*. 

1.12. In this subsection we assume that  F is not  cyclic, but  that  it has a normal  
subgroup F 1 which is cyclic of  index 2. Then F 1 must  have order 2n~>4. We 
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shall use the notat ion of  1. l0 for FI instead of  F; in particular, L', L" are the two 
Fl-stable lines in 9 and ~ Fa, ~ F:  are the corresponding subspaces of  ~ F~. 

Let ~7/ be the subgroup of ~ F consisting of  those M such that tr (7, M ) =  0 for 
any 7 ~ F - F ~  and for 7 = c .  Let ok'~ = ~  Taking induced representations gives a 
homomorphism 

(a) Ind: ~1 ~ ~'. 

We show that 

(b) this is an isomorphism preserving the inner product  ( , ) .  

Let M G~//and let M~ be its restriction to F~. By assumption we have 

0 = I F 1 [  - :  y" t r ( y , M ) = ( l : M ) - ( c ~ :  M), 
y ~ F - Y  1 

where cy is the non-trivial one-dimensional F-module on which F 1 acts trivially. 
It follows that (1 : M) = (cy : M), hence (1 : M1) = (1 + cy : M) = (1 : M) + (cy : M) is an even 
integer. If 7 ~ F - F  1, then 7 x T - l = x  - :  for all x~F~.  It follows that M I = M ~  '. We 
can therefore apply 1.11 to M:;  we see that there exists ~ ' e ~ ' l  such that M:  =~z'+ ~'*. 
This shows that M and Ind (cz') have the same trace at all elements of  F~ - { c }; from 
our assumptions they also have the same trace (zero) at c and at elements of  F - F  1, 
so they are equal. Thus the map (a) is surjective. 

Next we assume that cz, [3eoga are mapped by (a) to the same element. It follows 
that cz+~*=[3+[3" as elements of  ~ Then ~ - [ 3 = - ~ * + [ 3 " ;  using 1.10(d) ,  we 
see that both sides of the last equality are contained in ~ F x ~ ~ F~ hence, by 
1.10(b), they are of  the form s r  for some integer s which must satisfy s r  *=  - s r .  
(Hence, r is relative to F~.) It follows that s =  0, so that cz= [3. Thus the map (a) is 
injective hence an isomorphism. 

Finally, let ~, [ 3 ~ 1 .  In the following formulas inner products refer either to F 

or F~: 

(Ind ~ | p : Ind [3) = ((cz + cz*) | 9 : (13 + [3*))/2 = (cz | 9 : [3 + [3*). 

(Ind cz : Ind [3) = ((~ + ~*) : ([3 + [3*))/2 = (~ : [3 + [3*). 

Hence 

(Ind cz, Ind [3) = (cz, 13 + [3*) = (a, [3). 

(The last equality follows from 1.10 (d), (c).) Our assertion is verified. 

1.13. We now consider a general F. Let F be the set of  points L in the projective 

line P (9) whose isotropy group F L (a cyclic group) in F has order > 2. Then F is a 
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finite set. There is a canonical involution L w-~ [, of  F defined by the requirement that 
L, [, are distinct and FL = Ft .  This involution commutes with the action of  F on P (9). 

Let f be a set of  representatives for the F-orbits on F. We may assume that the 
following condition is satisfied: if L e f and ~, is not  in the same F-orbit as L, then [, 
e l .  

For  LeS~', we shall denote by "~'L the subspace of  ffFL defined as ~  in 1.10 
(but replacing F, L' by FL, L); note that FL is a cyclic group of  order ~>4. Let 
IndL : ~L --* 0ff F be the induction homomorphism.  Let ~ L  be its image. 

Proposition 1.14. - (a) For any L e f ,  the homomorphism Ind L is injective and it 
preserves the inner product (,).  

(b) We have ~ ~/~L = O~ F. 
Le~r 

(c) I f  L, L ' e  f are distinct then ~"L is orthogonal to Y:L' for (,).  

(d) For any L e ::, we have r e Y/~L. 

Let F[  be the normalizer of  F L in F. Then either F[  = F L or F L has index two 
in F[. Let q./[ be the subspace of  N F[  generated by the elements M such that 
tr (c, M ) =  0 and tr (y, M ) =  0 for all y e F [ -  F L. Let Ind [  --, oN F be the homomorphism 
given by inducing from F[  to F. Let C [  be its image. 

Let ~ '  be a maximal subset of  f with the following property: if L, L' are distinct 
elements of  2F', then F L, FL, are not  conjugate in F. Then, if L e f '  and [, e Y,', we 
have I_, ~ f ' .  

The following result will be needed in the proof  of  1.14. 

Lemma 1.15. - (a) For any L e f ,  ttle homomorphism Ind[  is injective, and it 
preserves the inner product (,).  

(b) We have ~ ~t:[= ~ F. 
Lef t"  

(c) I f  L, L ' e  f "  are distinct, then ~':L is orthogonal to ~':L" for (,). 

Let M e@/L. The character of  IndL(M) is zero at c and at elements of F which 
are not  contained in a conjugate of  FL; its value at an element y e F L -  { 1, c } is equal 
to tr (y, M). F rom this we see immediately that IndL preserves ( , )  and that (c) holds 
(we use 1.2 (c) and the fact that in that formula we may omit the term y = 1). 

We also see that if IndL (M) is zero then the character of  M is zero at all elements 
of  F L -  { 1 } and, clearly, also at l, so that M = 0; thus (a) is proved. 

We now prove (b). We consider the following statement: 
(d) For  any M e~  and any L e F  there exists M ' e ~  such that 

tr (y, M) = tr (y, Ind[  (M')) for all y e F L - { 1 } and tr (y, M') = 0 for all y e F[  - F L. 
Granting this, we see that the sum over L e f '  of  the elements Ind[  (M') provided 

by (d) is an element M " e  O~F such that M", M have the same character values at 
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all elements # 1, hence M = M " +  s r for some integer s. Since both M"  and s r are 
contained in ~ ~L,  (b) follows. 

L 

It remains to prove (d). 
If F is cyclic, there is nothing to prove. If  F is a quaternion group of order 8, 

the verification of  (d) is an easy exercise, left to the reader. Hence we may assume 
that F is non-cyclic, of  order >/10 and that (d) is already known when F is replaced 
by one of  its proper subgroups. 

Consider first the case where F[  is a proper subgroup of  F so that (d) is known 
to hold for (F[, L) instead of  (F, L). Let M L be the restriction of M to F[. Then 
ML ~ oN F[. By our assumption we can find M'G 0N F[  such that tr (7- M ' ) =  0 for all 
y ~ F~ - F L and tr (y, M) = tr (7, M') for all y ~ FL -- { 1, c }. Then clearly M' is as required 
in (d) (for F, L). 

Next we consider the case where FL = F. Then F is a binary dyhedral group of  
order ~>12. We may assume that LGff ' .  For  any L'GY ~' with L ' # L ,  we have that 
F [ , # F ,  hence, by the previous argument,  (d) holds for F, L'. Hence we can find 
i.tL ' ~ o~q F such that ~ = ~ la L, satisfies tr (3', M) = tr (y, ~) for all 7 ~ F -  F L and 

L' : L' ,~L 

tr (3,, ~ ) = 0  for all VGFL-- { 1 }. 
Let M' = M - ~. Then tr (T, M')  = 0 for all ~, e F -  FL and tr (7, M') = tr (7, M) for 

all 7 e F L -  { 1 }. Hence M' is as required; (d) is proved. The lemma follows. 

1.16. We now prove 1.14 (a). If F [=UL,  then 1.14 (a) follows from 1.15 (a). If  
FL r FL, then the homomorphism in 1.14 (a) is the composition of  the homomorphism 
in 1 .15 (a )  with one as in 1 .12(a) ,  so that 1 .14(a )  follows from 1 .15(a )  and 

1.12 (b). 
We now prove 1.14 (b). If  F [ = F L ,  then [,GY" and ~ L =  ~/'L-'~- ~//~. by 1.10 (a). 

If  F [ # F L  then r  (by 1.12 (b)). Thus ~ r  ~ r SO that 1.14 (b) 

follows from 1.15 (b). L ~ ~" L ~ ~r 

We now prove 1.14 (c). F rom the proof  of  1.14 (b) just given and from 1.15 (c) 
we see that it is enough to show that ~U L, r  are orthogonal for ( , )  whenever L, [, 
are both in Y'. In this case, F [  = F L = F L = F :  is a cyclic group and the desired result 

follows from 1.15 (c) and 1.10 (c). 
Finally, 1.14 (d) follows immediately from definitions. This completes the proof  

of  1.14. 

The following result gives, in conjunction with 1.8, a complete parametrization 

of  the set R+. 

Corollary 1.17. - For any LEf t"  we define OR+ (L) to be the intersection OR+ O "/~'L 

and we define an integer n L >>, 2 by I YL I = 2 n L. 
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(a) We have a parti t ion OR + = LA L 6 ~r OR + (L). 

(b) For any L ~ ~ ,  the set ~ (L) consists o f  the (distinct) elements 

2 r + 2 m - 1  

I~(L, r, m ) =  ~ IndLL| J e f f F  
j : 2 r  

(here r is any integer defined up to a multiple o f  n L and m >~ 1 is an integer not  divisible 

by nL). 
Let ~ ~  By 1.14 (b), we can write 0~= ~ ~L where ~L~t'~L . 

L e X  

Using 1.14 (c) we have 2 =(0~, ~ ) = ~ ( ~ L ,  ~L)" The last expression is a sum of 
L 

even integers ~>0; it follows that  there exists L ~  such that  (~L, ~L) = 2  and 
(~L', ~L') = 0  for L ' r  By 1.2 (b) we have ~L,=SL, r for some integer SL, hence 
0~L,~ ~ L  (see 1.14 (d)). It follows that  ~ L ,  SO that  ~ ~  (L). Next  we assume 
that  [ 3 ~ ~ 1 7 6  ') with L e E '  i n f .  By 1 .14 (c )  we then have (13,[3)=0 
contradict ing (13, [3)=2. This proves (a). Now (b) follows immediately f rom 1.10 (e), 
1.14 (a), 1.14 (c). The corollary is proved. 

Corollary 1.18.  - The inclusions define an isomorphism 

0)L e ~ (~:L/Zr) ~ o ~  F/Zr. 

This follows immediately f rom 1.14 (b), (c) and 1 .2  (b). 

1.19.  The involut ion * : ~ F ~ ~ F clearly maps  R+ onto  itself. F r o m  the definitions 
we see that  this involut ion leaves stable each of the subsets +R +, - R + ,  ~ Moreover,  
if L ~ Y', and F L r F[,  we have g (L, r, m)* = g (L, r, m); if L ~ Y', and F L = F[,  we have 
~(L,  r, m) * =  kt(L, r, m). 

2. Indecomposable representations of affine quivers 

2.1 .  Given 8 = + 1, we define fl (8) to be the following orientat ion of  our  graph 
(in 1.1): an edge joining i r  is oriented f rom i t o j  if i ~ I  ~ a n d j e I  -~ (see 1.4); this is 
well defined since T}= 0 (see 1.1) when i, j are both  in 11 or both  in I 1. Our  graph 
together with the orientat ion ~ (8) is an affine quiver. 

Let N~ be the (abelian) category of  representations of  this affine quiver with the 
orientat ion ~ (8). 

We recall that  an object of  ~ is an I-graded C-vector space V =  G Vi together 
with linear maps  x/_~ j : V i ~ Vj for any oriented edge i ~ j .  A morph i sm from (V, xi _~ j) 
to (V', x~ _~ j) is a collection of  linear maps  Yi : Vi  --> V~ (i ~ I) such that  yj  x i ~ j = x~ _~ j Yi 

for all i ->j .  The objects of  ~ are also called representations of the affine quiver. 
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The classification of  indecomposable objects of  M~ is known. For  type A1 it is 
due to Kronecker  [K]; for the other types, see [GP], [N], [DF], [DR], JR3]. 

In this section we shall reexamine this classification from a non-standard point 
of  view, namely from the point of  view suggested by McKay's  correspondence. 

This point of  view leads to simpler proofs than in the references cited. (However, 
some of the methods we use are inevitably the same as in those references.) 

2.2.  We define a category ~ as follows. An object of  this category is a pair (M, A) 
where M is a F-module and A : M ~ | 9 ~ M -  ~ is a F-linear map. Note that giving A 
is the same as giving a collection A e (e c 19) of  linear maps M ~ ~ M-S depending linearly 
in e and satisfying ~, (A e (x)) = A~ (e) (~' (X)) for all ~, ~ F, e ~ 9, x E M s. (A e is related to A 
by A~ (x) = A (x | e).) 

A morphism from (M, A) to (1VI, ~) is a F-linear map 9 : M  ~ 1VI such that 
q~ (A~ (x)) = Ae (q~ (x)) for all x ~ M ~ and all e ~ 9. 

The categories cs and ~ are equivalent. An equivalence can be obtained by 
attaching to an object (V=  O~ V~; x~ ~j) of  ~ the object (M, A) of ~ defined as 
follows. We take M =  G~V~| 9~ (with F acting trivially on V~). The / , j -component  
of A (for iEI  ~, j ~  I -a) is the linear map 

xi ~ j @ Yi ~ j : Vi  | (9i | 9) --* V j | 9j 
i--*j 

where i ~ j  runs over the oriented edges joining i, j and Yi -~ j is a fixed basis of  T~. in 
1-1 correspondence with this set of  edges. In particular, the category <g~ is abelian. 

2.3.  We now discuss duality. Let M = (M, A) be an object of  cgs. We associate to M 
the object M * = ( M * ,  A*) of  cs where M* is as in 1.2 (so that (M*) -+1 is naturally 
the dual space (M-+I) * to M +1) and, for any e e  9, A* : (M-a)  * ~ (Ma) * is the transpose 
of  A~ : M ~ -~ M-~. 

This extends naturally to an equivalence of  the category ~s with the category 
opposed to c~-~. We have M * * = M .  

2.4.  We want to define two (full) subcategories ~su, (~in of  Let M = ( M ,  A) be 
an object of  cg~. Let A': M s -~ M - s  | 9 be the F-linear map defined by 

A' (x) = Ael (x) | e 2 - Ae2 (x) | e 1 

for all x e M a ;  here el, e2 is any basis of  9 such that ( e  1, e z ) =  1. 

We say that M is an object of  Cgs~u(res p. of  ~iSn) if A is surjective (resp. A' is 

injective). Note that 

5<=> , - 5  
M ~ Cgsu M ~ cgin . 
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2.5.  Let M = (M, A) be an object of  c~. Note that ker A is a F-module equal to 
(kerA) -~ and that coker A' (where A' is as in 2.4)  is a F-module equal to (coker A') ~. 

We associate to M two objects 

K M = (M ~ | ker A, II) 

C M = ( M -  ~ | coker A', E) 

of  r ~, where the notation is as follows. The map II :  kerA | 9 ~ M6 is defined 

by H ( ( x |  Q e ' ) = ( e ' ,  e )  x for x |  s |  and e ' e 9 ;  
E : M - 6  | p ~ coker A' is the canonical (surjective) map. 

