
CONCENTRATION OF MEASURE 
AND ISOPERIMETRIC INEQUALITIES IN PRODUCT 

b y  M I C H E L  T A L A G R A N D  

SPACES 

ABSTRACT. The concentration of measure phenomenon in product spaces roughly states that, if a set A in a product .QN 

of probability spaces has measure at least one half, " most " of the points of ON are " close " to A. We proceed 
to a systematic exploration of this phenomenon. The meaning of the word " most " is made rigorous by isoperimetric- 

type inequalities that bound the measure of the exceptional sets. The meaning of the w o r k "  close " is defined in 
three main ways, each of them giving rise to related, but different inequalities. The inequalities are all proved through 

a common scheme of proof. Remarkably, this simple approach not only yields qualitatively optimal results, but, 

in many cases, captures near optimal numerical constants. A large number  of applications are given, in particular 

to Percolation, Geometric Probability, Probability in Banach Spaces, to demonstrate in concrete situations the 

extremely wide range of application of the abstract tools. 
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Dedicated to Vitali Mi lman 

i .  INEQUALITIES 

1. Introduct ion  

Upon reading the words " isoperimetric inequality " the average reader is likely 
to think of the classical statement: 

(1.1) Among the bodies of a given volume in R N, the ball is the one with the 
smallest surface area. 

This formulation, that needs the notion of surface area, is not very appropriate 

for generalization in abstract setting. A less known (equivalent) formulation is as follows: 
(1.2) Among the bodies A of a given volume in R ~, the one for which the set A~ 

of points within Euclidean distance t of  A has minimum volume is the Euclidean ball. 
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It  should be intuitive, taking t -+ 0, that  (1.2) implies (1.1). We will, however, 
rather be interested in large values of t. At first sight, this is uninteresting; but  this first 
impression is created only by our deficient intuition, that  functions correctly only for 
N ~< 3, and miserably fails for the large values of N that  are of interest here. 

For our point of view, the main feature of (1.2) is that  it gives a lower bound 
on the volume of A, that  depends only on t and the volume of A. 

From now on, all the measures considered will be probabilities (i.e. of total mass 
one). Following [G-M], [M-S], the basic ideas of concentration of measure may be 
described in the following way. Consider a (Polish) metric space (X, d). For a subset 
A of X, consider the d-ball A~ centered on A, i.e. 

(1 .3)  A , = { x e X : d ( x , A ) ~ < t } .  

Consider now a Borel probability measure P on X. The  concentration function ~(P, t) 
is defined as 

~(P,t)  = s u p  1 - - P ( A s ) : P ( A ) I > ~ , A C X ,  ABorel  . 

In  other words 

0.4) 1 =~ P ( A , )  >t 1 - -  =(P, t ) .  P(A) >i 

I t  turns out that  in many  situations the function 0~(P, t) becomes extremely small when 
t grows. In  rough words, if one starts with any set A of measure i> 1/2, A t is almost the 
entire space. This is the concentration of measure phenomenon.  This idea started with 
the work of V. Milman on Dvoretzky's theorem on almost Euclidean sections of convex 
bodies [Mil] .  Most importantly,  Milman understood that  concentration of measure 
occurs extremely often [Mi2], and most vigorously promoted the idea. (In particular 
we refer to his paper [Mi3] to supplement  our sketchy discussion.) Concentration of 
measure plays an important  role in local theory of Banach spaces, and has become the 
central concept of the area of probability known as Probability in Banach spaces. (See the 
book [L-T2], and subsequent work such as [T6], IT7].) 

A prime example of space where concentration of measure holds is the Euclidean 
sphere S N of R N+ 1 equipped with its geodesic distance d and normalized Haar  measure P~, 
for which it can be shown that  

(1.5)  a(pN, t)~<(8)112exp( (N- - l )2  t*)" 

(The central fact in Milman's  approach to Dvortzky's theorem.) Closely related, and 
more in line with the topic of the present paper  is the case X = R •, equipped with the 
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Euclidean distance and the canonical Gaussian measure 7~ (whose covariance is the 
Euclidean dot product).  In  that  case 

I, ~ & (1.6)  0c(y~, t) ~< A/2~ e-'al*du<~ -e-~'12"2 

I t  should be pointed out that  more is known. The  Gaussian isoperimetric inequality 
states that  

(1.7)  y~(A) = 71((-- 0% a]) =~ y~(A,)/> Yz((-- 0% a + t]) 

which implies (1.6) when a = 0. However, it is sufficient for many applications to 
know (1.6) or even the weaker inequality 

( 1 . 8 )  0c(y~, t) ~< Ke -*'m 

where K is a universal constant. 
In  the present work we perform a systematic investigation of the concentration 

of measure phenomenon in product  spaces. Thus  with the terminology above, X will 
be a product  of probability spaces, and P a product  measure. The  statements will have 
the form (1.4). However, the set At, which consists of points close in a certain sense 
to A (and that, for convenience, we will call the t-fattening of A), will not always have 
the form (1.3). This is the crucial difference between the present work and previous 
investigations, such as [A-M], [M-S]. Indeed, it turns out that  it is extremely fruitful 
to consider various notions of fattening. We will define three rather distinct notions of 
fattening. These notions are studied respectively in Chapters 2 to 4. Each of these notions 
can be studied with various levels of sophistication, and they are at times closely connected. 
Discussing the whole theory in this introduction would require too much  repetition 
and is inappropriate for an article of the present length. Thereby, we have decided to 
mention here only the main new theme (that did not appear in this author's previous 
work) as well as a simple result that  appears to have a considerable potential for 
applications. 

Assume that  X = ~ is a product  of probability spaces, and that  P = tz ~ is a 
product  probability. We recall that  the Hamming  distance d on X is given by 

(1.9)  d(x,y) = card{i~< N :  x~ 4=y,}. 

When A s is given by (1.3), where d is the Hamming  distance, an important  result, 
proved in a special case in [A-M] (see [M-S] with a proof that  extends verbatim to 
the general situation) is that  the concentration function 0c(P, t) satisfies 

(1.10) a(P, t)~< K exp (- -  ~-~-* ) ,  

where K is a universal constant. 
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One could interpret (1.9) by saying that we put a penalty 1 for each coordinate i 
where x~ + A- One recurring theme of the present paper is the investigation of what 
happens when, instead, we put a penalty h(x, ,y,), where h(x, y) is a non-negative function 
on ~ .  A striking and unexpected finding is that in several instances there is a high 
disymmetry between the roles of x and y. For example, in one of the main results of 
the paper (Theorem 4.4 .1)  if one requires that h(x,y) should depend on x only, it has 
to be bounded; but, if  it depends on y only, weak integrability conditions suffice. 

Suppose now that (a~)~<~ are positive numbers, and let us replace the 
distance (1.9) by 

i<~N 

I t  is then shown in [M-S] that (1.10) can be extended into 

(1.11) 0r t) ~< K e x p  K2,~<N ~ . 

One way to spell out this result is as follows: 

1 ~ 1, Given AC ~ ,  with P(A) >/ ~, then, for all numbers (0q)~<N, ,~ >/ 0, 2E ~ = 
we have ~'<~ 

where A,. ,  -----{x ef2N: 3y e A ,  Y~ a~ l(xi,ui } ~< t}. 
i~<N 

The first result of Chapter 4 states that (1.12) can be improved into 

t 
where the intersection is over all families ~ = ( ~ ) ~  as above. The power of this 
principle (that will be considerably perfected in Chapter 4) is by no means obvious 
at first sight, but will be demonstrated repeatedly through Chapters 6 to 9 (the easiest 
applications being in Chapters 6 and 7). 

We have explained in terms of sets what is the concentration of measure pheno- 
menon. However, rather than sets, one is more often interested in functions. In  that case, 
the concentration of measure phenomenon takes the following form: if a f u n c t i o n f o n  X 
is sufficiently regular, it is very concentrated around its median (hence around its mean). 
I f M t i s  a median o f f  this is expressed by a (fast decreasing) bound on P ( [ f - -  Mr[ > t). 
For a simple example, (I .4) implies that i f f  has a Lipschitz constant 1 with respect 
to the underlying distance, then 

(1.14) P ( I f - -  Mfl  >t t) ~< 2~(P, t). 

Despite the fact that functions are potentially more important than sets, all our 
concentration of measure results are stated in terms of sets. (This is done in Part I.) 
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The essential reason for this choice is that the power and the generality of these results 
largely arises from the fact that they require only minimal structure (a condition better 
achieved by considering sets only). A secondary reason is that much of the progress 
reported in the present paper (including on some rather concrete questions presented 
in Part II) has been permitted, or at least helped by the abstract point of view; and 
thereby, it seems worthwhile to promote this approach. Nevertheless, the natural domain 
of application of the tools of Part I is obtaining bounds on P ( I f - -  M,I  >/ t), when 
f i s  a function defined on a product of measure spaces. We will, however, give no abstract 
statement of this type. We prefer instead to analyze a number of specific situations, 
reducing each time to statements about sets (the great variety of situations encountered 
indicates that this is possibly a clever choice). This is the purpose of Part II, where we 
will demonstrate the efficiency of the tools of Part I. I t  must be said that these specific 
situations have been of considerable help in pointing out the directions in which the 
abstract theory should be developed. Most of the abstract results are indeed directly 
motivated by applications. 

Certainly there is a considerable number of situations where functions that are 
defined on a product of many measure spaces naturally occur, or equivalently that 
depend on many independent random variables. The examples presented here are 
certainly influenced by the past interests of the author. Their boundary, however, is 
likely to reflect the limited knowledge of this author rather than the limit of the power 
of abstract tools of Part I. (Should a reader be aware of another potential domain of 
application, he is urged to mention it to this author.) Quite logically, several of the 
examples we present have an " applied " flavor. This is simply because stochastic models 
occur in physics (such as in Percolation and Statistical Mechanics) and Computer 
Science (bin packing, assignment problem, geometric probability). The reason for the 
later is that these stochastic models do shed some light on the behavior of computationally 
intractable problems, and, for this reason, are widely studied today; see e.g., [C-L]. 
No previous knowledge whatsoever of these problems is required for reading the material 
of Part  II, that we briefly describe now. 

Each of the examples of Part I I  studies the deviation of a specific function f of 
many independent random variables from its mean. In every example but one, the 
function f is obtained as the solution of an optimization problem. This is not a coin- 
cidence, but rather reflects the fact that such situations are well adapted to the use of 
our methods. In  Chapter 6, we apply (4.1.3) to stochastic bin packing. This simple 
appfication is presented first since it is while considering this problem that the power 
of (4.1.3) beyond Probabilities in Banach spaces was first realized. The application 
is not really typical. More typical is the application of Chapter 7, to the length of the 
longest increasing subsequence of a random permutation. This application puts forward 

the fact that when one studies the size of substructures whose existence is determined 
by a comparatively small number of random variables, rather than by the whole collection 
of random variables, inequality (4.1.3) fully takes advantage of that feature. This 
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characteristic occurs again in Chapter 8, where is presented a general result that 
allows, as a rather weak and special corollary, to improve upon H. Kesten's recent 
results on first time passage in Percolation [K2]. In Chapter 9, we show how (4.1.3) 
again provides a natural approach to questions on random graphs. The challenge of 
the assignment problem considered in Section 10 is that the objective funct ionfconsidered 
there is very small; it is of order one, while depending on N 2 independent variables of 
order one, each of them with a potentially disastrous influence on the objective function. 
In Chapter 11, we consider situations where the objective function f is defined in a 
geometrical manner from a random set of N points in the unit square. The common 
objective is to prove t h a t f  has Gaussian-like tails. However, the richness of the situation 
is unsuspected beforehand; apparently similar definitions require rather different levels 
of sophistication. In Chapter 12, we provide a simple derivation of the free energy in 
the Sherrington-Kirpatrick model for spin glasses at high temperature. Finally, in 
Chapter 13, we discuss how the study of sums of vector-valued independent random 
variables motivated the approach of this paper, and we discuss a few new specific results. 

We now comment on the methods of Part I, their history, and compare them 
with competing methods. 

There is a general method, that is becoming increasingly popular, to prove deviation 
inequalities for I f - -  El l .  (That  the mean rather than the median is involved is very 
much irrelevant.) It is to decompose f as the sum of a martingale difference sequence 

f = ~ d~, and to use martingale inequalities. The generality of the method stems from 
the fact that such a decomposition is easy, simply writing d~ = E ( f  I ~',) -- E ( f  I ~-~_,) 
for any increasing filtration (~',). This method was used in Probability in Banach Spaces 

(under the name of "Yurinski 's  me thod" )  for the study o f f =  II ~ X~ I], where 

X i are independent Banach space random variables (r.v.). (After an important step 
by B. Maurey [Mau 1 ], the generality of the method was understood by G. Schechtman [S]. 
I t  soon became apparent, however, that this method would not always yield optimal 
results; this is what prompted the invention of the isoperimetric inequality of [T2] (more 
details on history are given in Chapter 12). An inequality very similar to the inequality 
of [T2], but with a much simpler proof, appears in the present paper as Theorem 3.1.1.  
The phenomenon described by this inequality was completely new at that time, and 
had a major impact in Probability in Banach spaces (prompting, in particular, the 
writing of the book [L-T2]). One could reasonably hope that this inequality would 
find applications to other domains; but as of today, this has not been the case. Another 
inequality that was discovered in relation with Probability in a Banach space is a pre- 
decessor of (4.1.3) [T1]. The inequality of [T1] did not, however, play a crucial role 
in that theory, because, for most applications, it could be replaced by the Gaussian 
isoperimetric inequality (1.7) to which it is related. For this reason, the discovery that 
(4.1.3) was the direction to pursue for applications outside Probability in Banach spaces 
was delayed until very recently. I t  does not seem possible to prove either (4.1.3),  or 
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even some of its most interesting consequences we will present in Part I I  through the 
martingale method. This should not be so surprising, since the inequalities of the present 
paper have been developed precisely to achieve what martingales seem unable to attain. 
Among the results of Chapters 2 to 5, apparently only those of Sections 2.1, 2.2 can 
be obtained using martingales; and the only reason why these are included here is that 
they provide an excellent and very simple setting to introduce our basic scheme of proof. 
A major thesis of the present paper is that, while in principle the martingale method 
has a wider range of applications, in many situations the abstract inequalities of Part I 
are not only more powerful, but require considerably less ingenuity to apply. In  all 
the examples we examined, only in some rare situations, where the martingale is close 
to a sum of independent r.v., and where the value of numerical constants is crucial 
(such as [M-HI),  did our methods fail to supersede martingales. 

We now comment on the method of proof of the inequalities of Part I. Isoperi- 
metric inequalities such as (1.7) are proved via rearrangements. That  is, one produces 
a (simple if possible) way to transform the set A in a set T(A), of the same measure, 
but more regular, so that the measure of T(A)t is not more than the measure of A t. 
The procedure is then iterated, in a way that the iterates of A converge to the " extremai 
case" .  Rearrangements are the only known technique to obtain perfect inequalities 
such as (1.5), (1.6). The inequality of IT2], that started the present line of work was 
proved using rearrangements. The difficult proof requires different types of transfor- 
mations, some of which prevent from obtaining the extremal sets. 

Despite considerable efforts, rearrangements did not yield a proof of the inequality 
of [T1]. (As pointed out to me by N. Alon, the reason could be the complicated nature 
of the extremal sets.) A completely new method was developed there. The main discovery 
was that of a formulation that allows an easy proof by induction upon the number of 
coordinates. The wide applicability of the method became apparent only gradually. 
This method and its variations provide a unified scheme of proof of all our inequalities, 
that, in its simplest occurrence, is described in great detail in Section 2.1. Ironically 
enough, this method is, in its principle, rather similar to the martingale method; the 
extra power is gained from the possibility of abstract manipulations in product spaces. 
A considerable advantage of the method is that, proving the induction hypothesis reduces 
to proving certain statements involving only functions on ~. At times this is extremely 
easy; sometimes it is a bit harder. But certainly the nature of the statements that have 
to be decided is such that they are bound to yield to sufficient effort. What on the other 
hand, is not entirely clear, is why this simple procedure seems so miraculously sharp; 
in the situations where explicit computations of the best possible constants given by 
the method has been possible, these constants have proved very close to the optimal. 
In  the cases where only less precise estimates have been possible, these estimates appear 

nonetheless to capture, up to a constant, the exact order of what really happens, and 
this, in every single situation that has been investigated. 

The paper has been written to be read without any knowledge of this author's 
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previous work or of the topic in general. For the sake of completeness, the only previous 
result of the author that has not been either vastly generalized or considerably simplified 
has been reproduced (as Theorem 4 .2 .4 ) .  Significant effort has been made in writing 
the paper in an easily accessible form. For example, it turns out in several situations 
that the simplest occurrence of a new principle is also the most frequently used. In these 
cases, we have made a point to give a separate proof for this most important case. These 
(short) proofs also serve as an introduction to the more complicated proofs of subsequent 
more specialized results. 

During the preparation of this paper, I asked a number  of people whether they 
were aware of  recent or potential uses of the martingale method. I am pleased to thank 
D. Aldous, E. Bolthausen, A. Frieze, C. McDiarmid, B. Pittel, M. Steele, W. Szpankowsld 
for their precious suggestions. Special thanks are due to H. Kesten, who communicated 
to me preprints of his recent work on percolation [K]. Analysis of his results pointed 
the way to several of the major developments that are presented in the present paper. 
The material of Chapter 5 was directly motivated by questions of G. Schechtman 
concerning the " correct form " of the concentration of  measure on the symmetric group. 
A. Frieze, J .  Wehr and particularly S. Janson most helpfully contributed to literally 
hundreds of improvements upon an earlier version of this work. I also followed several 
precious suggestions from M. Ledoux. Finally, it must be acknowledged that this paper 
would not have been written if Vitali Milman had not, over the years, convinced this 
author of the central importance of the concentration of measure phenomenon and if 
Wansoo Rhee had not introduced him to most of the topics considered in Part II. 

2. Control by one point 

2. l. The basic principle 

Throughout the paper we will consider a probability space (f~, Z, ~) and the 
product ( ~ ,  ~ ) .  The product probability ~t N will be denoted simply by P. 

Consider a subset A of f~N. For x e ~)s, we measure how far x is from A by 

(2 .1 .1 )  f (A,  x) = m i n { c a r d { i ~ N ; x ~ y ~ } ; y ~ A } .  

This is simply the Hamming distance from x to A. The reason that we use a different 
notation is that at later stages, we will introduce different ways to measure how far x 
is from A. These ways will not necessarily arise from a distance. 

I t  should be observed that the function f (A ,  .) need not be measurable even 
when A is measurable. This is the reason for the upper integral and outer probability 
in Proposition 2 .1 .1 .  below. On the other hand, measurability questions are well 
understood, and are irrelevant in the study of inequalities. Since it would be distracting 

to spend time and energy on routine considerations, we have felt that it would be better 
to simply ignore all measurability questions, and treat all sets and functions as if they 
were measurable. This is certainly the case if one should assume that ~) is Polish, ~ is a 

11 
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Borel measure, and that one studies only compact sets, which is the only situation that 
occurs in applications. The reader will keep in mind that in the sequel, when measurability 
problems do arise, certain integrals (resp. probabilities) have to be replaced by upper 
integrals (resp. outer probabilities) just as in the statement of Proposition 2.1.1.  (The 
reader who desires to have a proof of our statements without measurability assumption 
should be warned that it does not work to try to extend the proofs we give by putting 
outer integrals rather than integrals--the reason being that Fubini theorem fails for 
outer integrals. Rather one has to derive the general result from the special case of well- 
behaved sets by approximating general sets from inside by well-behaved sets.) 

Proposition 2.1.1. - -  For t > O, we have 

f* 1 (~ e'+4e-')N (2 .1 .2)  e 't'A''' UP(x) <~ p - ~  + 

1 
~< P ~  et2 ~/4. 

In particular, 
1 

(2 .1 .3)  P*({f(A, .) >/k}) ~< ~-72-~ e -k~m. 

As was pointed out in the introduction, the power of our approach largely rests 
upon the fact that it reduces the proof of an inequality in ~ s  such as (2.1.2) to the proof 
of a much simpler fact about functions on ~.  In  the present case, the meat of Propo- 
sition 2.1.1 is as follows. 

Lemma 2.1.2. - -  Consider a (measurable) function g on ~. Assume 0 <<. g <~ 1. Then 
7,I98 havs 

(2 .1 .4)  I min(et, g~))d~(~)fg(o~)d~(co)<~a(,) 

Proof. - -  I f  we replace g by max(g, e-~), this does not change the first integral, 
but increases the second. Thus it suffices to prove that if e-t~< g~< 1, we have 

Io1;o gd~ g d ~  a(t). 

Consider the convex set ~a of measurable functions g on ~ for which e- ~ ~< g ~< 1. 

On 5,  the functional g ~ ( g - X  d~ is convex. On the subset (g~ of (g that consists of 
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the functions with integral b, this functional attains its m a x i m u m  on an extreme point.  
There  is no loss of  generali ty to assume that  Ez has no atoms; then it is well known that  
an extreme point  of  W takes only the values e - t  and 1. The reby  it suffices to show that  
for 0~< u~< 1 we have 

(1 - -u+ue  t) (1 - -u+ue  - t )  <~ a(t). 

But the left hand side is invar iant  by changing u into 1 --  u, so that  the ma x imum is 
obta ined at u = 1/2 by  concavity of  the left-hand side, and is a(t). [] 

The  proof  of  Proposit ion 2 . 1 . 1  goes by  induct ion over N. The  case N ---- i follows 
from the applicat ion of  (2 .1 .4 )  to g = 1 a.  

Suppose now that  the result has been proved for N, and let us prove it for N + 1. 
Consider A C f~N + x = f~N • fL For  ~o c f~, we set 

( 2 . 1 . 5 )  A(c0) = { x  e f~s ;  (x, ~0) c A }  

and B = { x  claN; 3c0 c ~ ,  (x, co) c A } .  

With  obvious notation, we have 

f ( A ,  (x, co)) ~< f(A(r x). 

Indeed,  i f y  e A(r then (y, r e A, and the n u m b e r  of  coordinates where  (y ,  o~) and 
(x, co) differ is the n u m b e r  of  coordinates where x and y differ. Thus,  by  induct ion 
hypothesis, we have 

( 2 . 1 . 6 )  [ exp(tf(A, (x, co))) dP(x) ~< 
J~ 2 N 

We also observe that  

f(A, (x, co)) < f (B ,  x) + 1 

so that, by induct ion hypothesis, we have 

fn et a(t)N .~ e ~I~A'''' ~" dP(x) ~< P(B------~' 

and combining 

P(A(co))" 

with (2 .1 .6 )  we get 

e *scA't*''~') dP(x) ~< a(t) ~ min P~-B)' P(A-(~o)) " 

Integrat ing in co, we have 

fa~+ e"(A""~" dP(x) d~(o~) <- a(t)~ fa 
e' 1 ) 

mill P(-B)' P(A-(co)) d~t(co). 
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To complete the induction, it suffices to show, by Fubini theorem, that 

f a ( e  I 1 ) a ( t )  a(t) 
min p ~ ) ,  V(A(to)) d~t(o~) ~< r | bt(A) fn P(A(o~)) dbt(to)" 

But this follows from (2.1.4) applied to the function g(~0) = P(A(~))/P(B). 
We now finish the proof of Proposition 2.1.1.  We note that 

t 2n 
a(t) = 1 + Y, 

,~>x 2(2n)l" 

Now 2(2n) ! >/ 4" n!. Indeed, this holds for n = 1, n = 2, while if n + 1 /> 4, we have 

Thus 

(2n)! 
n! 

- -  (n + 1) . . .  (2n) t> 4". 

a(t) < 1 + Z t2"/4" n! = exp(ta/4). 
n>~l 

Finally, (2.1.3) follows from Chebyshev inequality 

P({f(A, �9 ) /> k }) ~< e- l~ f ell(A, Ill} dP(x) 

1 

for t = 2k/N. [] 

Remark 2.1.3.  - -  Consider a sequence (a,),<s of positive numbers. If  we now 
replace (2.1.1) by 

(8.1.7)  f (A,  x) = i n f { Y , { a , : i <  N;x, aey,}:yeA} 

the proof of Proposition 2.1.1 shows that 

f 1 4/4 e dP(x) < e 

and, by Chebyshev inequality, 

P({f(A, .) /> u }) ~< p ( ~  e-"~/zi~-N4. 

A number of inequalities presented in Chapters 2 to 5 allow extensions that 
parallel the way Remark 2.1 .3  expands Proposition 2.1.1.  These extensions are 
immediate, and ~I1 not be stated. It  should be pointed out, on the other hand, that 
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no gain of generality would be obtained in Proposition 2.1.1 by replacing the product ~s ,  

~ by a product l'I ~ ,  (~ ~t~. This comment also applies to many inequalities that 

we will subsequently prove. 

2.2. Sharpening 

Having proved (2.1.2),  it is natural to wonder whether this could be improved 
by allowing another type of dependence of the right-hand side as a function of P(A). 
The most obvious choice is to replace P(A)-1 by P(A) -~ for some 0~ > 0. 

Proposition 9..9,. 1. - -  For t >>. O, we have 

f a(~, t) ~ e tt~x'x~ dP(x) ~< p(A)----- 7 

where 

(9..~..~.) a(~, t) = 
~' (e  * - -  e -  | / g ) l +  

(~ + 1) =+1 (1 -- e - ' / ' )  (e' --  1) =" 

Proof. - -  Following the scheme of proof of Proposition 2.1.1,  (2.2.1) holds 
provided that, for each function 0 ~< g ~< 1 on ~,  we have 

f n m i n ( e ' , ~ ) d b t ( f n g d b t ) ~ < , ,  a(o~,t). 

Following the proof of Lemma 2.1.2,  we see that we can take 

a(0t, t) = sup (I + u ( e ' - -  1)) ( 1 - - u ( 1 - - e - * t ~ ) )  ~, 

from which (2.2.2) follows by calculus. [] 
Certainly neither the author nor the reader are enthusiastic about the prospect 

of using (2.2.1) and optimizing in Chebyshev inequality. The purpose of the next result 
is to obtain a more manageable bound, that also makes clearer the gain obtained by 
taking large values of ~. 

Lerama 2 . 2 . 2 .  

a(~,t)<~ e x p ~  1 + . 

Proof. - -  Interestingly, rather than using (2.2.2),  it seems simpler to go back 
to (2.2.3) and to show that, whenever 0~< u~< 1, we have 

(1 + u ( e ' -  1))(1 - u ( 1  - e - ' ~ ) y ~  expg 1 + , 
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or, equivalently (after removing 1 from each term of the left-hand side) 

(2.2.a) log(1 -}-u(e'--  1)) ,-]- ~log(1 --u(1 - -e- ' /~ ' ) )~<i  1 4- . 

Since (2.2.4) holds for t = 0, it suffices to show that the derivative of the left-hand 
side is bounded by the derivative of the right-hand side for t >1 0, i.e., 

ue t ue- tl~ t ( !) 
t>~ 0 ~ 1 §  1 ) - -  1 - - u ( 1 - - e  -*/=) ~<4 1 + , 

or, equivalently 

( 2 . 2 . 5 )  t>~ 0 =~ 1 q - u ( e ' - -  1) - -  1 - - u ( 1 - - e  - ' /~ )  ~ < 4  1 q- . 

Again (2.2.5) holds for t = 0. So it suffices to show that for t >f 0, the derivative 
of the left-hand side of (2.2.5) is bounded by the derivative of the right-hand side, 
or, equivalently, that 

[ e' 1 e -'/~ ] 1 1 
u ( 1 - - u )  (1 u + u e t )  2 + -  --"  - -  a (1 - -uq-ue -* /~ )  2 <<" 4 q- 4~ 

Now, using the inequality 4ab <~ (a § b) 2, we see that 

u(1 - -  u) e t 1 u(1 - -  u) e - t /=  1 

(1--u+ue ' )~<~7~ ; (1--u+ue- ' / ' )2<<'7~" 
[] 

Corollary 2 . 2 . 3 .  - -  For t >t 0, we have 

( 2 . 2 . 6 )  
; 1 

e ' 'A' ' '  dP(x) ~< p ~  exp N g 1 + . 

Z 1 In particular, f o r  k >t log p--(-~, we have 

(2 .2 .7)  P ( { f ( A , . ) > / k } ) ~  exp - - N  k - -  

Proof. - -  Certainly (2.2.6) follows from (2.2.1) and Lemma 2.2.2.  Optimization 
over t in Chebyshev inequality yields 

P({f (A, . ) />k))~< p - - ~ e x p  N e~-  1 " 
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For k >/ log p - -~ ,  making the (optimal) choice 

= -- 1 + /  2k2 
1 

4 N log P(A) 

yields (2.2.7).  [] 
I t  is an interesting fact that (2.2.7) is exactly the best bound that has been proved 

on P({f(A, .) I> k}) using martingales (see [McD]). It  is a natural question to wonder 
whether, when P(A) /> 1/2, one indeed has 

P({f(A, .)~> k})~< K e x p  ( - -  ~ )  

for some universal constant K. More or less standard arguments (e.g., those contained 
in [T2]) show that it suffices to consider the case where f~ = { 0, 1 }, where P is the 
product of measures (~h)~<~r on f~, and where A is even " hereditary ". The case where 
~i({ 1 }) = 1/2 for each i ~< N is known, as a consequence of more precise results, such 
as Harper's inequality. Intuitively, this is the worst case. 

Having obtained (2.2.6),  one must wonder whether further improvements upon 
(2.2.6) are possible by considering yet other general dependencies of the right-hand 
side as a function of P(A). The reader who wishes to truly penetrate this paper will 
convince himself that this is not the case. 

2 .3 .  Two point space 

Let us now consider the case where ~ = { O, 1 }, and set p = ~z({ 1 }), so that 
= 1 - p .  

Proposition 2 . 3 . 1 .  - -  For t >>. O, ~ >1 1, we have 

f b(~, t, p)• 
( 2 . 3 . 1 )  e ''A' ~' dP(x) ~< P(A) ~ , 

where, for  p >1 1/2, we have set 

( 2 . 3 . 2 )  b(~, t ,p)  = ((l - - p ) e '  + p ) ( p  + (1 - - p ) e - ' / ' )  ~, 

and, for  p <~ 1/2, 

( 2 . 3 . 3 )  b(~, t ,p)  = b(~, t, 1 - - p )  = ((1 - - p )  e - '  + p )  (p + (1 - - p )  e'/') ". 

Proof. - -  Following the proofs of Propositions 2.1.1 and 2.2.  I it suffices to show 
that for any function 0 ~< g ~< 1 on f~ we have 
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As in the proof  of L e m m a  2 .1 .2 ,  we reduce to the case where  g/> e- ~t~. Setting 
a = g(0), b = g(1), it suffices to show that,  for e-*t'<<, a, b ~< 1 we have 

( 1 + ,P-z] ( ( 1 - - p ) a  (1 - -  p) a-- = ~  + pb)= <~ b(ot, t, p) \ 

Setting x = b/a, it suffices to show that  

e- *j= ~< x < e ./= ~ ~?(x) ~< b(0c, t, p) 

where  we have set 

~?(x) = ((1 - - p )  x ~' -+-p) (1 - - p  
\ x 

N o w ,  

+p)~ 

r = 0~p(l - - p )  (X = - 1  - -  - -  

so that  q~ decreases for x ~< 1, increases for x >1 1. 
Also, we have 

(1) 
= ~p(1 - - p )  1 x~+l ((1 - -p)  - - ~ - p x )  ~ - 1  - -  ((1 - - p )  x + p ) ~ - l ) ,  

so that, for x/> 1, this has the sign of  2p --  1. Thus  for p ~< 1/2, r attains its m a x i m u m  
on the interval [e-t/~, e,/~] at the right end of this interval, while for p i> I/2 it attains 
its m a x i m u m  at the left end. (One should observe that  changing x in 1]x and  p in 1 - -  p 
leave ~0 invariant.)  [] 

A part icularly impor tan t  example is when  

A = { x =  (x , ) e{0 ,  1}s ;  Y, x,<~k}. 
i~<N 

T h e  use of  (2 .3 .1)  for this set and of Chebyshev inequali ty will in par t icular  produce  
bounds for the tails of  the binomial  law. Thereby,  it is not  surprising that  the compu-  
tations involved in the use of  (2 .3 .1)  do run into the same type of  difficulties as those 
involving the tails of  the binomial  law. We now show how, nonetheless, some simple 
and  reasonably sharp results can be deduced  (for general  sets A) from (2 .3 .1) .  The  
reader  will observe that  the bound (2 .3 .1)  is (of course) invar iant  when  p is replaced 
by 1 - -  p, so that  there is no loss of generali ty in assuming p >1 1/2. Let us fix p, 0t 1> 1, 
and consider 

f( t)  = log b(~, t,p) = log((1 - - p )  e' + p )  + = log(p + (1 - - p )  e-"=).  
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Thus f(0) = 0, and 

f ' ( t )  = (1 - -p )  (i - -p)  + p e - '  

Thusf ' (0)  = 0, and 

1 ) 
- -  p e  '1~ + (1  - -  p )  " 

f " ( t )  = p ( 1  -- p) (h(e-') -k- 1 h(e,/~)) 

x x 
where h(x) = = 

(px + l - - p )  2 ( 1 - -  ( 1 - -  x) p) =" 

Simple computations show that when x 1> l/e, we have [h(x) --  1[~< K l x -  I[  
for some universal constant K. It  follows that 

t ~  l ~ f " ( t ) < p ( 1 - - p ) ( ( 1  + ! ) + 4 K t )  

and, by integration, that 

t<~ 1 =,-f(t)<~p(1 - -p)  1 + 7 +  Kt . 

Thus, we have shown the first half of the following. 

Corollary 2.3.2.  - -  For ~ >1 1, 0 < t ~< 1, we have 

f ~< -- t2 Kta]. (2.3.4)  oe ''`A'=' dP(x) p - ~  -+- 

In particular, for 

we have 

4p 1 ]~is 
(I -p) N1og N 

(z.a.5) V({f(A, x) >t k }) 

1 Kk 3 

To obtain (2.3.5), one proceeds as in the proof of (2.2.7), using first Chebyshev 
k 

inequality for t then taking 
p (1 - -p~  (1 +0~)N '  

g = - - l +  
2p k~ 1 (1 --  p) N log P(A) 

12 
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I t  is of interest to compare the bound (2.3.5)  with the isoperimetric inequalities 
obtained in [Lea]; these isoperimetric inequalities are optimal, but  apply only to special 
sets (the so-called hereditary sets). The bound (2.3.5)  is more general, and provides 
estimates of essentially the same quality. 

We now turn to a rather different situation. Beside the measure ~t, we consider 

on f~ another probability ~x, with Pa = ~1({ 1 }) > p, and we set P1 = ~x~. 

Theorem 2 . 3 . 4 .  - -  For a subset A of  ~ ,  and x ~ f~s, we consider 

f (A,  x) = min{ card{ i<~ N; x i = 1,y i = 0 } ; y  c A}. 

Then, for  t >>, O, 

f t) 
(9..3.6) e 'I(A'') UP(x) <, pa(A):  

where a(e, t) = max(l ,  (1 - - p  + p e ' )  (#1 e-l/or --~ 1 -- j01)~t). 

Comment. - -  The really new phenomenon here is that for small t, one has a(x, t) = 1. 
In particular, if ~ = 1, this occurs whenever eJ~< pl(1 - - p ) / p ( 1  - -Px)  so that one has 

(9.3.7) i ( p l ( 1  ~ p)~t,A.,, 1 
j \p (1  - h ) )  ar(x) PI(A-----5" 

The remarkable feature about  this statement is that it is independent of N (and 
so is in essence an infinite dimensional statement). This is the first of the results we present 
that apparently cannot be obtained via martingales (so it deserves to be called a theorem 
rather than a proposition). The reader that would like to gain intuition about  
the phenomenon captured by Theorem 2 . 3 . 4  should consider the case where 

A = { x  ~{0,  1 }~; 2~ x,~< n}. In order to have PI(A) of order 1/2, one takes n equal 
i-<<N 

to Npl , assuming for simplicity that this number is an integer. Observing that 

f (A,  x) > k ~ Z x, > n + k = NP1 -A V k = N p  -~- (k -A V N(p x --  p)) 

the quantity P({f(A,  x) > k}) can be estimated through the tails of the binomial law; 
the most interesting values of N are such that N ( p l -  p), ,o k. 

The induction scheme of Proposition 2 .1 .1  will reduce Theorem 2 . 3 . 4  to an 
elementary two-point inequality, that is the object of the next lemma. 

Lemma Z. 3 .5 .  - -  I f  a <<. b <<. 1, we have 

1_, (:.,) 
b--- 7 -  + p min , 

t) ~< 
( a h  + b(1 - -  
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Proof. - -  I f  we set x ---- min(b/a, e*/~), we are reduced to show that 

1 ~< x~< e */" :~ ~(x) ~< a(a, t) 

where ~(x) = (1 - - p  + px ~) + (1 - -P l )  ~< a(~, t). 

But 9'(x) has the sign of  p(1 - - P l ) x ~ + ~ - - P i (  1 - -P) ,  so it is negative for values of x 
close to one, and then, possibly, becomes positive. Thus q~ attains its maximum on the 
interval [1, e TM] at one of the endpoints. [] 

Proof of Theorem 2.3 .4 .  - -  We proceed by induction over N. For N = 1, since 
f (A ,  ~) - 0 when 1 e A, it suffices to consider the case A = ( 0 ) ,  in which case the 
result follows from (2.3.8)  with a = 0, b = 1. 

Assuming now that the theorem has been proved for N, we prove it for N § 1. 
Consider A C Y2 N+I, and set A t = { x e ~ s ;  (x, 1) e A }. Consider the projection B of A 
on ~N. We observe that 

f (A ,  (x, ~)) < 1 + f ( B ,  x) 

f (A ,  (x, co)) ~< f ( A i ,  x) 

so that setting a-----Pi(A1), b = Pi(B) and using the induction hypothesis, the result 
follows from (2.3.8) .  [] 

2.4. Penalties, I 

A (somewhat imprecise) way to reformulate (2.1.1)  is that we measure how far 
x is from A by simply counting the smallest number of coordinates of x that cannot be 
captured by a point of A. Rather  than just  giving a penalty of 1 for each coordinate 
we miss, it is natural to consider, given a non-negative function h on ~ • ~ ,  the quantity 

f~(A, x) = inf{ Z h(x,,y~) l{ , ; .ui};y c A } .  

To simplify the notation, we will assume 

( 2 . 4 . 2 )  V x e ~ ,  h(x, x) = 0 

so that (2.4.1)  becomes 

(2 .4 .3 )  A ( A , x ) - - i n f {  E h ( x , , y , ) ; y a A } .  

Concerning (2.4.2) ,  we should point out that we will let x , y  denote points in ~ s  
as well as points in ~ ;  when there is too much danger of confusion, however, points 

of ~ will be denoted by ~, oJ. 
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The function h will always be assumed to be measurable. The following simple 
result is already useful, as will be demonstrated in Chapter 11. 

Theorem 2.4 .1 .  - -  For each measurable subset A of ~ ,  and each t > 0 for which 

f f e x p  tk(x,y) d~(x) d~(y) 0% we setting v(o, co') = max(h(r oJ), h(o', o)), < have, that 

In 1 (~ fn (e,,lw,~o,, e- **~" ~~ )1~ ( 2 . 4 . 4 )  . e  'tn'A''' UP(x) ~< ~ , + art(co) a~(o' )  . 

The crucial point of Theorem 2.4.1 is as follows. 

Proposition 2 .4 .2 .  ~ Consider a function g >1 0 on ~,  and set 

( 2 . 4 . 5 )  ~(x)  = inf  (g ( y )  + th(x ,y ) ) .  

Then 

Indeed, a simple truncation argument shows that Proposition 2 .4 .2  remains true 
if one allows g to take values in I t  + u ( o o )  (using obvious conventions). To prove 
Theorem 2.4.1 by induction over N, considering a subset A of fls+~, we set 

A(r = (x  enN;  (x, co) c A )  

for to e L ,  and we define g by P(A(r = e -~ It  should then be clear that (2.4.6) 
is exactly what is needed to make the induction work. 

Proof of Proposition 2.4.2.  - -  For simplicity we assume ~ measurable. Then the 
left-hand side of (2.4.6) coincides with 

ra' ~,,-o,w, d~(x) d~(y). 

We set u(x,y) = ~,(x) -- g(y).  By definition of~,  we have ~(x) ~< g(y) + th(x,y). Since 
h(x, x) = 0, we also have ~(x) ~< g(x). Hence 

(2 .4 .7)  u(x,y) <<. th(x,y); u(x,y) <~ g(x) - - g ( y ) .  

We now observe that for two numbers a, b, if a + b ~< 0, then 

e ~ + eb<~ e~XCo, b,o~ + e -~zc*,b,~ 

Thereby, by (2.4.7),  we have 

( 2 . 4 . 8 )  e ~x'v~ + e~l~'xl ~< e '~1''~1 + e - ~ ' ~  

The result follows by integration. [] 
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It is of interest to get simpler bounds. Let us observe the following elementary 
fact (that is obvious on power series expansions). For t ~< 1, 

e~V tv  t 2 
(2 .4 .9)  + e- 2 ~< 1 q- ~(e" + e - ' - -  2). 

We note that, for an increasing function % 

q~(max(a, b)) ~< max(~(a), q~(b)) ~< q~(a) + q~(b). 

Using this for q~(x) = g + e-" -- 2, a = h(co, r b = k(o~', co), using then (2.4.9) 
and integrating, we get the following from (2.4.4).  

Theorem 9.. 4 . 3 .  - -  I f  

I I  expk(x,y) d~t(x) dtz(y)  < 0% (9..4.10) 
JJ~ 2 

we have for  t <~ 1, 

(9.. 4.11 ) ,.f. e'lh TM aP(,,) 

~< p - ~  exp Nt 2 , (e hc''~"'' § e -~c~' ~'' -- 2) d~.(~) d~.(~') . 

Corollary 2 . 4 . 4 .  ~ Assume 

I f  exp h(x , y )  d~.(x) d~.(y) <~ (9..4.19.) 2. 
.J.ka 2 

Then f o r  all u <<. 2N we have 

1 
�9 e -  t~21tN. (2.4 13) P({fh(A,. ) i> u }) ~< p - ~  

Proof. ~ Since e -~ < 1, under (2.4.12), the right-hand side of (2.4.11) becomes 
bounded by P(A) -1 exp Nt 2, from which (2.4.13) follows by Chebyshev inequality. [] 

The following resembles Bernstein's inequality. 

Corollary 9 . . 4 . 5 .  - -  Assume that [I h lifo = s u p  h ( x , y )  is finite. Then 
z ,  lt ~ ffa 

(9..4.14) t '({A(A, -) /> u}) .<< ~ exp --  min aN t[ k II~' 2 I[k 

(/f .  ,1,2 where we have set I1 h [Is ----- h~(o~, ~') d~z(o~) d~t(m')) . 
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Proof. - -  By homogeneity, we can replace h by h' = h[[] h [[~. For x 6 I, by (2.4.9) 
taking v = 1, t ---- x, we have g + e - "  -- 2 ~< x2(e + e -1 -- 2) ~< 2x ~. Thereby the right- 
hand side of (2.4.11) becomes bounded by P(A) -x exp 2Nt 2 [] k ]]~, from which the 

result follows by Chebyshev inequality. 

Remark. - -  The reader has possibly observed that we have made no special efforts 
to get sharp numerical constants (in contrast with the previous sections) and we have 
used the simplest estimates, however crude. This feature will occur repeatedly. For a 
number  of the results we will present, the proofs do not seem adapted to obtaining sharp 
constants. Thereby, there is actually no point to track explicit values of the numerical 
constants involved. Throughout the paper, K will denote a universal constant, that 

may vary at each occurrence. 

2.5.  Penalties, I I  

I t  should be apparent from (2.4.1) thatfh depends on h only through the properties 
of the following functional, defined for subsets B of 

(2 .5 .1 )  h(co, B) = inf{h(~o, ~o') ; ~o" ~ B }. 

(The reader should carefully compare this definition with (2.4.3) and note that in 
both cases the infimum is taken over the second variable.) 

Thereby, one should expect that the exponential integrability of h can be replaced 
in Theorem 2.4.1  by a weaker condition on the functional h(x, B). This is indeed the case. 

Theorem 2.5.1 .  - -  Assume that for  each subset B o f  ~ we have 

fn e 
(2 .5 .2)  exp 2h(x, B) d~(x) <, ~(B)" 

Then, for  each subset A o f  ~ ,  and each 0 <~ t <~ 1, we have 

~ e312 N 
(2 .5 .3)  , e 't 'x,  =' dP(x) ,< P(A---)" 

Discussion. - -  1) I t  is good to observe and keep in mind that by HSlder's inequality, 
we have for a ~< 1 

Thus, the precise value of constants such as the constants 2, e that occur in (2.5.2) is 
completely irrelevant. Actually" we will use the following consequence of (2.5.2): 

f. V__2_ 2 
(2.5.5) exp h(x, B) 
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2) Is it very instructive to compare (2.5�9 with a condition such as (2�9 
Indeed, under (2.4. I0), we have for all x 

(~..5.6) ~(B) exp k(x, B) ---- Ix(B) inf exp k(x,y)  ~< [ exp h(x,y) d~(y) .  
~ E B  

Integrating in x gives 

exp h(x, B) dB(x) <~ - ~  , exp h(x,y) dB(x) d~(y) .  

Thus (with the exception of the largely irrelevant factor 2), (2.4.10) appear stronger 
than (2.5.2).  I t  is indeed much stronger, a fact that is not surprising in view of the 
crudeness of (2.5.6).  To get a concrete example, consider the case where ~ is itself 
a product of m spaces (and ~ a product measure), and denote b y f ( x , y )  the Hamming 
distance in ~.  Then Proposition 2.1.1 asserts that the function k : ra-112f satisfies 
(2�9149 On the other hand (except in trivial cases) the f unc t ion f [a  will fail (2.4.12) 
unless a is of order m. 

To prove Theorem 2.5�9 1, the induction method reduces to the proof of the 
following. 

Proposition 2 . 5 . 2 .  - -  Consider 0 <~ t <~ 1, and a function g >>. 0 on f~. For s >1 O, we 
set B, -~ { g <<. s }, and we consider 

(2 .5 .7)  ~(x) ---- inf  s -b th(x, B,). 
s > 0  

Then under (2.5.2) we have 

Proof. - -  We observe that 

(2 .5 .9)  ~(x) --  g(y)  <~ th(x, Ba,~, ). 

We then follow the argument of Proposition 2.4.2,  using (2.5.9) rather than 
the first part of (2.4.7).  Combining with the argument of Theorem 2.4�9 3, we are led 
to show that 

f f a  eh~., B , ~  d~(x) d~(y)  <~ 4. 
| 

Using (2.5.5) and Fubini theorem, it suffices to show that 

(2.5 lo) e (y) 2. �9 
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The best way to prove this inequality is to observe that the left-hand side depends 
only on the function s -+ ~(Bs). Thus there is no loss of generality in assuming that 

= [0, 1], that ~t is the Lebesgue measure, and that g is nondecreasing. But then 

~(Bg(~)) /> y, and y -  1/~ dy = 2. [] 

As pointed out in the discussion, a natural application of Theorem 2 .5 .1  is to 
the case where f~ is already a product space. This will be used implicitly, but  crucially 
in Section 11.5. To formulate in words what  happens, Proposition 2 .1 .1  states that 
if A is a subset of a product f ~  of N spaces, of measure 1/2, all but  excepdonal points x 

of  f~N are such that there is a point in A that captures all but  about  ~ /N of their coor- 
dinates. Suppose now that N = N1 N2, and we think of the N coordinates as N 1 blocks 
of N2 coordinates. Then, using Theorem 2.5 .1 ,  we know that (but for exceptional 

points x) not only we will find a point in A that misses only about ~ /N coordinates of x, 

but  these coordinates will be concentrated in only about  ~ blocks. An interesting 
question would be to quantify precisely what can be said when, rather than considering 
only two " levels ", one considers a large number of levels. 

2 . 6 .  Penalties, I I I  

In this section, we explore a new phenomenon, that will also be met in Sections 3 .3 .3  
and 4 .4 .4 .  The notation of the present section will be used throughout the paper. 
Roughly speaking, what happens is that if, in (2.5.3) ,  one allows a more general type 
of dependence in P(A) of the right-hand side, then a weaker condition than (2.5.2)  
will suffice; this will mean in practice weaker integrability requirements on h. 

The dependence in P(A) we will consider will be of the type e ~ Throughout 
the paper, 0 will denote a convex decreasing function from ]0, 1] to R +, such that 
0(1) = 0, lim 0 ( x ) =  oo. The most important example is 0 ( x ) = -  log x, in which 

~ - + 0  

case e ~ is the familiar quantity 1/P(A). We will always denote by ~ the inverse 
function of 0, so that ~ is a convex function from R + to ]0, 1], with 4(0) = 1. We will 

always assume the following 

(2 .6 .1 )  ~" decreases; V b > 0, ~"(b) ~< I ~'(b) 1. 

For x ~ R,  we set x + = max(x, 0), and we will keep the following notation, for x ~ R,  
b e R  + 

(2.6.2) b )  = + )  - -  - -  ( x  + - -  b )  

We denote by X the Lebesgue measure on [0, 1]. The measure of a Borel set B 

is simply denoted by [B 1. 
Central to this section is the following technical condition, that relates ~ and a 

function w i> 0 defined on [0, 1]. 
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Condition H(~, w). 

( 2 . 6 . 3 )  Vb~> 0, Vt ,  0<<. t<~ 1, f~ .~(b - -  t w ( u ) ,  b) dX(u) ~ t21 ~'(b)  1. 

First we will investigate conditions that imply (2.6.3) under two simple choices of ~. 
Then we will look at a rather general situation where the meaning of (2.6.3) can be 
considerably clarified; and before stating the main result (Theorem 2.6.5)  we will 
prove a technical lemma that will explain the precise purpose of condition H(~, w). 

t" 
Proposition 2 . 6 . 1 . -  When ~(x)  = e --z, condition H(~, w) holds provided J e w  dZ <<. 2. 

Proof. - -  Indeed, we have 

.~(x, b) = e - '§ -- e-b -k- (X + -- b) e-b 

e - ~  - -  e - b  + (x  - -  b) e - b  

= e -b (e  - I~-b~ q-  (x  - -  b) - -  1). 

Thus (2.6.3) holds provided 

t <~ 1 =~ f (e '~ - t w  - 1) dZ <<. t 2. 
J 

But, since the function x - 2 ( e  ~ - -  x - -  1) increases for x >/ 0, we have 

( e t~ - tw  - 1)~< t~ ( e ~ - w - 1). [] 

1 
Proposition 2.6 .2 .  - -  I f  ~(x) - -  x ~ 9 '  

provided f w ~ dX <<. 2.  
J 

then (2.6.1) holds and condition H(~, ~) holds 

Proof. - -  Setting y = x +, we have 

1 1 y - - b  
b )  = - -  + - -  

y + 2 b + 2 (b + 2) 2 

(y  - -  b) 2 1 
= (y -k 2) (b § 2) '  ~< 2 (y  -- b)' I 4'(6)1- [] 

One obvious consequence of (2.6.3),  taking t = 1, is that 

( 2 . 6 . 4 )  I~ w >i b }1 -~(0, b) ~ I ~'(b) l- 

In practice for b large E(0, b) is of order 1; so (2.6.4) is really a tall condition. The 
next result shows that a condition of a similar nature is indeed sufficient, provided 4' 
varies smoothly (i.e., satisfies the A2-condition; which is not the casewhen ~(x) = e- ' ) .  

13 
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Proposition 9.. 6 .3 .  - -  Assume that for  a certain number L > 0, we have 

(9..6.5) V b > O ,  V t , 1 ,  ] t ' { , . , l ]  I -,t~ ~< I t ' ( b ) I .  
I \z~/I 

Then (2.6.3) holds provided the following two conditions hold: 

I 1 (~..6.6) w 9" dX ~< -~ 

1 
(9..6.7) V b > O ,  I{w>~ b } l <  ~ l ~ ' ( b )  I. 

Proof. - -  We write 

(9~.6.8) I.'~.(b -- tw, b) dX <<. Io. ~(b - -  tw, b) dX + l{ tw >l b[2 } l. 
<~ ~19. } 

By Taylor's formula, since t "  decreases, and t"(b) ~< I t'(b) l, we have, by (2.6.5) 

/x 
x >/b/2 =~ Z(x, b) ~ 

Thus 

.< L (x -- b)~ 
2 - - I t ' ( b )  I. 

Also, by (2.6.7), (2.6.5) 

l{tw>-, b]2}l ~< ~-~ 
t 2 

-< ~ I ~'(b)I. 

The result follows, combining with (2.6.8). [] 
The reader should observe that the functions t(x) = (1 + x) - "  (e ~< 1) satisfy 

(2.6.5). 
The following lemma explains the purpose of condition H(t,  w). 

Lemma 2 . 6 . 4 .  - -  Consider a fumtion f >_. 0 on fL Assume that for  a certain t, 0 <<. t ~ 1 
and all s <~ b we have 

(2.6.9)  ~({f<s})~l{ tw>lb--s) l=l{b-- tw<.s} [ .  



C O N C E N T R A T I O N  OF MF_,ASI.YRE 

Then, under condition H(~, w), we have 

(8.6.t0) fc~(f) d~t 

Io ' Io ~< ~(b) ~t(C) + ~'(b) ( f - -  b) d~t + t~l K'(b) I + ~ K"(b) 

for  each set C. 

Proof. - -  By definition of .~., (2.6.10) is equivalent to 

Io 1 Io �9 ~ . ( f  b) dbt ~< t" ] ~'(b) ] + ~ ~"(b) ( f - -  b)' @.. 

By Taylor's formula, and since ~" decreases, for x > b we have 

1 
~(x, b) ~ -~ (x - b)" ~"(b) 

and thus 
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( f  -- b)2 d~ 

~(f, b) a~ < ~ ~"(b) ( f - -  ~)' a~,. 
ta{l>~b} eta {.r b} 

If  we remember that E i> 0, and if we use condition H(~, w), we then see that 
it suffices to show that 

(2.6.11) ~ E(f, b)d~ ~< [ E(b --tw, b)dX. 
J{ l~< b} d 

Now, (2.6.9) implies that for all s < b we have 

~({f<s})~< [{b-- tw<<.s}[ .  

Thus, since E(x, b) decreases for x ~< b, we have, for all z > 0, 

~t(l{t~<b~ E(Z b) >/ z) ~< 1{ E(b -- tw, b)/> z}l,  

from which (2.6.11) follows. [] 

Theorem 2 . 6 . 5 .  - -  Consider a function h on f~ • f~, and a nonincreasing function w 

1 ] such that f w 2 dX <~ 1. Assume that for  each subset B of  f~, we have 
& 

[o, on 

(Z.6.12) ~ exp h(x, B) d~(x) <<. exp(w(~t(B))), 
Jo 
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where we keep the usual notation h(x, B) = inf{ h(x,y) ;y ~ B }. Consider a function 0 as usual, 
and assume that the condition H(~, w) holds. Then, for each subset A of f ~  and all t <<. I, we 
have, for all t ~ 1, 

la w h'A'~' dP(x) ~< exp(4Nt 2 + 0(P(A))). 
N 

To understand better (2.6.12) it is of interest to specialize to the case 
where h depends only on x (resp. y).  I f  h depends on x only, (2.6.12) means that  

f n e x p  ~< exp depends on y only, (2. 12) h(x) d~.(x) ll)(0). If  h then 6. becomes 

inf{ h ( y ) ; y  e B }~ w(~(B)). 

Taking B ={h~>  s}, we get s~< w(~({h~< s})) and, since w in nonincreasing, this 
implies 

~({h~ s})<. I{w~ s)l. 

It  is easy to see that, conversely, this implies (2.6.12) when h depends u p o n y  only and 
when w is left continuous. 

To prove Theorem 2 .6 .5 ,  it suffices, using induction over N, to prove the following. 

Proposition 2 .6 .6 .  - -  Consider a function g on f~, 0 < g <~ 1, and set 

Og(x) = inf { O(g(y)) + th(x,y) }. 

Then, under the conditions of Theorem 2.6.5,  for t <~ 1, we have 

f J ~  exp (4t2 + O(fga@. 
Clearly, this is equivalent to the following. 

Proposition 2.6.7 .  - -  Consider a function f on f~, f >1 O, and set 

f ( x )  ----- inf  { f (y )  + th(x,y) }. yen 

Then, under the conditions of Theorem 2.6.5,  for t ~ 1, we have 

(2 .6 .13)  f eTd~ <~ exp(e t '  + O ( f  ~ ( f )  d@). 

Proof. - -  The  problem is that  we have on the right of (2.6.13) the quanti ty 

0 ) wo , a .  
w 

the proof. 
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Step 1. - -  We set B. = {f~< s} for s >/ 0, and 

b = inf{ s + tw(~z(B,)) }. 

We note that f(x)<~ f(x). We consider the function f '  given by 

f'(x) =f(x)  

f ' ( x )  = b 

if(x) =f(x)  

if f (x) > b, 

if f (x) ~< b <f(x),  

if f (x) < b. 

Since f ~ Z  

f ~( f )  d~ 
that 
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so that 

Thus, by (2.6. 

(2.6.16) 

S t e p & - -  

(2.6.14) fe" d~<~ exp(4t2 + O(f~(f') d@. 
Step 2. - -  By definition of b, we have, for s < b, 

tw(~t(Bs)) >t b -- s. 

Since w is nonincreasing, 

(2.6.15) [ { tw  >>. b - -  s } l >! ~t(Bs). 

Sincef ' (x)  = f ( x )  whenf (x )  < b, we see that (2.6.9) holds ( for f '  rather than f ) .  Since 
f '  = f  when f ' (x)  > b, by (2.6.10) used for C ---- f~, we get, since ~"(b) ~< ] ~'(b) [, 

f~ ( f ' )  ~'(b) | ( f '  -- b) dtz d~ <~ ~(b) + 
,J 

+l~'(blJ(t 2 

I f y  E Bs, we have 

f (x )  <~ f ( y )  + th(x,y) <~ s + th(x,y), 

f(x)  .< s + th(x, B,). 

12) we have 

f e'-li'd~t <<. exp(t-l(s  + tw(~(B,)))). 

11 

f we have f ~ < f ' < ~ f .  Thus eTd~.<~ e r d~z, and ~ ( f )  ~< ~(f ' ) ,  so 

<<. f~ ( f ' )dg ,  a n d 0  ( f~(f ' )d~)<~O (f~(f)dg~).  Thereby, it suffices to prove 
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Taking the infimum over s yields 

f d -1<?-hI de. <. I. 

Since e+'+~< I + e +, we get 

(2.6.18) fe ~-'d'-b~+ de. < 2. 

Step 4. - -  The inequality g~> 1 +x2/2 for x>~ 0, and (2.6.18), show that 

f ( ( f - -  6)+) 2 d~ ~< Combining (2.6.16),  we get 2t +. with 

I ~( f ' )  dtz ~< ~(b) + ~'(b) I ( f '  -- b) de+ + 2t'[ ~'(b) t" (9..e.19) 

The convexity of 0 implies that 0(x) >/ 0(y) + (x - -y )  0'(y). Also, since 0(~(x)) = 1, 
we have 0'(~(b)) = 1]~'(b). Thus (2.6.19) implies 

(2.6.20) O (I~(f ')  d~) >~ b + I ( f '  -- b) de. -- 2t~ 

= f f '  d~ -- 2t ~. 

Step 5. - -  To finish the proof, it is thereby sufficient to show that 

, .  0 . , ,  

Consider the function r(x) = e ~ --  x -- 1, so that 

Ier-b de. = l + f ( f '  -- b) de. + I r ( f '  -- b) dtx 

< e x p ( I ( f ' - - b )  d e . + f r ( f ' - - b ) d ~  ) 

and thus it suffices to show that f r ( f '  -- b) de. <<. 2t ~. We observe by (2.6.18) that 

f~ r( t - l ( f  ' -- b)) d~ <<. 1 
f > b }  
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and, since as already observed, the function x -2 r(x) increases for x > 0, this implies 

f~ r ( f '  -- b) dtx <<. t 2. 
f > b }  

Also, it is elementary to see that r(x) ~ x2/2 for x <  0. Now, by (2.6.15),  we have 

It f '  -- b)* d~t <<" t~ f w2 d& <~ #" [] 
I '<b}  

2.7.  Penalties, I V  

This section is devoted to the remarkable fact that if (2.5.2)  is suitably reinforced, 
the term exp t 2 N can be removed in (2 .5 .3) .  

To express conveniently the conditions we need, we introduce the function c(a, t), 
defined for 0 < a < 1, t >  0, as follows (c stands for concentration): if v 1 is the 

measure on R of density 2 e-I ' l  with respect to the Lebesgue measure, we have 

c(a, t) = ~1((-- 0% b + t]), where b is given by a = vt((--  0% b]). Simple considerations 
show that 

1 
a>>. -~ =~c(a,t) = 1 -- e- ' (1  - - a )  

1 1 
a<~ ~, e' a<,-~ =~c(a,t) = e '  a 

1 1 1 
a<~ 2' e'a>l ~ ~c (a , t )  -~ 1--e,----a. 

Theorem 2.7 .1 .  - -  Assume that for each subset B of f~ we have 

(2.7.1) 

(9..7.9.) 

t ,< 1 ~ ~({ h( . ,  ~) ,< t' )) ~> c(~(B), t) 

t t> 1 =~ tz({ h( . ,  B) ~< t ) )  >/c(~(B),  t). 

Then, for each subset A of f~ ,  we have 

(2 .7 .3 )  e x-xIh'A''' dP(x) < P(A---) 
N 

where fn is given by (2.4.3)  and where K is universal. 

Our first task should be to give natural examples of situations where (2.7.1), 
(2.7.2)  occur. 
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1 
Proposition 2 . 7 . 2 .  - -  Consider the probability v 1 on R ,  of  density -~ e-I I with respect 

to the Lebesgue measure. Then the function h(x,y) = min(I x - - y  I, I x - - y  13) satisfies (2 .7 .1 ) ,  
(2 .7 .2 )  (for Vl, rather than ~). 

Proof. - -  For a subset C of  R,  and t >  0, let us set C, = { x  e R ;  d(x, C)~< t}.  
To  prove (2 .7 .1 ) ,  (2 .7 .2 ) ,  it suffices to show that  

t). 

This is proved in [T4] using rearrangements.  
We sketch below a simpler al ternative a rgument  to prove the weaker  result 

(2.7.4) h(C,) >I c(h(C), t/2). 

(The reader  should observe that  this suffices to prove that  hi4 satisfies (2 .7 .1 ) ,  (2 .7 .2) . )  
First, we reduce to the case where  C is a finite union o f  intervals. Sett ing 

u(t) = inf{ I x 1; x e C,/C, }, 

it should be clear that  

(2.7.5)  dh 1 ~/- (C,) 1> ~ exp ( - -  u(t)). 

By definition of  u(t), we see that  the interval [ - -u ( t ) ,  u(t)] is either contained 
in the closure of  Ct ,  or  else it does not  meet  Ct .  Thereby,  we have either 

Vl(C,) ~> 1 - -  2h([u(t) ,  oo)) = 1 --  e -"<'' 

or else h (C , )  < 2h([u( t ) ,  oo)) = e -"'~' 

so that,  in any case 

e-'~m ~> min(h(C: )  , 1 - -  h (C , ) ) .  

Combining  with (2 .7 .5 )  shows that  as long as h (Ct )  ~< 1/2, we have d (log Vl(Ct) ) t> 1/2, 

so that  h (Ct )  1> e t/2 h (C) .  Similar considerations complete  the proof. [] 
Other  examples can be generated using Proposition 2 . 7 . 2  and the following 

simple observation. 

Proposition 2 . 7 . 3 .  - -  Consider a probability space (~, ~) and a function h on ~2, that 
satisfies (2 .7 .1 ) ,  (2 .7 .2 ) .  Consider a measurable map ~ from ~ to a measured space ~' ,  and 
the measure ~' = ~q(~) on ~ ' .  Consider a function h' on g~'a such that 

(2 .7 .6)  v x,y 

Then h', ~' satisfy (2 .7 .1 ) ,  (2 .7 .2 ) .  
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Proof. - -  This is obvious using the relations 

~(~-'(B))  = ~'(B), h(x, ~-~(B)) t> h'(~(x), B). [] 

The use of Propositions 2 .7 .2  and 2 .7 .3  will allow the construction of a wide 
class of examples. 

Proposition 2 . 7 . 4 .  - -  Consider a convex symmetric function d~ >1 0 on IR, with l i m  d/ (x) = 0% 

and the probability % o f  density a,  e-+(~ with respect to the Lebesgue measure, where a,  is the 

normalizing constant. Then there is a constant K(t~) depending on d~ only such that the funa ion  h (x , y )  

on R "  given by 

1 
(2 .7 .7 )  Ix - -y]~< 1 =~ h(x ,y )  = - -  

K(+) 

1 
(2 .7 .8 )  Ix - -Y l  I> 1 =~ h(x ,y )  - -  K(+) 

[x - y l  2 

- - - +  I x - y l  

satisfies (2.7.1) ,  (2 .7.2)  with respect to % .  

Proof  o f  Proposition 2.7 .4 .  - -  Consider the nondecreasing map ~1 from 11 to R that 
transports v 1 to %. Thus 

f/ (2 .7 .9 )  a+ e -b" '  dX(t) -~ e - I ' l  dX(t). 
(z) 

By Proposition 2 .7 .2 ,  2 .7 .3 ,  it suffices to show that 

(2 .7 .10)  h(~(x) ,  ~ ( y ) )  <<. min(] x - - y  [, [ x - - y  [2). 

It  is simple to see that (2.7.10) will follow from (2.7.7) ,  (2.7.8)  (with a suitable 
choice of the constant there) provided we can show that 

(2 .7 .11)  In(x) -- ~(y) [~< K(+) I x - - y [  

(9..7.12) + k ~  I ~ ( x / -  ~(y/I -~ I x - y  I. 

There, as in the rest of this proof, K(qJ) denotes a constant depending on t~ only, that 
may vary at each occurrence. 

To prove (2.7.11),  it suffices to prove that ~l'(x) is bounded when x > 0. Diffe- 
rentiating (2.7.9) ,  we get a, ~'(x) e -~(~Cx)) = e-X/2, and plugging back in (2.7.9) ,  

we get 

~'(x) = e *l~x'- *") dr. 
(z) 

14 
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Thereby, it suffices to show that  

sup e- r + +(~' dt < oo. 
u ) 0  

Given u 0 > O, the supremum for u ~< u 0 is certainly bounded.  On the other hand,  for 
u f> u0, by convexity of + we have +(t) - -  +(u)/> (t --  u) +'(Uo) , so it suffices to choose Uo 
with +'(Uo) > 0. 

We now turn to the proof  of (2.7.12) .  I t  suffices to prove that, for y > x t> 0, 
we have q~((~(y) - - ~ ( x ) ) / K ( + ) ) < y -  x. Setting a = q ~ - l ( y _  x), it suffices to show 
that  ~(x + +(a)) ~< ~(x) + K(+) a, i.e., that  

f f  1 e-" - *(') (9,.7.13) a, e -0"~ dt~< ~ . 
(z~ + K(~) a 

First, we note that,  since +(t) t> +(y) + (t - -y )  +'(y), we have, for y > 0, 

f l  1 e- ~t,), 

e- +") d~ ~< a~ e- 0~r + 2a). 
+'(~(x) + 2a) 

(z) 

so that  

(2 .7 .14)  ar f~c~+ ~ 

Also, 

1 
- - e  - z  ~ ar (2 .7 .15)  2 

Since +'(y) increases for y > 0, we have +(B(x) + 2a) >/ ~b(B(x) + a) + +(a). 
Thus, from (2.7.14),  (2.7.15) we see that  (2.7.13) holds provided K(+)1> 2, 
a+'('~(x) + 2a) >/ a , .  

On the other hand,  using again convexity, we see that  

f~ y y~ e -+") dt = e -~c'+a~ dv ~ e -'*'c*'~) 
(z) + a (x) (x) 

e -  ~'~ dv 

1 
e -  a*'('~(z)) --  z 

�9 

Thereby, if K(~b)/> 1, (2.7.13) will hold provided aq/(~l(x))>10?(a), and in 

particular if ~(x) i> a. 
Thus  we can assume B(x)<<. a, a + ' ( B ( x ) +  2a)~< a, .  This means that  a and x 

remain bounded;  but  the conclusion is then obvious. [3 
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I t  is of particular interest to consider the case where +(x) = x 2, so that  % is 
Gaussian. In  this case, Proposition 2 . 7 . 4  shows that  one can take h(x,y) = K-~(x _y )2 .  
This recovers the concentration of measure for the Gauss space, as expressed by (1.7). 
There  is, however, a big loss of information in (2 .7 .10) ;  and the result obtained by 
taking 

h(~,y)  = min(I  ~-~(x) - -  ~ - ~ ( y )  I, (~-~(x) - -  ~-~(y) )2)  

is rather more precise than (1.7). 
The  induction step of the proof of Theorem 2 .7 .1  reduces to the following. 

Proposition 2 .7 .5 .  - -  There exists a universal constant L with tke following property. 
Consider a function g on ~ ,  and &fine 

( 2 . 7 . 1 6 )  
1 

~(x) = i n f g ( y )  q- h(x,y) 
~ e t l  T-. " 

Then, under (2.7.1) ,  (2 .7.2) ,  we have 

(2 .7 .17)  fae~a~fo,-'a~<.l. 
Let us recall that  we denote by vx the probability measure on I t  of density e-I,I/~ 

with respect to the Lebesgue measure. During the end of this section, for x ~ R we set 
~(x) = min(I  x I, x ') .  

The  proof of Proposition 2 .7 .5  is considerably simplified by the following 
observation. 

Proposition 2 . 7 . 6 .  ~ Consider a function g on f~, and ~ given by (2.7.16).  Then we can 
find two nonincreasing functions gl ,  g2 on R with the following properties 

(2 .7 .19)  Vx~R, g,(x)~ infga(y  ) + 1 �9 ~ ,  2 ~(I x - y  I). 