It is clear that CMeCg~ ~ and it is easy to check that K M e ~  6. We may regard 
K, C naturally as functors 

(a) K : ~ ~ ~i~ ~, C : ~ --, ~ .  

It is easy to check that 

(b) (K M)* = C (M*) 

for any M as above. Clearly, 

(c) If M E cgi~ n and M ' e  c~a is a subobject of  M, then M'  s cgin- 

2.6.  Let M =  (M, A) be an object of  @. We have CK M = (M ~ �9 image A, A1) E ~ 
where A ~ : M ~ |  p ~ i m a g e  A is induced by A. Hence C K M  is naturally a subobject 
of  M; it admits a complement (S, 0) where S is any F-stable subspace of  M -~ 
complementary to image A. Hence we have a canonical short exact sequence (which 

is non-canonically split) in cg~: 

(a) 

This shows that 

(b) 

0 ~ CK M ~ M ~ (coker A, 0) ~ 0. 

M e (g~u ~ CK M --, M is an isomorphism. 

We associate to M the element gr ( M ) =  M E f# F. F rom the definitions we see that 

M E ~ u = u g r ( K M ) = M  ~ - M  - ~ + M  ~|  p 

or, equivalently: 

(c) M Ecg~u ~ gr (K M) = e~ gr (M). 

(see 1.5). 

2.7.  By 2.5 (c), an object of  ~i~, is indecomposable in ~i~n if and only if it 
is indecomposable in (g~. By duality, an analogous statement holds for ~ u .  Let ~'~ 
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(resp. Ni~,, ~ u )  be the set of isomorphism classes of indecomposable objects of cg~ 
(resp. Cg~n, cg~,). The following statement follows immediately from definitions. 

(a) For any ie I ,  P/~=(Pi, 0 ) 6 ~  ~ is indecomposable; i f  i e I  ~, then P~ is contained 
in ~ u  but not in cg6i~; if  i6 I  -~, then P~ is contained in cgi~ but not in Cg~u. 

We have 

(b) i e I - a  }, 

(c) ~ s a ~ = ~ -  ( P/a [ i e I - a  }. 

The left hand side of (c) is contained in the right hand side of (c), by (a). Conversely, 
let M be an object in the right hand side of (c). From 2.6 (a) we see, using the 
indecomposability of M, that either M ~ C K  M or M = ( M ,  0) with M = M  -6. If the 
first alternative holds, then M, being in the image of C, is in cg~u (see 2.5 (a)), hence 
it is in the left hand side of (c). If the second alternative holds then by the indecomposa- 
bility of M, we have M---P~ for some ieI-~;  this is a contradiction and (c) is proved. 
Now (b) follows from (c) by duality. 

(d) The functor K defines a map from the set (c) to the set (b); the functor C 
defines a map from the set (b) to the set (c); these two maps are inverse bijections. 

Let M be in ~ u .  As we have seen in the proof of (c), we have M =  CK M. In 
particular, K M # 0 .  By 2.5 (a), we have KMeCgi~ 6. By duality, we also see that for 
any M ' e  ~i~ ~ we have M ' =  KC M', hence C M' r  Assume now that K M is a direct 
sum of s indecomposable objects M ' I , . . . ,  M~ of Zi~ ~, with s>~2. Then M = CK M is 
isomorphic to the direct sum of C M ' I , . . . ,  CM~ which are all non-zero, as we have 
just seen. This contradicts the indecomposability of M. We deduce that K M is 
indecomposable. This establishes the first assertion of (d); the second assertion is 
obtained from the first, by duality. The third assertion is then obvious from the 
previous argument. 

The following is clear from the definitions. 

(e) I f  i e I  -~, then CP/-6=0 and KP~=0.  

2.8. For any M e cg6 and any s e N, we write K s M instead of K . . .  K M (s factors K). 
We define similarly C s M. 

(a) For any s e N ,  and any i e I  (-1)s6, KsP1-1)s6 is an indecomposable object of  

For s = 0, (a) follows from 2.7 (a). Assume now that s >~ 1 and that (a) is already 
known for s replaced by s' with O<<.s'<<.s-1. We shall write q)r=KrPl-1)s6. By the 
induction hypothesis (applied to - ~ instead of ~) we have that ~s-  1 is an indecompo- 
sable object of cg~6. Using now 2.7 (d), we deduce that q~= K ( a S  1) is indecompo- 
sable in cg~. To show that it is in cg~u it suffices, by 2.7 (c), to show that ~ is 
not of the form P~, with j e I .  Assume that it is of this form; then gr(CI)s)=pj. 
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Applying repeatedly the induction hypothesis and 2 .6  (c) we see that 
g r (@r)=e(_ l )~ - r+ lagr (~_x)  for r =  1 , . . . , s .  Hence we have g r ( ~ s ) = ~ ( i , s  ) (see 1.7). 
On the other hand, 9i = ~ (J, 0), so that ~ (i, s )=  cz (j, 0). Using now 1.8 (a), we deduce 
that s = 0, a contradiction; this proves (a). 

The previous proof  yields also the following result: 

(b) gr (KS PI-1)s a)= cz (i, s). 

Using this and 1.8 (a) we deduce: 

(c) Let  s, s ' e N  and let i e I  (-x)sa, i ' e I  (-1)~'a. Then the indecomposable objects 
KS P I- 1)~ a, K s' p I 7 x)s' a o f  (~a are isomorphic i f  and only i f  i = i' and s = s'. 

2.9. The results in this subsection can be deduced from those in the previous section, 
by duality. 

(a) For any s e N ,  and any i e I  (-1)s+la,  CspI - l~a  is an indecomposable object o f  
%, 

(b) 

Csp(-1)~ai , Cs'p171)~'~ 

gr (C s PI -  1)s a) = ~ (i, s). 

(c) Let  s, s ' e N  and let i e I  (-x)s+~ a, i, ei(-~)s'+l a. Then the indecornposable objects 
o f  Cg a are isomorphic i f  and only i f  i= i" and s = s'. 

2.10. We define three subsets >~a, <~a, o~a of  ~a as follows. Let M = ( M ,  A) be 
an object o f ~  a. We say that ME >~a i f C t M = 0  for some t~> 1. 

We say that M e  <~a if K t M = 0  for some t~> 1. 
We say that M e 0~a if K ~ M ~ 0 and C ~ M r 0 for all t e N. 

(a) We have M e  > ~a i f  and only i f  M is isomorphic to an object as in 2.8  (a). 

(b) We have M e  <~a i f  and only i f  M is isomorphic to an object as in 2.9  (a). 

(c) The subsets >@a <@a, o@a form a partition o f  the set ~@a. 

If M is as in 2.8 (a), then dim M a - d i m  M - a - - d i m  9 i>0  (see 2 .8  (b) and 
1.7 (c)). Similarly, if M is as in 2 .9  (a), then dim M a - d i m  M - a =  - d i m  9~<0 (see 
2 .9  (b) and 1.7 (c)). 

Hence, if (a), (b) are known to hold, then the sets >~a, <~a are disjoint and (c) 
follows. 

We now prove (b). If  M is as in 2.8 (b), then from 2.7  (d) we see that 
KSM=pl- l~Sa where i e i  ( 1)s+la; using 2 .7 (e ) ,  it follows that K ( K S M ) = 0 .  
Conversely, assume that K s+l M = 0  for some s~>0. We take s to be as small as 
possible. Then K s M # 0. By 2 .6  (a) (for K s M instead of  M) we have an exact sequence 

in  W ( -  ~)s~ 

0 ~ CK s + 1 M -~ K s M ~ (M~, 0) ~ 0 
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where M s is a F-module such that Ms= M~ -1)s-1 a. In our case this gives an isomor- 
phism KSM~-(Ms, 0). Using 2 .7  (d), we deduce that (M s, 0) is indecomposable and 
M-~CS(Ms, 0). Since (Ms, 0) is indecomposable, it must be of  the form (pi,0) for 
some i c I  ( -ns - l~  and we see that M is as in 2 .9  (a). This proves (b). Now (a) follows 
from (b) by duality. 

2.11. Let M =  (M, A) be an object of  @. We associate to M an integer 

(a) a ( M ) : m i n  { dimkerAelee 9 }. 

Let U be the set of  all lines L ~ 9 such that dim ker Ae = a (M) for some (or any) 
e c L -  { 0 }. Then U is an open dense subset in the projective line P (P) of  9. We define 
the pseudo-kernel of  A to be the subspace M o= ~ kerAeL of Ma; here eL denotes 

L ~ U  
some non-zero vector in L. We set 

(b) b (M) = dim M o. 

It is clear that 

(c) a (M) ~< b (M) 

and 

(d) a (M) = 0 <=~ b (M) = O. 

Now let U'  be an open dense subset of  P (9) such that U'  ~ U. We show that, if we 
replace U by U'  in the definition of  M o, we get again Mo: 

(e) M o =  ~ kerAeL. 
L ~ U '  

It suffices to show that for any L c U  we have kerAeL c ~ kerAeL,. This is a 
L' ~ U' 

consequence of  the following statement whose verification is left to the reader. Let 
M', M"  be finite dimensional C-vector spaces, and let A, B:M'---,  M"  be two linear 
maps such that dim ker (A + t B) is independent of  t for t in some Zariski open subset 
T of C, containing 0. Then there exists p ~> 1 such that for any p-element subset T' of  
T - { 0 } w e h a v e k e r A c  E k e r ( A + t B ) .  

t ~ T '  

2.12. We shall prove the inequality 

(a) b (C M) ~< b (M) - a (M) 

for any M = ( M ,  A)eCg a. We have C M = ( M  -a G coker A', E) (see 2.4, 2.5). By defini- 
tion, an element x e M  -a is in the kernel of  E e, (ecp) precisely when x |  e c i m a g e  



128 AFFINE QUIVERS AND CANONICAL BASES 

(A': M a ~ M -~ | P). Let us choose a basis el, e 2 of  0 such that ( el, e 2 ) = 1 and such 
that d i m k e r A r  ). Let e : e l + l e  2. We see that the condition that Ee(X)=0 can 
be written in the following four equivalent forms: 

x | e 1 + lx | e 2 "= Ar (y) | e 2 - -  A e 2  (y) | e 1 for some y e MS; 

x = --  Ae2 ( y )  and lx = Ar (y) for some y e MS; 

x = - -  A e 2  ( y )  and lAr (y) + Ar (y) = 0 for some y e Ma; 

x = - Ar (y) and A e (y) = 0 for some y e M s. 

We therefore see that the assignment 

(b) y~- -* -Ae2 (Y  ) 

defines a surjective linear map ker A e ~ ker Ee for any e = e~ + le2. 

Let U'  be the open dense subset of  P (9) consisting of  all lines L such that e2 q~ L, 
dim ker A e = a (M) and dim ker ~ e  = a ( C  M )  for some (or any) e e L - { 0 }. It then 
follows that the assignment (b) defines a surjective linear map 

(c) ~ ker AeL ~ Z ker EeL 
LeU '  L e U '  

where e L denotes any non-zero vector in L. By 2.11 (e) this is a linear map from the 
pseudo-kernel of  A onto the pseudo-kernel of  E. By our choice of  e2, the kernel of  
Ar is contained in the pseudo-kernel of  A and is therefore contained in the kernel of  
the map (c). It follows that the dimension of  the pseudo-kernel of  E is less than or 
equal the dimension of the pseudo-kernel of  A minus dim kerAc2. This proves the 
inequality (a). 

2.13. Next, we note the equality 

(a) a (K M) = a (M) 

for any M = ( M ,  A)~U s. We have K M = ( M S Q  kerA, H), see 2.5. Let e be a non- 
zero vector in 9- From the definitions it follows immediately that the assignment 
x ~ x | e is an isomorphism ker Ar ~ ker 1-Ir This clearly implies (a). 

2.14. L e t M ~ .  

(a) We have b (C s M) = 0 for all s ~> b (M). 

We argue by induction on b(M). Assume first that b ( M ) = 0 .  By 2.12 (a), we 
have b (M) ~> b (C M) >/b (C 2 M)... hence b (C S M) = 0 for all s >~ 0. Next we assume that 

b ( M ) > 0  and that the result is already proved for all M' with b ( M ' ) < b ( M ) .  By 
2.11 (d) we have a ( M ) > 0 .  Hence, using 2.12 (a), we see that b ( C M ) < b ( M ) .  Thus, 

the induction hypothesis is applicable to CM.  Now let s be such that s>~b (M). By 
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the previous inequality we then have s - 1/> b (C M); using the induction hypothesis, it 
follows that b (C s- 1 C M) = 0. This completes the inductive proof  of  (a). 

We now prove the following statement. 
(b) I f  M is indecomposable and C t M # 0 for  all t >~ O, then b (M) = 0. 

F rom our assumption and from the results in 2 .7  it follows that KC (C t M)-~ C t M 
for all t~>0. Hence K t + I C t + ~ M ~ K t K C C t M - ~ K ~ C ' M  for all t~>0, so that 
K t C t M ~ M  for all t~>0. 

Let s~> 0 be such that b (C s M ) =  0 (see (a)). Then a (CSM)= 0 (see 2.11 (d)); using 
repeatedly 2.13 (a), we have that a (K S C s M) = a (C S M) hence a (K s C s M) = 0. As we 

have seen, we have K s CSM---M so that a ( M ) =  0. Using again 2.11 (d), we deduce 
b (M) = 0. 

The following statement can be deduced from (b) by duality. 

(c) I f  M is indecomposable and K t M # 0 for  all t >1 O, then b (M*) = 0. 

2.15. Assume now that M = ( M ,  A)=Ksp1-1)ss  where i e I  I-1)s-ls, and s~>0 (see 

2 .8  (a)). We have 

(a) a ( M ) = d i m  Pi and b ( M ) = d i m  M S = ( s +  1)dim pi. 

We argue by induction on s. When s = 0 ,  we have M = P ~  and (a) is obvious. 
Now assume that s>~ 1 and that the result is already proved for s -  1 instead of  s. Let 
M ' = K s - 1 P I - 1 ) s ~  The induction hypothesis is applicable to M' (with 5 replaced 

by - 5 ) .  We have M = K M '  hence, by 2 .13(a)  and the induction hypothesis, 
a ( M ) = a ( M ' ) = d i m  pi. We also have M ' = C M ,  hence by 2.12 (a) and the induction 
hypothesis 

s dim Pi = b (M') ~< b (M) - a (M) = b (M) - dim p~ 

so that b(M)>~(s+ 1) dim Pi. On the other hand, it is clear that dim M ~ > b ( M ) .  The 
last two inequalities together with the equality dim M s= (s+ 1) dim Pi (see 2 .8  (b) and 
1.7 (b)) imply the equalities in (a). 

2.16. We will define several (full) subcategories >cgs, <cgs, ocgs of cg~. Let M =  (M, A) 
be an object of  gas. 

We say that M is an object of  >~'~ if b ( M * ) = 0  and b ( M ) = d i m  M s. 
We say that M is an object of  <cgs if b ( M ) = 0  and b ( M * ) = d i m  M -s 
We say that M is an object of  ocgs if b (M) = b (M*) = 0. 

Note that 

ME <cgs <=>M* ~ >cg-s, 

M e ~ <=>M* e 0off- s. 

By 2.14 (b), (c), any object of  o ~  is contained in ocg~. 
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Now any object M = (M, A) in < ~  is as in 2 .9  (a) (see 2.10 (b)) hence satisfies 
the hypothesis of  2 .14 (b) so that b (M)=0 ;  its dual is as in 2.8 (a) hence we can 
apply 2 .15(a)  to it and deduce b ( M * ) = d i m  M ~. Thus, we have ME <cd~. 

Dually, any object in > ~  is contained in >cg~. 

2.17. Let M = (M, A) be an object of  ~ Let Spec M (spectrum of M) be the set 
of  all lines L e P ( p )  with the following property: for some (or all) e e L - { 0 } ,  the 
map A e : M s --, M -  6 is not an isomorphism of  C-vector spaces. From the definition, it 
is clear that Spec M is a finite set. (In particular, we have dim M ~= dim M-~.) 

For  any L e P (P) we define subspaces M~ c M ~ and M{ -~ c M -~ as follows. We 
choose non-zero vectors e, e' of  P such that e e L and C e ' r  Spec M and we define M~ 
(resp. ME ~) to be the set of  all x e M ~ such that (A~, 1 ~e)NX = 0 (resp. (A e A~, I)Nx = 0) 

for some N ) 1 .  These subspaces are clearly independent of  the choice of  e. They are 
also independent of the choise of  e'. Indeed, let e" be another non-zero vector such 
that C e " r  M. If e" is proportional  to e' then it clearly leads to the same 
subspaces as e'. Assume now that e', e" are not proportional.  Then we can write 
e = ae' + be" for some a, b e C so that A e : a m e, Jr b me, , .  Let "c = A~, 1 Ae,, : M ~ ~ M ~. We 
have (A/, 1 Ae)N = (a 1 + b ~)N, (A2,1 Ae)N = (a ~ 1 + b 1) TM and (a 1 + b ~)N, (a 1:- 1 + b 1) TM 

have the same kernel and M[  is well defined. We see similarly that My  ~ is well 
defined. 

Clearly, Mr--=0, M f ~ = 0 i f L r  We have a direct sum decomposition 
M ~---OLMt. Indeed, for e', e", z as a above, the subspaces M[  are precisely the 
various generalized eigenspaces of  ~. Similarly, we have a direct sum decomposition 
M -~=  O L M [  ~. In particular, Spec M is non-empty if M e 0 .  

It is clear that, for any e~ e p, and any line L in P(P), Ae~ restricts to a linear 

M - 5 .  map of  M t  into L , moreover,  this linear map is an isomorphism if e1r L. 
Next we observe that l? acts naturally on P (p), leaving stable the finite subset 

and ( M [  ~)C -~ for all el7 and all Spec M. Note also that 7 ( M ~ ) c  Mv cL~ 7 M~(L) 7 
L eP(p) .  Let Y" be the set of  all subsets of  P(P) which are orbits of  l?. For  each 

Z e ~ ,  let M~z = |  and Mz  ~= O L ~ z M [  ~. Then M ~ z, M z  ~ are l?-stable and for 
any e I e 9, Ae~ restricts to a linear map of  M~ into Mz~; moreover,  this linear map is 
an isomorphism if ez is not  contained in the union of  all lines in Z. We may regard 
Mz G M z  ~ with the restriction of the maps Ae~ as a subobject Mz of M. Then 

(a) M = | z ~ ar Mz 

and for each Z, we have Spec Mz c Z. This decomposition is functorial. 
Let ~ z be the full subcategory of  ~ consisting of  objects with spectrum 

contained in Z. We see that 

(b) ocg~ is a direct product o f  the categories ~ z (Z e 3(). 
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2.18. We now fix Z e ~ and study the category o(g~. 

The number  of  elements of  the isotropy group in F of  any element of  Z is an 
even integer 2 n where n = n z >~ 1. We define a category cg, as follows. An object of  cg~ 
is a Z/nZ-graded,  finite dimensional C-vector space V =  O,~z/ ,zV~ together with a 
nilpotent endomorphism t : V  ~ V such that t (V~)~ V~+ 1 for all r. Morphisms are 
linear maps respecting the grading and the nilpotent endomorphism. 

We will construct an equivalence of  categories 

~t~ z ~ _  ,t~ n . 

We choose L ~ Z ;  let F L be the isotropy group of  L in F; it is a cyclic group of  
A 

order 2 n. Let F L be the group of  characters F L -*  C*. 

We choose a second line L' in p such that L ' #  L and such that L' is fixed by F L. 

(If n > l, L' is uniquely determined by these requirements; if n = 1, any line in p is 
fixed by FL. ) We choose e e L - { 0 }  and e ' ~ L ' - { 0 } .  Now F L acts on L through a 

A A 

character ~ E F L and on L' through ~- 1. Clearly, ~ is a generator of  F L. 

To an object M = (M, A) of  dog6 z, we associate an object (V, t) of  cg n as follows. 
We set V = M~. This subspace of  M ~ is clearly FL-stable. 

For  any integer r e  [0, n - 1 ] ,  we denote by Vr the largest FL-Stable subspace of V 
on which F L acts through the character ~(1-6)/2 +2 

(Note that the largest FL-Stable subspace of V on which F L acts through the 
character ~(1--8)/2+2r+1 is zero since the value of  this character at c is ( - 1 )  (1-6)/ 
2+1= -6.)  

The V~ form a Z/n Z-grading of  V. We define t:V---, V to be the composition 
V = M [  ~ ME -~---, M [ = V ,  where the first map is given by A e and the second map is 
the inverse of  the isomorphism M[  ~ ME ~ given by the restriction of  A e, (this last map 
is an isomorphism since e ' r  L). 

Now A e , + L A e = A e , + ~ : M [  ~ ME ~ is invertible for any )~EC, since we have 
e' + )~ e r L. Hence 1 + )~ t : V ~ V is invertible for any ?~ ~ C. It follows that t : V ---, V is 

nilpotent. 

We now show that y (t (x)) = ~ (y)z t (7 (x)) for all x e V and all 7 e FL. 

We have YAe (x) = Ar e (Y x) = A; (~) ~ (y x) hence y (A e (x)) = ~ (y) A e (y x). 

Similarly, we have 7 (Ae'  ( x ) )  = ~ ( Y ) -  ~ A~, (y  x ) .  Replacing here x by t (x) we obtain 
y (A e, (t (x))) = ~ (7)- 1 Ae ' (y (t (x))). The left hand side is equal to y (A e (x)) hence to 

(7) A~ (7 x) = ~ (y) A~, (t (7 (x))). It follows that ~ (y) Ae, (t (y (x))) = ~ (y) - ~ Ae, (Y (t (x))). 
Since A~, is injective on V, it follows that ~ (7) t (7 (x)) = ~ (7)- 1 7 (t (x)), as claimed. 

We see that (V,t)  is indeed an object of  cs Now the assignment M~-~(V,t)  
extends in an obvious way to a functor 0cg~ ~ c~,,. 
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We now construct a functor in the opposite direction. We assume given an object 
(V, t) of  cg~,; we shall associate to it an object M of ~ We regard V as a FL-module 
with 7 acting on V, as multiplication by ~(T) (1-~)/2+2r Let V' be the FL-module 
with the same underlying space as V but with 7 acting on V~ as multiplication by 
(,y)(1 - ~i)/2 + 2 r -  1 

Let M be the induced F-module C [F] |  trLJ (V �9 V'). Then M ~ = C [F] |  trL] V 
and M - ~ = C [ F ]  |  We may regard V, V' naturally as subspaces of  M ~, M ~. 
Let A : M a |  p ~ M -~ be the unique F-linear map which extends the FL-linear map 
V | p ~ V' given by x | (ae + be')  ~ at  (x)  + bx .  It is clear that M = (M, A) just defined 
is an object of  %q~. The assignment (V, t) ~ M extends in an obvious way to a functor 
oK, ___, O@z" The two functors constructed above provide the desired equivalence of 

categories. 

2.19. Let (V, t) be an indecomposable object of  cg~,. On V we have a Z / n  Z action: 
the canonical generator of  Z / n  Z acts on Vr as multiplication by e 2 ~ ' /Tr /"  Let m be 
the smallest integer >~ 1 such that t " = 0 .  We can find x EV such that t m 1 (x ) r  
moreover,  we can assume that x EV~ for some integer r (defined up to a multiple 
of  n). Let ( x )  be the subspace of  V spanned by x,  t x , . . . ,  t i n - i x .  Clearly, this sub- 
space is t-stable, compatible with the grading and x,  t x , . . . ,  t m- i x  is a basis for it. 
By the theory of (ungraded) nilpotent endomorphisms, there exists a t-stable sub- 
space V1 of  V complementary to ( x ) .  Let Y be the set of  all t-stable subspaces of V 
which are complementary to ( x ) .  Thus we have V1 e Y. Let Y' be the vector space 
of  all linear maps V~ ~ ( x )  which commute  with the action of  t. The graph of  such 
a linear map is a subspace of V I + ( x ) = V ,  which is actually in Y. This gives a 
bijection Y ' ~ Y  and shows that Y is an affine space. Now Y is defined purely in 
terms of  ( x ) ,  which is compatible with the grading; hence Y is stable under the 
natural  action of  Z / n Z  on the set of  subspaces of  V. A finite group acting on an 
affine space must have a fixed point. Hence, there exists a subspace V 2 ~ Y which is 
compatible with the grading. Thus, ( x )  admits a complement  which is both t-stable 
and compatible with the grading. By the indecomposability of  V we must then have 

v=(x). 
Conversely, given an integer r, defined up to a multiple of n, and an integer m >~ 1, 

there is clearly a unique indecomposable object Vr, ,, = (V, t) (up to isomorphism) such 
that for some x e V~, x ,  tx ,  . . . . t " -  1 x is a basis of  V. 

We now see that Vr,,, form a complete list of  indecomposable objects (up to 

isomorphisms) of  ~',. 

2.20. In the 

corresponding 

setup of  2.18, we denote by Mz, ,, ,, the indecomposable object of  o~,~ 

to Vr, m under 2.18 (a). F rom the definitions, we have 

gr (Mz, r,,,) = i n d r  Lr ((~j=2r+22 r-m-21 L| ((1-6)/2 + j ) )  
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where L | j is a tensor power of  L, (L ~ Z) regarded as a 1-dimensional F-module.  
Thus, if m is divisible by n we have 

gr (Mz, ~, m) = (m/n) r. 

Assume now that m is not  divisible by n. Then L E F and we may assume that 
L ~ ~ (see 1.13); we have 

If ~ = - 1 and 

gr (Mz, ~, ,,) = g (L, r, m) 

gr (Mz, ~, ,,) = g (L, - r - m + 1, m)* 

if ~ = 1 (see 1.17). 
The previous results can be summarized as follows. 

Theorem 2.21.  - (a) For any P ~ 6  we have g r ( P ) ~ R +  U {r, 2r, . . . }. 

(b) For any ~ E R +  there is a unique P E ~  ~ such that gr(P)=cz. 
(c) For any integer s>>, 1, the ,nap P~-~Spec P f rom { P e ~ 6 ] g r ( P ) = s r }  to the set 

o f  F-orbits on P (p) is well defined, its fibre over any F-orbit Z has cardinal equal to 
half  the number o f  elements in the isotropy group FL o f  an), L E Z. 

2.22.  Remark. - In the language of  [DR], the objects of  > ~ ,  o ~ ,  <cg~ are 
preinjective, regular, preprojective, respectively. 

3. Preparatory results 

3.1 .  In this section we restate some definitions and results of  [L] in the special case 
of  affine quivers, in terms of  the corresponding group F. 

Let M be a F-module.  The corresponding notion in [L] is an I-graded vector 
space V = �9 Vi of  finite dimension over C. These are related by M = |  i | P~ (with 
F acting trivially on V~, as in 2.3).  

Let GM be the (algebraic) group of  all linear automorphisms of  M commuting 
with the F-action. The corresponding notion in [L] is G v = l ~ A u t ( V i ) .  (We have 

G~ = Gv.) i 

Let EM be the vector space Horn r (M | p, M). The corresponding notion in [L] 

is E v = | Horn (V i, V j) where the sum is taken over all pairs consisting of  an edge of  

our graph and an orientation i---,j of  that edge. (These two vector spaces may be 

identified as in the construction of  the equivalence of  @ and N6 in 2.3.)  
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As in 2 .3 ,  giving A e H o m  r (M @ 9, M) is the same as giving a collection A e (e e p) 

of  linear maps M --+ M depending linearly of  e and satisfying 7 (Ae (x)) = A v (e) (~ (X)) 
for all 7 e F ,  ee9 ,  x e M .  (A e is related to A by A e ( x ) = A ( x Q e ) . )  

We have a natural action of  G M on E M given by (g, A)+->gA, where 
(g A) (x | e) = g (A (g- i x | e)) for x e M and e e 9- (This corresponds to an action of  

Gv on Ev.) 
On E u we have a non-degenerate symplectic form ~ , > defined by 

~A, ~ } = t r ( A e ,  A~2-Ae2 ~ q " M--+ M),  

where e 1, e 2 is any symplectic basis of  9. (This corresponds to a symplectic form on 
Ev as in [L, 12.1].) This symplectic form is invariant under the Gu-action. 

3 .2 .  The moment map attached to the GM-action on the symplectic vector space EM 
is the map t~:EM ~ H o m r  (M, M) given by 

~/(A) = Ael Ae2 - Ae2 Ael : M --+ M, 
where e 1, e 2 are as in 3.1. (Compare [L, 12.1] and [K]) Hence we have 

(A) = 0 <=~ Ael Ae2 = Ae2 Ael for any e l, e 2 e P- 

An element A e E M is said to be nilpotent if there exists a number  N/> 2 such that for 

any sequence e (1), e (2) . . . .  , e (N) of  vectors in p, the composit ion A e (1) Ae (2)- �9 �9 A (N): 
M-- '  M is zero; an equivalent definition is that there should exist a flag in M which 
is A-stable. 

(This corresponds to the notion of  nilpotent element of  Ev given in [L, 1.7, 1.8].) 
We define AM to be the set of  all nilpotent elements A e EM such that ~ (A)= 0. 

(Compare [L, 12.1].) 
A M iS a closed GM-stable subvariety of E m of pure dimension dim EM/2. (Compare 

[L, 12.3].) 
Let Irr A M be the set of  irreducible components  of  A~. 