In  particular, this implies that  we have reduced to the case ~t = va, g nonincreasing, 

h(x,y)  = ~(I x - - y  I). 

Proof. m We define, for y e R, 

(2 .7 .20)  g1(Y) = inf{ t; ~({g~< t}) t> vx([y, oo)) }, 

(2 .7 .21)  g,.(x) = sup(  u; ~t({~>_. u}) >/va((-- oo, x]) }. 
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Thereby both gl, g, are nonincreasing; it should be obvious that (2.7.18) holds. We 
prove (2.7.19). Consider x<~y. By (2.7.20), we have ~z(B)/> vl([y, o9)) , where 
B ={g~< g~(y)}. By (2.7.1),  (2.7.2),  we have 

[,({ h(.,  B) ~< r }) t> c(~(B), t) 

>/ O~([y, oo)), t) 

= ' , , ( D  - t, ~)). 

Since g~  gl(Y) + 9(t)fL on the set {h( . ,  B) ~< q~(t) }, we get 

~ (lg~< gx (Y)+  ~-~ I) ~> '~x([Y -- t, ~176 �9 

On the other hand, by (2.7.21) we have 

V({g~> g~(x) }) t> "ix((-- o% x]). 

Thus, if t > y  -- x, we have g~(x) < g~(y) "k- ~?(t)lL. Thus g(x) <~ g(y) + ~(y -- x.)/L, 
and (2.7.19) follows. [] 

We next show that we have reduced the proof of Proposition 2 .7 .5  to the following. 

Proposition 2.7 .7 .  - -  There exists a universal constant L with the following property. 
Consider a nonincreasing function f on R, with f(O) = O. Define 

inf 1 f ( x )  = v s ~ f ( y  ) + ~, ~(] x - - y  1). 

Then, i f  f has a Lipschitz constant <~ 2/L, we have 

fe?dvxfe-tdvl<~ 1. 

We prove the claim stated before Proposition 2.7.7.  In view of Proposition 2 .7 .6  

and (2.7.19), it suffices to prove that f e ~'l dv 1 f e -al dv I ~< 1, where g~ is given by the 

right-hand side of (2.7.19). Define now 

I 
( 9 , . 7 . ~ )  f ( y )  = sup g , (x)  - ~, ~ ( I x  - y l ) .  

~ER 

1 
Since for all x and y we have L(x) ~< g1(Y) + 2 ~([x - - y [ ) ,  we see that f ( y )  <~ g,(y). 

f f Thus, e-ldvl>~ e-~ Also, by (2.7.22), we have gx(x)<~f(y) + ~ ( [ x - - y [ )  
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for a l lx ,  y, so that~a~<d~ Thereby it sufficesto prove t h a t f e ~ d v a f e  /d,~l~< 1. The 

condition f(0) -----0 is certainly not restrictive, and f has a Lipschitz constant ~< 2/L 
by (2.7.22) since q~ has a Lipschitz constant ~< 2. 

Upon seeing the result of IT4] exposed in a seminar, B. Maurey produced a rather 
magic proof of Proposition 2 .7 .7  [Mau2]. The proof we will give is more in the spirit 
of  the arguments of the present paper, and is likely to be more instructive as it prepares 
for the considerably more delicate results to be presented in Chapter 4. We start by 
a simple lemma. 

Lemma 2.7.8 .  - -  Consider a nonincreasing function u on R, such that u(O) = O. Then 

f, , :  a ~  ~ K Z (,,(-- k) --  u(--  k + 1)) ~ e -~. 
_ k>~l 

Proof. - -  For simplicity we set u~ ~--u(--k).  Thus 

fR tt2dvx<~ S =: ~-a u~e -k+l 

Since u~< 2u~_ I + 2(u k -- u,_x) 2, we have 

S <  2 2~ u~_xe-k+l + 2 Z (u~--u~_x)Ze -~+x. 

But since u 0 = 0, the first sum is exactly 2S/e, so that 

S ( 1 - - ! ) ~ <  2e Y, (u , - -u ,_~)2e  - ' . ~ > ~ ,  [] 

During the proofofProposition 2.7.7, we will consider another number 1 ~< M ~< L. 
The numbers M, L will be chosen later. The crucial part of the proof of Proposition 2 .7 .7  
is as follows. 

Proposition 2.7.9 .  - -  Consider a non-increasing function u on R, with u(O) = O. Assume 
that l u I <~ l /M, and set ~(x) = inf  u(y) + ~( I x -- y l )/L. Then, i fL~> KM, we have 

It 

( 2 . 7 . 2 a )  (u - ~) ~ ~ ~ , :  eva. 

Moreover, i f  M >1 K, we have 

(2.7.24)  e"dvl + e--~dvx <, 2 - - - ~  
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Proof. - -  To prove (2 .7 .23) ,  it  suffices to prove i t  when the r ight-hand side is 

replaced by f~,,~>0, u*d~(resp'f~.~<o~ u* d~t)" The arguments f~ these tw~ cases are 

similar so we treat  the first case only. We set u k = u ( - - k ) ,  so tha t  u,~< M -~, and  

M(u k --  u,_x) ~< 1. We set N,  = [2/M(u k --  u ,_l)  ]. Thus we have N,  t> 2 and  

1 1 
7 .  - . , - 1  "< __MN--" 

For k >t 1, t >i 0 we set ak, t = --  k + 1 - -  tiN,, and u,,t  = u(ak, t). Thus u,. 0 = u , _ l ,  
Uk.~k = U,. For  k i> 1, 1 ~< t~< N, ,  we consider the subset Rk, t o f R  ~ given by 

We observe tha t  no point  belongs to more than  two intervals ]a , , t+l ,  %.r for 1 ~< g ~< N~, 

k/> 1, so tha t  the rectangles R,, r have the same property.  Since u(x)/> u,. t for x ~< ak, t ,  R, ,  t 
is below the graph  of u; but,  since u ( % t _ l )  = u , , t _ l ,  we have ~(x) ~< u,,t_~ + 4 /LN~ 
on [a~.t+x, ak,r Thus  R, . t  is above the graph of  ~, and  hence 

IR (u - a)  ,t,,1 

>I ~152,>~1 x<~t<~s,52 v l ( [ a " t + l ' a ~ ' t ] ) ( u " t - - m i n ( u " t ' u " t - l + ~ ) )  

Since "~t([a,,l + l, a,,t] ) >I e - ' / K N , ,  we have 

fR e--k ( 1 5", - -  Z uk, t - -  uk, t _ l  - -  (u - ~) d'~l >1 ~ k>~l Nk l<<.t<<.sk 

e-k( 4 )  
1 Z Uk. Nk LN 

1 52 uk 1 - -  - ' -  - 

1 
Y, e - ' ( u  k - -  U,_x) ~ 

by (2 .7 .25) ,  and  provided L >t 161VL Thus,  (2 .7 .23)  follows from L e m m a  2 .7 .8 .  

To prove (2 .7 .24) ,  we use the inequal i ty g~< 1 + x + x 2 for ] x]~< 1. Thus  
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~ <  2u 2 + 2 ( u  " 2 2 ( u - - ~ ) ~ < 2 u  ~ +  1 - - u )  ~< 2u ~ + ~  ~ ( u - - ~ )  
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provided M/> 4, and thus 

f e '~dv l+f  e - ~ d v l < ~ 2 + 3 I ,  

and the result follows from (2.7.23).  [] 

u sdv 1 - -  ~ (u - -  ~) dv 1 

Proof of Proposition 2 .7 .7 .  - -  We observe that, for a e It, we have a(2 - -  a) < 1. 
Thus it suffices to show that 

( 2 . 7 . ~ )  IRe?dvl+fRe-ldvx<~2.  

We set u = min( l /M,  max(f ,  --  l /M)) .  Thus 

;. ;. L o (9..7.2'/) e-l  dvx <~ e-" dv 1 + (e - t  __ elm) dv 1 

where f(b) = --  I /M. We observe that if ~(x) < l /M,  then f ( x )  ~< ~(x). 
if ~ (x )<  I /M, then given , with ~(x)<  , <  l /M,  there exists y with 

u(y)  + L -1  ~(I x - - y  I) < *. 

Indeed 

Thus u(y) < l /M,  and f ( y )  <<. u(y), so t ha t f (x )  < ,. Then, if c is the largest constant 
so that f ( c )  = l /M,  we have 

L L { 2 . 7 . ~ )  e? dvl <~ e "~ dv a + ( e F -  elm,) dv x. 
oO 

Since f(O) = O, we have c < 0 < b. Since f has a Lipschitz constant ~< 2/L, we have, 
for x/> b, 

1 2 
-- f(x)  <. -~ + ~ (x -- b), 

and thus 

If If 1 gllM+ 2(x--b)fL g--~, e- l dvl <. 

el/M 

1 -- 21L vl([b' oo)). 
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Hence, 

1 --  1 vx([b, oo]) ( e -  ! - -  e 1/~) d v  I ~< e IlM l - -  2/L 

K 
E ooD 

KM2 I 
~< L JR u~dvl' 

since u(x) = -- 1/M for x/> b. Using (2.7.27),  (2.7.28),  and making a similar compu- 

tation for (e ? ' -  d ~)  dr1 yields 
- - o O  

e)'dvl + e- I dv a <~ e ~ dv a + e- ~ dv 1 + 

It  then follows from (2.7.24) that (2.7.26) holds provided M 1> K, L >/ K M  z. [] 
I t  would be of interest to understand exactly which are the functions ~ such that, 

if one sets 
inf f ( x )  = ~EI~ f ( Y )  + ~(x - - y ) ,  

then ~ e?dvl.I  e- I dr1 ~< 1. On the other hand, the situation is considerably clearer if one 

considers the standard Gaussian density Y1 rather than vl. In that case, the obvious adapta- 
0~ 

tion of Maurey's argument shows that i fe  >/1, and i f f (x)  = i n f  of (y )  + 2 (~ + 1) (x --y)~, 

f (f ; then e?dy l  e - l d y ~  ,< 1. Thereby, by induction, and with the notation of (1.7), 

we get 

yN(At) /> 1 - -  e ~1~+1~, 
y~(A) ~ 

hence, by optimization over 0c and for t/> ~r log(1/ys(A)), 

1 (t --  ~/2 log(1/y~(A))) ~ -(N(At) /> 1 -- exp -- 

which is not so far from (1.7). 

3. Control by q points 

In Section 2 the basic theme was that the " distance " from a point x to a set A 

was measured by how many coordinates of x can be " captured " by a single point of A. 

The theme of the present section is that we allow several points of A to capture as many 
coordinates of x as possible. 
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3.1.  Basic result 

Consider an integer q/> 2. For  subsets Aa, . . . ,  Aq of  f~s, and x e f~s, we set 

(3 .1 .1)  f(Ax,  . . . ,  Aq, x) = 

inf{ card{  i~< N : x, r . . . , y ~ ) } ; y l  e A1, . . . , y q  ~ Aq}. 

Theorem 3 .1 .1 .  - -  We have 

(3.2.2) 

In particular, 

(3 .2 .3)  

f q1(Al ..... Aq.,) dP(x) ~< 
H P(A,)" 

i~<q 

P({f (A,  . . . ,  A, x) >1 k }) ~< - -  
qk p(A)q" 

The  induct ion method  will reduce this s ta tement  to a simple fact abou t  functions. 

Lemma 3 .1 .2 .  - -  Consider a function g on ~ ,  such that 1/q <~ g <~ 1. Then 

(3 .1 .4)  -d~  gd~ <~ 1. 

Proof. - -  We could use the extreme point  a rgument  of  L e m m a  2 . 1 . 2 .  One  alter- 
native method  is as follows. Observing that  log x ~< x - -  1, to prove that  ab~< 1 it 
suffices to show that  a h- qb ~< q q- 1. Thus,  it suffices to show that  

fta d~t § q fta g d~t <<. q q- 1. g 

But this is obvious since x-  1 31 - qx ~.~ q + 1 for q-  1 ~< x ~< 1. [] 

(3.1 

Corollary 3 .1 .3 .  - -  Consider functions gi on f~, gi <<- 1. Then 

f .5)  rain q, d~t II  g~ d~t ~ 1. 
i~<q i ~ q  

Proof. - -  Set g = (m~n(q, g~-l))-x, observe that  gi ~< g, and use (3 .1 .4 ) .  

We  now prove Theorem 3 . 1 . 1  by  induct ion over N. For N = 1, the result follows 
from (3 .1 .5 ) ,  taking g~ = 1Ai. 

We  now assume that  Theorem 3 . 1 . 1  has been proved for N, and we prove it 
for N + 1. Consider sets A1, . . . ,  A,  of  f ~ + l .  For co e f t ,  we define the sets Ai(r ) as 

in (2 .1 .5 )  and we consider the projection Bi of  A~ on fU.  The  basic observation is that  

(3 .1 .6)  f ( a l ,  . . . ,  A,, (x, co)) ~< 1 + f (Bx ,  . . . ,  B,, x) 
15 
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and that, i f j  ~< q, 

f(A1, . . . ,  Aa, (x, r ~< f(Ca,  . . . ,  Ca, x), 

where C~ = B~ for i 4: j ,  Cj = A~(co). 
If  we set g,(r P(A~.(m))/P(B,), 

hypothesis, we are reduced to show that 

f o  ( 1 ) 

using Fubini theorem and the induction 

l-I f r ig id  ~ 

which is (3.1.5).  [] 

3.2.  Sharpening 

Given a > 1, we can now, in the spirit of Proposition 2.2.1,  look for the largest 
number a = a(q, o~) for which we can prove that 

i 
i 

1 

a(q, ..... A,,:, al (x) < n V(A,)" 
i~<q 

Following the proof of Theorem 3.1.1,  we see that we can take for a(q, ~) the unique 
number x > 1 such that 

( 3 . 2 . 2 )  x + q0~x- 1/~ = 1 + q~. 

It  then follows from (3.2.1) that 

(3 .2 .3)  P ( { f ( A , . . .  A, x) ~> k }) ,< inf 
a(q, ~)-~ 

P(A) ~ 

There is no obvious way to compute the right-hand side of (3.2.3).  However, for large q, 
we have the following, that improves upon (3.1.2) for large values of k (k >> q log q). 

Proposition 3 .2 .1 .  - -  There exists a universal constant qo such that, i f  q >1 qo, we have 

( e ~k(l_[__l"~ 
(3.9..4) P ( { f ( A , . . . , A , x ) > ~ k } ) , <  (e - -  1) qlogq]  \P(A)] " 

Proof. - -  We take ~ = log q, and we show that, for q large enough, 

1+(1  ) logq 



CONCEN TRA TIO N  OF MEASURE 115 

For large q, we have a >>. q, so that  al/a>/ e, hence 

and thus a + q~a-V~<~ 1 + qe. [] 
I t  is interesting to note that  Proposition 3 . 2 . 1  is rather  sharp. Consider the case 

where  ~ = { 0, 1 }, and where  ~ gives weight  p to 1 (p ~< 1]2). Assume for simplicity 

that  r = p N  is an integer. Consider the set A = { x  e ~ ;  Y~ x~< r}.  Then  P(A) is 

of  order  1/2. Considering s = rq + k, we clearly have that  ~ x~ = s implies 

. . . ,  

Whens<, .N/2 ,  w e h a v e ( N ) > l  (N/2s) ' , so tha t  

P({f (A,  . . . , A , x )  ~> k}) ~> e -~N >~ 

1 / , , +  ~ 

~ 2 e ( q + k / r ~ ]  " 

I f  we take k 1> q log q, fixed, and then r of  order k/q log q, we get a lower bound  of  
order  (1/Kq log q)~. 

3.3. Penalties 

The  result of  this section is the one single 
been  mot ivated  by  direct applications. Rather ,  
symmet ry  with Sections 2 .7  and 4 .4 .  

We  consider a "  penal ty  f u n c t i o n "  h(o), col, . . . ,  ~ )  on fl~+ 1. We  assume h >/0  and 

( 3 . 3 . 1 )  ~ ~ { ~1, . . . ,  ~o, } ~ h(~o, ~1, . . . ,  ~ )  = 0. 

For subsets A1, . . . ,  A~ of  ~N, we consider 

( 3 . 3 . 2 )  fh(A1, . . . ,  A, ,  x) = inf{ ~] h(x,,y~, . . . , y~) ;y l  ~ A1 ' . . . , y ~  e Aq}. 

The  case considered in Section 3.1 is where  h(~), 0) 1, . . . ,  co ") = 1, unless o~ s { ~1, . . . ,  (~}, 
in which case it is zero. 

Given subsets B 1, . . . ,  B~ of ~ ,  we set 

( 3 . 3 . 3 )  h(~o, B1, . . . ,  B,) = in f{h(~ ,  co 1, . . . ,  co"); o~ ~ ~B1, . . . ,  o~' ~ B,}.  

T o  control how large h is, we will consider a nonincreasing function y from ]0, 1] 

to R +, and assume that  

( 3 . 3 . 4 )  v o ,  e f l ,  VB~, . . . , B ,  c n ,  h(~,B1, ...,Bq)~< ~] y(tz(Bi) ). 

major  theorem of  Par t  I that  has not  
it has been mot ivated  by  a desire of  
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A typical case where this condition is satisfied is when 

. . . ,  = x ;  
i~<q 

for functions h~ that  satisfy the tail condit ion ~({ h,/> y(t)))~< t and when y is left 
continuous. Indeed,  if t < ~t(B,), then B, contains a POint y~ with h~(y~) < ,((t). 

We consider a convex function 0 : ]0, I] --~ R +, and we make the mild technical 
assumption that  the inverse function ~ satisfies 

1 (3.3.5) I~'(x+ 1) 1/> ~l~'(x)[. 

We put  g ra ther  than ~ simply to allow the case ~(x) = e -x. 

Theorem 3.3 .1 .  - -  There exists a universal constant K such that for q >1 K,  under (3 .3 .1) ,  
(3 .3 .4) ,  (3 .3 .5) ,  if, for each s<~ 1, we have 

f [  log(q/K) 
(3.3.6) y- ' (0(s )  --  0(t)) dX(t) ~< q J 0'(s) 1' 

then, for each subsets A1, . . . ,  A~ of fiN, we have 

( 3 . 3 . 7 )  [e.t,,A1 ..... Aq,X) dP(x) ~< exp ( Z 0 (P (~ ) ) ) .  
d 

To unders tand (3 .3 .6)  better, we observe that  the te rm 0'(s) arises simply because 
O(s) --  O(t) resembles (s --  t) O'(s) for t close to s. Actually, since 0(s) - -  0(t) ~< (s - -  t) 0'(s), 
change of variable and Lebesgue's theorem show that  (3 .3 .6)  implies that  

fi ~ du<~q- l log(q /K) .  In  the case where  is Can take Y constant,  o n e  

h(o~, co 1, . . . ,  co t) = q7 whenever  co r { co 1, . . . ,  co q } (and otherwise h = 0). T h e n  the 
integral in (3 .3 .6)  has to be interpreted as I [ t : s<<. t ;O( t )>>.O(s) - -y}[ .  When  
0(x) = - - l o g x ,  this is s(e v -  1), and  (3 .3 .6)  holds whenever  "(<<.q-llog(q/K). 
We then almost recover Theorem 3 .1 .1 .  

To prove Theorem 3 .3 .1 ,  it suffices, by the induct ion method,  to prove the 
following. 

Proposition 3.3.9,. - -  There exists a universal K such that, under conditions (3 .3 .1) ,  
(3 .3 .4) ,  (3 .3 .5) ,  (3 .3 .6) ,  i f  we consider functions (u~),<~ on ~), 0<, u, <, 1, and define 

v(t~) : inf  ~ 0(u~(t~)) + h(t~, co 1, . . . ,  ~o~), 
col, ..., coq i ~ q  

(3.3.8) 

then we have 

(3.3.9) 
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Proof .  - -  For clarity, we will replace (3 .3 .6)  by 

S( ( a . a . t o )  v - l ( 0 ( s )  - 0(t)) ~x(t)  .< [ 0'(s)----~ 

and we will de termine in due time a good choice for v. We already assume ~ ~< 1. The  

main  parts of  the proof  are the search of upper  bounds for f e ~ d~, and of lower t w o  
d ~  

\ Jn  ] 

Step 1. - -  For i~< q, we set S, = inf0(u+(r  0(supu+(o~)). By (3 .3 .8)  and 

(3 .3 .1) ,  taking ~ + =  ~, we see that  if  we set S = Y~ St, we have 
i~<q 

0 . 8 . 1 1 )  ~(,o) ~< 0(u,(~)) + Z s t  = 0(u,(o,)) + s - st .  
t # i  

Step 2,. - -  We make the convention that  y(0) = oo. For  i < q, we define s t by 

O(s,) = inf  { 7(~t({ u,/> t})) + O(t) }. 

Thus  we have O(s+) >i St and, for t ~  s+, 

( a . a . l ~ )  ~,({., ~> t}) ~< v- ' (0 ( s , )  - 0(t)) .  

Step 3. - -  We show that, for any  subset C of  f2, 

(3 .3 .13)  fe'a~< ~t(C) exp ( Z 0(s+/). 
Jo i~<q 

By definition of  st, given ~ > 0, we can find t~ such that  -~(~t(B+)) + O(t~) <~ O(s~) + % 

where B~ ={u~/>  t+). Since 0(u~(~0+))~< 0(t+) for co + ~B+, we have, by (3 .3 .8) ,  

v(+o) ~< ~] 0(t+) + h(r BI, . . . ,  Bq), 
i~<q 

so that  (3 .3 .13)  follows by (3 .3 .4) ,  since ~ is arbitrary.  

Step 4.  - -  Consider now a number  m. We set 

( a . a . l + )  ~ = f min((v -- m) +, l) d~t and C = { v >/ m + 1 } .  

Thus, in part icular  ~(C) ~< z. 
Using the inequali ty e ~  1 q- 2x + for x~< l, we get, using (3.3.13), 

Io;ofo .-0,s,,-+,. e ' -  d~z ~< + ~< 1 + 2z + tz(C) exp (,~e 
\c 
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so that 

( 3 . 8 . 1 5 )  fa d - '~  d~ ~< 1 + z(2 + exp(,.<,Y~ O(s,) --  m)). 

Step 8.  - -  We now turn to lower bounds for 2~ O ( f  
i-N<a \dn 

consider a number mi, and set 

( 3 . 3 . 1 6 )  wz(o~) = v(o~) - -  S + S, - -  O(m,), 

(3.3.17)  W, = fo min(w +, 1) d~t. 

We show that 

( 8 . 8 . 1 8 )  (u, - -  m,) d~ ~< ~ ---- 3 I O'(m,)l " 
to i >I o} 

By(3.3.11), we have 

( a . 3 . ~ 9 )  o(u,(~o)) >~ v(~) - s + s, = w,(~o) + O(m,). 

u, d~). For each i ~< q, 

Now, by (3.3.5),  we have, for y/> x, 

1 
~(y) ~< ~(x) + g ~'(x) min(1,y -- x). 

Taking x = 0(m~), y = x + w~(co), combining with (3.3.19) and recalling that 
r = 0'(m~) -1, yields, when w~(o~)/> 0, that 

1 
u,(o~) .< m, + - -  min(1, w,(o~)), 

3 0 ' ( m , )  

from which (3.3.18) follows by integration. 

Step  6.  ~ We take m~ = s~. It  follows from (3.3.12), (3.3.10) that 

(u~ - -  s~) d~ < - -  
~>_..,~ I 0'(s,) I" 

Combining with (3.3.18), observing that w~(co) > 0 implies u~(o~) < m~ by (3.3.19), 
and using convexity of 0 yield 

(3 .3 .~ .0 )  O ( s ~ ) _ ~ + W ~ 3  

We choose the number m of Step 4 as the smallest for which 

q 
c a r d ( i  ~< q; S --  S, + O(s,) <~ m}~> 2" 
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We observe that if S -- S~ + 0(s~) <~ m, then W~ >i z, where W~ is given by (3.3.17) 

and z by (3.3.14). Thus (3.3.20) shows that if we set R = ,<aZ o(fnu~d~),wehave 
( 3 . 3 . 9 . t )  Z 0(s,) .< R + q~ - q z. 

Combining with (3.3.15) gives 

n e ' - " ~ d ~ < ~  1 + z(2 + e ~ + ~ - ~  ' - " )  

q 
<~ 3 + ze ~ -  ~" e R -  m. 

Calculus show that sup ze-~, le  = 6/qe. Thus, if we assume 

qe 
e q~ <~ ~-~, (3.3.22) 

we have 

f l x  ~ e , - , ,  d~ << 3 _k_ _2 e - 

For R -  m >I 2, this is ~< e •-" ,  so the proof is finished. 

Step 7. - -  Thus, we only have to consider the case R ,< m + 2. By definition of m, 
the set 

I = { i 6  q ; m < .  S -- S, + 0(s,)) 

has cardinality i> q/2.  For i in I, we have 

R~<m+2.< 2 + S + 0 ( s , ) - - S ~  

and summation over i ~ I yields 

(3.3.23) R - - S 6  2 + ~  2~ (0(s,)--S,)~<2 + 2  2~ (0(s,) -- S,) 
card I , e i  q ~.<q 

since 0(s~) - - S  t i> 0 for all i.< q. On the other hand, (3.3.21) implies that 

(0(s,) --  S,) .< R --  S + q~ 
i<~q 

which, combined with (3.3.23), yields (for q/> 3, .~< 1) that 

( (3.3.9,4) Y. 0(s~) -- S ~< 1 --  (2 + q,) ~< K + qx. 
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Step 8. - -  We assume that q >/ 3, v ~< 1, so that (3.3.24) holds, and we finish the 
proof. In Step 5, we take m~ = sup u~(~), so that 0(m~) = S~, and w~ = v -  S does 
not depend on i. From (3.3.18) and convexity, we get 

w 
0 uid v, >/ S i+ -~ - ,  

t "  
where W = Wi = .In min(1, w +) d~t. 

We now have by summation that 

(s.s.  9.5) qw - - < R - - S .  
3 

In Step 4, we take m = S, so that z = W. From (3.3.15), (3.3.24) we get 

(3.3.26) I~ e'-S d~t ~ 1 + 3W exp(K + qv) 

~< exp(3W exp(K + qT)). 

According to (3.3.25), this is less than e x p ( R -  S) provided exp(K + qv )~  q/9, 
i.e. ~ ~< q-1 log(q/K). Moreover, this requirement implies (3.3.22). 

The proof is now complete. [] 

8 .4 .  Interpolation 

One can express Proposition 2.1.1 as the fact that, if P(A) > 1 [2, then for most 

of the elements x of ~ ,  all but of order ~/N coordinates can be copied by an element 
of A. On the other hand, Theorem 3.1.1 asserts that for most of the elements x of fl~, 
all but a bounded number of coordinates of x can be copied by one of two elements 
of A. A rather natural question is whether both phenomcna can be achieved simulta- 

neously (using the same elements of A). In  this section, we will show that this is indeed 
the case. 

This fact seems to be a special case of a rather gencral phenomenon that can be 

informally formulated as follows: Suppose we have defined two notion of the idea " the 
points x and y are within << distance >> t "  ; we call these I and I I  respectively. Assume 
that there is good concentration of measure when the fattening A~ of A is defined as 
the collection of points x that are within distance t of A, when the meaning of this is 
defined with respect to notion I (resp. II).  Then, in all the cases we have considered, 

it remains true that we have good concentration of measure when A t is now defined 

as the collection of points x for which there exists a point y which is within distance t 

of x with respect of the two notions simultaneously. Two specific examples are presented, 

one in this section, the other in Section 4.5. In both sections, we present an inequality, 
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that quantitatively contains two rather separate inequalities presented before. Consi- 
derably more difficult (if at all possible) would be the task of finding a formulation 
that would allow to recover sharp forms of these two inequalities. This direction of 
finding inequalities that " merge " several other inequalities is very natural. It  remains 
at an embryonic stage. The reason is partly the intrinsic difficulty, partly the lack of 
concrete applications that would help to formulate precise needs. 

We now go back to question of finding an inequality encompassing at the same 
time the essence of Proposition 2.1.1 and Theorem 3.1.1.  For simplicity, we consider 
only the case q = 2 in Theorem 3.1.1.  For two subsets A1, A s of ~ ,  x ~ ~N, a, t > 0, 
we set 

(3 .4 .1)  f ( A 1 ,  A ~ , a , t , x  ) : i n f { f ( y X ,  y2, a , t , x ) ; y '  ~ A ~ , y 2 ~ A 2 } ,  

where f (ya ,  y2, a, t, x) : a card { i ~< N; x~ 4= y~; x, 4= y~ } 

+ t card{ i~< N ; x ~ + y ~ o r x ~ e y ~ } .  

Theorem 3 . 4 . 1 .  - -  For each a < log 2, there exists t o > 0 such that 

f e4NI ~ 
(3.4.9,)  t <  t o =~ d'A~'A""'"~' dV(x) <~ P(A~) P(A,)" 

In  particular, by Ghebyshev inequality, this implies that for u <<. 8Nt~, we have 

}) P f A1, As, a, ~N' l>u .<p(A1) e(A~). 

( 2 - )  When f A1, As, a, ~N '  x <~ u, we can, by definition, find y '  e A1, ye e A s such that 

! 
{ 1 .3 / u  a card { i <<. N;  x~ r Y i , m  } } + ,4 -g--N card { i ~ N;  x~ 4= y~ or x, 4= y~ } <~ u, 

so that, in particular, 
U 

card{ i~< N; x~ r { y~ , y~ } } <~ - ,  
a 

c a r d { i <  N ; xi :~ y l  or x, ~- y~ } <~ ~ - N - u .  

We would like to point out that the factor e 4m2 in (3.4.2) is not optimal. This 
factor can be improved, in particular, with greater effort on the calculus computations 
of the proof we will present. Further improvement would be possible as in Section 1.2, 
but we have not pursued that direction since it is not clear at the present time what 
would be an optimal quantitative form of the phenomenon described by Theorem 3.4.1.  

The key to Theorem 3.4.1 is the following. 

16 
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Proposition 3 .4 .2 .  - -  Given b < log 2, there exists t o > 0 suck that, /d e t < to, for any 
two functions gl,  g~ <<. 1 on f~, we have 

( 3 . 4 . 3 )  m i n e  b, g - ~  ' g~ (o ) '  gl(o)  g~(o) d~(o) <~ f gl d~ f g~d~ 

Proof. - -  The relatively simple method  we present does not  yield the opt imal  
dependence in t in the right hand  side of (3 .4 .3) ,  bu t  it  avoids lengthy unpleasant  

computations.  Arguing as in the proof  of  L e m m a  3 .3 .2 ,  we see tha t  

f h d ~ f g t d v ,  fg~d~<<, e x p f ( h + g l + g ~ - - 3 )  d~. 

Thus, if  we set 

h(ga, ga) = rain e b, ga' g2' ga ' 

i t  suffices to show that ,  for t small enough and  all numbers  gt ,  gz ~< I, we have 

( 3 . 4 . 4 )  h(g~, g,) + ga + g~ <<- 3 + 4t 2. 

Certainly,  we can assume gl I> g2 and 2t ,< b. 

Case 1: g~ ~ gl <<- eJ-~. In  tha t  case 

h(gl, g2) + gx + g2 --  3 <~ e b -k- 2e t -b  - -  3. 

Since eb< 2, we have eb+ 2e - n -  3 <  0, SO tha t  we can find to such that  
e b + 2 e  l - b _ 3 < < .  Oif t<<.t  o . 

Case 2: g~ <<. e ~- b << g~. In  tha t  case 
e t 

h(gl,g~) + ga + g~ - -  3 <<. - -  + gl + g~ --  3 
gl 

<<. e b + 2e ~ - b _  3, 

since the function x + et/x decreases for x ~< 1, and  we conclude as above. 

Case 3: e~-b ~ g2<<. e -~. In  tha t  case, using again tha t  the function x + e~/x 
decreases for x ~< 1, and  the inequal i ty gx/> g2, we have 

e t 

h(ga,g~) + g~ + g~ - -  3 <- - -  -k- gl + g2 --  3 
ga 

e ~ 
< ~ - - +  2g~--  3 <<. e 2t + 2 e - ~ - -  3 

g~ 

since the function 2x + et/x is convex, and thus is bounded on the interval [e ~- b, e-~] 

by the max imum of its values at  the endpoints. Also, we note tha t  e ~ + 2e-~ --  3 ~< 4t 2. 
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Case 4: g~ >i e-t .  Then 
I 

h(gx, gs) + g a  + g s  -- 3~< - -  + g l  + g ,  -- 3~< e 2~ + 2e -~ -- 3 
gl gs 

since, when c > 1, the function x + c/x decreases for x ,< 1. We then conclude as above. [] 
We will let the reader complete the proof of Theorem 3.4.1  using the induction 

method and Proposition 3.4.2.  The basic observation is that, if B, denotes the projection 
of A, on fiN, we have for x s ~ ,  co ~ t ,  

f(Ax, As, a, t, (x, to)) ,< a + t + f(B1, B,, a, t, x), 

f (Aa,  As, a, t, (x, co)) ~< t + f ( B x ,  A~(to), a, t, x), 

f(A1, As, a, t, (x, co)) ~< t +f(Ax(to),  B,, a, t, x), 

f ( a x ,  As, a, t, (x, to)) ,.< f(Al(to), As(to), a, t, co). 

For the induction hypothesis, one then fixes a < b < log 2, and takes t o small enough 
so that a + t  o~< b. 

4. C o n v e x  Hul l  

4.1. The basic result 

The main idea of this section is the introduction of a rather different way of 
measuring how far a point x is from a subset A of ~ .  We introduce the set 

UA(x ) = { (s,),.< N z{0,  1 }s; 3y cA ,  s, = 0 =~ x, = y , } .  

We denote by Vx(x ) the convex hull of UA(x), when UA(x) is seen as a subset of R ~. 
Thus VA(x) contains zero if and only if x belongs to A. We denote by f~(A, x) the 
gS-distance from zero to VA(x ) (the letter c refers to " convexity "). The corresponding 
notion of " enlargement " of A is as follows: 

(4 .1 .1)  A ~ = { x  ~ x ; f ~ ( A ,  x) ~< t}. 

This notation will be kept throughout the paper. 