3 .3 .  For  each i e I  and each p e N ,  let AM, i,p be the set of  all A e A  M such that 
(9i: M ) -  (Pi: A (M | p)) =p .  This is a locally closed subvariety of  AM, again of  pure 
dimension dim EM/2. (Compare [L, 12.3].) Moreover,  for any p~>0, and any i e I ,  the 

union ~_J,,:p,<~pAN, i. v, is open in AM. 

3 .4 .  Given 8 = -t- 1, we define E~ = H o m r  (M s | p, M -  ~). 
We can identify in an obvious way E~ with the subspace of  E u consisting of  

those A 6 E  M which map M - ~ |  P to zero; note that A automatically maps M S |  9 

into M -~. 
We have a direct sum decomposit ion E u - E~ �9 EM 1 
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Thus E1 and E~ 1 appear as complementary Lagrangian subspaces of  EM; they 
are Gg-stable. (Compare [L, 12.8].) In particular, ( , ) defines a non-singular pairing 
E~ | E~ ~ ---, C so that Eu is naturally the cotangent bundle of  E~. 

In particular, if Y is a submanifold of E~, then the conormal  bundle of  Y (a 
submanifold of  the cotangent bundle of  E~) may be naturally regarded as a sub- 
manifold of EM. 

(a) If  A ~ E~ and 7~ ~ E~ ~, then ~)(A + ~ ) =  0 if and only if 7~ is orthogonal with 
respect to ( , ) to the tangent space to the GM-orbit of  A (regarded as a vector 
subspace of E~). (Compare [L, 12.8 (a)].) 

3.5.  If  N is a F-submodule of  M and A e E M, we say that N is A-stable if A e 

maps N intoN for any e c P- 
Let M t = ( M  1, M2, . . .  M,) be a sequence of isotypical F-modules such that 

M_-__MI Q . . .  | M m as a F-module. 
A flag in M is by definition a sequence M = M ( ~  M(1) D . . .  = M(m)=0 of  

F-submodules such that for any l = 1, 2 . . . .  , m, the F-module M (~- ~)/M (t) is isotypical. 

A flag of  type M t is a flag as above such that M(~-~)/M(I~-~Mt as F-modules for 
l = 1, 2 . . . .  , m. (Compare [L, 1.4].) A flag as above is said to be A-stable (where 
AeEM) if each M (l) is A-stable. 

Given A ~ Eg and M t as above, we denote by ZM t(A) the Euler characteristic of  

the variety of  A-stable flags of  type M t in M. This variety is empty unless A is 

nilpotent ([L, 1.8]) hence ZM,(A)= 0 if A is not nilpotent. Let Z~t:AM---, Z be the 

function whose value at any A e A g is ZM t (A). 

Let ~M be the Q-vector space of  functions A N ~ Q spanned by the functions 
ZM," AM ~ Z for various M t as above. This is clearly a finite-dimensional vector space; 
all functions in YM are constructible ([L, 10.18]) and constant on orbits of  GM. 

Proposition 3.6. - Given any Y E IrrAM, there exists a function j 6  ~M such that 
(a) for  some open dense Gg-stable subset 0 o f  Y we have f ]o = 1 and (b) Jor some 
closed GM-stable subset H ~ A M of  dimension < dim A g we have f =  0 outside Y C) H. 

The result is trivial when M =0.  We may therefore assume that M 5 0  and that 
the result is already proved for F-modules of dimension < dim M. 

Given i~ I, the intersection Y O (t._)r, : p,~r AM, i, p') (see 3.3) is non-empty for some 
p/> 0; for example, for p = (pi : M) it is equal to Y. The smallest integer p >/0 for which 
this intersection is non-empty is denoted n (i, Y). We have 0 ~< n (i, Y)~< (9i: M). 

According to [L, 12.6], we have n ( i , Y ) > 0  for some ie I .  

Hence it is enough to prove (for an i e I which is fixed from now on) that the 
proposition holds for any Y such that n (i, Y ) >  0. This will be proved by descending 

induction on n (i, Y) (which is bounded from above). 
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Thus, we may assume that Y is such that n (i, Y ) =  n o > 0 and that the proposit ion 

is already proved for all r e Irr A M such that n (i, Y ) >  n 0. 
By the definition of  n o, we can find a F-module M'  such that M is isomorphic to 

the direct sum of M'  with n o copies of  Pi. 
We define a linear map t : ~  M, --. ~M as follows. Let f '  c~M, .  We must specify 

the value of  t ( f ' )  at a point A e A M. Consider the variety B consisting of  all A-stable 
F-submodules  N of  M which are isomorphic to M'. If  N e B we choose an isomorphism 
of  F-modules N ~ M ' .  This induces an isomorphism A N --. AM,. C o m p o s i n g f '  : A M, --* Q 
with the last isomorphism gives a function A N ~ Q whose value at the restriction A IN 
is denoted j7, ( N ) e  Q. (This is independent of  the choice of  isomorphism N ~ M' since 
f '  is constant on GM,-orbits.) Now N ~--~f' (N) is a constructible function on B; hence 
we may associate to it the linear combinat ion of  Euler characteristics 

)., E a E u l e r { N e B l Y  ( N ) = a j ,  
a ~ Q  

this number  is by definition t ( f ' ) ( A ) .  (Compare [L, 12.10].) F rom the definition it 

follows that 

(c) t ( f ' )  : A M ~ Q is a function in @M with support  contained in (J Au, i, p; 
p >~ n 0 

(d) if A e A u ,  ~, ,o (so that B above is a single point N) then t ( f ' )  ( A ) = f  ' (E) where 
E e AM, , ~, o corresponds to A [N under some isomorphism of  F-modules N ~ M'. 

Now let 

Yo = Y  O AM.i.,o-----Y O ( (._) AM, i,p'). 
p' : p '  ~<n 0 

This is an open dense subset of  Y and an irreducible component  of  AM, i,,o. 
According to [L, 12.5] there exists an irreducible component  Yo of  AM, , i, o such 

that for any A e Y  o, we have E e Y  0 (where E is related to A as in (d)). 
Let Y' be the closure of  Y;  in AM,; this is an irreducible component  of  AM,. 
Since dim M ' <  dim M, there exists f ' e  ~-M, such that for some open dense GM,- 

stable subset O' of  Y we have f '  [o' = 1 and such that for some closed GM-stable subset 

H '  c AM, of  dimension < dim A M, we have f '  = 0 outside Y' t,_) H'. 
Let H o = H '  O AM, i, o; this is a closed, GM,-stable subset of  AM, ~, o of  dimension 

< dim AM,. 
Replacing if necessary O' by O' O Yo, we may assume that O' ~ Yo- 
Let O 0 (resp. Ho) be the set of  all A ~ AM, ~,,o with the following property: any 

E ~ AM, i, o related to A as in (d), lies in O' (resp. in Ho). Then O o is an open, dense, 

Gwstab le  subset of  Y0 and H0 is a closed GM-stable subset of  AM,/,,o of  dimension 

< dim A M. 
Consider t ( f ' ) ~ M .  By (c), (d) we have 
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(e) t ( f ' )  IOo 

We have 

= 1; the support of t ( f ' )  is contained in (Yo O H0) (J ( O AM, i, p)" 
p>no 

AM, i,p~- [_) ~I '~ 
p : p > n o  

where Y runs over the irreducible components of A M such that n ( i ,Y)>n  o. By our 
assumption we can find, for any such Y, a function f [Y] 6 ffM satisfying the require- 
ments of the proposition with O [Y] ~ ~" and H [~/] of dimension < d i m  A M. The 
restriction of t ( f ' )  to O [Y] is a constructible function; since O [Y] is irreducible, there 
exists an open dense GM-stable subset 01 [Y] of O [Y] and a number a,7 ~ Q such that 
the restriction of t ( f ' )  to O 1 [~z] is the constant function a,7. We may assume that the 
sets O 1 [Y] for various r are disjoint. 

Let 

f =  t ( f ' )  - ~ a,7 f [Y]. 
~7 

Using (e) and the definitions we see that f has the required properties. The proposition 
is proved. 

3.7.  The previous proof  gives an f with integral values. 

3.8. For any Y eI r r  AM, we have a linear function T y : ~ M  ~ Q; it associates to 
f e ~ M  the (constant) value of f on a suitable open dense subset of Y. We can now 
define a linear function from ~-M to the Q-vector space of Q-valued functions on 
IrrAM. This linear function is surjective, by 3.6. (This actually holds for any quiver, 
with the same proof.) In particular, we see that 

(a) ] Irr AM I ~< dim ~-M" 

3.9.  Let u -  be the -part of the enveloping algebra corresponding to the (affine) Lie 
algebra associated to our affine Coxeter graph. This is the Q-algebra defined by 
generators F i ( i t  I) and relations 

N+I  

p=O P 

for any i C j  (with N = dim T~, see 1.1). 
Consider the Q-vector space ~- = | Y u  where the sum is over a set of represen- 

tatives for the isomorphism classes of F-modules; the choice of representatives is 
immaterial since J~M is canonically isomorphic to ~-M' whenever M, M' are isomorphic. 
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There is a unique Q-algebra structure on ~-, together with a surjective algebra homo- 
morphism u-  ~ ~- such that 

(a) F ~ . . .  F~2/(s , ! . . . Sin!) ~ )~M, 

(see 3.5) for any sequence M t = ( M  ~, M 2, . . .  M,,) of isotypical F-modules with M e 
isomorphic to the direct sum of s v copies of 9i, for all p. (See [L, 12.11].) 

For any F-module M, we define UM to be the subspace of u-  spanned by the left 
hand sides of (a )  such that ~ sv=(9~:  M) for all i. These give a grading 

p : i p = i  

u - =  @M u~ and our homomorphism u-  --, ~- clearly respects the gradings. Hence we 
have 

(b) dim u~ ~> dim ~M 

for any M. 
By the Poincar6-Birkhoff-Witt theorem, we have the equality of formal power 

series 

(c) ~'~dimur~ xmmM= I ]  (1 - -xa ima) -* l - I (1 - -Xs l r l ) - I ' l+ l  
M ( z ~ R  + s 

(The second product is the contribution of the "imaginary" roots.) 

4. Irreducible components of a Lagrangian variety 

4.1.  In this section we study the set of irreducible components of a Lagrangian 
variety AM; we give a combinatorial description of this set, in the setup of section 2. 

We first prove a result about vanishing of certain Extl-groups. 

Propos i t ion  4 . 2 .  - L e t  M1, M2cCg ~ be as fo l lows:  
, = K s '  p ( -  1) s '  8 t (a) MI=KsP1-1)s~ M 2 - - - i ,  with s, s '~N,  s ~ s ,  and  i~I  I-1)sa, 

i ' ~ I  ~-1)S'8, or 
= , = .-< ' E I ( -  1 ) s + i  6 (b) M i C~P~ -lls~ M 2 C~'P~: 1)s'~ with s, s ' e N ,  s . .~s ,  and  i 

i ' e I ( - 1 )  ~'+l~, or 

- C s P  ( - 1 ) ~  = K s ' p  (.-~)s'~ ' e I  ~-~)s'~, or ( C )  M 1 - _ - i  , M 2 _,, with s, s ~ N ,  and  i e  I ~- 1~s+ ~ ~, i' 

(d) M1 ~ ~ ~, M 2 = K~'P ~._,, ~)~'~ with s' e N ,  and  i ' e I  C-1)~'~, or 

(e) M 1 Csp~ 1~s~, M2eO@, with s e N ,  and  i E I  ~-1)~+18 = , or 

( f )  M~, M 2 E oc~a with disjoint  spectra.  

Then  

Ext I (M 1, Mz) = 0. 
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4.3.  In preparation for the proof  of  4 .2  we note the following. Let 

0 --> M'  - ,  M ~ M"  - ,  0 

be a short exact sequence in cgi~. Then the corresponding sequence 

0 --+ C M'  -+ C M --+ C M"  -+ 0 

is exact in cg- 
This follows easily from the definitions, using the snake lemma in homological 

algebra. Similarly, if 

0 - ~  M '  ~ M - ~  M " - *  0 

is a short exact sequence in ~ ,  then the corresponding sequence 

0-+ K M '  --. K M - +  K M "  -~ 0 

is exact in ~ - a .  

4.4.  We show that any exact sequence 

0 - ,  M'  --+ M--+ M"  ~ 0 

in (g~ such that either 

(a )  M " -  ~ I - ~  - Pi with i 

o r  

(b) M ' -  ~ - P i  with i~I  ~, 

is split. 
Indeed, let M = ( M ,  A), M ' = ( M ' ,  E) and let W be any F-submodule of  M 

complementary to M'. In both cases, W defines a subobject of  M, complementary 
to M'. 

4.5.  We now prove 4.2.  Consider a short exact sequence in cg~ 

(a) 0 --+ KS' P~71)s' a --+ M -+ M 1  - + 0  

where s ' e N ,  i 'E I  (-l~s's and M 1 is as in 4 .2  (a), (c) or (d). We want to show by 
induction on s' that this exact sequence is split. For  s '=  0 this follows from 4.4;  hence 
we may assume that s'~> 1 and that our assertion is already proved for s ' - 1 ,  - 8  
instead of s', 6. 

Now all terms of  (a) are contained in cgi~. For  the first term this follows from 
2.5 (a) (since s' ~> 1). For  M 1 this follows from 2.5 (a), if M 1 is as in 4 .2  (a) (since 
s>~s'>~l); from 2.9  (a), if M 1 is as in 4 .2  (c); finally, if M l e ~  s, then it is in %~i~n 
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(see 2 .7  (b)). Now the middle term of  (a) is automatically in ~i~, since the other two 
terms are there. 

Using now 4.3,  we see that by applying C to (a) we get an exact sequence 

0 ~ CKS' PI71)s' ~ --~ C M ---~ C M1 ---~ 0. 

Since KS'- ~ PI-  x)~ '~cs  by 2.8 (a), we see from 2 .6 (b )  that 

CKS'p~71W~=KS'-i p171)~' ~ 

hence the previous exact sequence is 

(b) 0 --* K s'- 1 P~7 1}s' ~ C M ~ C M 1 ~ 0. 

This is an exact sequence of the same type as (a); note that, if M 1 =KsP~ -1)S~ is as in 
4 .2  (a), then C M I = K S - I P ~  -)S~ (and s-l>~s'-l); if M 1 is in o ~ ,  then C M  1 is in 
o~-~ (see 2.10, 2.16). 

By the induction hypothesis, the exact sequence (b) is split. 
Now all terms in (a) are fixed by KC (by the result dual to 2.6(b));  hence 

applying K to the exact sequence (b) gives us back the exact sequence (a). Since (b) is 
split, it follows that (a) is split and our assertion is proved by induction. Thus 4 .2  is 
proved in the cases (a), (c), (d). Now 4 .2  in cases (b), (e) can be obtained from the 
cases (a), (d) by duality. 

Next, assume that 

0 ~ M 2 ~ M ~ M  1 --,0 

is an exact sequence in ~ with M~, M 2 in o ~ .  F rom the definitions it follows 
immediately that M 1 flora and using 2.17 (b) we see that the assertion of  4 .2  holds 
in case ( f ) .  

4 .6.  Now let M I = ( M I ,  A1), M z = ( M 2 ,  A2) be two objects of  ~ .  We define a 
linear map T ' H o m  r ( M i , M z )  o H o m r ( M ~ |  by associating to any 
q ~ e H o m r ( M  1, M/)  the map 

T (q~) : x | e ~ g~ (A 1 (x | e)) - A 2 (q~ (x) | e) 

for all x E M~ and e E 9. 
By the definition of  morphisms in ~ (see 2.3),  the kernel of  T is exactly 

Horn (M 1, M2). Next we define a linear map 

W': H o m  r (M] | 9, M2 ~) ~ Extl (M1, M2) 

as follows. To a F-linear map H:  M~ |  ~ we associate the extension 

0 - - , M 2 o X ~ M 1  where X = ( X , A ) e ~  ~ is given by X = M 1 G M  2 and 
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A: X a |  p - + X  -~ is given by a 2 x 2  matrix with entries A1, ]7I, A2, 0. The maps 
M 2 --+ X and X--+ M 1 are the obvious ones. It is easy to see that qa, is a linear map 
and that its kernel is exactly the image of  W. 

Proposition 4 .7 .  - The sequence 

0 - ,  H o m ( M  1, M2) -+ H o m r  (M 1, M2) -+ H o m r  (M ~ | 9, M2  ~) ~ ExtX (M1, M2) --+ 0 

constructed in 4 . 6  is exact. 

This is a special case of  a result o f  Ringel [R1], valid for any quiver. 

4 .8 .  Assume that we are given a F-module M and an element Ae  E~. Let T be the 
tangent space to the GM-orbit of  A (translated so that it contains zero) and let T' be 

the set of  vectors in E~ ~ which are orthogonal  to T under ( , ) .  Consider the exact 

sequence in 4 . 7  for M1 = M 2 = (M, A). It is clear that 

(a) T is the image of  qa. 

F rom 4 .7  it then follows that 

(b) T'---gxt 1 ((M, A), (M, A))*. 

4 .9 .  Assume now that we are given a line L in 9 whose stabilizer FL has order 
2n~>4, and that M = ( M ,  A) is an object in ocga with spectrum contained in the 
F-orbit  Z of  L. Then M is isomorphic to a direct sum of indecomposable objects 
Mz, r, m (see 2 .20)  where r runs over Z / n Z  and m>~ 1. Let f ( r ,  m) be the number  
of  times Mz, r, m appears in the decomposition. We say that M is aperiodic if for 
any m >~ 1 there exists some r ~ Z /n  Z such that f ( r ,  m) = 0. Assume that M is aperiodic. 
Let T, T' be as in 4 .8 ,  and let E c T'. We will show that 

(a) A -t- "~ ~ E M is nilpotent. 

Under  the equivalence of  categories constructed in 2.18,  M corresponds to an 
object (V, t) of  cg,~, and we clearly have 

(b) Ext I (M, M)---Ext 1 ((V, t), (V, t)) 

where the last Ext is taken in oK,. This last Ext-group can be inserted (just like the 
first one) in an exact sequence as in 4 . 7  for a cyclic quiver. (The exact sequence in 
4 . 7  makes sense for any quiver). Hence the following analogue of  4 .8  (b) holds: 
Ext 1 ((V, t), (V, t))* is isomorphic to the vector space S consisting of  all linear trans- 
formations er : V --+ V such that o (Vr) ~ V r_ 1 for all r (notation of  2 .18)  and t o = o t. 

Combining this with (b) and 4 .8  (b) we deduce that 

(c) dim S = dim T'. 
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We now define a map S ~ T '  by the method in 2.18.  Let V', e, e' be as in 2.18.  
(Recall that V = V '  as a vector space.) We may assume that (M, A) is constructed 
from (V, t) as in the end of  2.18.  Recall that M [ = V ,  M L ~ = V  '. Let eyeS. There is a 
unique F-linear map ~ : M - 8  | 9 --+ M~ which extends the FL-linear map V' | 9 --+ V 
given by x' | (ae + be') ~ a cy (t (x')) + b cy (x'). One verifies that ~ e T'. It is clear that 
the map cy ~-+ S from S to T' is injective; by (c), it is an isomorphism. In particular, 
we must have E = = S for some c~ E S. 

The aperiodicity assumption implies that cy is nilpotent as an endomorphism 
of  V (this is a property of  cyclic quivers, see [L, w 15]). Again with the notation 

of  2 .18,  we have M L = V O V ' .  For  any e~e 9, (A+E)ez:  M--+ M maps M L into itself; 
more precisely from the definitions we have (A+E)e(X, x ' )=(cy( t (x ' ) ) ,  t (x))  and 

(A + E)e, (X, X') = (~ (X'), X) for all x, x' ~ V = V'. Since t, c~ are commuting nilpotent 
endomorphisms of  V, it follows that a composit ion of  sufficiently many endomor- 
phisms (A + E) e, (A + E)e, , will map M L to zero. Since M is spanned by the F-translates 
of  M L, we see that A + E e E~ is nilpotent. This proves (a). 

4 .10.  Assume now that we are given a line L in p whose stabilizer F L equals { 1, c } 
and that M = (M, A) is an indecomposable object in oc~ with spectrum equal to the 

F-orbit  of  L. Let e, e' be a basis of  9 such that e e L. Let f be the unique element of  
E~ such that f ( x  | e') = O, f ( x  | e) = A (x | e') for all x ~ M~. 

Let T, T' be as in 4 .8 ,  and let 7~ 6 T'. Assume that ( f ,  E ) =  0. We will show that 
(a) A + E ~ E M is nilpotent. 

Under  the equivalence of  categories constructed in 2.18,  M corresponds to an 
object (V, t) of  W'I; here t is necessarily a regular nilpotent endomorphism of  V. 

Just as in 4 .9 ,  we have dim T ' =  dim S, where S is the vector space of  all linear 
transformations cy : V ~ V commuting with t. 

As in 4 .9 ,  we define a map S -~ T' by the method in 2.18.  Let V' be as in 2.18.  
(Recall that V = V '  as a vector space.) We may assume that (M, A) is constructed 
from (V, t) as in the end of  2.18.  Recall that M ~ = V ,  M - ~ = V  '. Let eyeS. There is a 
unique F-linear map S : M -  ~ | p --+ M ~ which extends the FL-linear map V' | 9 ~ V 
given by x'  | (ae + be') ~ acy (t (x')) + b ~ (x'). One verifies that ~ e T'. It is clear that 
the map cy w-, ~ from S to T' is injective; by (c), it is an isomorphism. 

In particular, we must have E = S for some cye S. Since t is regular nilpotent and 
cr commutes  with t, we see that c~ is a sum of  a nilpotent endomorphism with y times 
the identity, where y e C. 

We now show that our assumption ( f ,  E ) =  0 implies that y = 0. For  any x ' e  V' 

we have Ee, (X') = CY (X'); hence (fe Ee, --fe' "~e) (X') = ~ (X'). For  x ~ V we have 

(fe 7ae"--fe" E~) (X)= 0. Thus fe Ee'-.fe, Ee leaves stable ML and its trace in there is equal 
to trcy = y  dim V. N o w  fe Ee'--fe' Ee is F-equivariant hence it must also leave stable 
M L for any L' in the F-orbit  of  L and its trace in there is again y dim V. It follows 
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that ( f ,  E ) = y  dim M/2 and therefore y = 0 .  We now see that cr is a nilpotent 
endomorphism. From this point on the proof  of  (a) continues exactly as in 4.9.  

4.11. Assume now that we are given an object M = (M, A) of  Z~. From the results 
of  section 2 we see that there exists a direct sum decomposition M =  @h~ z M (h) where 
M (h) = (M (h), A (h)) e c~ and integers ho ~< hi ~< h2 ~< h3 ~< h4 such that the properties 
(a), (b), (c), (d) below are satisfied. 

(a) For  any h such that ho<h<<.hl, we have M(h)_-__KsPI -)s6 for some s=s(h)>~O 
and some ieI(-1)s~; moreover,  if h<<.h'<<.hl, then s(h)<.s(h'). 

(b) For  any h such that h 3 < h ~ h 4  we have M(h)~C~P~ - 1 ~  for some s=s(h)>~O 
and some i e I ~- 1~+ ~ ~; moreover,  if h3 < h ~< h', then s (h) 7> s (h'). 

(c) For  any h with ht < h  ~< h 3 we have M (h)~ o ~ ;  it is non-zero and its spectrum 
is a single F-orbit with isotropy group of order >~4 for h I <h~<h2, and of order 2 for 
h2<h<~h 3. Moreover,  if h 1 <h<h '< .h  3 then M(h),  M(h ' )  have disjoint spectra. 

(d) For  h<<.h 0 or h>h4, we have M ( h ) = 0 .  

We now make the following assumption on M: 

(e) For  any h with h l<h~<h  2, M(h)  is aperiodic. For  any h with h2<h<.h3, 
M (h) is indecomposable. 

For  each h with h2<h<~h 3 we choose a line L h ~ l0 in the spectrum of  M(h).  
Choose a vector e ' e  p outisde all these lines th ,  and choose a vector e e 9, linearly 
independent from e'. Let z h e C be such that e + z h e 'c L h. Let fh be the unique element 
of E M (h) such that fh (X | e') = 0 and fh (X | e) = A (h) (x | e') for all x e M (h)[ h. Then 
fh is like f in 4 .10 (for M(h),  L h, e+zhe' ,  e' instead of  M, L, e, e'); indeed, we have 
fh (X | (e + z h e')) = 0 for all x e M (h)~ h. We may regard fh as an element of E~ (equal 
to zero on M (h') ~ | 9 for any h' r h). 

In this setup, we have the following result: 

Proposition 4.12. - Associate T, T' to A as in 4.8.  Let E c T '  be such that 

( fh ,  E ) =  0 for  each h with h 2 < h ~ h 3. Then A + E is a nilpotent element o f  E M. 
The grading M = | M (h) of  M gives rise to a bigrading E~ 1 = @h, ,' E~ 1 (h, h') 

where E~ 1 (h, h') = Horn r (M (h) -+ 1 | p, M (h') ~ 1). 

We consider, for each h > h', the exact sequence 4 . 7  for M I = M  (h) and 
M 2 = M  (h'). The Ext ~ term there is zero, by 4 .2 ,  hence the map 
W : H o m  r (M (h), M ( h ' ) ) ~  E~ (h, h') is surjective. The last map q~ is the restriction of 
the map with the same name �9 : H o m r  (M, M) ~ E~; it follows that the image of  the 
last map which, by 4 .8  (a), is just T, contains E~ (h, h') for all h > h'. In fact, the same 
holds, even for h = h  ', except when hl <h<~h 3 (by the same argument).  
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N o w  the annihilator in E~ ~ (with respect to ( , ) )  of  the sum of  the EaM (h, h') 

over {(h, h')lh>~h'}- {(h, h)[hx<h<~h 3} is equal to the sum of  the E~6(h, h') over 

{(h, h')lh>h'} U {(h, t,)1t,1 <h h3 }. 
Hence T' (and so also E) is contained in the last sum. In particular, E maps any 

M ( h ) - a |  into the sum of  the M(h ' )  a over {h'lh'<~h }, if hl<h<~h3, and into the 
sum of  the M(h ' )  a over { h'[h' < h  }, for the other values of  h. 

Let us now define some F-submodules  M [h] = @h' I h',<h M (h) for h e Z .  We have 
�9 . . c M [ h -  1] c M [h] c . . . The previous statement can be reformulated as follows: 

E maps M [ h ] - a |  into M[h] a, if hl<h<~h 3, and into M [ h - 1 ]  a, for the other 
values of  h. 

For  h 1 < h ~< h 3, we see that E induces a F-linear map 
M [h]/M [h - 1] -a | p ~ M [h]/M [h - 1] a or, equivalently, M (h) -a | 9 ---> M (h)a; this 
map is denoted E (h). 

We clearly have that A maps M (h)- a | 9 into M (h) a for any h, hence it maps 
M [h] a | 9 into M [h] -a for any h. Combining this with the analogous property of  E, 
we deduce that: 

A + E maps M [h] | 9 into M [h] for any h. 

Hence A + E induces for any h a F-linear map M [h]/M [h - 1] | 9 -~ M [h]/M [h - 1] 
or, equivalently, an element of  E M (h). If  this element is nilpotent for any h, then, from 
the definition of  nilpotency, it would follow easily that A + E is nilpotent. But from 
the previous discussion we see that this induced element is A (h)+ E (h) if hi <h~h3, 
and A (h) for the other values of  h. 

If  hi < h ~< h2, then A (h) + E (h) is nilpotent, by the discussion in 4.9.  If  h 2 < h <~ ll3, 

then A (h) + E (h) is nilpotent, by the discussion in 4.10;  indeed, our assumption implies 

that (fh, "Z( h ) ) = 0 .  If  ho<h<~h I or h3<h<~h4, we have A(h)eEaM(h) and all elements 
of  E~ (h) are obviously nilpotent in E M Ch~" This completes the proof. 

4 .13.  Given a F-module M, we consider the set 5 p (M) ~ of  all pairs (or, ~,) where 
c s : ~  ~--, N, ~,=(~,1 ~>~'z>- - . - .  ~>)~q) is a sequence of  integers ~> 1, and the properties 
(a)-(d) below are satisfied. 

(a) cs has finite support.  

(b) Let Z be any F-orbit  in P (9) such that the stabilizer of  a line in Z has order 

2 n ~> 4. For  any m ~> 1, at least one of  the numbers 

(Mz,  o, m), cr (Mz,  1, ,.), �9 � 9  o ( M z . . -  1, ~) 

is zero. (Notat ion of  2.20.)  

(c) Let Z be any F-orbit  in P (9) such that the stabilizer of  a line in Z has order 2. 

For  any m ~> 1, we have o (Mz, o, m) = 0. (Notat ion of  2.20.)  
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(d) We have ~ c y ( P ) g r ( P ) + ~ Z j r = M  in NF.  
P j 

Given (cy,)~)e 5 ~ (M) ~, we consider the subset X (cy,)~) of  E~ consisting of  all 
elements A such that (M, A) is isomorphic in @ to 

Op P" (v) 0 (Mzl, o, ~1 | �9 " | Mzq, o, ~) 

for some distinct F-orbits Z ~ , . . . ,  Zq as in (c). 

In this setup we have the following result: 

Proposition 4.14. - (a) X (~,)~) is open, dense, smooth in its closure X (cy,)~). It 
is also irreducible of  dimension equal to q plus the dimension of  any GM-orbit it contains. 

(b) Let Y (cy, )~) be the conormal bundle o f X  (cy, )~) ~ E~, regarded as a subvariety 
of  E M (see 3.4). Then ~" (cy,)~) is an irreducible component of  A M (see 3.2). 

(c) I f  (cy', L') is an element of  5~(M) ~, distinct from (cy, )~), then 
Y (c~,)q # ~ (~',)~'). 