Theorem 4.1 .1 .  - -  For every subset A of ~ ,  we have 

(4 .1 .2)  exp ~ ff,(A, x) dP(x) ~< P(A---)" 

In particular 
1 

(4 .1 .3)  P(A[) /> 1 -- p(A----~ e - ' ' / '  

In  order to understand better (4.1.1) it is worthwhile to note the following simple 

result. 
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Lemma 4 . 1 . 2 .  - -  The following are equivalent: 

{4 .1 .4 )  x ~A~, 

( 4 . 1 . 5 )  V (m+)+<N, 3 y e A ,  Y, Cm+,x+:~y+}<<.t ~+. 
i~<N 

Proof. - -  The  linear functional ~ : x + ~ ~+ x+ on R N, provided with the Euclidean 

�9 J I ~ N  = Since V a(x) contains a point  of  norm ~< f , (A ,  x), norm, has a norm [[ ~[[ = ~i- 

the inf imum of ~ on V ,  (x) is ~< fc(A,  x)[] a ][; bu t  since V A(x) is the convex hull of U A (x), the 
inf imum o f~  on UA(x ) is the same as the inf imum on VA(x ). Thus  (4 .1 .4 )  implies (4 .1 .5 ) .  
The  converse (that  is not  needed in the paper) follows from the Hahn-Banach  theorem. [] 

I t  is very instructive to compare  (4 .1 .3 )  with (2 .1 .3 ) .  I f  one takes t = k / V ~ ,  

=i = 1, one sees that  (4 .1 .3 )  implies 

1 
P ( f ( A ,  x) >t k) <~ p - ~  e -k2/'z~. 

The  only difference with (2 .1 .3 )  is the worse numerical  coefficient in the exponential.  
But  the strength of  (4 .1 .3 )  is, of  course, that  all choices of  ~, are possible. This makes 
Theorem 4 . 1 . 1  a principle of  considerable power,  as will be demonst ra ted  at length 
in Par t  II .  I t  does, however,  take some effort to fully unders tand the potential  of  Theo-  
rem 4 . 1 . 1 .  To  illustrate one use of  Theorem 4 . 1 . 1 ,  let us consider the case where 

= { 0, 1 }, and where  the probabi l i ty  ~ gives mass p to 1 (and mass 1 - - p  to zero), 
where  p ~< 1/2. Consider a subset A of{ 0, 1 }s, and assume that  A is hereditary,  i.e., that  
i f y =  (Y~)~<N c A ,  and if (z~)~<~ is such that  z~<<.y~ for all i, then z e A .  Consider 
x e { 0 ,  1 }N, a n d J  = { i~< N;  x i = 1 }. Set m(x) = card J .  Define 0~ i = 1 if i ~J ,  ~ = 0 
otherwise. Then  L e m m a  4 . 1 . 2  shows that  we can find y e A such that  

c a r d { i  e J ; x , + A }  ~<f~(a, x) ~ .  

Since A is hereditary,  we have f ( A ,  x) ~< fc(A,  x) " V / ~ .  
Thus  we have, for all m', 

(( '}) P({f(A, .) >/t}) ~ P f~(A, .) > / ~  + P(m(y) > m') 

~< ~ e x p  - -  + P ( m ( y ) > m ' ) .  

Since the last term becomes very small for m' > pN, we recover the correct order  1/Np 
of  the coefficient of  t 9 in (2 .3 .5 ) .  

The  key to Theorem 4 . 1 . 1  is the following simple lemma. 

Lemma 4 . 1 . 3 .  - -  Consider 0 <~ r <~ 1. Then 

inf  r - X e x p - - ( 1 - - X )  z ~  2 - - r .  (4 .1 .6 )  0~<x~<l 4 



CONCENTRATION OF MEASURE 125 

This lemma is taken from [J-S]. This paper  played an impor tan t  role in the 

development  of  Theorem 4 . 1 . 1  and of the present paper.  Roughly  speaking, the author  

had  proved Theorem 13.2 below in the case where P(X~ = 1) = 1/2 = P(X~. = --  1). 
Johnson and  Schechman extended this to the present formulat ion of Theorem 13.2. 
The  author 's  desire to have the last word prompted the discovery of  the abstract setting 
of  Theorem 4 . 1 . 1 .  I t  is this abstract setting that  is largely responsible for the great range 

of  applications of Theorem 4 .1 .1 ,  and tha t  lead to the present systematic investigation. 

Proof .  - -  Taking X = 1 4- 2 log r if  r >/ e- 1/.o, and X = 0 otherwise, and taking 

logarithms, it suffices to show that  

f ( r )  = log(2 -- r) 4- log r 4- (log r) 2/> 0. 

Now f(1)  = 0, so it suffices to show t h a t f ' ( r )  ~< 0. S i n c e f ' ( 1 )  = 0, it suffices to show 
that  (rf'(r))'~> 0, or, equivalently, by calculation, that  ( 2 - - r ) - " - - r - X ~ <  0. But 
( 2 - - r ) - 2 ~ <  l ~ r  -1. [] 

We now prove Theorem 4 .1 .  i, by induct ion upon N. We leave to the reader 
the easy case N = 1. For the induct ion step from N to N 4- 1, consider a subset A o f ~  s + l  
and its projection B on f~r. For c0 ~ f~, we set as usual 

A(co) = { x ~ f~r; (x, co) e A }. 

Consider x e fU,  co e f~, z = (x, co). The basic observation is that  

s (s, 0) UA(z). 

t e Uz(x) * (t, I) e UA(z). 

Thus,  for s eVA, ,~ (x ) , t eV~(x ) ,O~<  X~< 1, we have (ks4- ( 1 - - X )  t , l - - X )  eVA(z ). 
The  convexity of the function u ~ u ~ shows that  

( 4 . 1 . 7 )  f~, (A, z) ~< (1 --  X) 2 4- Xf~a(A(o~), x) 4- (1 --  X)f : (B,  x). 

The main trick of the proof is to resist the temptation to optimize now over X. By Holder's 
inequality and induction hypothesis, we have 

I exp 1 A �9 ~J~( , (x, co)) dP(x) 

(fo ~< exp ~1 (1 -- X) ~ ~ exp 1 ff~ (A(~), x) dP(x) ~ exp 1 ff~(B, x) dP(x) 

.< 1 1 1 1 1  
e x p  - 

1 1 [P(A(~o))l- x 
- -P(B)  exp~-(1 - - ) , )~ \  P(B) ] 
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This inequality holds for all 0~< X~< 1. Using (4.1.6) with r = P(A(o))/P(B)~< 1, 
we get 

exp �88 o)) .< pc_  ( 2 P(A(r 
P(B) 1" 

Integrating with respect to co and using Fubini theorem yields 

f 1 1 (  P~(A)I 
e x p ~ f : ( A , . ) d ( P |  p - ~  2 P(B) ] 

since x ( 2 -  x),< 1 for all real x. 

4.2.  Sharpening 

1 
~< 

P | ~(A)'  
O 

We now try to improve (4.1.2) by allowing a right-hand side P(A) -~ for some 
/> 0. In  that case, it will be advantageous to measure the " d is tance"  of s to VA(x ) 

by the function 

f~(A, x) = inf{ Z ~(~, s,); s e VA(x)} 

where 

( 4 . 2 . 1 )  ~(~, u) = ~(1 - -  u ) log (1  - -  u ) -  (~ + 1 - -  ~ u ) l o g (  1 + ~ - -  ~u) 
/ 

1 ~  " 

The reader should observe right away thatf~(A, x) corresponds (with the notation 
of Section 4.1) to f~(A, x) rather than to f~(A, x). This will be the case for all the 
extensions of Theorem 4 .1 .1  we will consider. 

As pointed out, Lemma 4 .1 .3  is the key to Theorem 4.1 .1 .  I t  is a somewhat 
magic fact that when one tries to improve upon Lemma 4.1.3,  the best possible function 
that can be used instead of the function (1 --  X)s/4 can be computed exactly, leading 
to the formula (4.2.1).  

Lemma 4 .9 . .  1. ~ Consider 0 < r < 1. Then 

(4 .2 .9 . )  inf r -xs exp ~(0c, 1 - -  X) = 1 + ~ - -  0tr. 
o~<x~<l 

Proof. - -  We will not give the shortest possible proof (that consists in checking by 
computation that for X = r(0c + 1 -- 0tr) -1, we have r -x~ exp ~(~, 1 --X) ---- 1 + 0~-  ~r). 
Rather, we will explain how (4.2.2) was discovered. We fix ~, and we setf(x) = ~-x ~(0c, x). 
The best choice for X is such that 0~ log r + ~f'(1 -- X) ----- 0, i.e., r ----- e x p ( - - f ' ( 1  -- X)). 
So we would like to have, for 0 ~< X ~< 1, the identity 

exp(~f(1 -- ~) + ~Xf'(1 -- X)) = 1 + ~ --  ~ e x p ( - - f ' ( 1  -- ),)). 
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Setting , = 1 - -  X, and taking logarithms, we wan t  

af(~) + a(1 - -  v ) f ' (v )  = log(1 + a - -  ~ e x p ( - - f ' ( ~ ) ) ) .  

Differentiat ing in ~ and setdng g(v) = e x p ( - - f ' ( ~ ) ) ,  we get 

gO) 
x(1 - -  -~ ) f"(v)  = 1 + x - -  .g( ,~)'  

so that  g(v) = 
( ,  + l) ( 1 - -  v) 

= + 1 - - ~  
�9 Taking logarithms and integrating yields (4 .2 .1 ) .  [] 

Lemma 4 . 2 . 2 .  - -  The function ~(~, .)  is increasing and convex 

o~ 

u) >1 u s. + 1) 

Proof. - -  Computa t ion  shows that  ~(, ,  0) = ~uu (~' 0) = 0, and 

d 2 ~ tz oc 

dtt 2 (~ + 1 - -  ~u) ( l  - -  u) 0c + 1 

on [0, 1] and 

since u/> O. [] 

Lemma 4 . 2 . 3 .  - -  For ~, a > 0, we have 

(4.9..4) 

1 + o c - - ~ a ~ <  a - ~ ,  

a + (1 - -  a) exp~(~,  1) ~< a -% 

Proof. - -  T o  prove (4 .2 .3 ) ,  we  observe that  the graph o f  the convex function x -  ~' 
is above  its tangent  at  the point  x =  1. To  prove (4 .2 .4 ) ,  we observe that  
~(~, 1) = log(1 + ~), so that  the left-hand side is 

a +  ( l - - a )  ( 1 + . )  = l + . - - . a ,  

and the result follows from (4 .2 .3 ) .  [] 

Theorem 4 . 2 . 4 .  - -  For a subset A o f  ~N, we have 

( 4 . ~ . 5 )  expf~(A,  x) dP(x) ~< p(A) ~. 

Proof. - -  I t  is an obvious adapta t ion  of  the proof  of  T h e o r e m  4 . 1 . 1 .  T he  case 

N =- 1 follows from (4 .2 .4 ) ,  and (4 .2 .3 )  is used as a substi tute for the last inequal i ty  

of  (4 .1 .8 ) �9  [] 



128 MICHEL TALAGRAND 

I f  we use L e m m a  4 .2 .2 ,  we see that  (4.1.3)  can be generalized into 

(4 .2 .6 )  P(A~) i> 1 p(A)~, exp 2(c~ + 1) " 

Optimization over ~ as in Corollary 2 .2 .3  yields: 

Corollary 4.2.5. - -  For each subset A of ~ ,  

1 
(4 .2 .7 )  t ) 2 log ~ :~ P(A~) >t 1 --  exp 

I t  is an interesting question whether the term %/2 log 1/P(A) can be removed 
in (4 .2 .7) .  We will, however, see in Section 4 .3  that  the coefficient 112 cannot be 
improved.  I t  must be pointed out that  Theorem 4 . 2 . 4  brings considerably more than 
a simple improvement  of the coefficient of t 2 in (4 .1 .3) .  The  reason is that  
~(~, 1) : log(~ + 1) becomes very large when ~ is large. In  that  case, (4.2.5) recovers 
certain features of (3.1.2)  and, in some ways, improves simultaneously upon Theo- 
rem 3 .1 .1  and Proposition 2 .1 .1 .  To see this, consider q >/ 1. We fix A C ~)s, and for 
x ~ ~N, we consider 

k(x) : i n f l k ;3seVA(x ) ;card i i<<.N;s~> 1 - - ~ I  

Then,  certainly, we have 

Now,  

so that  

(4.2.s) 

I 

~(q, 1--~) = log 1 --2log 2 
q l + q  

= l o g ( 1  + q )  2/> log q 

k(x) log q ~< f~(A, x). 

On the other hand,  by (4.2.5) ,  we have 

e-t 
P(fq(A, x) >/ t) ~< " ' A  '-------~rk ) 
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so that, by (4.2.8),  

e-~'~ (~)~ 1 
(4 .2 .9)  P(k(x)/> k) ~< p(A)---- q = p(A) a. 

The relationship with (3.1.2) is as follows. 
I lk(x) .< k, we can find a family (Y~)~.<m of points of A, and coefficients (%)~a,., 

0~< %~< 1, ~ % =  1, such that 

(4 .2.10)  c a r d l i ~ < N ;  ~<m~i l(~.vfi~> 1 - - ~ t  < k .  

On the other hand, i f f (A,  . . . ,  A, x) ~< k, we can find ya, . . . , y~  in A such that 

(4 .2 .11)  c a r d l i < ' N ;  Y' 1- - - ~ I  a~<~ q l (~i ,v / j  } > 1 <~ k. 

Certainly (4.2.11) is more precise than (4.2.10);  however, for some important 
appfications (see IT3]) (4.2.10) is just as powerful as (4.2. I1). 

4.3.  Two-point space 

In  this section, we consider the case where s = { 0, 1 } and where V~ gives weights 
1 - -  p to zero and p to 1. The miracle of Lemma 4 .2 .1  does not seem to happen again, 
so we will only consider statements of the type 

; ' (4 .8 .1)  expf~(A, x) dP(x) ~< p(A)--- ~ 

where, for a couple u = (u 0, ul) of positive numbers, we set 

f , (A,  x) = i n f { u o ] ~ { s ~ ; x  , =O}+uxY~{s~;x , - - - -  1 } : s  ~VA(x) }. 

In other words, we take into account the fact that the points 0 and 1 do not play the 
same role. 

I f  one analyzes the arguments of Sections 2.3, 4.1, 4.2, one sees that the best 
value the induction method allows to take for u 0 is the largest number s such that, 
whenever a < b, we have 

1 1 
( l - - p )  inf 

o~<X~<: a ~ l - z }  b ~x 

or, equivalently, 

I inf x ~x e x~*~< ( 4 . a . 2 )  (1 - -  p )  x- ~ o.<z.<a 

for a l l 0 ~ < x <  1. 

p 1 
e x '8  +-~<<. 

((1 -- p) a + pb) ~' 

((I - p )  x +py' 
- p  

(The best possible value of u 1 is obtained in a similar way, changing p in 1 --  p, 
and will not be considered.) 

1"1 
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The infimum in (4.3.2) is obtained for 

( X = m a x  0, 2s ]" 

The left-hand side of (4.3.2) is constant for x~< exp(--  2s/~); thereby (4.3.2) holds 
provided we have, for x/> exp(--  2s]~), 

( 4 . 3 . 3 )  (1 - - p )  e -~'l~ 

Determining the best value 

<~ ((1 - -p )  x +p)~' - -P" 

of s for which this holds is an unpleasant task, so we 
will content ourselves with finding good values ofs. Taking logarithms and differentiating, 
one sees that (4.3.3) will hold provided we have, for x > 0, 

(1 - - p )  x 
( 4 . 3 . 4 )  2s log x >i 1 A - -  p A  ~ + 1 

where we have set A =  (1 - -p )  x + p .  
I t  suffices that for x I> 0 we have 

0~ p 1 -- A ~+1 (4.3.5) 2s l~ 1 -  p A 

__ p(1 - -  A ~'+1) 

A - - p A  T M  ' 

1 
We first consider the case p = ~, and we show that in this case we can take 

�9 Since 
~ + 1  

1 - - A ~ + I ~ <  ( ~ +  1) ( l - - A )  = ( ~ +  1) ( l - - p ) ( l - - x ) ,  

2(1 - -  x) 

l + x  

( 4 . 3 . 6 )  

it suffices to see that 

0 < x , <  1 =-logx~> 

But the function 
2(1 -- x) 

f ( x )  = log x 
l + x  

satisfies f(1) = 0, f ' ( x )  = --  (1 -- x)Z](1 + x) ~ ~< 0. Using the notation fc(A, x) of 
Section 4.1.1,  we then have proved the following. 

Theorem 4 . 3 . 1 .  - -  When F2 = ( O, 1 } and ~ is uniform, for each ~ >>. 1 and each subset A 

of  fU,  we have 

(4 .3 . ' / )  e x p /  f~(A,x)  dP(x) ~< 
+ 1 l '(Ay" 

Compared with (4.2.6),  we have gained a factor 2 in the exponent in the special 
case of the two-point space. 
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Corollary 4 .3 .2 .  - -  When f~ = { O, 1 } and ~ is uniform, for each ~ >>. 1, and each subset 
of f2 ~, we have 

] ' (( 2 ( 4 . 3 . 8 )  t / >  log P(A) =~ P(al)  ~> 1 - -  e x p  - -  t - -  l o g  �9 

Proof. u From (4.3.7) and Chebyshev inequality, we get 

P(A~) >i 1 p(A) ~ exp - - e + l  # 

and we optimize over e as in the proof of Corollary 2.2.3.  
I t  is a natural question whether (4.3.8) can be improved into 

( 4 . 3 . 9 )  P ( A ~ )  t> 1 - -  K e x p ( - -  t~). 

I t  should, however, be pointed out that the coefficient of t 2 is optimal. We will 
now show this, and at the same time, the optimality of the coefficient 112 in (4.2.7).  
Provide f~ = { 0, 1 } with the probability ~ that gives mass p to 1. Set 

A = Z x,.< pN}. 
i-<.<N 

(Thus, for N large, P(A) is about 1/2.) Consider y ~{0, 1 }~, such that c a r d J  = ra, 
where J = { i ,< N;y~ = 1 }. Assume m > pN. Then  any element x of A differs o f y  in 
at least m - - p N  of the coordinates indexed by J.  Using Lemma 4 .1 .2  for ,ti = l[~/m 
when i ~J,  ~, = 0 otherwise, we see that 

(m - -pN)  m - - p N J !  
(4 .3 .10)  f , (A,y) />  %/m -- ~ " 

I f  we think of m = re(y) as a r.v., the central limit theorem shows that, as n --~ 0% 

(m --  #N) /Wr-N is asymptotically normal, with standard deviation %//0(1 - - p ) .  On the 

other hand, Wr-N]m converges to ~ in probability. Thus 

1 exp -- du lim P( f~(A, . )  /> t) 1> ~ /~/~-~ 

1 exp ( t~ 
I > ~  , 2 (1- -P)1"  

I f p  = 1/2, the coefficient of t 2 is --  1, and if we let p arbitrary, we cannot do better 
than the coefficient --  1/2 of (4.2.7).  

We now go back to our main line of discussion, and we consider the case p ~< 1/2; 
we will show that in this case we can take 

( 4 . 3 . 1 1 )  s = min logp,  4(~ + I) " 
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In  particular,  for ~ large, this is of  order  l/p, ra ther  than order  log(l /p) .  This remarkable  
fact is closely connected to Th eo rem 4 . 4 . 1  below. T o  prove (4 .3 .11) ,  we prove (4 .3 .5 ) ,  
depending  on the value of  x. 

Case 1: x>~ 1/2. Then  - -  logx~> 1 - - x ,  1 - - A S + : , <  ( ~ +  1 ) ( 1 - - p )  ( 1 - - x ) ,  so 
that  it suffices that  

p(1 + ~) 

2s A 

1 
N o w  A/> ~, so that  it suffices that  s ~< 

@(1 + 

1 
Case g: x <~ ~/p. Then  - -  log x >I - -  ~ log 1 [p, so that  it suffices that  

4s (1 - - p )  A" 

Since A i> p, it suffices that  

e(1--P) logl  
s~< 4 P" 

that  

1 
Case 8: %/p <~ x ~ -~. I t  then suffices, since - -  log x/> log 2 and A t> (I - -  p) @ ,  

s~< (1 - - p ) *  3/fi ~ log 2, 

e l  1 
which holds when s ~< ~ og P" 

4 .4 .  Penalties 

We now consider a function k on f2 x ~ ,  such that  h >t 0 and h(~, ~) = 0 for 
o~ s f2. For  a subset A of f2 ~, and x ~ f2 N, we set 

UA(x) = {(s~) ~11~+; 3 y  c A ;  V i<, N, s~ >1 k(x~,y~)}. 

We denote  by  VA(x ) the convex hull of  UA(x ). The  situation of  Sections 4 .1 ,  4 . 2  

corresponds to the case where  h(o,  o ' )  = 1 if  co 4= o~'. 
I n  order  to measure  the " d i s t a n c e "  of  zero to VA(x), we  consider a convex 

function d? on R,  with hb(0) = 0. W e  will assume 

(4.4.1) 

We set 

A, r  x) = inf{ Z ~b(s~); s = ( s~) ,~  eVx(x )} .  
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(Thus, the situation of Section 4.1 corresponds to the case +(s) = s 2 and the situation 
of Section 4.2 corresponds to the case +(s) ----~(a,s).) The material of this section is 
connected to that of Section 2.6, and the notation of Section 2.6 is in force in the present 
section. Thus 0 denotes a convex function from ]0, 1] to I t  +, with 0(1) ---- 0, lim 0(x) = 0% 

a~---~ 0 

and ~ denotes the inverse function. We assume that (2.6.1) holds, and assume moreover 
that for a certain number y > 0, we have 

(4.4.9.) bl> 0 = ~ [ ~ ' ( b +  1)[/> y l~ ' (b) [ ,  

(4 .4 .3 )  I 0'(1) ] >/T, w(1/2) >/~,. 

We recall the function E of (2.6.2),  as well as condition H(~, w) of (2.6.3).  

Theorem 4.4 .1 .  - -  Consider a nonincreasing function w on ]0, 1], w<~ O. Assume that 

foWZ dX <<. and that condition holds. Assume each subset B have 1, H(~, W) that for of n, w e  

(4 .4 .4)  0 < ~(B) ~< ~ ~ exp ~(h(x, B)) d~.(x) <~ exp w(~(B)), 

1 
(4 .4 .5)  ~(B)~>~, t~> 1 ~ ~({ x; +(h(x, B)) >>. t}) <<. e - t ( 1 - -  ~(B)). 

Then, for each subset A of ~ ,  we have 

(4 .4 .6)  ~ exp ~ f h , , (  , x) dP(x) ~< exp 0(P(A)), 

where K depends on y only. 

We should observe first that only the values of w(x) for x ~< 1/2 matter. 

In  order to compare Theorem 4.4 .1  with Theorems 2 .6 .5  and 2.7.1,  we first 
have to keep in mind that it is the function + o h here that plays the role of h in these 
theorems. The conclusion of Theorem 4.4.1  is stronger than that of Theorem 2 .6 .5  
(the way Theorem 4.1 .1  improves on Proposition 2.1.1)  but weaker than the conclusion 
of Theorem 2.7.1 (since one takes convex hulls). Condition (4.4.5) strongly resembles 
(2.7.2).  Condition (4.4.4) coincides with Condition (2.6.12) when ~(B)~< 1/2. A 
simple calculation using (4.4.5) shows that for vt(B)>t 1/2, condition (4.4.5) is of a 
somewhat stronger nature than (2.6.12). 

An interesting case where it is worth to spell out (4.4.4) and (4.4.5) is when 

h(x,y) = h(y) depends on y only. Denoting by m a median of h, (4.4.5) will hold if 
+(m) < 1. And, as seen after Theorem 2.6.5,  (4.4.4) holds provided w(~({ h >/t })) >I +(t) 

(a tail condition of h). 



134 MICHEL TALAGRAND 

(4.4.7) 

Then we have 

To prove Theorem 4 .4 .1  when N = 1, we observe that, since w~< 0, (4.4.6)  
follows from (4.4.4)  when ~(B) ~< 1/2. When ~(B) >i 1/2, a simple computat ion using 
(4.4.5) shows that  given y, ff K is large enough, then 

exp ~. d/(h(x, B)) d~.(x) ~< 1 -1- y(1 --  ~(B)) ~< O(~(B)) ~< exp O(~(B)), 

since 0'(1) t> y. 
For the induction step, comparison with the proof of Theorem 4 .1 .1  shows that  

it suffices to prove the following (used for g = ~ ( f ) ) .  

Proposition 4 . 4 .  ~.. - -  There e;dsts a comtant L,  depending on y only, with the following 
property. Under the conditions of  Theorem 4 . 4 . 1 ,  consider a fund.ion f >~ 0 on f2. Set 

1 
inf  (Xf(x) + (1 -- X)f(y) + ~ +((1 -- X) h(x ,y ) ) ) .  

P 

(4.4.8) J e~'dF, < e o (,[ ~I/)a~). 

Understandably,  with the level of generality considered here, the proof cannot be 
very short. The  reason why we have opted for great generality is that  Theorem 4 .1 .1  is a 
principle of considerable power (as will be demonstrated in Chapter  8) and that  thereby 
it seems worthwhile to prove extensions of it under  weak hypotheses on the function h. 
The  proof  will incorporate in particular ideas from Theorems 4 .1 .1 ,  2 .6 .5 ,  2 .7 .1 .  

A i. we contro    )from m e - -  

controlling the lower tail of f .  Set B, = {f~< s }, and denote by m a median o f f ,  so that  
~(B,) >/ 1/2. We set 

(4 .4 .9 )  b = inf  ls  + 1 1 
2 t" 

The first step of the proof will be to show that  ~(B,) is not too big, i.e. that  b is 
not too small. 

Proposition 4 .4 .3 .  - -  To prove Proposition 4 .4 .2 ,  / f  L > 4/y, we can assume 

4 
( 4 . 4 . 1 0 )  m ~< b + ~ .  

Proof. - -  We assume m > b, for otherwise there is nothing to prove. Using (4.4.7)  
with X = 0, we see that  for each s we have f (x )  <~ s + L -x  ~b o h(x, B,). Using (4.4.4) 
together with HOlder's inequality, it follows that  

eId~.<~ exp + ~w(~(B,))  , 
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implies 

i,e. 
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e?d~ <~ e ~ by taking the infimum over s ~< m. On the other hand, (4.4.9) 

1 
s ~< m :~ b -- s.< ~ w(~t(B~)) 

We can hence appeal to Lemma 2 .6 .4  with G = { f <  b} and t ---= I/L to see that 

fo fo 1 ~( f )  d~t ~< ~t(G) ~(b) + ~'(b) ( f - -  b) dw + ~ I ~'(b)I. 

But, by (4.4.12) we have 

fc T_,lf L l ( f  ,1/2 J-~l I f - -  b]d~<~ wd~<. w~d~) <~ 

and thus 

On the other hand, when f (~ )  > b, we have 

and, by integration, since ~({f~> m })/> 1/2 (and m > b), 

Io 1 \c ~ ( f )  d~ ~< (1 -- ~(G)) ~(b) -- ~ (~(b) -- ~(m)). 

Combining with (4.4.13) we get 

~ ( f )  d~t ~< ~(b) + E [ ~'(b) [ -- ~ (~(b) --  ~(m)). 

Since we have shown that f ,  eTd~t<~ e b, there is nothing to prove unless 

fo ~,~, ~ ~,~ (~o~ otherwise 0 (f~,~,  ~)~ ~)~us we ~n ~ssume 

1 2 
(4.4.14) ~ (~(b) -- ~(m)) ~ ~ [ ~'(b) [. 
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Now, since m >  b, from (4 .4 .2 )  follows that  ~(m) ~< ~(b) - -  y [  ~'(b) I min((m --  b), 1). 
Compar ing  with (4 .4 .14) ,  we see that  min(m - -  b, 1) ~< 4](Ly),  so that  if  L > 4]y , we 
must  have m - -  b ~< 4 /Ly.  [] 

We consider the smallest n u m b e r  ~ for which 

so that  

(4.4.15) 

V s <~ m, m - s <• aw(tz(B,)) 

V s < ~ m ,  I ( ~ w > ~ m - s } l > ~ v . ( B , ) .  

I t  is rather  impor tan t  to note that  

8 
(4.4.16) ~r Ly ~. 

Indeed,  if m -  s ~< 8 /Ly,  then 

m - - s  m - - s  8 

w(~(B,)) w(1/2) Ly  ~" 

O n  the other  hand,  if m --  s/> 8 /Ly,  then, by  (4 .4 .10) ,  we have m --  s~< 2(b - -  s), 
so that  

m - - s  b - - s  2 
~< 2 w-~'-8-m ) ( ( B )  ~< 5" W([L(]~8)) 

W e  consider a second parameter  M < L. Throughou t  the rest of  this section, we 
will have to put  conditions on L, M,  L /M.  For simplicity we make the convention that  
the expression " if L is large enough "... means " there exists a constant  K(y) ,  depending 
on y only, such that,  if L/> K(y) . . .  " and similarly for M,  L]M.  

We set m' = m --  16]Ly ~. We  consider the function 

and the function g defined as 

iff( ,) < m', 

g(~) = max  (m', min ( f ( ~ ) ,  ra + 1 ) )  i f f ( ~ )  > m'. 

S i n c e f < f  it is simple to see that  g ~ f ' .  I t  is also simple to see that  

t lv, J 
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Indeed, the right-hand side 

f(0~) = i f ( o )  = g(o).  We set 

C = {f~> m}; 

Lemma 4.4.4. - -  We have 

(4.4.18) o(f n ~(f)d~t)~> 

does not occur only 

D =  ~ > m q - ~  . 

137 

when f(co) < m', and then 

fn f '  d~z -- o~ 2 -- fe ( f '  -- m)z d~t. 

Proof. - -  Since f ' ~< f ,  we have ~( f ' )  >/ ~ ( f )  and 

We now appeal to Lemma 2 .6 .4  with t = =. We have 

fa~(f ')  <. ~(m) + C(m) f n ( f '  -- m) d~ + ,2 l ~'(m) ' 

By convexity of 0 and since ~"(m) ~< [ ~'(m) [ this implies 

O(fn~(f))>~ m + f a ( f  --m)d~z--a~-- fc 

Lemma 4.4.5. - -  I f  L and M are large enough, we have 

+ ~"(m) fo (f' -- m)~ d~t. 

( f '  --  m) ~d~t. [] 

(4.4.19) a e? d~ t 

<<. exp(~ fa(g +f')dEz + 2o~ + 2 f c ( f ' - -  m)2d~ + fa(e?-'--el~t)+ d~t) �9 

Proof. - -  First, we observe that 

(4.4.2i) m 

fa e"-'~ d~ <<. 1 + n (g -- m) d~t + fta (g -- m) ~ d~t. 

18 

Weobse e atmm(f m ) .g--mSincee ..a§ a,M.-1 
we have 



138 M I C H E L  TALAGRAND 

Now, by (4.4.17), and provided L, M are large enough, 
1 

( 4 . 4 . ~ )  (g--m)2<<. 2 ( f ' - - m ) ~  + 2(g-- f ' ) '<~ 2 ( f ' - - m ) ~  + - ~ ( f ' - - g ) .  

We recall also that 

In ( f '  - -  m)~ de. ~< I~ ( f  - -  m)~" dr. ~< ot z. 
\c \c 

The result follows by combining these inequalities, and using that 1 + x ~< g. [] 
It  follows from Lemmas 4.4.4 and 4.4.5 that to prove Proposition 4.4.2, it 

suffices to prove the following when M, L/M are large enough. 

fo(f ' - -  g) d~z/> 6~ ~ + 6 fe ( f ' - -  m)2 d~ + 2 fn (e?'-'~ - -  el/M)+ d~. 

This follows from the next three lemmas. 

Lemma 4.4.6.  - -  We have 

(4.4.34) fn K KM ~ [ (e 7 -"  -- eXt~) + d~z <~ E F(D) ~< L .Jc ( f '  - m)~dF" 

Lemma 4.4.7. - -  I f  L/M is large enough, we have 

fo ( f '  -- g) de. >i ~ ( f '  --  m) 9 d~. 

Lemma 4.4.8. - -  I f  L/M is large enough, we have 

f n ( f '  -- g) dp~ Ly' ~= f> 
K 

Proof of Lemma 4.4.6. - -  The definition of f (with X =  1) 
/ ( o )  ~< m + 1]M + L -1 +(h(o, ~\D)).  Thus by (4.4.5) we have 

and thus 

1 
~z f > ~ m + ~ + T ,  ~<e-~z(D) 

(e 7-'~ - -  el/N) + d[/,, ~< '~ fl(gi., _ 1) e -k+x  ix(D),  
1:~>1 

shows that 

from which the first inequality of (4.4.24) follows by elementary estimates. (The second 
inequality of (4.4.24) is obvious,) H 
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Proof of  Lemma 4 . 4 . 7 .  - -  Step 1. - -  For k i> 0, we define 

a ~ = s u p  t ; v t ( { f ' / >  t}) t>  ~-~ . 

Thus  m~< a~< a~+a,< m + 1/M. W e  consider a set ZkC{f~< a~) such that  

1 
~(Z,) = 1 2e k. 

We  set Z~ ----- { co; k(o,  Zk) ~< 2 ). Since ~b(x)/> x for x >i 1, we have 

Z~ D { co; ~b(h(r Z~)) .< 2 } 

so that,  by  (4 .4 .5 ) ,  w(Z~)/> 1 - -  l/2e k+~. W e  set, for k/> 0, 

w ~  = z;~ c~ ( z ~ + ~ \ z , + l ) .  

W e  observe that  the sets (W~)~> o are disjoint, and that  

l(le, ) (4 .4 .9 .5)  ~(w~)  >1 ~-~ - f> 2:+---- ~. 

Step 2. ~ We show that  

(4 .4 .9 . s )  ( f '  - g) d~ > -~ (~+~ - ~ ) ,  ~ ( W A D ) .  
k 

Consider co e W~\D.  Then  f ' ( ~ )  = f ( ~ ) ,  so that,  given X e [0, 1] and co' e ~  

(4 .4 .R ' / )  f '(o~) - - / (co)  = f ( c o )  - - / ( co )  
1 

>/ (1 - -  Z) ( f ( r  - - f ( o ~ ' ) )  - -  E + ( ( 1  - -  ~) h(r co')) .  

We can find co' e Z~ such that  h(o~, co') ~< 3. Then  f(o~) - - f ( o J )  >t ak+ a - -  a k. We  can 
take 0 ~< k<~ 1 such that  1 - -  k = M(a~+ 1 - -  ak)/3. T h e n  (4 .4 .27)  yields, since +(x) ~< x a 
for x ~< 1, tha t  

M 
f ' ( r  - - / ( c o )  >1 -~ (ak+ 1 - -  ak)Z - -  - -  

Thus,  if  L / M  is large enough, 

M 
f ' (~) - / ( ~ )  >~ -~ (a~+l - a,)~, 

that  is 
M 

/ ( c o )  ~< f ' ( r  - -  -~- ( a ~ + ,  - -  ak) ~. 

91Vf z 

L (a~+x - -  a~)~" 
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Since a,+ 1 -- a,~< l /M,  and f'(eo) >1 ak+~, the r ight-hand side is ~ a k >/m, so that  

M 
g(to) ~< f ' ( to)  -- -~-(ak+ 1 --  a~) ~ 

and thus 
M 

if(to) --  g(o) >i -~- (~k+l - -  O'k) '1 

from which (4.4.26) follows by integration. 

Step 8. - -  Denote by k o the largest integer such that  1/4e~+S~> ~t(D). Thus 
~t(W,) t> 2~t(D) for k<<.ko, and, by (4.4.26) and summation, we get, since 
~.(W,\D)/> ~(Wk)/2 , 

f (ak+ 1 -- a~) 2 
M 

(4 .4 .~ ,8)  ( f '  - -  g) d~ >/ ~ k ~  y' r 

By the argument  of Lemma  2 .7 .8 ,  we have 

Y~ (a~+ 1 -- ak) ~ e -~/> ~ (min ( f ' ,  m + a~+l) --  m) 2 dV. 

Thus  the proof is completed if a~+ 1 >1 l[2M. 

Step 4. 