The proof  of  (a) is routine and will be omitted; but the necessary ingredients can 
be found in the following proof  of  (b). 

Let A E X (cy, Z). We can find a decomposition of (M, A) as in 4.11. We will use 
the notat ion of 4.11 relative to this decomposition. 

We will define a smooth submanifold D of E~, whose points are parametrized 
by vectors y =  (Yh)~ cq; here, the index h is such that h 2 < h ~<h 3 and q is the number 
of such indices. 

For  each y as above we define an element A y ~ E~ by assembling together elements 
A r (h) ~ E~ (h) for all h ~ Z. For  h 2 < h ~< h3, A r (h) is the unique F-linear map 
M (h) ~ | 9 ~ M (h)- ~ such that A y (h) e = A (h)e-  Yh A (h)e, and A y (h)e, -- A (h)e, on vectors 
of  M (h)~ h. (The subscript L h refers to A.) We have (M (h), A r (h)) e ocg~ and its spectrum 

is the F-orbit  of  the line C (e + (z h +Yh)e'). 
For all other h, we set A y (h)= A (h). By definition, D = { AY[y ~ C q }. Note that D 

is an affine space containing A; we have A = A  ~ Clearly, D is contained in 
X (cy, k ) =  E~. The tangent space to D at any point of  D, translated to zero, is a 
vector subspace D o of  E~ independent of the chosen point. It is clear that 

(d) the vectors fh of 4.1 1 form a basis of  D o. 

We now associate T, T' to A as in 4.8. Let E e E ~  ~ be such that E is orthogonal 
under ( , ) to the tangent space to X(cL)~) at A. Then E is orthogonal to T (the 
tangent space to the GM-orbit of  A at A) and to D o (the tangent space to D at A) 

hence E E T' and E is orthogonal to the fh in (d). Using now 4.12, it follows that 
A + E e E M is nilpotent. Thus, the conormal  bundle of X (cy, k) is contained in the set 
of  nilpotent elements of  EM. It is also contained in the inverse image of 0 under the 
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moment  map (see 3.2) since X(cy, )0 is a union of  GM-orbits (see 3.4 (a)); hence it is 
contained in AM. By definition, the conormal  bundle of X (or, ~.) is the closure in EM 
of  the conormal  bundle of  X ( o ,  )9; hence it is also contained in A M (which is closed). 
It is irreducible, by (a), and being a conormal bundle it has dimension equal to dim 
EM/2. But dim A M = dim EM/2 (see 3.2) and (b) follows. 

Now (c) follows immediately from (a). 

4.15. We now consider the formal power series 

n=Zl~  (M)~] X~mM, 
M 

where M runs over a set of  representatives for the isomorphism classes of F-modules. 
From the definitions and from 2.21, we see that 

I I =  I-I ( 1 - - x d i m u )  - 1  X H (1~( 1 - - x d i m l a ( L  . . . .  ) ) - 1  

~xER + -OR+ L,m r 

- l - [  xd im v (L . . . .  ) [ ~  ( l  -- X dim ~ (L, ~. m))- 1)) 

r r 

• I1((1--xs]F{)-nL--XSnLIF]( 1 - X s l F I )  nL) E P (t) Xt[F]' 
L,s t>~O 

where (with notat ion of  1.17), L runs over W, m runs over the integers >~1, not 
divisible by hE, r runs over Z/n L Z,  s runs over the integers ~> 1, and p (t) is the number 
of partitions of  t. Note that dim g (L, r, m) = m [ F I nt71. We have 

1- I=  H (1 --  x d i m  a ) -  1 H ( l  - -  x d i m a ) -  1 

~ R  + -OR+ a~0R+ 

x l~(1--xmlrl) ll(l--Xslrl)-nL[](l--XSnL jFI) 1 I  (l  - X S  I r I) -1,  
L,m L,s L,s s 

H =  H ( 1 - x d i m = ) - l H ( l - X s l I ' l ) l X ]  
c~R + s 

[ I 0 -  t [ I  0 - x '  r L) -1,  
S S 

where n' = ~ n L. Thus, 
L 

(a) f l  = I1 
a~R + 

(1 - -xdim=)- '  H (1 -X*I  r I)-I~ I+1 ' 
s 



G. L U S Z T I G  1 4 7  

since 

(b) Z(nL- 1)=liI-2. 
L 

(The identity (b) follows f rom 1.18 by compar ing  dimensions.)  Using 3 .9(c) ,  we 
obtain I1 = ~ dim u~ X d~m M; using the definition of  H, we deduce 

M 

(c) (d im u~ - [ 5~ ( M)  ~ l) = 0 
M : dim M = d  

for any d~> 0. 

Theorem 4.16.  - (a) The algebra homomorphism u- ~ J~ (see 3.9)  is an isomor- 
phism. 

(b) For any F-module M, the map (cy,)~)w-}~U(cy, )0 (see 4 .14)  is a bijection 
(M) ~ ~ Irr A M. 

(c) For any Y E Irr AM, there is a unique function fv  ~ ~'~M such that for some open 
dense GM-stable subset 0 o f  Y we have f 1o = 1 and such that.for some closed GM-stable 
subset H c A M of  dimension < dim A M we have f =  0 outside Y kJ H. 

(d) The functions f v  (for Y e I r r  AM)form a Q-basis o f  Y M. 
For  any M, we have 

(e) ] 5p (M)~[ ~< [ Irr A M [ ~< dim "~-M ~ dim UM; 

(the first inequality follows from 4.14;  the second one is 3 .8  (a); the third one is 
3 .9  (b)). In particular,  d im UM -- [ 5 P (M) 6 ] ~> 0. In t roducing this in the equality 4 .15  (c), 
we deduce that  d im u~--15P(M)6[ for all M. This implies that  all inequalities in (e) 
are equalities. 

The map  u M ---> ~'~M in 3 .9  is surjective; the two spaces involved have the same 
dimension,  hence our map  is an i somorphism and (a) follows. (A different p roo f  of (a) 
is given in [L, 12.13].) 

The map  in (b) is injective, by 4.14;  since the two finite sets involved have the 
same number  of  elements, our  map  is bijective and (b) follows. 

Consider  the surjective h o m o m o r p h i s m  from ~M to the space of  all functions 
Irr A M ~ Q given in 3.8.  The two vector spaces involved have the same dimension 
hence our map  is an i somorphism and (c), (d) follow. The theorem is proved. 

4 .17.  The previous theorem provides a natural  basis of  u-  and of  ~- indexed by the 
irreducible components  of  the various varieties A M and also in purely combinator ial  
terms, namely in terms of the sets 5 P (M) 6. 
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Corollary 4.18. - The variety A M is Lagrangian. 

Indeed, the map in 4 .16 (b) being surjective, means (by 4.14) that any irreducible 
component  of  AM is a conormal  bundle; the corollary follows. (The corollary holds 
for any quiver, with a different proof.) 

5. Cyclic quivers 

5.1. In this section we will make a change in our general assumptions: namely F 
will now be a cyclic subgroup of SL (9) not  necessarily containing c. We assume that 
I F I = N > 1. All definitions in 1 .1-1.3  extend without change; the affine Coxeter graph 
is now a polygon with a possibly odd number  of  vertices. 

We will show that most results in the earlier sections hold in this case as well. 

5.2.  We shall fix a F-stable line L in 9. Then we can identify Z ]N  Z with I by 
r~-~L | r, regarded as a F-module in the obvious way. Consider the set of  all pairs 
(r, m) where r is an integer defined up to a multiple of N and m is an integer >/1 not 
divisible by N. This set is in 1-1 correspondence with the set of  positive roots R+ by 

r + m - 1  

(r, m) ~-~ %, , ,= ~ L| 
j = r  

this is proved by the argument of 1.9. 

5.3.  The definition of  the orientation f~(8) given in 2.1 is not applicable here. 
Instead, we define an orientation ~L of our graph as follows: we have i---,j if i, j ~ I  
correspond to r, r + 1 ~ Z / N  Z respectively. (This is ambiguous if N = 2; in that case 
we orient the two edges from i r  so that one is i ~ j  and the others is j ~ i.) 

The category cg~ defined in 2.18 is then a full subcategory of the (abelian) 
category of representations of  this affine quiver (with the orientation ~L). 

Note  that giving a finite dimensional Z]nZ-graded C-vector space V =  | Vr is 
the same as giving a F-module. (We make F act on V so that on any Vr it acts via 
the character given by L | L) 

Let End 1 (V) be the space of  all linear maps t : V  ~ V such that t (V,) c V~+ 1 for 
all r. Let Aut  o (V) be the group of all automorphisms of V preserving the grading. 

If  (V, t) is an object of  c ~  we denote by gr (V, t) the F-module V. 
Let ~ be the set of  isomorphism classes of  indecomposable objects of  c~.  As 

in 2.19, ~ consists of  the objects V~, ,, where r is an integer defined up to a multiple 
of  N and m is an integer >/1. F rom the definitions we see that 

(a) For  any P ~  we have g r ( P ) ~ R +  (_) {r, 2r, . . .  }. 

(b) For  any 0~ e R+ there is a unique P e ~ such that gr (P)= 0~. 
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(c) For  any integer s >~ 1, the set { P ~ ~ [ gr (P) = s r } has cardinal equal to N. 

5.4.  Given a F-module V we denote by 50 (V) the set of  all functions cy : N ~ N such 
that properties (a), (b), (c) below hold: 

(a) o has finite support. 

(b) For  any m >~ 1, at least one of  the numbers 

o (V0, m), o (Vl, D, �9 �9  o (VN- 1, ~) 

is zero. 

(c) We have ~ ~ (P) gr (P) = V in ff F. 
P 

Given o ~ 5 " ( V )  we define X(cy) to be the set of  all t e E n d l ( V  ) such that (V, t) 
is isomorphic in cg~ to O p P  ~P). This is a single Auto (V)-orbit in End~ (V). 

5.5.  All definitions and results in section 3 except those in 3 .4  remain valid without 
change. The following is a substitute for 3 .4  in the present case: for V as above, we 
may identify naturally E v with the cotangent bundle of End~ (V). 

We have the following result. (See [L, 15.5].) 

(a) If o ~ :7 (V), then the closure (in Ev) of the conormal  bundle of X (o) is an 
irreducible component  ~4/" (or) of A v. 

5 . 6 .  We consider the formal power series 

ri = EI  :7 (v)  l xdim v 
V 

where V runs over a set of  representatives for the isomorphism classes of F-modules. 
F rom the definitions and from 5.3, we see that 

r I  = H ( H  (1 - X dim at, m ) - I  __ H x d i m  ar, m H (1 - -  X dim =r, m ) -  1))  

m r r r 

x ~I((1 - X~ N)-N-- X ~Nz (1 - XS N)-N), 
s 

where m runs over the integers >~ 1, not  divisible by N, r runs over Z I N  Z, s runs 
over the integers >/1. 

Note  that  dim %, ,, = m. We have 

rI= H (1--xdim~ 
cc~R+ m s s 

H =  H (1--xO~m~)-~H(1--x~N)-N+~ 
~ R +  s 
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Using now 3.9 (c) (which is valid in our case), we obtain 

(a) ~ (dim u v - ] 50 (V) I) = 0 
V : d i m  V = d 

for any d>~0. (Compare 4.15 (c).) The following result is entirely analogous to 4.16. 

Proposition 5.7. - (a) There is a natural algebra isomorphism u -  --+ ~ .  

(b) For any F-module M, the map cy~--,~A~(~s) (see 5.5(a))  is a bijection 

(V) ~ Irr Av. 

(c) ~- has a canonical basis, defined as in 4 .16  (c), (d), naturally indexed by the 

elements o f  Irr A v. 

The proof  is the same as that in 4.16 except that the first inequality of  4.16 (c) 
is now deduced from 5.5 (a) and instead of  using 4.15 (c) we now use 5.6 (a). 

5.8.  Let V be a F-module. For  any o ~ 5P (V) we denote by P,, the simple perverse 
sheaf on End 1 (V) whose support is the closure of  X (cy) and whose restriction to X (or) 

is C (up to shift). 
Let Pv be the set of  isomorphism classes of  simple perverse sheaves on End1 (V) 

in the class defined in [L, w 2], for a cyclic quiver. 

Theorem 5.9.  - For any F-module V, the map cr ~-, P~ is a bijection 5P (V)~  Pv- 

According to [L, 13.6], the singular support of  any P e P v  (a closed subvariety 
of  the cotangent bundle Ev of  End I (V)) is a union of irreducible components of  Av. 
In particular, the conormal  bundle of  the support  of  P is an irreducible component  
of  A v. From the description of  the components of A v given in 5.7 (b) it follows that 
the support of  P is the closure of  X (cy) for some cye 5 e (V). The restriction of  P to 
some open dense subset of  X ((y) must be an irreducible local system (up to shift). 
Since P is Aut o (V)-equivariant, this open set can be assumed to be Aut  o (V)-stable 
(hence equal to X (~), which is a single orbit) and the local system on it is equivariant 
(hence equal to C, since the isotropy groups of points in X (or) are connected). Thus, 

we have P = P,. 
We see that there is a well-defined map Pv ---' 5P (V) given by P ~ cr, where P = P,; 

this map is obviously injective. 
By [L, 10.17], we have d i m u v = l P v l  (where u v is as in 3.9) and by 5.7, we 

have dim Uv=[SP(v ) l  . It follows that [Pvl=ISP(V)[ .  Hence the injective map 
Pv ~ ~ (V) above must be a bijection. (The surjectivity of  our map could also be 
deduced from results in [R4]. This would avoid reference to [L, 10.17].) The theorem 

follows. 
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6. Perverse sheaves 

6.1. L e t F b e a s i n  1.1. 
The quantized enveloping algebra corresponding to u-  has a canonical basis, 

defined in [L] in terms of perverse sheaves. The purpose of this section is to describe 
explicitly (or enumerate) these perverse sheaves, in the case of affine quivers, by 
indicating their support and the corresponding local systems. (Such an explicit descrip- 
tion is not known in the generality of [L].) 

6.2. We begin by a result about vanishing of certain Horn-groups; this is in some 
sense complementary to 4.2. 

(a) If M 1, M 2 E ( ~  fi a r e  as in 4.2, and if they are not isomorphic, then 
Horn (M2, M1) = 0. 

The proof  is almost the same as that in 4.5. Let f :  Ks'pI71)s'~-~M 1 be a 
morphism in cg~, where d e N ,  i ' e I  I-1)s'~ and M 1 is as in 4.2(a) ,  (c) or (d); if M1 is 
as in 4 .2  (a), we assume in addition that s>s ' .  We want to prove by induction on s' 
that f =  0. For s ' =  0, this follows immediately from the fact that M1 ~ cg~n (as in 4.5). 
Hence we may assume that s'~> 1 and that our assertion is already proved for s ' - 1 ,  
- 8  instead of s', 8. Then f is a morphism in (~9i~ n (as  in 4.5). As in 4.5, applying C 
to f leads to a morphism C f :  CKs'pI71)s'~ ~ C M  1 of the same type as f,  and 
CKs'PI;-1)s'~=K~'-IP~7 x)s'~ Hence, by the induction hypothesis, we have Cf=O.  
Now, as in 4.5,  both Ks'p~71)~'~ and M~ are fixed by KC. H e n c e f = K C  f =  0. 

Thus, (a) holds if M1, M E a r e  as in 4 .2  (a), (c), (d). By duality, it also holds 
if M1, M 2 are as in 4 .2  (b), (e). Finally, it also holds if M 1, M 2 are as in 4 .2  (f),  
using 2.17 (b). 

The following result gives a canonical filtration for any object of cg~. 

Proposition 6.3 .  - Let  M = (M, A)~ c~. There are uniquely defined subobjects 
M'  c M "  o f  M such that M'~  >~a, M,,/M, E 0 ~ ,  M / M " e  <c~. 

The existence of the subobjects M', M"  as above follows from the results of 
section 2. From 4 .2  it follows that we can find subobjects N, N' of M such that 
M " = M ' • N  and M = M " O N  '. 

Now let M] c M]' be two subobjects of M like M', M". We must prove that 
M', =M',  M','=M ''. 

We can again find subobjects Nx, N' 1 of M such that M'(=M'I  O N  1 and 
M1 =MI" �9 NI.' F rom the definitions, it is clear that M'"~M'I,= N~N~,  N'~= N 1.' Hence 
there exists an automorphism h of the object M which carries M', N, N' respectively 
onto M'I, N1, N'I. 

Now h is given with respect to the direct sum decomposition M = M ' O  N �9 N' 
by components (morphisms from one summand to another). By 6.2, the components 
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corresponding to (M', N), (M', N'), (N, N') are zero. Hence h maps M' and M' G N 
l i i  r  into themselves. It follows that M 1 = M', Mx = M , as required. 

6.4.  Let M be a F-module and let M t = ( M  1, M 2 , . . .  M,,) be a sequence of iso- 
typical F-modules such that M==_MI |  | M,, as a F-module. Let E~a be the 
(smooth) variety of all pairs consisting of an element A~ EaM and a flag of type M? in 
M, stable under A (see 3.5). Associating to such a pair the corresponding element A 
gives a (proper) morphism r t ' ~ - +  E~. 

By the decomposition theorem for perverse sheaves, the direct image complex 
n,(C) on E~ is a direct sum of simple perverse sheaves on E~ with shifts; let PM, ~ be 
the set of (isomorphism classes of) simple perverse sheaves which arise in this way 
(for various M 0. (Compare [L, w This is a finite set. All objects of PM.~ are 
GM-equivariant. 

Let v be an indeterminate. If rc is as above, r is an integer and P EPM.~, let 
n(P, Mr, r ) e N  be the number of times that P[r] appears in a decomposition 
of rt~ (C) as a direct sum of simple perverse sheaves with shifts; let d(M )= dim Ea M. 

6.5.  Following Drinfeld and Jimbo, we consider the quantized enveloping algebra 
U -  attached to our affine Coxeter graph. It is the algebra over Q (v) with generators 
F i (i E I) and relations 

N + I  

( - 1 ) P [ N + I - p ,  plF~]Fi Fj N + l - p  = 0  
p = 0  

for any i # j  (with N=d imT~,  see 1.1); here we set 

a v k _ v _  k [a + a'], 
[a], : [ I  [a, a ' ] -  . 

k :1 V -- V [a]: [a']! 

Let F M be the Q(v) vector space with basis PM.~" Let F =  OMFM; the sum is over 
a set of representatives for the isomorphism classes of F-modules (the choice of 
representatives is immaterial since F M is canonically isomorphic to F M, whenever M, M' 
are isomorphic). 

From [L, w 3, w 9] it follows that there is a unique Q (v)-algebra structure on F, 
together with a surjective algebra homomorphism 

(a) U -  ~ F 

such that 

(b) F ~ . . . F f ~ / ( [ s ~ ] ~ . . . [ s j , ) ~ - ~  ~ n ( P ,  Mr, r) v '+d(M )p 
P r 
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for any sequence M t =(M~, M 2 , . . .  , M,,) of isotypical F-modules such that M v is 
isomorphic to the direct sum of sp copies of Pip for all p; P runs through PM, ~ where 
M = M 1  O . . . O M m .  

For any F-module M, we define Ur~ to be the subspace of U -  spanned by the 
left hand sides of (b) such that ~ sp=(gi:M) for all i. These give a grading 

p : i p = i  

U - =  |  and our homomorphism U -  ~ ~- clearly respects the gradings. Hence 
we have 

(c) dim U~ ~> dim F M 

for any M. 

6.6. We shall denote by ~e, the set of F-orbits Z in P (P) such that the stabilizer of 
a line in Z has order 2. This is an open dense subset in the variety of all F-orbits 
in P (9). 

Let M be a F-module and let c~: ~ - - *  N be a function satisfying 4.13 (a), (b), 
(c) and the property (a) below. 

(a) ~ c r ( P ) g r ( P ) + p r = M  in ~#F for somep>~0. 
pe,c~ 6 

Let X (~) be the subset of E~ consisting for all elements A such that (M, A) is 
isomorphic in cg~ to 

Op P~ (P) (~ Mz~, o, l |  �9 �9 G Mz., o, 1 

for some distinct F-orbits Z ~ , . . . ,  Zp in ~ ' .  
Then 

(b) X (or) is a locally closed, smooth, irreducible subvariety of Er~ of dimension 
equal to p plus the dimension of any Gu-orbit it contains (a special case of 4 .14 (a)). 

We call X (cy) the G-stratum of E~. 
We now define a finite covering 

--, x 

as follows. Let X (o) be the variety consisting of all pairs (A, Zl,  Z 2 . . . . .  Z p )  where 
A e X (or) and Z 1, Z z, . . . ,  Zp is a sequence of distinct elements of ~e, such that the 
spectrum of M" (A)/M'(A)e~ ~ is the union of Z 1, Z 2 , . . . ,  Zp and possibly other 
F-orbits outside ~ ' .  Here, M ' ( A ) c  M"(A) are the subobjects of (M, A) provided 
by 6.3; they remain in fixed GM-orbits, when A varies in X (o). 

Note that Z 1, Z 2, . . . ,  Zp are uniquely determined by A up to order; hence the 
natural map X (or) ~ X (o) given by (A, Z1, Z2, � 9  Zp) ~ A is a principal covering 
with group Sp, the symmetric group in p letters. (By convention, Sp has one element 
if p = 0.) 
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Any irreducible representat ion )~ of  S, gives rise, via this covering, to a local 
system 5~ on X (cy). 

Let P~, z be the simple perverse sheaf on E~ whose support  is the closure of  X (cr) 
and whose restriction to X (or) is 5r (with a shift). 

Proposition 6.7.  - The perverse sheaf  P~, z belongs to PM, ~. 

The p roo f  will be given in 6.14.  

Lemma 6.8.  - For any F-module M, the perverse sheaf  C (with a shift) belongs 

to PM, ~. 

We can find a sequence M t = ( M  1, M z , . . .  M,,) of  isotypical F-modules  such 
that  for some m'<<,m we have M ~ M ~  G . . .  M,,, and M-~_=Mm,+~ |  M m, and 
such that  (Mh: Mh, )=0  for all h v~h'. Then each M h is isomorphic  to a unique 
F-submodule  of  M and will be identified with it. It is clear that  there is exactly one 
flag of  type M t in M, namely 

M = M  (~ ~ M (1) ~ . . .  ~ M (~)=0, 

where M ~ P ) = M p + l G M v + 2 0 . . .  If  p>~m', then (M(V))~=0, while i f p < ~ m ' ,  then 
(M(P))-~=M-~.  In both  cases, we see that  M (p) is A-stable. Hence in our  case, the 
map  rt : E~ ~ E~ (see 6 .4)  is an isomorphism,  so that  rc~ (C) = C. The lemma follows. 

6 .9 .  Assume now that  we are given a line L in 9 whose stabilizer FL has order 
2n~>4, and that  M = ( M ,  A) is an object in o ~  with spectrum contained in the 
F-orbit  Z of  L. Assume also that  M = (M, A) is aperiodic. 

Choose  L', e, e' as in 2.18.  Let (9 c E~ be the GM-orbit of  A and let P be the 
simple perverse sheaf on E~M whose suppor t  is the closure of  (9 and whose restriction 
to (9 is C (up to shift). We will prove the following result. 

(a) P belongs to PM, ~. 
Let S be the (locally closed) subvariety of E~M consisting of all elements "~ such 

that  (M, E) e ~ z. 
Let g be the variety of  all pairs (M e, ~)  consisting of a FL-stable subspace M L 

of  M and of  a vector space i somorphism (I)" M~L~ML ~ such that  the properties (b), 
(c), (d) below are satisfied: 

(b) M = | ~, (ML) where ~/runs over a set of  representatives for the cosets F/FL; 

(c) the Fe-module  ME belongs to the subspace q/e of ff F e (see 1.13); 

(d) ~,(I) (x)=~(~, ) - i  (I)(Tx) for all x ~ M ~  and ~,~F e. 

(Here, M~ 1= ML ~ M + _ 1 and ~ is the character by which F acts on L.) 
Note  that  there is a natural  action of  GM on S. 
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For  any "~ e S there are associated subspaces M[  and M~ -~ (see 2.17) and ~'e 
defines an isomorphism like �9 above. 

This defines a natural  GM-equivariant morphism S ~ g and shows that S is non- 
empty. 

Given two elements of  S, we get two FL-submodules of  M; these are isomorphic, 
by 1.14 (a). It follows easily that the GM-action on g is transitive. 

Let s =  (ML, q))~ g be the image of  A in S; let GM, ~-be its stabilizer in G~ and let 
S' be the fibre of  S ~ S over s. 

By definition, for any E ~ S', the subspaces M ~ L, M~ ~ associated as in 2.17 to - ,  
are independent of  the choice of  E We set V = M[. 

As in 2.18, the C-vector space V is naturally Z]nZ-graded:  V =  OrVr  (using the 

action of  F 0 .  To any E eS' ,  we associate a nilpotent linear map t : V  ~ V by the 
procedure of 2.18 (applied to E instead of  A). As in 2.18, we see that E ~ t establishes 
an isomorphism of  S' onto the variety of  nilpotent endomorphisms in End I (V). 

If g e GM, ~; then the restriction of  g to V is an automorphism of  V preserving the 
grading. This gives an isomorphism of  GM. ; onto Aut  o (V). 

Let to :V ~ V be the nilpotent endomorphism corresponding to A and let C o be 
its orbit under  Auto(V ). Let Po be the simple perverse sheaf on End I(V) whose 
support is the closure of  C o and whose restriction to (5' o is C (up to shift). 

Our aperiodicity assumption implies that Po is a perverse sheaf in the class defined 
in [L, w 2], for a cyclic quiver. (See 5.9.) 

More precisely, let ~ be the variety of  all sequences V = V  ~ ~ V 1 ~ . . .  ~ VN=0 
where, for each p, V p is a codimension p subspace of  V, compatible with the grading. 
Let 9~ be the set of  all pairs consisting of an element t eEnd~  (V) and a sequence (V p) 
as above such that t (V p) ~ V p for all p. Let n o be the second projection of  ~ onto 
End a (V) and let (no) ~ (C) be the direct image of C. Then 

(e) some shift of  P0 is a direct summand of (no) ~ (C). 

Now any subspace W of  V, compatible with the grading, gives rise to a 
F-submodule W = | 7 (W | �9 (W)) of  M, where 7 runs over a set of  representatives 
for the cosets F /F  L. Applying this to each member  of  a flag in V gives an iso- 
morphism o f t )  onto the variety B' of  all sequences of  F-submodules 
M = M t ~  M ~ ) ~ . . .  ~ M~N)=0 such that each M ~p) is generated by M(P)f)ML, 

�9 (M~P) O M ~ ) = M  ~p) O M L  ~ and each M~P)/M ~p+I~ is of  the form gr(Mz, r,~) for 

some r (see 2.20). 

Let B' be the variety of  all pairs consisting of  a sequence in B' and an element 

of  S', leaving stable each term of  that sequence. Let n ' :  B'--. S' be the canonical 
projection. Let (9' be the G~, ~--orbit of  A and let P' be the simple perverse sheaf on S' 

whose support is the closure of  (9' in S' and whose restriction to (9' is C (up to shift). 
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Then (e) can be reformulated as follows: 

( f )  some shift of  P' is a direct summand of  (r~')! (C). 

Now let B be the variety of  all sequences of  F-submodules  
M = M (~ ~ M (1) ~ . . .  = M (s) = 0 such that each M~V)/M (p+ 1) is of  the form gr (Mz, ,, 1) 
for some r (see 2.20). 

Let B" be the variety of  all pairs consisting of a sequence in B and an element 
of  S, leaving stable each term of  that sequence. Let r~": g"--* S be the canonical 
projection. 

We note the following fact. 

(g) If (M1, E) is an object of  ocg~ and M 2 is a E-stable F-submodule of M 1 such 
that d i m M ~ = d i m M 2  ~, then (M 2, E) is again an object of  ocr 

Indeed, for some e I e 9 we have that Eel : M] --, M~ -~ is an isomorphism; it restricts 
to a map M~-~ M2 ~ which is necessarily injective, hence an isomorphism, by our 
assumption on dimensions. If, in addition, (M 1, E) is assumed to have spectrum 
contained in Z, then the same must hold for (M2, E). 

These remarks can be applied to the members of a sequence in B, assumed to be 
stable under some element E eS' ;  it then follows that these members form with E 
objects of  ocg~ with spectrum contained in Z. F rom this we deduce that such a sequence 
must automatically be contained in B'. 

S' and B' in the same way as S = G ~ x  ~M,~- We then see that B " = G M x  G~,; 
(9 = G M x cM. ~- (9'. Therefore from ( f )  we deduce that 

(h) some sift of  P" is a direct summand of (~")~ (C), 
where P" is the simple perverse sheaf on S whose support is the closure of  (9 in S 

and whose restriction to (9 is C (up to shift). 

Now let B be the variety of  all pairs consisting of  a sequence in B and an element 
of  E~, leaving stable each term of  that sequence. Let ~ :B  ~ E~ be the canonical 
projection. F rom the definition of  B it is easy to see that the image ~ (B) is the closure 
of S in E~. Thus S is open in ~ (B) and (re")! (C) can be regarded as the restriction of  
(rc)~ (C) from rc (g) to its open set S. F rom this and (g) we deduce that some shift of  P 
is a direct summand of  (rc)~ (C). 