(4 4.39) 

Assuming now a~o+l ~< 1/2M, we shall show that  

f 1 e_kO" ( f '  --  g) d~ >/ ~ - ~  

Since 
M 2 

Z (a~+l - -  ak) 2 e -~,  e-~O >/ -~- ~>~ 

combining with (4.4.28),  we get 

f M 
( f '  -- g) d~ >t - -  Y~ (a k _ ak)~e_ k M K k~>o +1 t> ~ ( f - -  m) ~ d~ 

by (the argument  of) Lemma  2 .7 .8 ,  completing the proof of Lemma  4 .4 .7 .  
To prove (4.4.29),  we observe that, by definition of k0, we have e-~-e~< ~z(D). 

Consider the set 

Z = {  ~(h(.,  Zko+l) ) ~< 6}. 
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Then, by (4.4.5),  we have ~(Z)1> 1 -  e -k~ so that ~(Z n D)>/ e-k0/K. Now, if 
co e D, we havef'(r >1 m + 1/M while if co r D, we have 

1 
f ( o )  ~< a~0+l + m + E +(h(o, Z~0+l)) 

1 6 
-< m + + L �9 

3 
Thus g(r ~< m + ~ if L/M is large enough. Hence, f - -  g 1> 1/4M on Z n D. [] 

P r o o f  o f  L e m m a  4.4.8.  - -  Step 1. - -  We show that we can assume ~(D)~< 1/8. 

by Lemma 4 .4 .7  we h a v e S ( f '  -- g) d~ >/ 1/KM and, since ~ < 8/y 2 L, Indeed otherwise 

this is 1> L~ 2 when L/M is large enough. 

Step 2. - -  By definition of ~, there exists s <  m with m -  s >  ~w(~(B,))/2. By 
(4.4.5) and Chebyshev inequality, the set 

H = { +(h(., B,)) ~< 2 + w(~t(B~)) } 

has measure i> 3/4. Thus if we set G = H n (C\D) ,  we have ~(G) I> 1/8. 

Step 3. ~ Set 

m - - $  

3 + 

Since w(tz(B,)) >t w(1/2)/> y, and m -- s >i ~w(tz(B~))/2, we have 

Since ~(G) t> 1/8, it suffices to show that 

LV 
( 4 . 4 . 3 0 )  V o e G,  f ' (r  - -  g ( o )  >/ -~-  

Step 1. - -  We prove (4.4.30). Consider co e G. T h e n f ' ( o )  =f (co)  t> m. Consider 
o '  e B8 with h(o, o') ~< 3 + w(~(B,)). Then 

(4 .4 .3 t )  /(co) - - / (co)  >i sup ((1 --  X) (m -- s) -- 1 
0 ~ ) , ~ 1  E +((1 -- X) (3 + w(~z(B.))))). 

We choose 0 <~ X ~< 1 such that 

Ly 2 [3 

4 2 + w(~(Bs) )" 
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This is possible since ~ ~< ~ ~< 8/Ly ~. Then (4.4.31) yields, since +(x) ~< x ~ for x ~  1, that 

Ly ~ ~ 
f(o)) - - f ( ~ ) / >  8 

Thus f ( e o ) ~ < f ( ~ ) -  Ly ~ ~/8.  Since the right-hand side is /> m', we have 

g(~o) ~< f(o~) -- Ly ~ ~/8.  

The proof is complete. 

4.5.  Interpolation 

The result of this section will interpolate between (a weak form of) Theorem 3.1.1,  
for q = 2, and (a weak form of) Theorem 4.1 .1 .  Consider three points x = (xi)~<~, 

1 2 ~ I g  y l  (Yi)i~< N, Y 2 = = (Yi)~<N of Set 

r~(x ,y ,y  ~) = (l{~i.@), 1(~,. ~), 1~  r (~.~))) .  

Thus r,(x,y:,y ~) s{ 0, 1 }3. Set 

r(x ,y: ,y  ~) = (~( , y , y ) ) ~ < s  e({0 ,  1 . 

Given two subsets A~, A 2 of fU, let 

UA1,A,(x ) = { r(x,y:,y~) ;yl e A : , y  2 ~ A s }, 

and consider the convex hull VA1 ' A~(x) of UA~ ' A~(x), when UA, ' A~(x) is seen as a subset 
of (R~) N. 

Throughout this section, we define b > 0 by e~b= 3 -  2e - ~ ,  so that b < 1/6. 
We make the convention to write a point r e (R~) ~ as (r:,,, r~.~, r ~ , ~ ) ~ .  We set 

f ( A : ,  As, x) ---- inf { Y~ r ~ ~ 1 ~ + r~,, + r,.~;r e V,I,A,(x)}. 

Theorem 4 .5 .1 .  - -  We have 

fa 1 
, exp bf(A:,  A , ,  x) dP(x) ~< P(A1) P(A2)" 

To understand this statement better, set u = f ( x ,  A1, A2). Consider r ~ VA1,A,(x) 
such that 

Z ~ ,~+~,~+rs ,~<~u .  

Consider numbers (% ~)~ N, (% ~)~ <~ N. Then, for j = 1, 2 

Z c~,i rj,, <<. ( Z c],,):/~( Z r 2~,,I]112 

.< E 4,,) 
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Thus 

Y, (q,, r,,, + c=,, r=,, + brs,,)< t=:u + u ./= (J ~ ~ca,, + ./ 52 c~------~). 

I f  we recall that  VAx,A=(x ) is the convex hull of UA1.A~(x), this implies that  we 
can find yX ~ A1, y~ e A 2 such that  

2 {  q, , ;  x, # y l  } + 2 {  c=,,; x, #y~}  + ca rd{ i ;  x~ r  t. 

The  proof of Theorem 4 .5 .1  goes by induction over N. The  case N = 1 is left 
to the reader. For the induction from N to N + 1, one observes, with the usual notation, 
that, when a0,o, al,0, ao, 1, a~, 1/> 0 are of sum one, then 

f (A1,  As, (x, co)) ~< ao, o/(Al(o~), A,(co), x) + al, of(Bx, A=(r x) 

+ ao, xf(A~(o~), B,, x) + al, xf(Bx, B,, x) 

+ (al, ~ + al ' ~)z + (ao, 1 + a~,l) ~ + al, x. 

Thereby, to perform the induction it suffices to show that, when gl,  g, are two functions 
on ff), gl,  g, ~< 1, then 

(4 .5 .1 )  f inf  exp (bal, 1 
1 1 1 

+ b(a~ + al,1)~ + b(al, o + al, x)=) (glgz)ao,o g~,o g~,~ dlx 

1 <~ 

f gl f g, d~. 

where the infimum is taken over all the allowed choices of ao, o, ao, 1, al, o, al, x. 

Lemma 4 . 5 . 2 .  ~ We have 

1 1 1 
(4 .5 .2 )  infexp(bax,~ + b(a~, o + al, i) ~ + b(ao, ~ + aa, z) ~) (ga gz) ~176 gl 1'0 g~,l 

~/(3 -- 2ga) (3 -- 2g~). 

We first use (4.5.2)  to prove (4.5.1) .  By (4.5.2) and Cauchy-Schwarz, the 
left-hand side of (4.5.1)  is bounded by 

]f,=-==,>=,f<=-=g.>=,-l(=-=f=l+)(=-=f=,+). 
Thus it suffices to observe that  for 0 ~< x ~< 1, we have 3 -- 2x ~< x-3, which expresses 
the fact that  the convex function x -~ is above its tangent at x = 1. 
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Proof of  Lemma 4 . 5 . 2 .  - -  We  will actual ly restrict the inf imum to the cases al, 1 = 1 
or al, 1 = 0. We  will prove 

( inf  ebC~+4' 1 1 ) ( 4 . 5 . 3 )  min e 8b, o<~ax+a~<~l gl -a t  g~-a, <~ %/(3 - -  2gx) (3 --  2ga)- 

We  distinguish cases. 

Case 1: gx g~ <~ e--2b. 

I t  suffices to see that  

eab~ % / ( 3  - -  2gl) (3 - -  2g2). 

The  r ight-hand side has min imum at gl = 1, g2 ----- e-2b, and our  value of  b has been 
chosen so that  inequal i ty holds in that  case. 

Case 2: gl g2 >1 e-2b. 

log gr The  purpose of  the condit ion gl g2 i> e-  2b For  j = 1, 2, we take a t --  2b 

is to ensure that  aa + as ~ 1. I t  suffices to prove the inequal i ty  

1 (lo.ez)~ 
- - e  4b ~ < % / 3 - - 2 g l .  
gx 

We will show that,  for 0 < x ~< 1, 

#--(l~ ~< x2(3 - -  2x) 

or, equivalent ly that  

~ ( x )  - 
(log x) ~ 

2b 
+ 2 1 o g x + l o g ( 3 - - 2 x ) / >  0. 

Since ~'(0) = O, q~(O) = 0 it suffices to show that  (x~'(x))' >1 O, i.e. 

1 6x 
>/0.  

b (3 - -  2x) ~ 

1 
But, since ~ ~< 6, it suffices to show 

(3 - -  2x)~>~ 1. [] 

that  x ~  ( 3 -  2x) 2, which is t rue since x~< 1, 

5. T h e  S y m m e t r i c  G r o u p  

We denote by  S~ the group of  permutat ions  of  { 1, . . . ,  N }. O u r  interest in the 
symmetr ic  group stems from the fact that  it is closely related to a product .  To  see this, 
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let us denote by t~, ~ the transposition of i and j .  Then, it is easily seen that every ~ ~ S~ 
can be written in a unique way as 

( 5 . 1 )  ~ = t~ ,  ~c~ ~ t ~ _  1, . N  - 1) - . -  ~ 4 ,  .2)  

where, f o r j  ~< N, we have i ( j )  ~ j .  This decomposition allows to transfer (2.1.3) to S N. 
The result thus obtained is the result of Maurey [M1]. The purpose of the present 
chapter is to prove a version of Theorem 4.1.1 for Ss that will improve upon Maurey's 
result the way Theorem 4 .1 .1  improves upon Proposition 2.1.1.  The reason why 
proving this is not such an easy task is that the decomposition (5.1) is highly non- 
commutative. 

For a subset A of Ss, and a e SN, we set 

UA(a ) = { s  e{0 ,  1 }N; S~- e A ;  V / <  N , s  t = 0 ~,r(g) = a(l) } 

and we consider the convex hull VA(a ) of UA(a) in [0, 1] N. We set 

f (A,  a) = inf{ ~2 s~; s = (se) ~ VA(Cr ) }. 

We denote by Ps the canonical ( =  homogenous) probability on S~. 

Theorem 5.1 .  - -  For every subset A of S N we have 

i 1 1 
(5.9,) exp ]-6 f ( A ,  ~) dPN(a ) ~< P~(A----~" 

N 

In a natural way, S~ can be considered as a subset of { 1, . . . ,  N }s by the map 
~ (a(i))~<s. I f  Ss were equal to all of{ 1, . . . ,  N }•, (5.2) would be a consequence 

of Theorem 4.1 .1 ,  but S~ is only a very small subset of { 1, . . . ,  N }~. 
The challenge of Theorem 5.1 is that it is apparently not possible to prove (5.2) 

by induction over N. Rather, we will use a stronger induction hypothesis. Given p ~< N, 
we set 

f (A,  a,p) = inf{s~ + Y, s~; s eVA(~) }. 
/~<N 

Theorem 5.1 is obviously a consequence of the following. 

Proposition 5 .2 .  - -  For each subset A of S~ and each p <~ N, we have 

i 1 1 exp ~ f (A,  a, p) dP~(a) ~< pN(A---- ~ ,  
N 

( 5 . 4 ) N  
i 1 1 

exp -~ f (A,  ~, a-S(p)) dP~(a) ~< P~(A------~" 
N 

19 
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We leave to the reader to prove Proposition 5.2 when N = 1. We now assume 
that Proposition 5.2 has been proved for N and we prove it for N + 1. A noticeable 
feature of this proof is that the proof of (5.3)N+1 (resp. (5.4)~+~) will require the use 
of (5.4)~ (resp. (5.3)~). Before the proof starts, we need to introduce some notation. 
Given p, m~< N, p 4: m, we set 

(5.5) f (A,  a,p ,  m) = inf{s~ + Y~ s~;s eVA(a) , s  ~ = 0}. 
t~l,t 

Given i , j  <<. N ,  we set 

(5.6) g(A, a, i , j )  = inf{ ~ s~; s ~VA(a)}. 

We start the proof of (5.4)N+1. Certainly there is no loss of generality to assume that 
p = N §  

Lemma 5 . 3 .  - -  Consider i, j ~< N + 1, i 4: j ,  ~ e S~ + 1, 0 ~< )` ~< 1. Then 

(5 .7 )  f ( A ,  ~, i) ~< 4(1 - -  ),)~ + (1 - -  ),) g(A, a, i , j)  + Xf(A, a,j ,  i). 

Proof. - -  Consider s e VA((~), t e V, (e) ,  with t, = 0. By convexity of V,((~), we 
have 

Thus 

u =  ( 1 - - X )  s + X t ~ V ~ ( ~ ) .  

f ( A , . ,  i) .< X + 2u . 

Since si ~< 1 and since t~ = 0, we have 

f ( A , o , i ) , <  Y. u ~ + 2 ( 1 - - X )  2 + ( ( 1 - x )  s~+xt~) 2. 

Since sj ~< 1, we have 

((1 --  X) s~ -t- Xtj) 2 ~< 2(1 -- ),)2 ~ + 2)2 t~ ~< 2(1 -- )`)2 + 2Xt~. 

Since the function x ~ x a is convex, we have 

Thus 

f (A,o , i )~<  ( l - - X )  ~ 4 + X ( 2 t ~ +  Z t~) + 4 ( 1 - - X )  2. 

The result follows by taking the infimum over s, t. [] 
Following the idea of Theorem 4.1.1,  (5.7) will be used together with Holder's 

inequality. Some work is, however, needed to relate the resulting terms to the induction 
hypothesis. For i ~< N + 1, we set 

G , = { a e S ~ + : ; a ( i )  = N +  1}. 
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For simplicity, we denote by t~ = t~+l, i the transposition of  N + 1 and  i. We 
consider the map  R : p ~ p o t,. We observe that,  i f  p e G~, then 

R(p) ( N +  1) = o o t , ( N +  1) = p ( i )  = N +  1. 

Thereby,  we can consider R as a map  from G~ m S N. We set Ai = A n G~. 

Lemma 5.4 .  ~ I f  ~ e Gi, we have 

(5 .8)  f ( A ,  (r,j, i) ~< f(R(A~), R(~), t , ( j )) .  

Proof. - -  We let the reader  consider the essentially obvious case where i ----- N + 1, 
and  we assume i + N + 1. Given a sequence s e { 0, 1 }~, we consider the sequence 

s- = (~t) e { 0, 1 }~+1 defined by ~ = 0, ~-s +1 = si, st = st ff  / 4= i, N + 1. We note 

tha t  st = sti(t) f o r / 4  i. Thus it suffices to prove that  s- e U~,(a) whenever  s e UR(Ai)(R(a)). 
Consider s e UR(Ai)(R(a)). By definition, there exists v e R(A~) such that,  for g ~< N 

st = 0 ~ ~(e) = R ( ~ )  (t).  

Since "r e R(A~), we have -r = R(p) for a certain p e A i. Thus  

( 5 . 9 )  st = 0 =~ p( t , (r  = o ( t , ( t ) ) .  

We will show that ,  for /~< N + 1, 

= 0 * o(t) = ~( t ) .  

This holds for r = i, since p(i) = o(i) = N + 1. For  1 4= i, this follows from (5.9),  since 
~t = sqr and t~ o t~ is the ident i ty of S~. [] 

We denote by Q~ the uniform probabil i ty on G~. 

Corollary 5.5. - -  

( 5 . 1 0 )  f e x p l f ( A , , , j , i )  dQ~(~) 
1 1 

Proof. - -  Using (5.8) and  (5.3)~,  the left-hand side of  (5.10) is bounded by 

I e x p l f ( R ( A ~ ) , R ( o ) , t ~ ( j ) ) d Q ~ ( e )  = f e x p l f ( R ( A ~ ) , P , t ~ ( j ) ' d P ~ ( p )  

Lemma 5.8.  - -  Assume j 4= i. Then 

. ) o, i , j)  dQ.i(o) ~< 

1 1 

< V ~ ( R ( A , ) )  - )~(AA-------=" [] 

Q X A ) "  
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Proof. - -  The map S : p  ~-* p o t~ is one-to-one from G 5 to G~. We will prove 
that setting B = R(S(A~)), we have 

( 5 . ~ . )  g(A, a, i , j )  ~<f(B, R(a))  

where we recall that R is seen as a map from Gi to S~r. Since P~(B) = Qj (A) ,  (5.11) 
will follow from either (5.3)~ or (5.4)~r as in the proof of Corollary 5.5. 

Given a sequence s e { 0, 1 }z~, we consider the sequence ~- ~ { 0, 1 }~ + : defined as 
follows. We set ~ = s - j =  1. I f  N +  1 4 : i , j ,  we set s-N+a=s~. I f  / r  1 } ,  

we set ~t = s t .  

We will show that when s e UB(R(~)), then ~- e UA(~ ). By definition of UB(R(~)), 
there exists "r e B such that 

s~ = o * , ( / )  = R ( ~ ) ( t )  = ~ o t , ( e ) .  

Since ~ e B, we can write .r ---- p o t~ o ti, where p e A t. Thus 

s t  = o ~ p o t ,  o t , (e )  = ~ o t , ( e ) .  

We will show that for / ~< N + 1 we have 

~-t = o ~ p(e) = ~(t). 

The only nontrivial case is / = N + 1, when N + 1 4: i , j .  In that case, when 

s-~r+l = 0, we have s, = 0, so that v(i) = R(a) (i) = ~r(N + 1). But 

�9 (i) = p o t  o o t ~ ( i )  = o o t o ( N +  1) = - - p ( N +  1). 

s i n c e N +  1 4 : i , j .  [] 
We now complete the proof of (5.4)~+1. We select j  such that Q j (A) i s  maximum. 

Ifi~< N + 1, i :~j, for 0~< X~< 1, we have, using Lemmas 5.3, 5.4, Corollary 5 .5  and 
Holder's inequality 

i 1  [: ] ,  1 exp ]-~ f (A ,  e, i) Q, (e )  ~< exp (X - -  1) 2 Q i ( A ) X  Q . , ( A ) I _  x 

I f  we appeal to Lemma 4 .1 .3 ,  we have 

Q , (A)  1Q----~] 

1 
e x p , ( 1  --X) 2 

I 1 1 (  (5.13) exp i-6 f (A ,  or, i) dQ~(e) < Q~(A) 2 Q,(A) '  t 
Q~(A/ ] "  
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I t  should be obvious from the induction hypothesis that  (5.13) still holds for i = j .  
1 

Since Pz~+l = Y'~<z~+a Q i ,  we have, from (5.13), and since i ----- a-X(N q- 1) 
N + 1 

for o e G~ that  

f 1 I ( Ps+~(A) / exp ]~ f ( i ,  ~, o - l (N  + 1)) dP~+l(a  ) ~< O ~.(h-----) 2 
Q~(A) ] 

1 
pN+I(A )" [] 

Having proved (5.4)s+1 , we turn towards the proof of (5.3)~ + 1. We can assume again 
p = N + 1. The proof is not identical to that  of (5.4)N+1 , but  is completely parallel. 

I .emma 5.7.  - -  For (~ ~S~+I , j~<  N -k- 1, j #  ~(N + 1), 0~< X~< 1, we have 

(5 .14)  f ( A ,  ~, N § 1) ~< 4(1 - -  X) ~ -k- (1 - -  X) g (a ,  ~, N + l,  ~ - l ( j ) )  

+ xf (a ,  a, a - l ( j ) ,  N -k 1). 

Proof. - -  This is (5.7) f f o n e  replaces i by N § 1, j by e - l ( j ) .  [] 

We set 

G~ = { a  e S s + ~ ; a ( N  § 1) = i } .  

We fix i, and we consider the map  R ' : p ~ - ~ t  iop .  Thus, for p e G ~ ,  we have 
R'(p) (N + 1) = ti(i) = N + 1, and we can view R'  as a map  from G~ to S N. We 
set A~ = A n G ~ .  

Lemma 5 . 8 .  - -  I f  (~ ~ G~,  i # j ,  we have 

(5 .15)  f ( A ,  ~, ~ -~ ( j ) ,  N +  1) ~< f (R' (~ . ' ) ,  R'(~),  R'(~)-I ( /~( j ) ) ) .  

Proof. - -  Given a sequence s ~ { 0, 1 }N, we consider the sequence ~ ---- (~t) e { 0, 1 }N + 1 
defined by ~ ---- s t ifg # N + 1, and ~-s+l = 0. Since ~-a( j )  = R ' (~ ) - l ( td j ) )  # N q- 1, 
it suffices to prove that  ~ e  UA(~ ) whenever s e Ua, IAb(R'(~)). Thus consider s in this 
later set. By definition, there exists v e R'(A~) such that  

v t ~< N,  st = 0 = ~(t) = R ' (~ )  (e). 

Since v ~ R'(A') ,  we have "r ---- R'(p), p ~ A~. Thus, 

v t <~ N ,  st  = 0 :~ t, o o ( t )  = t, o ~ ( t ) ,  o ( t )  = ~ ( t ) .  

Since p(N q- 1) = a(N -J- 1) = i, we then have 

V I ~ < N +  1, ~ t = 0  =~p(Q-----~(t). 

Thus ~- s UA(o). [] 
We denote by Q'i the homogeneous probability on G~. 
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Corollary 5.9.  - -  I f  j 4= i, 

f 1 1 (5 .16)  exp ]-~ f ( A ,  ~, a-~( j ) ,  N + 1) dQ'+(a) ~< Q'+(A-----~" 

Proof. - -  Using (5.15) and  the fact that  R '  transports Q'+ to P s ,  the left-hand 
side of  (5.16) is bounded  by  

f i exp i-6 f(R'(A+.), p, p-x(t+(j))) dPl~(p ) ~< 
1 1 

P~(R ' (&))  O~+(A) 

using (5.4)~.  [] 

Lemma 5 . 1 0 .  - -  I f  i 4= j ,  we have 

y,  (5 .17)  exp ]-~ g(A, a, N + 1, a - t ( j ) )  dQ'+(~) ~< - -  
OZ,(A)" 

Proof. - -  The  map  S' : ~ -+ tit o p is one-to-one from G'~ to Gs We will prove 
that,  setting B = R'  o S'(Aj), we have, for ~ in G~ that  

( 5 . 1 8 )  g(A,., N + 1, . - ' ( j ) )  .<f(B, R'(.)) 

where  we recall that  R '  is seen as a map from G; to S~. Since PN(B) = Q'~(A), (5.17) 
will then follow from either (5.3)~ or (5.4)~.  

Given a sequence s e{ 0, 1 }s, we consider the sequence ~-e{ 0, 1 }~+1 defined 
as follows. We set s-N+1 = S-o-~) = 1. We set }t = st if  / r  + 1, ~ - l ( j )  }. To prove 
(5.18) it suffices to prove that  if  s e U s ( R ' ( a ) ) ,  then ~-~UA(z ). Thus,  consider 
s e U r ( R ' ( a ) ) .  By definition, there exists v e B such that  

( 5 . 1 9 )  st  = 0 * . ( t )  = R ' ( . )  (t)  = t, o ~,(t) .  

S Since "~ e B, we can write -~ = t~ o t+i o p, where  p e Aj .  Thus,  by (5.19) 

st  = o :..  t .  o p ( t )  = ~ ( t )  + •(t)  = t .  o < , ( t ) .  

Now, for / # N + 1, a - t ( j ) ,  we have a(t) 4= i , j ;  thus t+~ o ~(/) = a(/). Thus for these 
values o f /  we have 

= 0 = . s t = 0 * p ( t ) = ~ ( t ) .  [] 

The  end of the proof  of (5 .3)~+i  is similar to the end of  the proof  of  (5 .4)~+i  , 
and  is left to the reader.  
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II. A P P L I C A T I O N S  

6. B in  P a c k i n g  

Given a collection x l , . . . ,  x N of items, of sizes ~< 1, the bin packing problem 
requires finding the minimum number B~(xx, . . . ,  x~) of unit size bins in which the 
items xl, . . . ,  x~ can be packed, subject to the restriction that the sum of the sizes of 
items attributed to a given bin cannot exceed one. (For simplicity, we will denote items 
and item sizes by the same letters.) The bin packing problem is a fundamental question 
of computer science, and, accordingly, has received considerable attention. Much work 
has been done on stochastic models [C-L]. In  the model we will consider, the 
items X a , . . . ,  XN are independently distributed according to a given distribution yr. 
One of the natural questions that arises is the study of the fluctuations of the random 
variable B~(X1, . . . ,  X~). One early result, [R-T1], [McD1], using martingales, is 
that for all t > O, one has 

P ( , B ~ ( X 1 , . . . , X ~ ) - - E B N ( X I , . . . , X ~ ) , > ~ t ) ~ <  2 e x p ( - - N ) .  (6.1) 

However, especially when EXa is small, one expects that the behavior of BN(X a, . . . ,  X~) 

resembles the behavior of Y, X~.. Thereby one should expect that the exponent in 

the right-hand side of (6.1) should be of order t~/N var(X1), or, at least, less ambitiously, 
t~/NE(XI~). This is apparently not so easy to prove, and despite several attempts, was 
established only recently using non-trivial bin-packing theory [R4]. The purpose of the 
present section is to prove this result as an application of Theorem 4.1 .1 .  Several features 
of the proof will appear repeatedly in future applications. One advantage of our approach 
is that it uses only trivial facts about bin packing, such as the following observation. 

Lemma 6 . 1 .  - -  W e  have 

B~(xa, . . . ,  x~) ~< 2 X x a + 1. 
d~<N 

Proof. - -  I t  suffices to construct a packing in which at most one bin is less than 
half full. Such a packing exists since bins that are less than half full can be merged. [] 

We take ~ = [0, 1]. For a subset A o f ~  N, and x ~ ~s,  we recall the notation fc(A , x) 
introduced in Section 4.1. For x = (xt, . . . ,  x~) ~ N ,  we write simply B~(x) rather 

than BN(xx, . . . ,  xN). For x ~ N ,  we set II x 119 -- ( z x~) 1'2. Finally, for a >  0, we set 

A(a) = { y  ~ n s ;  BN(y)~< a}. 

The crucial observation is as follows. 

Lemma 6 . 2 .  - -  For all x ~ ~ ,  we have 

(6.2) BN(x ) .< a + 2 II x II L(A(a), x) + 1. 
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Proof. - -  As follows from Lemma 4 .1 .2  (taking e, there equal to x~) we can find 
y e A(a) such that, if I denotes the set of indices i ~< N for which x, = y , ,  we have 

Z x, ~< 11 x ]l~f~(A(a), x). 

By Lemma 6.1 the items (x~),$ x can be packed using at most 2 I1 x I[~fi(a(a), x) + 1 
bins. The items (x~),e x are exactly the items (Y,),ei, so they can certainly be packed 
using at most a bins, since y e A(a). The result follows. [] 

We provide [0, 1] with the measure Ix, and we denote by P the product probability 
on [0, 1] s. The term 11 x 112 of (6.2) will be disposed of by the following simple observation. 

Lemma 6 . 3 .  - -  We  have 

(6.3) P(][ x 112/> 2 %/N(EX~) 1/2) ~< exp(--  2NEXt).  

Proof. - -  Since e ~  1 -k 2x for x ~< 1, we have 

E exp X~ ~ 1 q- 2EX~ ~ exp 2EX~ 

so that 
E exp( Y~ X~) ~< exp 2NEX~ 

from which (6.3) follows by Chebyshev inequality. [] 
We can now prove the basic inequality. 

Proposition 6 . 4 .  - -  We  have, f o r  all t > 0 and all a > O, that 

(6.4) P(l~(x) ~< a) P(B~r /> a + 4t V'N(EX~) 1/~ + 1) ~< e -' '/4 + e -~r 

Proof. - -  Indeed, by (6.2), if  B~r >t a + 4t~/-N(EX~) 1/2 + 1, we have either 

f~(a(a),  x) >i t or ]l x [1,/> 2 %/-N(EX~) 1/~. The result then follows from (4.1.2) and (6.2). 

Theorem 6.5. - -  Denote by M a median of BN(x ). Then f o r  all u ~< 8 ~ '2NEX~ we have 

( "0 P([ B~(Xx, . . . ,  X~) -- M ] >/ 1 + u) ~< 8 exp 64N--EX " 

Proof. ~ First, we take a = M to obtain from (6.4), setting u = 4t ~ ( E X ~ )  1/2 
and since P(B~ ~< M) >/ 1/2, 

P(B~r >i M + u + 1) ~< 2(e- t~/4 -[- e - ~ ' x ~ )  

The bound for P(B~r ~ M --  u -- 1) follows similarly taking a ----- M -- u -- 1. [] 

Remarks. - -  1) One can also get bounds for larger values of u, by adapting Lemma 6.3. 
2) I t  is instructive to find an alternate proof of Theorem 6.5 using Corollary 2 .2 .4  

rather than Theorem 4.1 .1 .  
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7. Subsequences 

7 . 1 .  The longest increasing subsequence 

Consider points xl, . . . ,  x~ of [0, 1]. We denote by LN(x:, . . . ,  xN) the length 
of the longest increasing subsequence of xl, . . . ,  x N. That  is, the largest integer p such 
that we can find i: < . . .  < i~ for which x h ~< . . .  ~< x~p. I t  is simple to see that when 
X1, . . . ,  X~ are independent uniformly distributed over [0, 1] (or, actually, distributed 
according to any non atomic probability), the r.v. LN(Xa, . . . ,  >IN) is distributed like 
the longest increasing subsequence of a random permutation e of { 1, . . . ,  N } (where 
the symmetric group S~ is of  course provided with the uniform probability). The 
concentration of L~(X1, . . . ,  X~) around its mean has been studied in particular in [F] 
and [B-B]. Sharper results will be obtained here as a simple consequence of Theorem 4.1.1.  
We consider f~ = [0, 1] ~. For x = (x,)i~<~ in ~,  we set LN(X ) = I~(xa, . . . ,  x~). For 
a ~ 0, we set 

A(a) = { x ~ a ; L ~ ( x ) , <  a}. 

The basic observation is as follows. 

Lemma 7 . 1 . 1 .  - -  For all x ~ f2 N, we have 

(7 .1 .1)  a >t LN(x) - - f~(a(a) ,  x) L~L-~N(x) �9 

In particular, 

(7 .1 .2)  L~(x) /> a + v =>f~(A(a), x) /> - -  
~/a  + v  

Proof. - -  For simplicity, we write b = LN(x ). By definition, we can find a subset I 
of{ 1, . . . ,  N } of cardinality b such that i f i ,  j ~ I, i < j ,  then x~ < xj. By Lemma 4 .1 .2  
(taking e~ = 1 if i ~ I  and ~ = 0 otherwise), there exists y cA(a)  such that 

cardJ~<f~(A(a),  x) 3/~, where J = { i  e I ;y~ + x~}. Thus (xi)ier~ ~ is an increasing 
subsequence of y ;  since y e A(a), we have ca rd ( I \ J )  ~< a, which proves (7. I. 1). 

To prove (7.1.2),  we observe that by (7.1.1) we have 

L (x) -- a 
L(A(*), *) 

VZ (x) 

and that the function u ~ ( u -  a)/.V"U increases for u I> a. [] 
We denote by M ( =  M~) a median of L~. 

Theorem 7 .1 .9 . .  __ For all u > 0 we have 
u $ 

(7 .1 .3)  P(L~/> 1V[ + u) ~< 2 exp 
4(M + u)' 

u 2 

(7 .1 .4)  P(L• ~< 1V[ -- u) ~< 2 exp 4M" 

20 
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Proof. - -  To prove (7 .1 .3 ) ,  we combine  (7 .1 .2 )  with M = a and  (4 .1 .2 ) .  To  
prove (7 .1 .4 ) ,  we use (7 .1 .2 )  with a = M - - u ,  v = u to see that  

LN(x ) i> M ~ f ~ ( A ( M  --  u), x)/> - -  

so that  

(7.i.5) 

O n  the other  hand,  by  (4 .4 .2 ) ,  

u 

P (A(M - -  u), x) >/ >/ ~. 

~ )  1 ~* 
( 7 . 1 . 6 )  P f~ (A(M - -  u), x)/> <~ P ( A ( M  --  u)) e "~ 

Compar ing  (7 .1 .5 ) ,  (7 .1 .6 )  gives the required b o u n d  on P ( A ( M -  u)). [] 
I t  seems worthwhile  to state an abstract  version of  T he o re m 7 .1 .2 .  Le t  us say that  

a function L~ : ~N _+ N is a configuration function provided it has the following property.  

( 7 . 1 . 7 )  Given any x = (x,)~<~ in ~ ,  there exists a subset J o f {  1, . . . ,  N }  with 
c a r d J  = L•(x) such that,  for e a c h y  in ~ ,  we have LN(y ) >/ card { i ~ J ; y i  = x~ }. 

The  reason for this name  is that,  intuitively, L~ counts the size of  the largest 
" configuration " formed by  the points x~. 

The  proof  of  the following is identical to that  o f  Theorem 7 . 1 . 2 .  

Theorem 7 . 1 . 3 .  - -  I f  L~ is a configuration function, then (7 .1 .3 )  and (7 .1 .4 )  hold. 

7 .2 .  Longest common subsequence 

Consider two sequences x-----(xa, . . . , x s ) ,  y = (Ya, . . . , Y s )  of  numbers .  W e  
define the length L~,~(x;y)  of  the longest common  subsequence of  x, y as the largest 
integer p for which there exists 1 ~< ia < �9 �9 �9 < i~ ~< N and 1 ~< 3"1 < -. �9 < J~ ~< N '  such 
that  xq ---Y~t for each t ~< p. On e  interpretat ion of  this is when xl,  �9 �9  xN are chosen 

among  a (small) finite n u m b e r  of  possibilities (the letters of  an alphabet)  LN, N,(x;y) 
is then the length of  the longes t "  subword  " of  the words x , y  (and N + N '  - -  LN, ~, (x ;y) 
is the so-called " edit  distance " of  the two words).  These considerations arise in a n u m b e r  
of  situations, such as genetics, speech recognition, etc. Consider now a r.v. X,  and two 
independent  sequences (X, ) i<s ,  (Y~)~,<N' independent ly  dis tr ibuted like X.  We  are 
interested in the r andom variable  L~,~, = L~,~,(X1, . . . ,  XN; Y~, . . . ,  Y~,). 

Theorem 7.9.. 1. - -  Consider a median M ( =  MN, N') 0fL~,  ~,. Then, f i r  all u :> O, we have 

(7.9. .1)  P(L~,~,/> M + u) ~< 2 exp 32(M + u ' 

( 7 . 2 . 2 )  P ( L ~ , ~ ,  ~< M - -  u) ~< 2 e x p  - -  . 
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Comments. - -  It  is known that lim E(LN, N)/N exists. However, this limit can 
N--~ ao 

be very small, in the case where X takes many possible values. In  this case, we have 
M < N, and (7.2.1),  (7.2.2) give a better result than Azuma's inequality. 