Now B can be decomposed in connected components; they are obtained by 
specifying the isomorphism classes of  the successive quotients M(P~/M (v+x~ as 
F-modules. Then (~)~(C) decomposes accordingly in a direct sum and some shift 
of  P will appear in one of these direct summands. But each of these direct summands 
is, in the notat ion of [L, 3.5], an iterated *-product  of  N perverse sheaves (up to 
shift) of  the form C on E~, where M' are F-modules of  the form gr (Mz, ~, 1) for some 

r; these are certainly in PM', ~, by 6.8. Since some shift of  P is a direct summand in 
such an iterated *-product,  it is contained in PM.~, by [L, 3.2, 3.4]. Thus, (a) is 

proved. 
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6.10. Assume now that M is a F-module isomorphic to the direct sum of  p copies 
of r. Let X (0) be the open dense subset of  E~ consisting of  all A such that (M, A) is 
isomorphic to Mzl  ' o, 1 G �9 �9 �9 | Mzp, o, ~ for some distinct F-orbits Z 1, . . . ,  Zp in ~e,. 
Then X (0) is the special case of  X (o) of  6 .6  with cy identically zero. Hence the 
Sp-covering X ( 0 ) - ~ X ( 0 )  and the local system L~ on X(0) corresponding to any 
irreducible representation Z of Sp are defined as in 6.6. 

Let P be the simple perverse sheaf on E~ whose support is E~ and whose 
restriction to X (0) is 5~ (up to a shift). We will show that 

(a) P belongs to PM, ~. 
Let B be the variety of  all sequences of  F-submodules  

M = M t ~  such that M(k)/Mtk+l)~r as a F-module,  for 

k = 0 ,  1 . . . .  , p - 1 .  
Let B be the variety of  all pairs consisting of  a sequence in B and an element 

of  E~, leaving stable each term of that sequence. Let ~" B ~ E~ be the canonical 
projection. If A e X (0) leaves stable a sequence in B, then using 6.9 (g) we see that 
each member  of  that sequence forms, together with A, an object in ocg~. F rom the 
definition of  X (0) it then follows that there are exactly p! sequences in B left stable 
by A and that the restriction of re defines a covering re- 1 (X (0)) ~ X (0) isomorphic to 

(0) ---, X (0). We see therefore that some shift of  P is a direct summand of  ~ (C). 
As in the end of  6.9,  r~ (C) is an iterated *-product  of  p perverse sheaves (up to 

shift) of  the form C on E~; these are certainly in PM,. ~, by 6.8. Since some shift of  P 
is a direct summand in such an iterated *-product,  it is contained in PM,~, by 
[L, 3.2, 3.4]. Thus, (a) is proved. 

6.11. We now return to the setup of  6.6. Let A(0)eX(cy).  We can write M as a 
direct sum M - - ( ~ h ~ z M ( h )  where M(h)  are A(0)-stable F-submodules of M so that, 
for some h 1 ~<h2, the following conditions are satisfied. 

(a) For  any h such that h<<.h 1, there exist s=s(h)>~O and i=i(h)eI ~-1)~ such 
that (M (h), A (0)) is isomorphic to a direct sum of copies of  Ks Pl - ~)s~; moreover,  if 
h<h'<<.h 1 then either s(h)<s(h') or s(h)=s(h') and i(h)r 

(b) For  any h such that h 2 §  <h ,  there exist s=s(h)>>O and i=i(h)EI ~-~)~+1~ 
such that (M (h), A (0)) is isomorphic to a direct sum of  copies of  CsPl - 1~ ~; moreover,  
if h 2 + 1 < h < h', then either s (h) > s (h') or s (h) = s (h') and i (h) r i (h'). 

(c) For  any h such that h 1 < h ~< h 2 + 1, we have (M (h), A (0)) E ocg~; if h I < h <~ h2, 
then (M (h), A (0)) is non-zero, with spectrum equal to a single orbit outside ~ ' ,  and 
is aperiodic; if h~ <h<h' <~h2, then (M (h), A (0)), (M (h'), A (0)) have disjoint spectra. 
Moreover,  (M (h2 + 1), A (0)) is as in 6.10. 

We have necessarily M (h )=0  for large ]h ]. 
For  any h such that h Ch2+ 1 and any F-module N isomorphic to M(h),  we 

define the CYh-stratum X (Oh) of E~N to be the set of  all E E E~ such that there exists an 
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isomorphism of  F-modules N - M ( h )  which carries (N, E) to (M(h), A(0)). For  
h = h 2 + 1 and any F-mdoule N isomorphic to M (h), we define the C~h-stratum X (CYh) 
of  E~ to be the subset X (0) of  E~ as in 6.10. Clearly, the c~h-stratum of  N is a single 
GN-orbit, if h ~ h 2 + 1. 

Let B be the variety consisting of  all sequences of  F-submodules of  M 

(d) . . . M [ - 1 ]  c M[0] c M[1] c M[2] ~ . . .  

such that for any h, M [h]/M [ h -  1] is isomorphic to M (h) as a F-module. Clearly, B 
is nonempty.  

Let B' (resp. B) be the variety of  all pairs consisting of a sequence (d) in B and 
an element A of  E L, leaving stable each term of  that sequence and such that for any h, 
the restriction of  A to (M [h]/M [ h -  1]) is in the CYh-stratum (resp. in the closure of  the 

CYh-stratum ) of  E L [h] /M [h - 1]" 

Clearly, B' is an open subvariety of  B. 
Let ~" B o EL, 7z': B ' -~ EL be the canonical projections. It is clear that ~ is a 

proper morphism. 

Lemma 6.12. - (a) The restriction o f  ~' defines an isomorphism 
(x (•)) x 

(b) B, B' are irreducible o f  dimension equal to dim X (cy). 

(c) The image o f  ~" B --~ E~M is equal to the closure o f  X (cy) in E~M . 

We first prove (a). We will show only that ~ 1 (A) is a single point for any 
A e X (~). The proof  will be along the lines of  6.3. 

We may assume that A = A ( 0 )  as in 6.11. With notation of  6.11, we set 
M ((h)) = @h': h' ~<h M (h'). Then the M ((h)) together with A form an element of  ~ ' -  1 (A). 
We now consider an arbitrary element of  r~' 1 (A) formed by a sequence 6.11 (d) 
together with A. By assumption, we have (M[h] /M[h-1] ,  A)-- (M (h), A) for all 
h C h z + l  and ( M [ h 2 + l ] / M [ h 2 ] , A ) e ~  has a spectrum disjoint from that of  
(M[h] /M[h-1] ,  A) for th<h<<,h 2. Hence we may use the vanishing of Ext-groups 
in 4 .2  to conclude that for each h there exists a A-stable F-submodule Mh of M [hi 
such that M [h] = M [ h - 1 ]  @ M h. We have M = @ Mh and (Mh, A ) = ( M  (h), A) for all 
h ~ h E + 1. Then we have automatically (Mh, A) ~ (M (h), A) for h = h 2 + 1. Hence we 
can find an automorphism a of (M, A) which maps M (h) onto M h for all h. Let 
ah, h'" M (h) o M (h') be the F-linear maps defined by a (x) = ~ ah, h" (X) for all x e M (h). 

h' 

Since a is compatible with A, it follows that ah, h' is compatible with the restrictions 

of A hence it defines a morphism in @; hence, by 6.2,  it must be zero, whenever 

h<h' .  It follows that a (M(h) )  c @h,:h,~hM(h' )=M((h)) ,  hence a maps M ((h)) into 
itself for any h. Since a is an isomorphism we have a (M ((h))= M ((h)). On the other 
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hand,  f rom the definition of  a we have a (M ((h))= M [h]. Thus M [h] = M ((h)) for 
all h, as required. 

We now prove (b). We consider the second project ion B ' ~  B (resp. B ~ B); its 
fibre at the point  6.11 (d) of  B is denoted O' (resp. O). Since this map  is GM-equivariant 
and GM acts transitively on B, it is enough to prove that  a0 and ~ '  are irreducible of 
dimension equal to d im X (~)-dim B. 

Clearly, 

~ '  ~ [I  X (%) x [I  H~ (M (h) a | p, M (h') 8) 
h h > h "  

where X (%) are as in 6. l l  and �9 is isomorphic  to the analogous product  in which 
each X (%) is replaced by its closure. This shows that  O', �9 are irreducible of  the 
same dimension and 

(d) d i m O ' = ~ d i m X ( % ) +  ~ d i m H o m r ( M ( h ) S |  p, M(h')-~) .  
h h > h "  

By 6 .6  (b) we have 

(e) d im X (or) = p  + d im G M - dim Sta, 

where St a is the stabilizer of  A in GM. Now St a has the same dimension as its Lie 
algebra; hence 

d im St a = ~ dim H o m  ((M (h), A), (M (h'), A)), 
h , h '  

where the H o m  are taken in cg~. By 6 .2  we have H o m  ((M (h), A), (M (h'), A))= 0 if 
h < h', hence 

( f )  d im St~ = ~ dim H o m  ((M (h), A), (M (h'), A)). 
h>/h  ' 

On the other hand,  dim B is equal to dim G M minus the dimension of  the Lie 
algebra of  the stabilizer of 6.11 (d) in GM (by the transitivity of the GM action on B). 
Thus,  

(g) dim B = dim GM - }-', d im H o m  r (M (h), M (h')). 
h>~h ' 

F r o m  (d), (e), ( f ) ,  (g) we see that  the difference 

dim q)' - d im X (or) + dim B 

is equal to 
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dim X (CYh) + ~ dim Homr (M (h) ~ | p, M (h')-a) - p  - dim G M 
h h > h "  

+ ~ dim Hom ((M (h), A), (M (h'), A)) + dim aM 
h>~h ' 

- ~ dim Horn r (M (h), M (h')). 
h>~h" 

It remains to show that the last expression is zero. By 4.7, the last expression is 
equal to 

y'dimX(CYh)--p+ ~ dimExt I ((M(h), A), (M(h'), A)) 
h h > h '  

+ ~ dim Hom ((M (h), A), (M (h), A)) - ~ dim Homr (M (h), M (h)), 
h h 

hence, by the vanishing of Ext-groups 4.2, to 

dim X (~h) --P + ~ dim Hom ((M (h), A), (M (h), A)) - ~ dim GM Ch)" 
h h h 

To prove that this is zero, it is enough to observe that 

dim X ( ( Y h )  : 2 dim G M (h) - -  dim Horn ((M (h), A), (M (h), A)) 
h 

for all h # h 2 + 1 and 

dim X (cya) = ~ dim G M (h) -- dim Horn ((M (h), A), (M (h), A)) +p  
h 

for h = h 2 + 1. These follow immediately from the definitions and from 6.6 (b). This 
completes the proof of (b). 

We now prove (c). Since rr is proper, we see from (b) that the image of ~ is a 
closed irreducible subset of E~ of dimension ~< dim X (cy). This image contains X (cy), 
by (a), hence it contains the closure of X (cy) and therefore it has dimension equal to 
dim X (~) and it must coincide with X (cy). The lemma is proved. 

L e m m a  6.13. - Let  (M (h), A(0)) be as in 6.11 (a) or (b). The GM~h)-orbit of A (0) 
in E~M (h) is open in E~ (h)" 

By 4.8, the codimension of that orbit is equal to 

dim Ext ~ ((M (h), A (0)), (M (h), A (0))) 

and this is zero, by 4.2. 
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6.14. We now prove 6.7. We place ourselves in the setup of  6.11. For  any integer h, 
let X (~h) c E M ~h) be defined as in 6.11. Let 50h be the local system on X (CYh) defined 
as C if h v a h z + l  and as 50x (see 6.10) if h = h 2 + l .  Let Ph be the simple perverse 
sheaf on E M (h) whose support is the closure of  X (CYh) and whose restriction to X (CYh) 
is 50x (up to shift). Then 

(a) Ph belongs to PM (h~, ~" 

(This follows from 6.9  (a), if h ~ < h < ~ h 2 ,  from 6.10 (a), if h = h 2 + l  and from 
6.13, 6 .8 for h<~h I and for h > h 2 +  1.) 

F rom [L, 3.2, 3.5] it then follows that the complex 

(b) . . . * P 2 * P I * P o * P _ I * . . .  o n E ~  

(iterated * product) is a direct sum of  shifts of  simple perverse sheaves in P~, ~. Hence 
it is enough to show that some shift of  the simple perverse sheaf P,.z is a direct 
summand of (b). 

We now review the definition of  (b) in our case. Let ~ '  be as in the proof  
of  6.12; from that proof, we have a natural  map q~ '~ H X ( ~ h ) ;  we pull back under 

h 

this map the tensor product  of  the 50h and we obtain a local system on q)'; this 
extends uniquely to a GM-equivariant local system 50' on B' (a smooth, irreducible 
variety, which is open dense in 5). Let P' be the simple perverse sheaf on B whose 
support is B and whose restriction to B' is 50', up to shift. Then, by definition, the 
complex (b) is just rc~ P' (up to shift). 

By 6.12 (b), we have d i m ( B - B ' ) < d i m  X(~)  hence d i m r c ( B - B ' ) < d i m X ( c 0 .  
Thus the set X' = X (~) - (X (~) (3 rc (B - B')) is an open dense subset of  X (~). 

By 6.12 (a), the restriction of  ~ is an isomorphism ~-1 (X')~_X'. 
Under  this isomorphism, the restriction of  the local system 50' to the subset 

re- 1 (X') of  B' corresponds to a local system on X' which can be seen to be just the 
restriction of  the local system 500 defining P~, z on X (cy). 

Thus, the cohomology sheaves of  n~ P' restricted to X' are equal to Lo]X'  in one 
degree and zero in  all other degrees. Let P" be the simple perverse sheaf whose 
support is closure of X' and whose restriction to X' is 5~ IX', up to shift. 

Since n~ P' is known to be a direct sum of  shifts of  simple perverse sheaves and 
X' is open dense in the .support of  n~ P' (see 6.12 (c)) it follows that some shift of  P" 
is a direct summand of  n~ P'. We have clearly P" = P~, z. Proposition 6 . 7  is proved. 

6.15. Let M be a F-module and let (cy, ~,) be an element of  5 P (M) ~ (see 4.3). Recall 
that )~ = (~,1 ~>)~z/> - . -  ~> Xq)- Let p = ~)~s. We write Z ()Q for the irreducible representa- 

J 

tion of  S v corresponding in the usual way to partition ~. (Thus, if )~ = ( 1 , , . . . ,  1) then 

;(0~) is the unit representation.) 
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Theorem 6.16. - (a) The algebra homomorphism U - ~ F  (see 6.5 (a)) is an 
isomorphism. 

(b) For any F-module M,  the map (or, ~)~--~P,, ~(~) (see 6.7, 6.15) is a bijection 
5P (M) a ~ PM, ~" 

For any M, the map in (b) is clearly injective; hence 

(c) 

We have 

(d) 

(see 6.5 (c)), 

(e) 

dim U M/> dim F M = I PM, a I 

dim UM >~ dim U~ 

(since the Q-algebra u- is a specialization of the Q @)-algebra U-) ,  and 

(f)  dim u~ = 15e (M) ~ ] 

(by 4.16). Combining (c), (d), (e), (f), we see that (c), (d), (e) are equalities. The 
theorem follows. (Another proof of (a) is given in [L, 10.17].) 
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