Proof. - -  The proof is very similar to the proof of Theorem 7.1.2. Consider 
= [0, 1], and for x es N+~', consider 

L(x)  = . . . ,  X +s, . . . ,  

Consider the set 

A(a) = { x; L(x) ~< a) .  

The basic inequality is that 

(7.9.. 3) a >/ L(x) --  2 ~/2f~(A(a), x) ~ / L - ~ .  

To see this, we set b = L(x); we can find indices 

1~<i1< . . . < i  b~<N<i  b+~< . . . < i 2 ~ <  N + N '  

such that x~k =X~k§ for 1< k <  b. Consider the set I = { i k ;  14  k~< 2b}. By 
Lemma 4.4 .2 ,  we can f i n d y  cA(a)  such that 

card{ i e I ;  x, 4~y, } ~< f,(A(a),  x) V ~ .  

Consider then 

J = { k ~  b; X~k = y ~ ;  Xi, k+ b =y~,k+b}. 

By (7.2.4) we see that 

c a r d J  >~ b --  2 card{ i e I ; x ,  4~y~)>~ b - -  2 V ' 2 " b f , ( A ( a ) , x ) .  

On the other hand, L(y)  >/ c a r d J  since, for k e j ,  we have Y~k =Y~k+b" Also, since 
y e A(a), we have L(y)  ~< a. Condition (7.2.3) follows. The rest of the proof is identical 

to that of Theorem 7.2.2.  [] 

Remark. - -  I t  is also possible to find a more general version of Theorem 7.1 .3  

that contains Theorem 7.2.1.  

8. lnfimum and Percolation 

Consider an independent sequence (X~)~<~ of positive r.v. Consider a family #" 
of N-tuples ~ = (~)~<~ of positive numbers. Our  prime topic of interest in the present 

section is the random variable 

(8.1) Z ' = Z ~ r  inf Y~ ~X~.  
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I t  does mat ter  a lot that  we take an inf imum rather  than  a supremum. The  function 

of  the ' in Z '  is to indicate that  we take such an inf imum. Ra ther  that  (8.1) one can 
also write 

Z ' = - -  sup Z (--oQX~. 

but  the numbers -- 0c, are negative. In  Section 13, we will have to s tudy the r.v. 

(8 .2)  z = sup 2 x ,  

where a~ and X~ can possibly have any  signs. In  order  to avoid repetition, we will s tudy 
the variables Z given by (8.2). 

8 .1 .  The basic result 

Consider a family ~-  of  N-tuples e = (e,),<N. We make no assumption on the 

sign of  e,. We set , = sup l[ e 1]2, where 1] ~ ]]z = ( )_] e~)1,2. We consider indepen- 

dent  r.v. Xi, and  we assume that  for each i there is number  q such that  r~ ~< X, ~< r~ + 1. 

Theorem 8 . 1 . 1 .  - -  Consider the r.v. Z given by (8.2),  and a median M of Z. Then, for 

all u > O, we have 

( 8 . 1 . 1 )  P([ Z --  M[~> u) ~< 4 exp -- ~ . 

Proof. - -  This will again follow from Theorem 4 . 1 . 1 .  

Step 1. - -  Set ~) = [0, 1], and for x = (x~)~,< N elaN, set 

Z(x) = sup Z ~,(r, + x,). 

Consider a ~ R,  and A(a) = {y e f ~ ;  Z (y )  ~< a }. The  basic observation is tha t  

( 8 . 1 . 2 )  V x ef l~ ,  Z(x) ,< a + af~(A(a), x). 

To prove this, consider e e o*-. By L e m m a  4 . 1 . 2 ,  we can find y s A(x) such that,  if 

I = { i ~ <  N ; y ,  4 = x~}, then 

X I [< [I II A(A(a), x) < af~(A(a), x). (8.1.3) 

We then have 

] ~e , (r~+y, ) - - ,aNX e,(r,+x,)[~<,~i[, e, llY,--x*[~<,e~i]. ~,1" 

Thus, by (8 .1 .3)  

X ~,(q + x,) < Z(y) + .fo(A(a), x) ~< a + <~fo(A(a), x), 

and taking the supremum over ~ proves (8 .1 .2) .  
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Step 9. - -  We  provide the i-th factor [0, 1] with the law ~h of  X, - -  r,. We  denote 
by  P the p roduc t  probabil i ty.  Thus  by  (8 .1 .2 )  and (4 .1 .2 )  

i.e. 

P(Z(x) >/ b) ~< P f~(A(a),  x) >/ ~< - -  exp 
a P ( a ( a ) )  4 ~  2 ] '  

[ (b - - a ) ~  
P(Z(x) /> b) P(Z(x) ~< a) ~< exp [ 

4~ 2 ] \ 

f rom which (8 .1 .1 )  follows as in Chapte r  7, since the law of  Z(x) under  P coincides 
with the law of Z. [] 

8.9.. General moments 

In  the present section we rely on the theory of  Section 4 .4 .  We  start with some 
preliminaries. Consider a convex function + on R + that  satisfies (4 .4 .1 )  and +(0) = 0. 
Consider a family ~-  of  N-tuples  as in Section 8.1.  For  u > 0, we define 

+s,(u) = inf{ Z +(s,); H ~ eo~, Z s~[~, {>1 u}. 

Th e  simplest case is when  +(x) = x 2. In  that  case it is easily seen that  +~(u) = u2/o ~, 
where  a o = sup{ [[ ct {{~; ~ ~ ~ } .  The  most interesting case is a rguably  the case where  
d? = ~b o is given by  

+o(X) = x  2 i f x . <  1; d~o(X ) = 2 x - -  1 if  xt> 1. 

I f  we set 

w = s u p { l  ~, ]; i~< N;  a eo~'},  

we note that,  for given ~ ~o~, for e a c h s  = ( s ~ ) ~ ,  se t t ingJ  = { i~< N;  s~ ~< 1 }, we have 

 js, 1 I 

<  (ZsD 
iEff ~$J 

.< + ,  X +(s,). 
~N ~N 

Thus,  if  ]~i<N s~ [ ~ [ i> u, then either Y~z~ dC(s~)/> u2/4~ ~, 
and thus 

( 8 . 2 . 1 )  ~ s , ( u ) / >  min , ~ . 

or else ~] +(sJ >/ v/2, 

The  basic observat ion is as follows. 
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Proposition 8.~..1. - -  Consider ~ ,  ~ as above. Set ~ = R ,  and consider the function 
Z(x) ----- sup Z ~ xi. Consider a e It ,  and A(a) = {y;  Z (y )  ~< a }. Then 

(s.~..~.) v x e n  s, A,,(A(a),  x) t> 'I"~(Z(x) -- a) 

when the function k is defined on R X R by 

( s . s . a )  h(,~, ,o') = I o, - ,o' I. 

Moreover, when ~q <<. 0 for  each i <<. N and each r162 e ~ ,  we can take 

(s.c..a) ~(~, ~') = ( ~ ' - ~ ) + .  

Proof. - -  By defini t ion of f~ , r  given �9 > 0, we can find s e VA(,)(x ) such tha t  

Z +(s3 <f~.,(A(a), x) + ,. 

Consider  ~ = (~,) c ~-. T h e n  there exists s' c UA(~,(x ) such tha t  Z I ~q I s~ ~< ]E [ ~ [ s~. 

This  means  tha t  there  is y cA(a )  for which  ~] ] ~, [h(x~,y~) <~ Z ] ~, I s~, where  
I = { i ~ <  N;x~ ~y~}.  Now 

(s .~ .5)  Z ~,x, = Z ,~,y, + Z ~ , ( x , - y , ) .  

We have  ~,(x~ --y~) <~ I~, II ~, - -Y ,  I. I f  ~, is ~< 0 we have  ~(x~ --y~) ~< [ ~, I (y, - ~,)+. 
T h u s  in all cases unde r  considerat ion,  we have  

e,(x, - -  y~) <~ ,~x [ e, l h(x,,y,) <<. ~ ] ~, l s, 

so that ,  by  (8 .2 .5 ) ,  

Z ~,x,<<. Z ~ , y , +  Z [~ , [ s ,  

< a +  Z I~ , l s , .  
~ N  

T a k i n g  the  sup over ~ yields 

sup  ~ [ ~ ] s ~ > > . Z ( x ) - - a  

and  the  result follows by defini t ion of tF~.  [] 

Corollary 8 . 2 . 2 .  - -  Consider a family ~.~ of  N-tuples ~ = (~)~<~. Consider a sequence 
of  independent r.v. (X,)~<s with common law ~. Assume that (4 .4 .6 )  holds (for a certain 
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function O) when P = ~z | and where h is the function determined in Proposition 8 . 2 . 1 .  Then 
the r.v. Z = sup ]g a, X, satisfies 

(8.9..6) u>1 0 =~P(Z>I M+u)~< exp 0 --~.W~(u) 

u > _ - 0 ~ P ( Z ,  M - - u ) <  ~ ( K U / ' ~ ( u ) - - l ~  

where M is a median of  Z.  

Proof. - -  Using (4.4.6)  and Chebyshev inequality, we have 

P(fh,,(A(a),x)>>.t)<<. exp (O(P(A(x ) ) ) - -K)  

where A(a) is the set of Proposition 8 .2 .1 ;  thus, by (8.2.2) ,  setting t = ~Fs~(b- a), 
for Z(x) >1 b we havefh. , (A(a) ,  x)/> t, so that  

( 1 ) 
P(Z/> b)~< exp 0 ( P ( Z ~ < a ) ) - - ~ W ~ ( b - - a )  . 

Taking a = M, b = M + u imply (8 .2 .6) .  Taking b = M, a = M -- u imply 

l ( 1 ) 

from which (8.2.7) follows. [] 
We now go back to our main line of study, that  of the r.v. Z' = sup N (--  ~) X~. 

In  order to apply Corollary 8 .2 .2 ,  we need (4.4.6) for the penalty function 
h(x,y)  =-- ( y  - -  x) +. Since X~ is positive, its law ~z is supported by R +. Thereby, only 
the properties o f h  on R + • R + matter ;  but  then (y -- x) + ~<y. Thus, to have (4.4.6)  
it suffices that  the function h(x,y)  = y  satisfies the conditions of Theorem 4 .4 .1 .  The  
case where the function h(x,y)  depends ony  only has been discussed after Theorem 4 . 4 . 1 .  
Thus, we have proved the following. 

Theorem 8 . 2 . 3 .  - -  Consider a family o~ on N-tuples of  positive numbers, and independent 

identically distributed nonnegative r.v. variables (X~)i~< N. Consider functions O, ~, w as in 
Theorem 4 .4 .1 .  Assume that (2.6.1) ,  (4 .4.2) ,  (4.4.3)  hold, that condition H(~,w) holds, 

that the median m of  X 1 is <<. 1, and that for t >t m, we have 

(s.c..s) w(P(Xl >I t))/> +(t). 
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Then i f  M is a median of Z' = inf Z e~ X~, the following holds (where the constant K 

depends only on the parameter y of  Theorem 4 . 4 . 1 ) :  

(8 .2 .9 )  u>l 0 =~P(Z'~< M - - u ) ~ <  exp 0 - - ~ W ~ ( u )  

(1 ) 
(8 .2 .10)  u>~ 0 =~P(Z'>~ M +u)~<  ~ ~ ~Fs~(u) - -  log 2 . 

Comment. - -  A striking feature of this result is the different forms of (8.2.9)  and 
(8.2.10).  This phenomenon is well-known in the case where o~- consists of a single 
point e. In that case, o~" is a sum of positive independent r.v. Y~. The lower tails of Z 
have a tendency to be " subgaussian " ([H]) while the upper tails of Z certainly depend 
much on the upper tails of the variables Y~. 

Corollary 8 .3 .4 .  - -  There exists a universal constant K with the following property. 
Assume that + satisfies (4.4.1) .  Assume that 

( s . ~ . l l )  

Then we have 

Vt/> 1, P(XI>tt)~< exp(- -2+( t ) ) .  

(1 ) 
u>~ o ~ v ( I Z  - M I>~ u) < 3 exp -- ~ ~ ( u )  . 

Proof. - -  We take ~(x) = e -~, 0(x) = -- log x. According to Proposition 2 .6 .1 ,  

f log t. Also, 
1 

condition H(~, w) holds if e w dX~< 2, so, in particular, if w ( t ) -  2 

by (4.4.1) ,  ~(1) = 1, so that (8.2.11) implies that the median of X 1 is ~< 1. Thus Corol- 
lary 8 . 2 . 4  follows from Theorem 8 .2 .3 .  

Corollary 8 . 2 . 5 .  - -  Assume that (2.6.5)  holds for a certain number L. Then, for  some 

constant K depending on ~ only, i f  for  all t >>. 1 we have 

( 8 .~ . . l a )  
1 

P(x11> t) < ~ t K'(+(t))l 

then (8.2.9) ,  (8.2.10) hold (for a constant K depending on ~ only). 

Proof. - -  We simply have to find a function w that satisfies (8.2.8)  and such that 
condition H(~, w) holds. I t  follows from Proposition 2 .6 .3  that if we take R large enough 

( f; ) R can actually be taken depending on L and ~ dX only then the function w such that 

1 
Vb..>c I{w~> b} l  ---- ~ I E,'(b)l 
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satisfies condition H(~, w). Now, if we take K = R in (8.2.13),  then 

1 
I{w > +(t)} I = t), 

so that  w(P(X I <~ t)) >1 +(t) since w is non-decreasing. [] 

We now explain why Corollary 8 .2 .5  is sharp. Consider the case where ~-  consists 

of the single element 0~ = (0q), where ~i = 1 / V ~ .  Consider + such that  +(x) = x ~ if 

x~< 1 and + ( x ) = 2 x - - 1  for x>~ 1. Then,  for u = V ' - N ,  ~F~(u)~> N/4 by (8.2.1)�9 
Consider a r.v. X i e { 0, N }, with 

I 
P ( X , = N ) = p = : ~ I ~ ' ( 2 N - -  1)I. 

Under  condition (2 .6 .5) ,  we have lim x~'(x) = O, and it is not a restriction to assume 
X --~- oD 

Np ~< 1/2. Thus the median of Z = N -1/2 ~<~r  X~. is zero. 
Now 

P(Z>~ u ) - - - - P ( ~  Y"~rX~>~ u),-~ Np __N_R ~ ' ( 2 N - - 1 )  

and the bound ~ (N) of (8.2.10) is indeed reasonably good, as x~'(x) is of order 

for many choices of 4. 

8.3. First time passage in percolation 

Consider a graph (V, E) where V is the set of vertices, E the set of edges. Assume 
that  we have a family (X~), ~ ~. of positive r.v. distributed like a given r.v. X (X, represents 
the passage time through the edge e). Consider a family 9 '  of sets of edges, and for S ~ 5a, 

consider X s = ~ X~. In  the case where S is a path, i.e., consists of the edges e,l,, , 

e,,,3 , . . . , e , k_ l , ,  k linking vertices vl, . . . ,  vk, Xs represents the "passage  time 
through S ". Let us set Z~ = inf X s and r = sup card S. Denote M a median of Zs~. 

~ 5  a S E , 9 '  

The  following is a consequence of (8.2.1)  and Corollary 8 .2 .4 .  

Proposition 8.3. -- There exists a universal constant K suck that / f  E exp K X  ~< 2, 
W6 hay8 (1 
(8 .3 .1 )  V u > 0 ,  P ( I Z ~ - - M I > I  u)~<4exp  - - ~ m i n  us u 

Consider the case where V = Z s, E consists of the edges that  link any two adjacent 
vertices. Denote by 5e the sets of self-avoiding paths linking the origin to the point (0, n), 

21 
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and by Sa(C) the subset of 50 consisting of paths of length ~< Cn. I t  was proved by 
1 

H. Kesten [K1] that ff P(X = 0) < ~, then, for some constant C independent of n, 
w e  h a v e  

! I 

P(Z~ = Z~,c~ )/> 1 -- Ce -"/~ 

I t  then follows from (8.3.1) that for some constant C' independent of n, we have 

(8 .8 .9 . )  u<~ ~-; ~ P([  Zs. - M I ~> u) ~< 5 ex p - -  . 

This improves recent results of H. Kesten [K2], based on the use of martingales, 
who proves (8.3.2) with an exponent u/C' .v/-n. I t  should, however, be pointed out 
that the reason why martingales allow some success on this problem is because we 
consider only sums of the type ~ ae Xe for very special families ~ = (~e)- Martingales 
are apparently powerless to approach Corollary 8.2.5.  

I t  is pointed out in the literature that (in the case V = Z *) (8.3.2) apparently 
does not give the correct rate. In  view of Corollary 8.2.5,  the obvious approach to 
improve (8.3.2) would be to show that Z~ is very close to Z~, where the family ~ - o f  
sequences (0~)~ ~, satisfies ~ = sup [[ ~ [[~ ~ n. There is an obvious candidate for ~ ' .  

Indeed, consider the family ~-'  defined as follows: ~-', seen as a subset of (R+) ~, is the 
convex hull of the family of points a s given by as(e ) = 1 if e ~ S and as(e ) = 0 if  e ~ S, 
for all S e 5~. Then, obviously, Z~ = Z~,. Then consider the family ~-(a) of  
sequences ( ~ , ) ~ v  of ~ "  for which II -. Then Z ~ <  Z~o,. Thus if one could 
show that, for some a = o(n), one still has Z~o, ~< Z~ + o(~rn), with probability 
1 -o(n-~),  o n e  w o u l d  obtain that the likely fluctuations of Z~ from M are 0(~v/n ). 
Roughly speaking, this means that the shortest passage time from (0, 0) to (0, n) is 
(wi th in  o ( V ~ ) )  o b t a i n e d  t h rough  a number of rather disjoint  paths .  Proving such a 
statement is apparently a long range program in Percolation theory. 

9. Chromat ic  N u m b e r  of  R a n d o m  Graphs  

The use of martingales has allowed several important progresses in the under- 
standing of the chromatic number of random graphs. Use of martingales does require 
ingenuity. This chapter will demonstrate that Theorem 4.1.1  achieves somewhat better 
results than martingales in a completely straightforward manner.  

For simplicity we call a graph G with vertice set V = {  1 , . . . ,  n} a subset of 
E o ~ { ( i , j ) ; i  < j } .  I f  (i,j) belongs to G, we say that i, j are linked by an edge. 

A subset I of V is called independent if no two points of I are linked by an edge 
(the word independent here should not be confused with its probabilistic meaning). 
The chromatic number z(G, A) of a subset A of V is the smallest number of independent 
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sets that can cover A; that is, the vertices of A can be given x(G, A) colors so that no 
two points with the same color are linked by an edge. We set 

z(G, m) ---- inf{ x(G, A) ; card A = m }. 

Given p, 0 < p < 1, the random graph G = G(n, p) is defined by putting each 
possible edge (i, j )  in G with probability p, independently of what is done for the other 
edges. 

The chromatic number is remarkably concentrated, as the following shows. 

Theorem 9 . 1 .  - -  Consider k ~ N and t > O. Then there exists an integer a such that 

(9.1) P()~(G(n,p), m) ~ [a -- k, a]) 

/> 1 -- 2e -**/s -- P(sup {x(G(n,p), F); F C V, card F~< t x/m} > k). 

Comments. - -  1) The last term is always zero for k >  t%/m. But when p = n -~ 
(:~ > 0), it is still small for smaller values ofk.  See [S-S], [A-S, p. 88]. 

2) Another version of this Theorem could be proved, in the spirit of Theorem 7.1.3, 
concerning the concentration property of the number 

max{ card F; z(G(n,p),  F) ~< m}. 

3) With a bit of care, we can replace m by m -- 1 in the right-hand side of (9.1), 
and improve the coefficient 1/8. 

Proof. - -  We set 

b = P(sup { x(G(n, p), F); card F ~< t V ~  } > k). 

We then define a as the largest integer for which 

P(z(G(n, p), m) >/ a) >/ e-t~/s + b. (9.2) 

Thus 

P(z(G(n, p), m) > a) < e-*~/s q_ b. 

In  order to apply Theorem 4.1.1,  we must represent the underlying probability 
space as a product space. The first idea that comes to mind would be to use { 0, 1 }~0; 

this is not a good choice. For 2~<j~< n, set f~ = { 0 ,  1} ~-1. Set f~' = I-[ f~.  We 
2 ~ j ~ n  

write co e ~ '  as (co j) ~..< , ,  where r ----- (co~, #)i.< ~ _ 1 E ~~ j. To ~ we associate the graph G (co) 
such that, for i < j ,  ( i , j )  ~ G(co) if and only if coi,# = 1. The only property of G(n, p) 

we need is that it is distributed as G(c0) for a certain product measure P on [I ~#. 
Define A C f~' as the set of c0 for which ~< N 

z(G(co), m) i> a; sup { z(G(o~), F) : card F <~ t %/~ } <~ k. 
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Thus by (9.2) we have P(A) I> e-~0-i=. Combining Theorem 4 .1 .1  and Lemma 4 .1 .2 ,  

we see that P(B) i> 1 -- e-~2/8, where we have set 

(9 .3)  B ={co;V(~j)=.<~.<. ,  I o~'~A; ~ j  I(,~j.,v,.< t J~---~==.}..~ 

To finish the proof, it suffices to show that 

r e B ~ x(G(co), m)/> a -- k. 

So, consider co e B, and set r = z(G(co), m). Consider a subset F of V, of cardinal m, 
such that x(G(co), F) = r. We use (9.3) with ei = 1 i f j  e F  and zero otherwise. Thus 
there is co e A such that, if J = { j  ~ F; % 4: o~'j }, then c a r d J  ~< t 3 / ~ .  But obviously, 

and thus 

z(G(r F \ J )  = z(G(co), F \ I )  < r 

a ~< x(G(r F) ~< r + z(G(co'), I) 

< r + k .  [] 

In  order to obtain an upper bound for ~(a, the most obvious approach is the 
" greedy " one: one chooses an independent set W 1 of maximal size, and removes its 
vertices and all edges adjacent. One is then left with a graph on fewer vertices, and one 
iterates the process until exhaustion. To make this approach work one needs a competent 
bound on the probability that a random graph contains at least one independent set 
of size r. Such bounds were first obtained by B. Bollobas [B], using martingales. A recent 
powerful correlation inequality of Janson [J] is both simpler and more powerful than 
the martingale approach (compare [A-S] p. 87 and p. 148). I t  is of some interest to 
note that Theorem 4 .1 .1  does as well as Janson's inequality. We fix an integer r. For 
e = (i,j) E Eo, we denote by N(G, e) the number of independent sets of size r that 
contain i, j .  

(9.4) 

Then 

Proposition 9 .2 .  - -  Consider a number u, and assume that 

P ( u  21~.o=(G(n ,p) ,e )2<~ Y= N ( G ( n , p ) , e ) ) >  1 

P(G(n, p) contains no independent set of  size r) ~< 2 exp ( 
. ,  

r~(r 1) " 

Proof. - -  We set ~ = { 0, 1 }, provided with the probability that gives weight p 

to 1 (and 1 - - p  to 0). Consider the product probability P on ~ .  For x e (x,),eEo 
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we define G(x) by e(i,j) ~ G(x) if and only if x, = 1. The  graph G(x) is distributed 
like G(n, p). 

Consider the set A C f ~ ,  given by 

A = {y; G(y)  contains no independent  set of size r }. 

Consider t o = 2 %/log(2/P(A)). I f  we combine (9.4), Theorem 4 .1 .1  and L e m m a  4 .1 .2 ,  
we see that  there exists x such that  

(9.5)  u J Z N(G(x),e) 2<~ 52 N(G(x), e) 
'v e{EEO e ~ E o  

with the property that  

V(~e)e~,O, 3 . y e A ,  Z % ~ < t o J ~ o ~  ]. 
xe �9 Ye 

In particular, there exists y e A, such that  if 

C = {  e eEo, xe * ye} 

we have 

(9.6)  

E N(G(x), e) ~< t o J ~ E o  N(G(x), e) ~ 
e E C  

t o 
~<- Z N(G(x),e) 

U e G E o  

where the last inequality follows from (9.5). The  total number  N of independent  sets 
of G(x) of size r is 

(9.7)  N (r(r -- 1)) -1 = E N(G(x), e). 
2 ee~o 

We must have 

N ~< Y, N(G(x), e) 
e G C  

for otherwise there would be an independent  set of size r of G(x) that  would contain 
no edge of C, and thus would be an independent  set of G(y),  which is impossible. 

2u 
Combining with (9.6), (9.7), we get to>>. r ( r - - 1 ) '  so that  

U 2 

P(A) ~< 2 exp r~(r_ 1) 2 . [] 
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I n  order  to take advantage  of  Proposit ion 9.2,  one must  find competent  ( =  large) 
values of  u for which (9.4) holds. For  example,  one can take u = ul/u~, where 

3 
(9 .8 )  P(  Y~ N ( ( G , p ) ,  e) 2 ~< u~) > ~, 

eE E0 

3 
(9 .9 )  P( Y~ N ( ( G , p ) ,  e) /> ux) > - .  

ee ~o 4 

W e  then find values of  u 2 (resp. ul) using Chebyshev inequali ty (resp. the second moment  
method) .  Not  surprisingly that  leads to unpleasant  computat ions  (as seems unavoidable  
in this topic). These are bet ter  not  reproduced here, and left to the specialist that  wants 
to evaluate the strength of  Proposit ion 9.2.  

10. The Ass ignment  Problem 

Consider a n u m b e r  N, and two disjoint sets I, J of  cardinal  N. An assignment 
is a one-to-one map  , from I to J .  Consider a matr ix a = (a,,j)s~i, 5~a, such that  

% ; represents the cost of  assigning j to i. The  cost of  the assignment ~ is ~ a~,~co and 
s@i 

the p rob lem is to find the assignment of  minimal  cost. 

Assume now that  the costs a~, 5 are taken equal  to Ks, 5, where  the r.v. (Ks, 5)s ~ i, 5 E a 
are independent  uniformly distr ibuted over [0, 1]. Consider the r.v. 

L~ = inf{ i~i Ki''~(s) ; %" assignment }. 

I t  is a remarkable  fact [W] that  E(L~) is bounded  independent ly  of  L•. (Actually 
E(Ls)  ~< 2 [Ka].)  

In  this section we try to bound  the fluctuations of  L~; the challenge is that  the 
average value of  L N is of  the same order  as the average value of  the costs X,, 5, and 
that  N 2 of  these costs are involved. 

We  will first show that  we can replace the costs X~, 5 by Ys, 5 = min(X~, 5, v) for v 
of  order N-~( log  N)2; then we will appeal  to T he o re m 4 . 1 . 1 .  

A digraph D will be a subset o f I  • J .  ( I f  (i,j) e D, we think of i ,  j as being linked 
by  an edge.) The  digraphs of  use will mostly consist of  those couples (i , j)  for which 

X~, 5 is small. Consider a d igraph D, and S C I. We set 

D(S) = { j  e J ;  3 i e s,  (i,j) eD} .  

We will say that  a digraph D is a-expanding (~/> 2) if the following occurs, for all 
subsets S of  I: 

(10.1) 

0o. ) 

N ( 
card S ~< ~- ~ card D(S) >1 min 

N 1 
c a r d S 1 > - ~  ~ c a r d D ( S ) > l  N - - -  

card S, 2 ) ,  

(N --  card S). 

O u r  first l emma mimics an a rgument  of  Steele and K a r p  [S-K]. 
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Lemma 10.1 .  - -  Consider an e-expanding digraph D and an integer m such that ~'~ >t N/2. 
Consider a one-to-one map "~ from I to J .  Then, given any i ~ I, we can find n <~ 2m and disjoint 

points ix ---- i, i~, . . . , i , + ~  = i such that for  1 <<. g <~ n, we have (i , v(it+l)) e D .  

Proof. ~ We fix i ~ I. Consider the set S~ of  points of  i~ e I with the  proper ty  
that  we can find i~, . . . , i ~  in I, for which (it, v( i t+l)  ) e D  for 1 ~ < l < p .  We  observe 
that,  obviously, Sv+ 1 D v-~(D(S~)).  Since we can  assume without  loss of  generali ty that  
e , , -1  ~< N]2, we see from (10.1) and by  induct ion that  f o rp  ,< m, we have card S~/> c~ ~-~. 
Then  (10.1) shows that  c a rdS , ,+~>~N/2 ,  and (10.2) shows that  for p>~ 1, 
N - - c a r d S m + ~ + l ~ <  e - ~ N / 2 .  Thus  N - - c a r d S 2 m + l ~ <  e - " N / 2 <  1, which means 
$2,~ + ~ = I. Thus  i e $2,, + 1. Consider then the smallest n for which i e S ,  + ~; thus 
n ~< 2m. Then  one can find ix = i, i~, ia, . . . ,  i ,  + 1 = i such that,  for 1 ~< g ~< n, we have 
(it, .~(it+l) ) e D. The  minimali ty of  n implies that  the points it are all disjoint. [] 

Consider u > 0 and consider the digraph D,  given by  

( i , j )  e D , ~ -  X~,~< 2uN-1 l o g N .  

Corollary 10.2 .  - -  Assume that the digraph D,  is e-expanding, and consider an integer m 

such that od ~ >I N/2. Then for  an optimal assignment v we have X,.,,,~ ,< 4muN -1 log N for  

all i <<. N. 

Proof. - -  Consider any i e I, and  consider i = i l ,  . . . ,  i ,+~ = i as in L e m m a  10.1, 

used for D = D~. Define a(it) = v(it+ 1) for 1 ~< t ~< n, and e(i ') = ~(i') i f / '  6{ i~, . . . ,  i ,  }. 
Since -c is optimal,  we have 

Y~ X,,,,(,,~ ~< 
i ' ~ N  

so that  

"~ X i ' ,  a(i') 

X~ r <<. Y~ Xq .o , t l  <~ 2nuN-11og N .  [] 
' 1 ~ t~-~ n 

I t  remains to do computat ions.  

Proposition 10.3 .  - -  For some constant K and all u > K with u log N ~< N, the random 

digraph D~ is u log N-expanding with probability >1 1 --  N -~/K. 

Proof. - -  W e  explain why  (10.1) is satisfied with probabi l i ty  >i 1 - -  N -~j~. The  
case of  (10.2) is similar and is left to the reader.  For  simplicity, we set 0 =  uN -1  log N. 

Consider a subset S of  { 1, . . . ,  N }, and set s = card S. For j e J ,  we have 

P ( j 6 D ( S ) ) = ( 1  2 u l ~  ~ = ( I - 2 0 ) ~ < e x p ( - 2 0 s ) N  

and thus 

P ( j  e D(S))  1> 1 - -  exp( - -  20s). 
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We observe that 

0`<x`< 1 : ~ l - - e - ~ > ~  ( 1 - - e - 1 )  x. 

Thus, if we assume 

1 
sO.< 00.3) 

we have 

00.4) P ( j  e D(S)) 1> Ts0 

where we have set y = 2(1 -- e -1) > 1. 
Consider T' = (1 + 7)/2. We claim that, under (10.3), 

(10.5) P(card D ( S ) <  T's0N)`< exp ( - -  s ~  ~N) - -  . 

This follows from (10.4) and the following general fact: 

Lemma 10.4. - -  Consider independent events (Ai)~< N with P ( A , ) = p ,  and consider 

< 1. Then, the probability that less than 8pN events occur is at most exp(--  Np]K(8)), where 

K(8) depends on ~ only. 

Thus 

Proof. - -  Set Y~ = 1,i, so that 

E exp(--  XY~) = 1 -- p(1 -- e -x) `< exp(--  p(1 -- e-X)). 

E e x p ( - - X  E Y,)`< exp(--Np(1 --e-X)). 

By Chebyshev inequality we get 

P( ~ Y, `< 8pN) `< exp Np(X 8 -- (1 --  e-X)) 
~<N 

and the result follows by taking X small enough so that X 8 -- (1 -- e-x) < O. 

and 

[] 

The number of subsets S of I of cardinal s is at most N 8. For u i> K, we have 

s ~ l  
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Thus, it follows that with probability /> 1 - - N  -'/~r, for all subsets S of I such that 
s = card S satisfies 0s < 1/2, we have card D(S) /> y' 0Ns. Equivalently, we have 

(10.6) N 
u log N card S ~< ~- =~ card D(S) /> y' u log N card S. 

To complete the proof that (10.1) holds for ~ = u logN, it suffices to show that 
card D(S) 1> N/2 whenever ~card  S/> N/2. This follows by applying (10.7) to a 
subset S' of S for which card S' satisfies x card S'~< N/2 and is as large as possible. [] 

We can now prove the main result. 

Theorem 10.5. - -  Denote by M a median of  L~.  Then (for N >i 3),  

( Kt(log N)2 / 
0 0 . 7 )  t~< ~v/log N =~ P ]Lz~ -- M] />  ~ log log N/~< 2 exp(--  t2), 

Oo.s) Kt 3 log N 1 
t~> ~ o g N  =~P I L ~ - - M I ~ >  ~-~-]-0-og~,] ~< 2 e x p ( -  t2). 

Proof. - -  Step 1. - -  Consider u < N/(2 log N), x = u log N and the smallest m 
such that xm~>N/2. Set v = 4 m u N - 1 1 o g N ,  and Y, ,~=min(X~,~,v) .  Consider 
the r.v. L} defined as L N but using the costs Y,, ~ rather that X~., j. It  follows from 
Corollary 10.2 that L~ = LN whenever D, is x-expanding, so that by Proposition 10.3 

(10.9) P(L~ ---- L~) /> 1 -- N -~'x. 

Step 2. - -  When N -"/x ~< 1/2, it follows from (10.9) that M is also a median of L~. 
I t  then follows from (8.1.1) (and scaling) that, for all w ~ 0, 

P ( I L ~ - - M  I>t w)~< 2exp - - ~  

and, combining with (10.9), we get 

P(] L ~  - -  M I I> w) ~< 2 e x p  - -  + N-~IK.  

Step 3. - -  We choose the parameters. We take w = 3 W/-Ntv. 
take u --= K;  if t 2 1> log N, we take u = Kt2/log N. 

Theorem 10.6 follows easily. [] 

I f t  2~<logN, we 

Remark. - -  A simple computation using Theorem 10.6 shows that the standard 

deviation of T,~ is not more than K(log N)~/~/-N log log N. 

22 
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11. Geometr ic  Probabi l i ty  

11.1. Irregularities of the Poisson Point Process 

In  this Chapter we will consider N points X1, . . .  , Xz~ that are independent 
uniformly distributed in [0, 1] d, where, except in Section 13.5, d = 2, and we will 
study certain functionals L(Xa, . . . ,  Xz~ ) of this configuration X l , . . . ,  X~ (that is L 
will depend only on { Xl ,  . . . ,  X~ } rather than on the order in which the points are 
taken). 

One would like to think that the sample Xl ,  . . . ,  Xz~ is rather uniform on [0, 112; 

say, that it meets every subsquare of side K/A/~ .  This is not the case; there are empty 
squares of side of order (N -1 log N) v~ (an empty square will informally be called a 

hole). More importantly, in exceptional situations there are larger empty squares. 
Several of the functionals we will study have the property that, if one deletes or adds 
a point to a finite set F, the amount by which L(F) can vary depends on whether F 
has a " large " hole close to x. Thereby the first task is to study the size and number 
of holes. 

I t  is not convenient to work with the sample Xl ,  . . . ,  X N. The difficulty is that 
what happens, say, in the left half of  [0, 1] 2 (for example, if there is an excess of points 
here), affects what happens in the right half (there must then be a deficit of points 
there). Rather, one will work with a Poisson point process of constant intensity bt. This 
process generates a random subset II ( =  IIv) of [0, 1] 2 with the following properties: 

(11 .1 .1 )  I f  A and B are disjoint (Borel) subsets of [0, 1] 2, II n A and II n B 
are independent. 

(11 .1 .2)  I f  A is a (Borel) subset of [0, 1] 2, the r.v. card(1-I n A) is Poisson of 
parameter v t [A [, where [ a [  denotes the area of a .  

Let us recall that a r.v. Y is Poisson of parameter X if P(Y = k) = e -x  Xk/k! for 
k i> 0. Thus 

)k 
E(e "Y) = Y, e "ke - x - = e x p ( x ( e  " -  1)). 

k~>0 k! 

For the convenience of the reader, we recall some simple facts. 

Lemma 11 .1 .1 .  - -  I f  a r.v. Y satisfies 

(11.1 .3)  

for u >I O, then 

(11.1 .4)  

E(e ~ )  ~< exp(X(e ~ -- 1)) 

P(Y>/ t)~< exp - - t l o g  . 
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Proof. - -  On e  can assume t/> X. Write 

P(Y/> t) ~< e- `" E(e"Y), 

use (11 .1 .3 )  and take u = log(t/X). [] 

Lemma 1 1 . 1 . 8 .  - -  I f  the r.v. Y is Poisson of  parameter X, then 

, 
P Y~< ~< exp 2" 

Proof. - -  Write,  for all u/> 0, 

1>) P Y~< ~< e x p - ~  

and take u = 2. [] 
For  k 1> 1, we denote  by  ~'k the family of  the 2 2+ " dyadic  squares " of  side 2 -  . 

So the vertices of  these squares are of  the type (~1 2-k,  gz 2-+),  0 ~< t l ,  Q ~< 2 k, ~'1, tz e N. 

For  C e ~'k, we set 

Z e =  1 i f c a r d ( C ~ H ) ~ <  ~2 - ~ - 8 ,  

Z c = 0 otherwise. 

F rom (11 .1 .2 )  and L e m m a  11 .1 .2 ,  it follows that  ~k = P(Zc  = 1) satisfies 

0 t . 1 . 5 )  

Now, for u > 0, 

(+.t .1.6) Ee"  - -  1 - + e " 

-~ 1 + ~(e  ~ - -  1) ~< exp ~k(e ~ - -  1). 

By (11 .1 .1 )  the variables (Zc)ceek are independent ;  so that,  by  (11 .1 .6 ) ,  

Ee"ZCe~kzc ~< exp 2 ~ ~k(e " - -  1), 

and by  L e m m a  11 .1 .1  we have 

( 1 1 . 1 . 7 )  P( ~ Zc~> v)~< e x p ( - - v l o g  ~-g~-7-~]. 
C ~  ~k \ e z -  %/ 

Observe  that  n~ --= Y~ Z c is s imply the n u m b e r  of  squares of  :g~ that  contain 
C~ ~gk 

no more  than 1/8 of  the expected n u m b e r  of  points of  11 they should contain. Combining  

(11 .1 .5 )  and (11 .1 .7 )  we see that  

(11 .1 .8 )  V k, P(n k I> 2e ~ 2 ~ e x p ( - -  ~ 2 - ~ - 1 ) )  ~< exp ( - -  2e 2 2 2~ e x p ( - -  ~2-~k-1)) .  
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We now fix a number  t, and we study how the number  n k can be controlled if  
one rules out  an exceptional set of  probabil i ty ~< e- t2. We assume t/> 1, ~ t> 4. 

We denote by k~ the largest integer such that  

(11 .1 .9 )  e 2 22kl exp( - -  ~t2 -2k1-1)  ~< t 2. 

Thus,  hi >/ 0 and  for k > hi we have 

e ~ 2 ~k exp(- -  ~2 -2 . -1)  t> P. 

We now observe tha t  if  a > 1, we have ~ exp( - -  2 ~t a) ~< 2 exp(- -  a), so that,  
combining with (11.1 .8) ,  t~>0 

(11 .1 .10)  P ( V k >  ha, nk~< 2e~ 2~ exp( - [z2-~-1)) >i 1 --  2e - ~ ' .  

Lemma 11 .1 .8 .  - -  I f  t<<. ~/-~/K, we have 

t ~ 1 
- - 9  - - o  

Proof. - -  I t  suffices to show tha t  ~r ~< t2/~ �9 Now, by (11.1.5)  and (11.1 .9) ,  

X/~,l_ 1 ~ exp(- -  ~2 -~*1) ~< \e ~ 22,1 ] . 

Thus  it suffices to show that  2 ~ >1 t %/-~[e ~, i.e. 22'.1 + 1, >/ 4t X/-~/e'. The  function 
f (x )  = e*xexp(  - ~/2x) is increasing for x >  0. Thereby,  since f (2  ~Ckl+l)) /> t 2 by 
definition of ka, it  suffices to show tha t  f ( 4 t  %/-~/e ~) < t ~, which is equivalent  to 

exp( - -  ae*12) < 1/16a for a = %/-~/4t. [] 
We now apply (11.1 .7) ,  taking k = kl -- 1 and  v = e22hP]~. We observe that,  

by  L e m m a  11.1 .3  and (11.1 .5) ,  we have, for t ~< ,v@/K, 

v 1 
>I l o g -  >/ ~t2 -~1, 

log e2 ~(kl _ 1) ~k~ - 1 ~/8kl - 1 

so that  

e22k 1 t 2) 
(11 .1 .11)  P nkl_ 1 t> ~< exp( - -  2t~). 

We now go back to the sample Xa, . . . ,  X~ and  state our  conclusions. 

Proposition 11 .1 .4 .  - -  Consider t <<. %/N/K.  Denote by k o the largest integer for which 
22~ <~ N. There exists an integer k 1 <<. k o such that 

1 N 22(k0-'1) N (11 .1 .12)  ~ l o g ~  ~< ~< K l o g y  
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and such that, with probability >1 1 -- K e -  ~, we have the following properties, where m~ denotes 

the number of squares C of c~ satisfying 

(11 .1 .13)  card(C c~{ X~, . . . ,  X~}) ~< N2 -~+-~ 

For each k~ <~ k <~ ko, we have 

(11 .1 .14)  m~ <~ K2 ~ exp(- -  N2 - ~ - ~ )  

and 

22k~ t ~ 
(11 .1 .15)  mkl_ 1 < K 

Proof. - -  Step 1. - -  Consider the process II = [I+, for a = N/8. I t  follows from 
(11.1.4)  tha t  with probabi l i ty/> 1 --  exp(- -  N/K) ,  we have card H ~< N. I t  is obvious 

that,  condit ionally on the event { card II ~< N }, the number  n k of  squares C of  Wk for 

which card(C n II)~< N2-2k-+ = ~]8 stochastically dominates the number  m+. Thus 

it suffices to prove (11.1.13)  to (11.1.15) for n k rather  than  ink, since, as we consider 

only t <~ ~ / N / K ,  the term exp(- -  N/K)  is swallowed by the term K exp(- -  #). 

Step 2. - -  We define k 1 as in (11.1 .9) .  We observe that,  since 1 ~< N 2 - 2 ~ <  4 

and t ~< ~ - N / K ,  we can assume t + ~< e 2 2 2m exp(- -  ~2-  2~- t), so tha t  kl ~< k0. By (11.1.9)  

and the definition of kl we have 

e 2 2+k+ + 2 K N  
exp ~2-  2(~ + i)-  ~ ~< t ~ ~< 7 ' 

K N  K N  
so that  ~2 -2.~ ~< K log - ~ - ,  and thus 22(k0-kl) ~< K log ---~-. By (11.1 .9) ,  

e 2 2 2~1 2 2~ N ( K N ~ - '  
exp(~x2 -2k1-1) /> ~ >1 t2 22(~0_kl , t> ~-~ K log t~ ] 

and this finishes the proof  of (11.1.12) .  

Step 3 . -  By (11.1.10) ,  we have 

(11 .1 .16)  n k ~< 2e '~ 2 2~ exp(--  N2 -2k-4) 

with probabil i ty >/ 1 --  2e -2t~, for each k > k 1. Now we observe that  nkl ~< nkl+l. This 
is obvious, since, i f  C e ~kl, one of the 4 squares of ~k~ + a contained in C must contain 

at  most card(II  c~ C)/4 points. Therefore, by  (11.1.16) ,  we must have 

n k ~< 8e 2 2 ~ exp(--  N2 -2k-6) 

for each k >1 k 1. 
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Also, (11.1.11) shows that,  with probabil i ty i> 1 - -  e -2t~, we have 

(11 .1 .17)  n k l _  1 ~ - -  
K 2 2 k l  t 2 

N 

The events described above occur simultaneously with probabil i ty >/ 1 --  3e-2t~. [] 
Having studied when  and how the sample X 1 , . . . ,  X~ can have a " de f i c i t "  

of  points, we study how it can have excesses of  points. While Proposition 11 .1 .4  is central  
to this chapter,  the following result will be used only in Section 11.4. 

Proposition 11 .1 .5 .  - -  Consider the integer ko o f  Proposition 1 1 . 1 . 4 ,  and consider k 2 <<. k o. 

For k2 <~ k <~ k o consider a number r k such that 22~ >1 r k >>. 22k t2/N. Then, with probability 

>>. 1 - -  K e -  t,, the following occurs: 

(11 .1 .18 )  Given k 2 <~ k ~ ho, and given a set S C cg k with card S <~ r , ,  then 

c a r d { i ~ < N ; X ~ e l J { C : C s S } } ~ <  K N 2 - 2 k r ~ + r  k l o g -  
e22k 

r~ 

Proof. - -  For a subset U of  [0, I] z, we have 

(11.1.19) ( u) P(card{i~< N ; X ~ e U } ~ >  u)~< exp - - u l O g e N i U i  " 

This follows from (11.1.3)  and (the a rgument  of) (11.1 .6) .  
For  a subset S of  %ok, denote U s the union of  the elements of S. I t  suffices to 

consider the sets S with card S = r k. For  these we get from (11.1.19)  

( u r:) P(card{i~< N ; X + ~ U s } ~ >  u)~< exp - -u lOgeN2_2~ . 

There  are at  most ~< exp(r k log(e2~k/r~)) choices for S. We take 
\ r~] 

u = r k log(e22k/rk) + e 3 N2 -2k r~. 

Thus we see that  

exp -- u log  ~< exp(- -  2u) < rk exp(- -  t2). 
\ r k ] eN2- 2~ rk \ rk ] 

Since < 2 -2k for 1 ~< x~< 22k, we see tha t  (11.1.18)  occurs with probabil i ty at  

least 1 --  Ke-t2. [] 
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11.2. The Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) requires, given N points Xa, . . . ,  x N in 
the plane, to find the shortest tour through these points; in other words, to minimize 

II - Xo,1, II + Ii Xo, , - Xo, ,+ 1, I I 
i=1 

over all permutations ~ ~ S~. The charm of the TSP is that it is the archetype of an 
untractable question. In this section, we denote by L(F) the length of the shortest tour 
through F, and we study the r.v. L~ = L(X~, . . . ,  X~) where X~, . . . ,  X N are inde- 
pendent uniformly distributed over [0, 1] 2. 

While the TSP is usually very hard, somewhat surprisingly, it turns out that as 
far as the concentration of Lz~ is concerned, it is the easiest problem we will consider. 
The reason for this is its good regularity properties. The only fact we will use about 
the TSP is as follows. 

Lemma 11.2.1.  - -  Consider F (2 [0, 1] 2, C e Wk, G (2 C, and assume that there is a 

point of  F within distance 2 - k  + 2 of  C. Then 

(11.2.1)  L(F) ~< L(F u G) ~< L(F) + K2-k % / ~ O .  

Pro@ - -  An essential property of the TSP is its monotonicity: L(F) ~< L(F u { x }), 
as is seen by bypassing x in a tour through F w { x }. This implies the left-hand side 
inequality in (11.2.1). To prove the right-hand side inequality, one first uses the (well- 

known, elementary) fact that there is a tour through G of length ~< K2 -k %/c--a~rd G, 
and one connects this tour to a tour of F. 

Theorem 1 1 . 2 . 2 .  - -  Assume that the functional L satisfies the regularity condition of  
Lemma 11 .2 .1 .  Then, i f  X1, . . . ,  X ~  are independent uniformly distributed over [0, 1] 2, for  

each t >1 0 the r.v. L~ = L ( X l ,  . . . ,  XN)  satisfies P([ L~ - -  M ] t> t) ~< Ke- t2/~:, where M 

# a median of  L~.  

Since the TSP is the simplest case we will consider, we will give the shortest 
proof we can, which is considerably simpler than the original proof. The idea of this 
proof is, however, a bit tricky; a more straightforward, but somewhat longer proof 
will be given in Section 11.3. 

The basic idea of the whole chapter is as follows: consider ~ = [0, 1] 2, and the 
subset A(a) of f ~  that consists of the N-tuplesyl ,  . . . , y ~  for which L ( y l ,  . . . , YN)  <~ a. 
When a = M is the median of L, Proposition 2.1 .1  shows that, except for a set of 
probability 2e -t2, given X t , . . . ,  Xs ,  we can find ( Y l , . . . , Y N ) c A ( a )  such that 

e a r d J  ~< Kt ~/-N, w h e r e J  = { i ~< N; X~ #y~ }. Thus we have a tour through{ X~; i C J }  

of length ~< M. The points X~, i e J, should be in average at distance ~ K/~/~r of the 

set { X 5 i CJ }, so each of them can be inserted in the tour by lengthening the tour of at 
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most K/~c/N, for a total lengthening ~< Kt. This would  prove that  P (L  N >/ M + Kt) ~< e-  **. 
The  problem with this a rgument  is that  the points X~, i e J ,  could be precisely chosen 

among  those which are much  further  than K /%/N from their closest neighbour.  So we 
have to find a way  to show that  this does not  happen,  or at  least that  the effect of  this 
phenomenon  does not affect the final result. The  idea of  this section is to give appropr ia te  
weights ~(X~) to each point  X~ (the more isolated the point  is, the higher its weight) 
and then to use Theorem 4 . 1 . 1  to minimize the influence of points with large weights. 

For  x e [0, 1] ~, th roughout  this chapter,  CA(x ) denotes the square C e cgk 
containing x. Throughou t  this section, we will set F = { X1, . . . ,  Xz~ }, 

~ k  = { C ~ % ;  card(F  n C) ~< N2 -2k-6 }, 

and m k = card J~~ k. 

We  fix t <  @ N / K ,  and we recall the integers ko, kl of  Proposit ion 11 .1 .4 .  
For  x e [0, 1] ~, we define 

e(x) = sup{ 2-*;ha~< k~< k0; card({X~,  . . . ,  XN} c~ Ck(x ) }) ~< N2 - 2 k - ' }  

when the set on the right is non-empty,  and we set ~(x) = 2 .40 otherwise. 

Proposition 1 1 . 2 . 3 .  - -  With probability f> 1 - -  K exp ( - -  t2), we have 

( 1 1 . 2 . 2 )  Z ~2(N) ~< K. 

Proof. - -  I t  should be  obvious that  

E ~2(Xi)~< K +  

~ < K +  

By Proposit ion 1 1 .1 .4 ,  we have 

E 2 -2k card(F  n w{ C; C e ~ ' k }  ) 
kl~k~kO 

Y, 2 -  2k • N 2 -  2k- 6 card ovt~ 
kl<~k<~ko 

( 1 1 . 2 . 3 )  m k = card ~ ~< K2 2~ exp ( - -  N2 -"~*-6) 

with probabi l i ty  >/ 1 -  Ke -.2, for all hi ~ k ~ k 0. The  result then follows from the 

e lementary  fact that  E 2 - 2 * e x p ( - -  N2 -2k-6) ~< K/N.  [] 

Proposition 1 1 . 2 . 4 .  - -  In order to prove Theorem 1 1.2.2,  it suffices to prove Proposi- 
tion 1 1 .2 .5  below. 

Proposition 1 1 . 2 . 5 .  - -  Consider XI,  . . . ,  X~,  and a subset J o f{  1, . . . ,  N }. Assume that 

(11.2.4) Z ~(X,) ~< Kt, 

K2~h t ~ 
( 1 1 . 2 . 5 )  c a r d  ~ k l  _ 1 ~< 
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Then 

(ll.~.6) L(XI,  . . . ,  X~) ~< L({ X~; i ~J} )  + K ' t ,  

where K '  depends on the constants in (11.2.4) and (11.2.5) only. 

Proof of  Proposition 11.2.4.  - -  To prove Theorem 11.2.1,  since L~ ~< K ~r it 

suffices to consider the case t ~< " v ~ / K .  We fix such a t, and we consider a such that 
P(Lz~ ~< a) /> e -~ .  We will prove that 

(11 .2 .7 )  P(L~ i> a § Kt) ~< Ke - t '  

and this clearly implies the result. The condition P(L N ~< a) ~> e -** means P(A(a)) i> e -*z 
(where P denotes now the product measure on f~z~). I f  we combine Lemma 4 . 1 . 2  and 

--$2 Theorem 4 .1 .1 ,  we see that with probability f> 1 -- e , the set { X1, . . . ,  X~ } has the 
property that we can find (Yl, .-.,Yz~) e A(a) for which 

Z ~(X~) < Kt 2 Z ~(X,) ~, 

where J = { i ~< N; X, = y~ }. Now, by Proposition 11.2.3 and Proposition 11. I. 4, 

we can moreover assume, with probability/> 1 -  Ke -t*, that N ,(Xi)2~< K and 
that (11.2.5) holds. By Proposition 11.2.5,  we than have ~<N 

L(X  1, . . . ,  XN) ~< L({y,; i e J} )  + Kt~< a + Kt. [] 

Proof of  Proposition 11.2.5.  - -  We set F ' = { X ~ ; i e J } ,  G = { X ~ . ; i C J } .  We 
have to incorporate the points of G into a tour through F' without lengthening too much 
the tour. 

Step 1. - -  For 0 ~< k < k0, we denote by U~ the collection of those C e ~ ,  that 
satisfy C nF'-----O;  we set U~0----c~x0 , and, for 0~<k~<k0, we denote by Ue the 
collection of those C e U~ that are not included in any C' e Uk_ ~. Thus, if C e Uk, 
its distance to F' is ~< 2 -k+2. 

By repeated applications of Lemma 11.2.1,  we see that 

L(X~, . . . ,  X~) ~< L({ X,; i e J  }) + K Y~ ~] 2 -k ~r n C). 

Thereby, it suffices to show that this double sum is ~< Kt. 

Step 2. - -  We consider three types of terms: 

Type 1: card(G n C)/> N2 -2k-~. 
In that case, since ~(X~) t> N -v2, we have 

K 
(11 .2 .8 )  2-+ ~/card(G n C) ~< ~ card(G n C) ~< KY,{~(X~); X~ e C n G}. 

23 
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Type 2: k >1 kl, card(G n C) < N2 -2k-~ 
In that case, the definition of 0r shows that ac(X~) /> 2 -k for X~ e C. Thus 

2 -k  %/card(G n C) ~< 2 -k  card(G n C) ~< ~] { ~(X~.) ; X~ e C n G }. 

We observe that the total contribution of the terms of Types 1 and 2 is < Kt by 
(11.2.4) ,  since for different values of k, the unions of the sets in U k are disjoint by 
construction. 

Type 3: k < kl, card(G n C) < N2 -2k-~. 

Step 3. - -  We control the contribution of the terms of Type 3. We denote by V~ 
the union of the sets C e U  k for which c a r d ( G n C ) < N 2  -2k-~. Denoting by I V ]  
the area of V, the key observation is that, under (11.2.5)  we have 

Kt ~ 
(al.9..9) t U [.< - - .  

k<~k I N 

The rcason is simply that ifC e ~f~ satisfies card(G n C) < N2 -2~-7, when C e Uk, 

card(G n C) = card(F n C) < N2 -2k-v, so that, among the 2 s(kl-k-l) squarcs C' 

of ~kl-I that arc containcd in C, at least half must satisfy card(C' n F) < N2 -s(k~-1)-s, 

so bclong to ~_z. Thcrcby thc arca of lJ V k can bc at most twicc the area of thc 

union of o~,k1_ i- ~ < kl 

There are 2 2k [ V~ ] sets C of ~'k included in V k. Thus, by Cauchy-Schwarz, we have 

Y~ 2 -k %/card(G n C) ~< 2 -k %/card(O n V,) 2 2k I Vk [ 
C@ ~k, CC V k 

---- %/card(G n Vk) I Vk I" 

Using Cauchy-Schwarz again, the sum of these terms over k < k 1 is at most 

% / ] V I c a r d ( G u V ) <  V~-- IV I w h e r e V  = U V k. This is less than Kt b y ( l l . 2 . 8 ) .  [] 
k ~ k l  

11.3.  The Minimum Spanning Tree 

A spanning tree of a finite subset F of R 2 is a connected set that is a union of 
segments (called edges) each of which joins two points of F. Its length is the sum of the 
lengths of these segments. We denote by L(F) the length of  the shortest ( =  minimum) 
spanning tree of F. An interesting difference with the TSP is that it can happen that 
L(F u { x }) < L(F). This is e.g. the case if F consists of the three vertices of an equilateral 
triangle and x is its center. 

The regularity property of L that we will use is as follows. 

Lemma 11.3 .1 .  - -  Consider C e cg~ (k >>. 1) and a subset F of [0, 1] 3. Assume that 
each C' E cgk_ 1 that is within distance 2 -*+5 0 f C  meets F. Consider a subset G of C. Then 

( 1 1 . 3 . 1 )  IL(F  u G )  -- L(F)I < K2-k  %/~Td-G. 



CONCENTRATION OF MEASURE 179 

Pro@ - -  Step 1. - -  The inequality 

L(F w G) ~< L(F) + K2-k(card G) 1/2 

is proved as in the case of the TSP. The problem is the reverse inequality. 
Consider a minimum spanning tree of F u G. We remove all the edges adjacent 

to G. This breaks the spanning tree in a number of pieces, and we have to add edges 
to connect it again. We will prove two facts. 

Fact 1. - -  There is at most 6 card G pieces; 

Fact 2. - -  Each of the pieces contains a point within distance K2 -k of C. 
Once this is known, we simply take a point in each of these pieces within 

distance K2 -k  of C. We build a tour of  length ~< K2-k(card G) 1/2 through these points 
to reconnect the pieces. 

Step 2. Proof of  Fact 1. - -  Consider three points x, a, b of F u G, such that the 
segments [x, a], Ix, b] both belong to a minimum spanning tree of F u G. Then we 

must have II a - b ll >~ II x - a II for otherwise we could remove the edge [x, a] and 
replace it by [a, b] to get a shorter spanning tree. Similarly, we have 1[ a --  b [I 1> II x --  b ]l" 
Thus the angle between the lines xa, xb is at least re/3. Thereby the spanning tree must 
contain at most 6 edges adjacent to each point. Thus removing k points and the edges 
adjacent creates at most 6k connected components. 

Step 3. Proof of  Fact 2. - -  Consider a finite set H of [0, 1] ~. Consider a, b in H, and 
assume that [a, b] belongs to a minimum spanning tree of H. We show that the " lens " 

(11 .3 .2 )  L , , b = { x ; l l a - x [ l < l [ a - b l l ,  l l b - x l l < [ [ a - b l ] }  

does not meet H. Indeed if we remove [a, b] from the minimum spanning tree, we 
split H into the component H a containing a and the component H b containing b. I f  
there existed c ~ L~, b c~ Ho, we could remove the edge [a, b] from the minimum 
spanning tree, and replace it by [c, b] to get a shorter spanning tree. Similarly, 

L , , b C ~ H b = O .  
We apply the above result to H = F u G. An edge [a, b] from a minimal spanning 

tree of H is such that L,, b does not contain a square C' in c~k_ ~ within distance 2 -k+5 
of C, because it is assumed that all such squares meet F, hence H. Thus, if a e C, then, 

c l e a r l y ,  I I b - -  a I I-< K2-k- [] 
The main result of this section is as follows. 

Theorem 11.3 .2 .  - -  Assume that the functional L satisfies the regularity condition o f  

Lemma 11.3.1.  Then, i f  X1 ,  . . . ,  X N are independent uniformly distributed over [0, 1] 2, the r.v. 

L~ = L(X1, . . . ,  X~) satisfies 

Vt>1 0, P ( I L ~ - - M [ > I  t)~< Ke - ' ' /x  

where M is a median o f  L N. 
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One  central idea of  the approach  will be to condit ion with respect  to X1, . . . ,  X~,  
where  m = [N/2]. The  size of  the holes of  { X 1 , . . . ,  X~ } are then controlled by  the 
sizes of  the holes of  { X1, . . . ,  X,, }, independent ly  of  X~+ 1, . - . ,  X•. The  main  par t  
of  the proof  of  Theorem 11 .3 .2  is to obtain  the following statement.  We set t) = [0, 1] z. 

Proposition 1 1 . 3 . 3 .  - -  Consider an integer n with -ff - -  n ~ 1. We write f~l = f ~ ,  

f~2 = f2~ - " ; we denote by P I , P2 the product measures on f h  , a~ respectively. Given 0 < t < ~ - N  / K ,  

there exists a subset H t off~ 1 suck that PI(Ht)  <~ Kj e -t~, and that, whenever (xl ,  . . . ,  x~) r H t ,  
the r.~). 

L' = L ' ( X , + I ,  . . . ,  XN) = L~(xl,  . . . ,  x , ,  X , + l ,  . . . ,  XN) 

defined on f~2 has the following property 

( 1 1 . 3 . 3 )  I f  P~(L' <<. a) >~ e -t~, P~(L '~>b)~>e  -'~, then b - -  a<<. Kt .  

First, we prove that  Proposit ion 11 .3 .3  implies Theorem 11 .3 .2 .  To  prove that  
theorem, it suffices to prove the following statement: 

if P (L  N ~< a) i> 2e- o/z, P(L~/> b) /> 2e-"/2, then b ~ a ~< Kt. 

Consider the set A = { L~ ~< a } in tl ~. We  will write t l  n = ~'~1 X ~'~2 (~'~1 = ~'~"; 

~2 = ~N--~) and P = P I |  Thus,  given r ~ 1 ,  we define L '  on ~ b y  
L'(o~,) = L~(o~l, cos). For o~ 1 ~ ~1, we write 

A(~I)  = { ~ ~ f~,; ( ~ ,  ~ )  E A }. 

Since P(A) >1 2e-**/2, the set 

C 1 = { ~ e f~a; P~(A(~%)) 1> e-" /2}  

satisfies Pa(C1) /> e - ~ .  Consider C,  = C I \ H , ,  so that  Pt(C,)  /> e -* '~ --  K~ e -~*. 
W h e n  ~ e C, ,  we have P~(L' ~< a) >1 e -~ so that  by  (11 .3 .3 )  we  have 

P,(L'~< a + K t )  t> l - - e -  *' 

By Fubini  theorem, we get 

( 1 1 . 8 . 4 )  P(Wz) >t (1 - -  e - ~  P(C~ • n~), 

where  W I - - - { L ~ <  a - ~ K t } n  (C~ • f~) .  
We  observe that  (11 .3 .3 )  implies 

P , ( L '  i> b) >I e - "  * P , ( L '  >/ b - -  Kt )  >t 1 - -  e - " .  

Thus, we can apply the same argument as above to show that 

( 1 1 . 3 . 5 )  P(W2)/> (1 - -  e -")  P (a  I • D~), 
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where W z = { L  Nt> b - - K t } c ~ ( f ~ l  • D2) and P2(D2)>/ e -e~/Z--Kae-~ .  
enough, 

P((C2 X a 2 ) \ W J  q- P((n~ • D~.)\W2) < P(C 2 • D~.) 

For t large 

so that W l n W  24= 13. [] 
We now start the proof of Proposition 11.3.3. Consider xl, �9 �9 x, e f~ : [t3, 1] 2, 

and set F' : { xa, �9 �9 x, }. Denote by m~ the number of squares of %~, that do not 
meet F'. We consider the integers ka, k 0 of Proposition 11.1.4 (defined using n rather 
than N). We define H, as the set of n-tuples (xl, . . . ,  x,) for which 

(11.8.6)  For each k, kl ~< k ~< ko, we have m~ ~< K2 2~ exp(--  n2-2k-6), 

K22kl t 2 
(11.3.7)  m;l_, ~< - -  

Thereby, PI(Ht)/> 1 --Ke -t2 by Proposition 11.1.4. 
We now fix (xl, . . . ,  x,) such that (11.3.6), (11.3.7) hold and we start the proof 

of (11.3.3). For x e [0, 1] 2, we denote by t(x) the smallest integer l such that there is 
C e c~t, C within distance 2 - t+4  of Ct(x), with the property that F' n C : 13. Thus, 
by definition, we observe 

(11.8.8)  ifr -- t(x), any square C' e ~ t -1  that is within distance 2 - t+~ of Ct(x) 
meets F'. 

We also observe that i f y  e Ct(~)(x), then t ( y )  : l(x), so that V e = { x; g(x) = t } 
is a union of squares of ~t .  

Lemma 11.3.4.  - -  a) We have, for  each k 1 ~ k <<. ko, 

(11.8.9)  I Vk[~< K exp(--  n2--2k--B). 

IZt 2 Kt 2 
b) I U V , l < - - < - -  

t < h  n N 

Proof. - -  Let us denote by U~ the union of the elements of cg t that do not meet F', 

and set Ut = U't\kgtU', ._ I t  suffices to observe that if x EVt,  then Ct(,) is within 

distance 2 - t + '  of Ut,  so that Iv  t I< K[ Ue 1, and the result follows from (11.3.6), 
(11.3.7). [] 

We consider the function g(x) --- 2 -m~x(kl' a, , .  By (11.1.12), we have 

K ( n~ 'I~ K 
(11.3.10) ][gl[~< 2 - h < ~ - ~  logtz ] <<.7. 

By (11.3.9) and an obvious computation, we have 

(n.a.11) Ilgll=< K/V . 
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To prove (11.3.3) ,  we have to prove that if a, b are such that P,(L'  ~< a) f> e -t*, 
P,(L '  t> b) i> e -t*, then b -- a~< Kt. We now appeal to Corollary 2 .4 .5  with u = Kt, 
for the function h(x,y) = g ( x )  + g ( y ) .  From (11.3.10),  (11.3.11),  we see that we 
can f indy ,+~ ,  . . . ,YN, z,+~, . . . ,  z~ such that 

and 

L ' ( y , + , ,  . . . ,YN) ~< a; L'(z++,,  . . . ,  z~) 1> b, 

(g(y+) -Jr g(z+) ) <<. Kt, 

w h e r e J = { n - t -  l ~ < i ~  N ; y + +  z,}. 
Consider the set F that consists of the points xl, �9 �9 �9 x,,  as well as the points y+, 

i CJ. We will prove: 

(11 .8 .14)  I L ' ( y , + l ,  . . . , y ~ )  -- L(F)I ~< Kt. 

The same argument will show that 

I L ' ( z , + l ,  . . . ,  z~) --  L(F)I ~< Va 

and this will finish the proof. 
First we observe from (11.3.1) that if F 1 D F, and ifg(x) >/ka, then 

{ L(F~ u { x }) --  L(F) I ~< Kg(x). 

Thereby, it follows from (11.3.13) that we can add to F all the pointsy~, i e j ,  for 
which t(y+)/> kl, without changing the value o f f  by more than Kt. Denote by G the 

set of the other points y+. We observe that G is contained in [.] Vt. Consider C e ~t ,  
g < k  1 

C C V t. By (11.3.1),  we have, for any set F 1 containing F, that 

I L(F~ u (G n C)) --  L(F1) [ ~< KZ- t (card  G n C) 1]~. 

Therefore it suffices to show that 

~] 2 - t  Y~ ( c a r d G n C )  v~< Kt. 
t < k l  CCVI 

But this is shown as in Step 3 of the proof of Proposition 11.2.5.  [] 

11.4.  Gabriel Graph and Voronoi Polygons 

Given a subset F of [0, 1] 3, its Gabriel graph is the set of edges [a, b] such that 
the closure La, b of the set La, b of (11.3.2)  meets F only in a and b. When the set F has 
the property that it does not contain points x ,y ,  z such that I i x - y i I  = l i x -  z[I, 
(a property that is satisfied with probability one for random sets) this is equivalent to 

saying that F contains the edge [a, b] if and only if La. b does not meet F. In that case, 
the Gabriel graph contains the minimum spanning tree, as is shown in the course of 
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the proof of Lemma 11.3.1. As in the case of the MST, at most 6 edges are adjacent 
to each point of F. 

We denote by L(F) the length of the Gabriel graph. An interesting feature of 
this functional is that, in certain special configurations, adding a single point creates 
a big decrease of L(F). A typical such configuration consists of the points (0, k/n), 

(1, k/n), 0 <~ k <<. n. The Gabriel graph contains all the edges between (0, kin) and (1, kin). 
All these edges will disappear when one adds the middle of the unit square to F. The 
following lemma shows that the previous example is close to be the worst possible 
behavior. 

Lemma 11.4.1.  - -  Consider C e ~ ,  F a subset of  [0, 1] 3, and assume: 

(11.4.1)  every element C' of  ~k -1 that is within distance of 2 -~+8 of C meets F. 

Then, i f  G C C, we have 

(11.4.2)  1L(F) -- L(F t~ G) I ~< K2 -~ card{(F t) G) r B(C, K2-~)}, 

where B(C, r) denotes the set of points within distance r of C. 

Comment. - -  The difference with Lemma 11.3.1 is that the bound now depends 
upon F u G rather than G alone. 

Proof. - -  As already seen, a point is adjacent to at most 6 edges, and, as in the 
case of the MST, edges adjacent to G have a length ~< K2 -k. Thus 

L(F u G) ~< L(F) + K2 -~ card G. 

To prove the reverse inequality, we observe that the edges [a, b] that belong to 
the Gabriel graph of F but not to the Gabriel graph of F u G are exactly these for 
which La, b\{ a, b } meets G but not F. Then II a -- b I1 ~< K2-  k, for otherwise there 
would exist C' e ~ _  t within distance 2-  k + ~ of C that would not meet F. This implies, 
since La, b meets G, that a, b e B(C, K2-k).  In  the Gabriel graph of F, there are at most 
6 .card(F n B(C, K2-k)) edges adjacent to points in B(C, K2-k), so at most that many 
edges can be removed. [] 

Another natural example of functional that satisfies Lemma 11.4.1 is the total 
length of the Voronoi polygons. I f  F is a subset of [0, 1] 3, and x e F, let us define the 
Voronoi polygon V, of x as the set of all pointsy of [0, 1] 2 for which d(x, y)  = d(y ,  F\{ x }). 
(This name is a bit abusive since when x is close to the boundary of [0, 1] * this set is 
not a polygon.) Denote by L(F) the sum of the lengths of the Voronoi polygons of all 
points of F. We sketch a proof that L(F) satisfies the condition of Lemma 11.4.1. First, 
we observe that i fy  E V~, there is no point of F within distance less than [1 x -- y [[ ofy. 
Thus, if x ~G, the Voronoi polygon of x (with respect to F t3 G) is under (11.4.1) 

entirely contained in B(x, K2-k), so is of length ~< K2 -k. Thus 

L(F w G) ~< L(F) 4- K2 -k card G. 
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To prove the reverse inequality, consider a point  a belonging to the Voronoi polygon 
of x ~ F, with respect to F, but not with respect to F u G. Then  there is no point of F 
within distance less than I[ x -- a[l of a, but  there is at least a point of G. Under  (11.4.1) 
we have a, x ~ B(C, K2-k) ;  but  the total length of the part  of the Voronoi polygons 
of F contained in B(C, K2 -~) is easily seen to be ~< K2 -k card(F n B(C, K2-~)). 

Theorem 11.4 .2 .  - -  Consider a functional that satisfies the condition of  Lemma 11.4.1.  
Set, as usual, L = Lz~ ---- L(X1, . . . ,  X~r), and consider the median M of L~.  Then 

( 1 min (t2' (t "V/-N)2'8))" (11 .4 .3)  V t > 0 ,  P ( ] L - - M [ / > t ) ~ K e x p - - ~  

In particular, the tails of L~ are subgaussian for values of t up to N TM. We now 
sketch, in the case of the Gabriel graph, why, within logarithmic terms, the exponent 
in (11.4.3) is correct for t >/ N 1/*. We give an informal argument,  that  could be made 
rigorous. For simplicity, let us argue about L(II) ,  where II is a Poisson point process 

of intensity N. Consider u ~< ~ ,  and let a = u/~c/N ~< 1. Denote by k the cardinality 
of YI c~ [0, a] ~. When k is even, conditionally on k, with probability I> (1]K]~*) *, the 
k points of II n [0, a] * are such that  each of the discs of center (~, 2talk), for aq ~{0, a}, 
1 <~ t <~ k/2, and of radius a/4k ~ contains exactly one of these points. Then  the Gabriel 
graph of II contains the edge from the point in the disc of center (0, 2la[k) to the point 
in the disc of center (a, 21a/k), for a total length of order ka. Now with overwhelming 
probability k is of order u~; so, with probability 1> (1/KuS) "2 we get the exceptional 

configuration described above that  creates an abnormal length of order t = u ~ a ~- ua/N/-N. 

Now u = (t "V/N) 1/", and 

( ~ 1 ]  "~ ( l ( t  X/~)2/s log t ~'-N) KuS] /> exp - - ~  

So this later quanti ty is a lower bound on the probability that  we get an abnormal length 
of order t that  will have L exceed the median by t. 

To prove Theorem 11.4.2,  we observe that, since [ L~ [ ~< KN by (11.4.2),  it 
suffices to prove (11.4.3)  for t ~< N]K. We follow the scheme of Section 11.3. I t  is enough 

to modify Proposition 11.3.3 so that, when t~< %/N/K, (11.3.3) can be replaced by 

(11.4.4) I f  P, (L '  <~ a) >>. 2e-t ' ,  Pg.(L' >.~ b) >>. 2e-~', then b --  a <~ K (t + -~/--~). 

Once this is known, as in Section 11.3, we prove that  

P(L~< a) 1> 2e-t~/2 P(L/> b) t> 2e-t~/~ imply b - - a < ~ K  t +  . 

Theorem 11.4 .2  follows since, if we set u = t § ta/%/N, for u ~< N/K we have t~< "VN/K;  

moreover, t '  >/ K -~ min (u S, (u "v/N)2/8). 
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The construction of Ht and the proof of (11.4.4) will parallel the proof of Propo- 
sition 11.3.3. In  order to avoid repetition, we will not reproduce the entire argument 
but simply explain the necessary modifications. 

The construction o f H  t is modified as follows. We require that for ka -- 1 ~< k ~< k0, 
and each subset S of (Yk, with card S ~< rk, one has 

e22k 
(11.4.5)  card{i~< n;x~ e u { C ;  C ~S}}~< KN2-2k rk -k rklog , 

rk 

where we set r~_ ~ = 2 2~1 t2/n and, for k/> kl, 

r~ ~-~ K/2 4e-ak~ 

We observe that, using (11.1.12), 

Kt 22ki_~ko t~ 2--2~ rk >/ Kt22h-8~~ ~ >/ n '  

provided K is large enough. It  then follows from Proposition 11.1.5 that imposing 
these extra conditions does not change the fact that PI(Ht) i> 1 --  Ke - ~  

We change the definition of the function g(x) to 

Thus 

(11.4.s) 

L ( 2 k 0  -- max(kl, tr 4 
g(x) = 2 k  0,_ , .  

1 (2~0_kl)4 < K ( Kn/~ K 
I1 g -< 2ko log 7 ]  "< 7 

and, obviously, (11.3.11) still holds. 
Suppose now that we are given a, b with 

P~(L'~< a) /> 2e-e*, P~(L'>~ b) /> 2e-t '  

Using Proposition 11.1.5 again, we see that we can find a set A C { I.'~< a }, 
P~(A) >/ e - t ' ,  such that whenever (Y ,+I , . . . ,YN)  cA ,  we have 

(11.4.7)  for each hi -- 1 ~< k ~< k 0 and each subset S of ~k such that card S ~< rk, 
one has 

g22k 
c a r d { n + l < ~ i < ~ N ; y ~ e u { C ; C e S } } < ~ K N 2 - ~ k r k + r k l o g  . 

r~ 

We then consider, using Proposition 11.1.5 again, a subset B of { L'/> b } with 
P~(B) >/ e - t ' ,  such that when (z,+a, . . . ,  z•) e B, the property similar to (11.4.7) holds. 

We now appeal to Corollary 2.4.5,  to find (Y,+I,  �9 �9 .,YN) s A, (z,+x, . . . ,  z~) e B 

such that i f J = { i ; n +  l~< i~<N,y~#  z~}, then 

( 1 1 . 4 . 8 )  Y~ g(y~) -k g(z~) <~ Kt. 

")4 
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We denote by F the collection of points that  consists of the points (x~)~<,, together 
with the points Yi, i C J.  We denote by G the collection of points y~, i ~J.  We have to 
show that  

(aa.4.9) I L(F u G) --  L(F)[ ~< K(t  + t3/~/-h). 

Let us denote by S t the collection of squares C ~ q~t that  contain at least one 
pointy~, i ~J, l(y~) = l. I t  follows from (11.4.1) that, if F C F 1C F u G, and if C ~ St, 
we have 

I L(F1 u (G n C)) -- L(F~)[ ~< K2 -e  card{(F u G) n B(C, K2- t )} .  

Thereby, adding to F 1 all the points of U t n  G, where Ut = u { C; C ~ St }, we 
cannot  change the value of L by more than 

(11.4 .10)  2 - t  card{(F u G) n B(Ut, K2- t )} .  

Since, for t(y~) ----- t t> kl, we have by definition 

1 
g(y,) >/2~- ~ (2~~ 4, 

and since Z g(y~) ~< Kt by (11.4.8),  we see that  

card St ~< Kt2 *t-8~. 

Now, B(Ut, K2 - t )  is contained in a union of~< K c a r d S t  squares O of ~ t .  
Thereby, it follows from (11.4.5),  (11.4.7) that  the quanti ty (11.4.10) is bounded by 

2-t K (N2-2t rt + r t log e2~-~ - -  ~< K/2t-ko, 
re] 

and these quantifies have a sum ~< Kt. 
Now we have to control the influence of the pointsy,  for which g(y,) < kl. 

We denote by V t the set { t(x) = t }. We recall that  by Lemma  11.3 .4  we have 

[t ~h  Vt[~< Kt2/N" Since Vt is union of squares of q~t, we have in particular that  

Vt = ~ for t ~< ks, where 2-  k3 ~< Kt/V~-~. Adding to a set F1 such that  F C F1 C F u G, 
the points of G n Vt can, by (11.4.1),  change the value of L by at most 

2 - t  card((F u G) n B(Vt, K2- t ) ) .  

Now we observe that  I B(Vt, K2-t ) ]  ~< K [ V t ]. Thus the total contribution of the 
points of G n V t is bounded by 

(11 .4 .11)  2 -e  card((F u G) n V), 



CONCENTRATION OF MEASURE 187 

where ]V[~< Kt2/N and V is a union of squares o f  ~ k l _  1 . By (11.4.7), the summation 
of all these quantifies over t >/k 8 is at most 

Kt ( e2~h-2\ 
K2 -ka card((F u G) r3 V) ~< ~ N2-  2kl rkl_ 1 @ rkt_ 1 log  rk-~-_l ) 

K tS (  2 2kI KN) 
1 + 

But, using the definition of kl, the last term is easily seen to be bounded by a constant. [] 

11.5. Simple matching 

In  this section (for reasons that will become apparent later) we work in [0, 1] a 
ford~> 2. 

A matching of a set F is a decomposition of F as a union of disjoint pairs of points 
(points of the same pair are matched);  we make the convention that when card F is 
odd, there is exactly one point that is unmatched (does not belong to any pair). A 
minimum matching is a matching that minimizes the sum of the distances of pairs of 
matched points. We denote by L(F) the length of a minimum matching of F. For 
simplicity, the point to which a given point is matched is called its partner. 

Our  interest in that functional stems from the fact that it apparently does not 
have good regularity properties. I t  is obvious that 

L ( F w { x } ) - - L ( F  w{y})~< [ Ix - -Y] [ ,  

but in certain configurations this cannot be improved upon. The problem is that if 
one tries to match y to a point different from the partner of x, the partner of x has to 
find a new partner, etc., and there is no apparent way to control this chain reaction. 

While the behavior of F is not good as far as the change of one point of F is 
concerned, the situation is somewhat better when a significant number of points of F 
are changed. We set L'(F) ---- sup{L(F ' ) ;  F 'C F}. 

Lemma 11.5.1.  - -  One has [L(F) -- L(G)I ~< L'(F AG) + 3//-d. 

Proof. - -  Consider U -= F \ G ,  V ---- G \ F .  Consider a minimal matching .It' of F, 
and, for a e F, denote its partner by 0(a). Set 

H = { a ~ F k U ; 0 ( a )  ~ U } .  

When we remove U from F, the points of H lose their partners. Set H'  = { 0(a) ; a e H }. 
Thus H'  C U. To find partners for the points o fV  u H we consider a minimum matching 

of V w H'. This matching induces a matching rig' of V w H, using the bijection 0 of H 
and H'. The union of the trace of dr' on F \ ( U  u H) and dr" is almost a matching of G, 
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although it could happen that there remains an unmatched point in V u H and one 

in F \ ( U  u H).  The two points are then matched together (creating the term "V~-). 
The matching we have constructed witnesses that 

L(G) ~< L(F) + L(V u H')  + ~ /d  

~< L(F) + L ' (V w U) + ~ .  

To see it, it suffices to use the triangle inequality, and to observe that the edges [a, 0(a)] 
for a ~ U '  do disappear from ~r when U is removed. [] 

Here is a simple observation. 

Lemma 11.5 .2 .  - -  Consider subsets F1, . . . ,  F~ of [0, 1] ~. Then 

L'( [J F~)~< Y~ L'(F,) -}-Kp 1-1/a 

where, as in the rest o f  this section, K denotes a constant that depends on d only. 

Proof. - -  It  suffices to prove this for L rather than L'. The point is that if one 

considers an optimal matching of each Fi, their union fails to be a matching of [.] F, 

only because there could remain an unmatched point in each F,, while we are permitted 
at most a single unmatched point. Thus, it suffices to match all but  at most one of these 
points, using for example a shortest tour through them, and matching consecutive points 
on the tour. [] 

It  seems an interesting question whether when d = 2 the inequality of 
Theorem 11.2.3 would hold, at least for smaller values of t. Possibly easier is the 
question whether the variance of LN is bounded. The best results in that direction 
belong to Rhee. She proved that if d = 2, Var  Lz~ ~< K(log N) z JR3], while if d >1 3, 
Var L~ ~< KN 1-1/a [R2]. The arguments for these results are different. Our  methods 
do not allow to improve on the result for d = 2, but  allow significant improvement 
when d/> 3 (and this is why we consider this case in this section). Although this has 

1 i 2a not been checked, it seems to be an exercise to show that Vat  L~ 1> ~ N - ~ using 

e.g., the method of [R1]. What  we will prove is that Var L~ ~< (log N) E N 1-2/~. The 
proof goes by first proving a Poissonized version of the result, and then using " dePoisso- 
nization ". The second part of the argument is standard (see e.g. [R1]) and will not 
be given here. 

The Poissonized version of the problem is the study of the r.v. Lx = L(Hx), 
where II x is the random subset of [0, 1] ~ that is generated by a Poisson point process 
of  constant intensity ~. We consider the space ~ of all finite subsets of [0, 1] ~, and on ~,  
we consider the probability Px induced by II x. On ~2, we consider the function 

(11.5.1) f(F, G) = L'(F AG). 
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For a subset B of  f2, we set 

(at.5.9.) f ( F ,  B) = inf  f ( F ,  G) = inf  L ' (F  AG). G~B G(~B 

1 1 
We set y = 2 d" 

Theorem 1 1 . 5 . 3 .  - -  For all X >1 3 and all subsets B of  f~, we have 

i e f ( F , B )  dPz(F) ~< _ _  
exp (log X) x X v Px(B)" 

I f  we combine  this result with L e m m a  11.5 .1  (and proceed as usual) we see that  
if M z denotes a median of  Lz, we have 

exp (logX) ~rx v] L x - M x l  dP~< K 

which certainly implies the previous claim abou t  the var iance of  L x. To  prove 
Theo rem 11 .5 .3 ,  we will prove the following statement,  whose form is adap ted  to proof  
by  induction.  

Proposition 11.15.4. - -  There exists numbers Ko, ~ > 1 depending on d only, such that 

for all q > 0 we have, for all X, 1 <<. X <<. 2 ~q and all Borel subsets B of  f~, 

fa  f ( F ,  B) e 
exp K~ ~.-----~ dPx(F) ~< Px(B---~" 

To  see that  this s ta tement  implies Theorem 11 .5 .3 ,  we take the smallest q such 

that  X ~< 2 c~q, SO that  ~q is of  order log X, and Kg of order  (log X) ~r. 
The  proof  of  Proposit ion 1 1 . 5 . 4  is by  induct ion over q. For the case q = 1, one 

uses the bruta l  b o u n d  

f ( F ,  G) ~< K(ca rd  F + card G) 

and the exponential  integrabil i ty of  Poisson r andom variables. The  easy details are 
left to the reader.  

W e  will determine,  in due  time, suitable values for K 0 and ~ and we now start  

the proof  of  the induct ion step from q to q q- 1. Consider X such that  2aq~< ~k ~< 2 ~q+1. 

Consider the smallest integer n such that  X ' =  X/n a <<. 2 ~q. (Thus, we can apply  the 

induct ion hypothesis to •'.) By definition of  n, we have X/(n --  1) a >/ 2 ~q, so that,  since 

X~< 2 ~q+l, we have (n - -  1)a~< 2 <~-l'~q, and thus 

n a 
( 1 1 . 5 . 8 )  na<~ - -  21~-1~+ ~< 2a.2 I~-l>aq. 

( n -  1) a 
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Also, 

1 . ~ ~ >  - -  2~q~> 2~a-a. 

Consider a partit ion of [0,1] d in n d congruent cubes (C,),<,d. From 
L e m m a  11.5.2,  we observe that  

(II.5.5) L'(F AG) ~< E L'((F AG) n C,) + Kn a-1. 
i <~ n d 

We set 
f ( F ,  G) = L ' ( (F AG) n C,). 

Thus  we have, from (11.5.5) 

I f  we set 

L'(FAG)~< Y, f ( F , G )  + K #  -1. 
i <~ nd 

g(F, G) = inf Y~ f (F,  G), 
G ~ B  4 < n d  

we get by (11.5.2) that  

(11 .5 .6)  f(F, B) ~< g(F, B) § Kn a-1. 

The  crucial point  is that  (~, Px) is naturally isomorphic to the product  of n a copies 
of (f~, Px'). To see this, let us denote by R, an affine map  from C~ to [0, 1] a, for i <<, n a. 
Then  the isomorphism simply associates (Ri(F n C~))~<,a to F. We observe that  

1 L'(R (F n C,) AR (G n C,)) fdF,  G) = 

so that, under  this isomorphism, each f u n c t i o n f  is distributed like the function h' on f~ 

(provided with Pz' | Px'), where h'(F, G) = 1 L ' (F  AG). Moreover, with the notation 
n 

of Definition 2 .4 .1 ,  we have fh" = g. By induction hypothesis, and taking the scaling 
factor n into account, we have for each Borel set B C ~,  

exp(2h(F, B)) dPx,(F ) ~ Px,(B-----~' 

where h = ah', a = n(2Ko q X'v) -1. I t  then follows from Theorem 2.5 .1  and the definition 
of g that  

i 1 V t<~ 1, exp(atg(F,  B)) dPx(F ) <~ p - ~  exp(3n a t 2) 
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for each Borel set BC f~. From (11.5.6), it follows that 

fn  1 K n  a _ exp(atf(V, B)) dPx(r) ~< ~ exp(3na t ~ q- at). 

We see that if 

(11.5.7)  n a'~-x a <~ K ,  

then, taking t = n-al2/K, we get 

(11.5.8)  fn exp 
(o ) e 

f ( r ,  B) dPx(F) ~< Px(B---~" 

Now, 

a 1 1 

K n  a/2 2KK~ X' v na/2-1 2KKg X v 

since du = d/2 --  1. Thus, provided K 0 = 2K, (11.5.8) is exactly what we need to 
complete the induction. 

I t  remains to check that (11.5.7) holds, but by (11.5.3), (11.5.4), 

n a <~ 2 a 2c~- x~ ~,~ 

a/n ~< ~' - v ~< 2va 2- v~q, 

so that (11.5.7) holds for ~ = 1 -k- 2y. [] 

12. T h e  f r e e  e n e r g y  i n  t h e  S h e r r i n g t o n - K i r p a t r i e k  m o d e l  a t  h i g h  t e m p e r a t u r e  

Consider a sequence (r with ~ z{ -- 1, 1 }. Each z~ represents the two possible 
values of the spin of particule i. Consider numbers (h~r j~< ~ that represent the inter- 

action between spins. The energy of a given configuration is given by ~ h~i ~ ~ .  

Consider a parameter  ~ ~ 0 (that plays the role of the inverse of the temperature).  
The so-called " partition function " is given by 

(12.1) Z~ ----- Z~(k~j) = 2 - ~  ~ e x p ( ~  ~E ko r ~,). 
(~i) ~ { -- 1, 1} N l ~ i  < j ~  N 

The role of the factor ~ /N is for normalization purposes that will become apparent later. 
I f  we think of ~, as being a Bernoulli r.v., it is natural to write 
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In  the model we study, the numbers h+i are random, and the sequence (h+j)l~<i< ~<~ 
is i.i.d. We assume Eh+~. = Ehp~ = 0, and we assume for normalization purposes that 
Eh~j = 1. We will also assume that E exp ~ [ h+j [ < ~ for ~ small enough. Then EZs 
is well-defined for N large enough. We are interested in the quantity N -~ E log Z~ 
(mean free energy per site), whose study relies ultimately on the study of Z N . I t  is proved 
in [A-L-R], and in [C-N] in the case where hit is gaussian, that for ~ < 1 the random 
variable log Z N - -}~  N/4 converges in law to a (non-standard) normal r.v. Equally 
interesting, but of a rather different nature is the research of tail estimates for 
log Z~ -- ~ N/4 that are valid for all N. 

Theorem 12.1. - -  There exists a universal constant K with the following property. Assume 
that E exp + h+~ < 2. Then, for 0 < t < N/K, ~ < 1, 

(12.3)  P l o g Z  N 4 /> K t +  log ~ /N ~ 2e- ~' 
N i - - p ]  

In particular 

K / 2 
(12.+) ~ /  log 1 -- ~+ 

1 [3,+ K 
E log 

Comments. - -  1) The reader might like to start with the significantly simpler gaussian 
case. In  that case, the key deviation inequality (12.5) below can be replaced by 

V t > 0 ,  P ( I l o g Z ~ - - M  N[/> t)~< 2exp N - -  1 

as a direct consequence of (1.6), (1.15). 2) In  the condition E exp • hit ~< 2, the 
number  2 can be replaced by any other (with a different constant K). I t  seems reasonable 
to conjecture that (12.3) is not sharp in the gaussian case, and that, for a given ~ < 1, 

l i m s u p P  l o g Z ~ - - - -  1> t =-0.  
t ---~ ~ N 4 

I t  should however be pointed out that (12.3) does not hold when the factor ~ 
is removed from (12.3). Indeed it would follow otherwise that for each n, 
sup E(4ZN/~ ~ N)" < 0% and it is pointed out in [A-L-R], p. 6, that this is not the case. 

The key to Theorem 12.1 will be the following deviation inequality 

(12.5) 0 < t ~ < 4 % / N ( N - -  1) ~ P ( l l o g Z  N -  M NIl> t )~<2exp 32( -- 1) 

where M~ denotes a median of log Z~. We first show how to deduce this from Corol- 
lary 2.4.4.  The second crucial step will then be to relate M~ and ~2 N/4 (~ log EZN). 
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To prove (12.5), we observe that 

W - . 6 )  I log - log zs(hi ) [ < - -  

as follows from the fact that 

193 

so that 
1 (EZs) 2 

P(A) >1 
4 

(a fact going back to Paley and Zigmund). Combining with (12.8), we get 
1 

P(A)/> (1 --[~2)/K. To get a lower bound for Ms,  we can assume Ms~< l o g ~ E Z  s .  

25 

1 ~  < j ~ S  1 ~ <  ~ i ' q  

We now view log Z~ as a function on R s ( s -  11/2. We wish to apply Corollary 2 .4 .4  
1 

in the case fl = R, h(x,y) = ~ [x - - y  [, ~t the law ofh, j. We note that (2.4.12) holds, 
since 

, exp ~ [ x - - y  [ dr.(x) dr.(y) <~ exp ] x [ @.(x) 

~< (E exp [k~j [)1/~ 

~< (E(exp h ,  + exp -- k~j)) 1/2 ~< 2. 

Consider now v and the s e t A  : - {  log Z s < v). Combining (12.6) and (2.4.13) (used 
for N(N -- 1)/2 rather than N) we see that, for u > v, we have 

u --  v~< 413 %/N(N -- 1) 

=~ P({log Z s >  u}) P({log Z s <  v}) ~< exp 3213~( N . 

Taking successively u = M s and v = Ms,  (12.5) follows as usual. 
In  order to relate M s and [32 N/4, the key step is the elementary estimates 

1 ~N_ [52 N 
(12.7) ~ exp ~ ~< EZz~ < K exp 4 ' 

K 
(12.S) EZ~ ~< 1 --  ~-------~ (EZs)2" 

These will be proved later. First, we conclude the main argument. Consider the set 
1 

A : {Zs >/ ~EZN}. Then 

EZ s = E(Z s 1A,) + E(Zs 1A) 

1 ]~Zs -~- E(Z~)I/2 p(A)l/2, 
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We set t = l o g ( ~ E Z s ) - - M  s . Since 

t~< K + N/4, by (12.7). 
We certainly have 

A C { I o g Z  sf> M N + t } .  

log Z s 1> 0, we have Ms~> 0 and hence 

Thus, by (12.5), we have 

(1 
[~------~) ~< P(A) .<< 2 exp ( 

K 

so that 

and thus 

t 2 

3 2 ( N -  i ) ) '  

( 5A t.< K V ~  l O g l _ [ 3  ~] 

We also have M• ~< log(2EZs). Combining with (12.7) we get 

[ K \v~ 

so that (12.3) now follows from (12.5). 
To prove (12.4), we first observe that the lower bound follows from (12.3) and 

a routine computation. The upper bound follows from the concavity of log, which 
implies E log Z N ~< log EZs,  and (12.7). 

It  remains to prove (12.7), (12.8). We start with the elementary inequality 

[ x~ x3l x4 
e" -- 1 -- x 2 3! < --4l el~l 

1 
that is obvious on power series expansions. Thus, for ] u [~ 2 '  we have (since Eh~ = 1, 
E h .  = Eh~, = o) 

u ~ u S 
(19..9) 1 + ~ -- Ku 4 ~< E exp(uh,~) <~ 1 + -~ + Ku ~, 

and for r  1, [3< 1, 

oxp(.  
Since 

N ~ } 

EZ~ 

4 E e x p ~ 4  exp 2-N N 2]" 

= E~ H E exp ~ ~j - -  
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(12.7) follows. Turning to the study of EZ~, we have, using (12.9), and for N >/ 8, 
that, with obvious notation, 

EZ~ = EE~ E e exp (1 
~< 

) Y. + 4) <j~<N2--N 

I i I 

Now, (~ r + ~ @~ = 2 + 2~ cj ~ ~ .  Also, ~ ~j ~ aj is distributed like ~ r so that 

) EZ~r~< Kexp E~ ~-~(l~<,<j~<~ 

Further, 

Using the subgaussian inequality 

P~([ ~ ~1>i t)~< 2exp -- , 
i = 1  

we have 

E~exp 2-N(,=1 ~ ~) 

and (12.8) follows. [] 

~< 1 q-2 ~ exp-~-~-] 

1 + ~  

1 --  ~ 

exp dt 

13. S u m s  o f  (vector  va lued)  i n d e p e n d e n t  r a n d o m  v a r i a b l e s  

The first objective of this section is to discuss the genesis of the key ideas of the 
isoperimetric approach as developed in the present paper, and to explain how these 
ideas have permitted the solution of the main problems of Probability in Banach spaces. 
In the second part of this section we will discuss, in detail, a situation that parallels 
the situation of Chapter 8, but where the infimum over ~ ~ o~" is replaced by a supremum. 
There are unexpected and subtle differences; this is closely connected to the fact that 
the conditions on the function h(x,y) in Theorem 4.4.1 are (and must be) highly 
disymmetric in x and y. 

Consider a sequence (X~),~<~ of r.v. valued in a Banach space W. A number 
of classical problems of probability (in particular, laws of large numbers and laws of 
the iterated logarithm) depend crucially on sharp estimates of the tail probability 
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P(]I E X~ II/> t). For many years these estimates were found using martingales, and 
i~<N 

the results were not optimal. One big obstacle is that  there is no obvious substitute 
for the positivity arguments that  are central to Chapter  8. Although its importance 
became clear only later, a crucial contribution was made  by M. Ledoux [L]. I t  was 
known at the t ime that  in many situations, the tails of ][ 2: X,][ resemble the tails 

of I] 2: g~ X, [[, where (g~),.<s is an independent  sequence of standard normal  r.v. 

that  is independent  of the sequence X,. To study ]} ~ g, Xi ][, Ledoux wrote 
i~<N 

(13.1) II y~ g, x ,  II = E II x: g, x,  II + (II z g, ~ II - E~ II y. g, x ,  II), 

where Eg denotes conditional expectation, given (Xi),<~. The  idea was that  either 
term of the right-hand side should be easier to study than the term of the left-hand side. 
This is particularly apparent  for the second term, where, arguing conditionally on X,, 
one can take advantage of the properties of Gaussian processes. 

I t  turns out that  the first term in the right of (13.7) has the exact property needed 
to replace positivity; namely, if J c { 1, . . . ,  N }, we have 

(13.2) Eolt Z g ,X~l l~  E~II Z g,X,l[ .  

The  realization of the importance of positivity-like properties led first to the charac- 
terization of the Banach-space valued r.v. that  satisfy the law of the iterated loga- 
r i thm [L-T1]. Perhaps more importantly,  (13.2) lead this author  to the belief that  
some isoperimetric principle should be relevant, and hence to the theorem of [T2] (that 
is now superceeded by the comparable, but  much  easier to prove Theorem 3.1 .1) ,  
and started the line of investigation that  culminates in the present paper. 

The  author  also understood that  Bernoulli r.v. have regularity properties 
that  almost match those of Gaussian r.v. (a crucial step is the comparison theorem 
of [T5]). They offer the extra advantage that  the tails of [[ 2:i,<N ~ X~ [I (where 
P(~ = -- 1) = P(a~ = 1) = 1/2) always resemble the tails of [] 2~ X, []. Thus, rather 

*~<N 
than (13.2) one should write 

(13.3) 

Our  first task is the study of the r.v. 

(13.4) z = E+ II Z ~, x ,  II. 
i~<N 

We denote by LI x ,  tl+ the non-decreasing rearrangement of the sequence (ll X, II),~,," 
Thus 

II x ,  ll+ = sup{ t, card{j< N, I1Xj II ~> t}~> i}. 
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Proposition 13.1. - -  Consider a > 0, q, k ~ N .  Then 

1 
(13.5) P(Z >/ qa -~ t) ~< q/~+l P(Z ~< a) q + P(,.<~E l[ X, It* >/ t). 

Comment. - -  To obtain a useful bound, one estimates the last term using classical 
methods; one then optimizes over k, q. 

Proof. - -  We s e t ~  : W. Consider the function Z on f ~  given for x : (x,),~< N ~flN 
by 

Z(x) = E, I1 ,, x, If- 

Consider the product probability P on f~, when the i-th factor is provided with the law 
of X~. Consider the set A = { x; Z(x)~< a }. Setting, for simplicity 

k(x) = f ( A ,  . . . ,  A, x) 

(where A occurs q times), it suffices by Theorem 3.1.1 to prove that 

03.6) Z(x)~ q a +  E IIx+ll*. 
i ~ k(x) 

Indeed, we then have, for each k, 

P(Z t> qa + t) <. P(h(x) > h) + P( Y, [[ x~ ]]*/> t). 

To prove (13.6), we considery 1, . . . , S  in A such that if we set 

I = { i , <  N;x, r . . . , y~}} ,  

then card I ~< k(x) .  Denote by J the complement of I. Then, by the triangle inequality 

Z(x) = E = l l  2 ;~ ,x ,  l l . < . < ~  g,  ll 2] ~,x,I I + 2; Ilx, ll �9 0a.7)  

Now 

Oa.s) 211x, ll < 2 IIx, l[*, 
ff I i~< k(x) 

since these last k(x) terms are the k(x) largest terms of the sequence (11 x, By 
definition of J,  we can find a partition J1, . . . ,  Jr of this set such that, for t <<. q, 

v i z J t ,  x,---yi t. 

Thus 

(13.9) E II E ll =E, Ji E  ,AII. 
i ~ J l  ~ J t  
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The essential fact is now that  

i ~ g  t i~N 

To see this, simply observe that, in the left-hand side, the expectation in ,~, i r is 
taken inside rather than outside the norm. Since yt e A, combining with (13.9) we get 

E=II Z ~,x, l l~<a 

and thus, by the triangle inequality 

E ~ I 1 Z  ~,x, tl.< qa. 

Combining with (13.7), (13.8) yield the result. [] 
To study the last term of (13.3) conditionally on (Xi)~<N, one can rely, in 

particular, upon the following result. 

Theorem 13.2. ~ Consider vectors (v~)l<~<<.N in a Banach space W, and set 

(13.10) ~---- (sup{ z w ' ( v Y : w ' ~ W ' , l l w ' l l < .  1}) 1/2. 

Consider a sequence (Y~)i~<~ of independent real valued r.v. such that I Y, I~ 1. Denote by M 

a median of the r.v. 11 • Y~ v~ I I. Then for t >  0 we have 

O 3 . 1 a )  P(l l  1 :  Y, v, II - -  M I ~> t~) .< 4 exp - -  . 

then 

Proof. - -  We observe that  if we set 

s~ ={(w*(v3)',w* ~W*,l lw*ll<,  1} 

z = II 1: Y, v, 11 = sup Y~ ~ ,  Y~. 
i~N ~ ~N 

Thus Theorem 13.2 is a special case of Theorem 8 .1 .1  (using scaling). [] 

Remarks. - -  Certainly the constant in the exponent is not sharp, and could be 
improved using (4.2.7)  rather than (4.1.3) ,  especially in the case of Bernoulli r.v., 

l ( t - -  l ~ o g  2)~ for t ~> "V~og 2. where the use of (4.3.8)  would yield a bound of 2 exp -- 

Before we pursue the study of (13.3), we digress on an interesting sharpening 

of Theorem 13.2. There is another bound on the tails of II 1: Y, v, II namely the trivial 
~ N  

bound II I: Y, v~ I1 -< sup 1: [ w*(v~)I, and it is, of course, possible to interpolate 
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between this bound  and  (13.11). This can be done as follows. For  a sequence (r~)~<~ 
of  real numbers,  and t > 0, we write 

Kl.~((r~) , t) = inf{ ~, ] u~l + t( Y~ w~)V2; r~ = u~ + w~}, 

where  the inf imum is taken over all possible decompositions r~ = u~ + w~. We set 

K(r = sup{K1,2((w*(v,)) , t);  w* eW*, II w* II = 1 }. 

We observe that  ~(t) ~< re. Only  ra ther  trivial modifications to the proof of Theo-  
rem 8 .1 .1  are needed to see that  one can improve (13.11) into 

(,') ( 1 3 . 1 3 )  P(111 2 Y,  v~ 11 - M [/> ~:(t)) < 4 e x p  - -  . 

This inequali ty streamlines a result of  [D-MS].  
I f  one observes that  ~:(2t) ~< 2~:(t) one obtains, through a rout ine computat ion,  

that  for all p >/ 1, 

l[ y~ Y, v~ I l,-< M + KK(v/p),  

a ra ther  precise form of  the so-called Kin tch in -Kahane  inequalities. I t  should also be 

pointed out  that, by (13.12), II 2: Y, v, 11, t> M --  K ~ ( v ~ )  , that  II I :  Y, v, II,/> M2-1 '"  

(obviously) and  that  I I X; Y, • I1~ ~> To prove this last inequality, one 

reduces to the real-valued case; it is simple to see that  this follows from [L-T1],  L e m m a  4 .9  
(see also [M-S]).  

After this digression, we go back to the s tudy of  (13.3). We will apply Theorem 13.2 
to the last term, conditionally on (Xi.)~<~ , for v, = X i , y  ~ = q .  Thus  we need control 
of  the r andom quant i ty  a(X) given by 

~ ( X )  = sup{ Z w*(N)z; w* eW*, II w* tl ~< 1 }. 

Let  us define f~ = W, P as in Proposition 13.1, and  consider the function a on f~N 
given by 

~e(x) = sup{ ~] w*(x,)2; w* ~W*, II w" 11 < 1 }. 

T h e  basic idea is to control ~ through the use of Theo rem 3.1 again. Consider b > 0, 
and  the set B = { ~ <  b}. W e  set 

k(x) = f ( B ,  . . . ,  B, x) 

where  B occurs q times. 

Proposition 13.8.  - -  

(13.13) P~([[ • e~x~ll/> 2E,]I y~ ~,x, II + u +  2 Ilx~ll*)~< 4 e x p  . 
i<N ~,<,<N ~<k~) 16qb ~ 
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Proof. - -  Consider y l ,  . . . , y q  in B such that card I ~< k(x), where 

I ={i~< N;x,  r  . . . ,y~}}.  

Denote by J the complement of I. We have little control over the elements x~, i ~ I, 
so we write 

I l E ~ x ,  l l+  E Ilx~15 
i E J ~ ~ k(z) 

Now, it should be clear that 

sup{ Z w*(x~)~; w*eW*, l [w*[ [<  1}< qb ~. 

Denoting by M the median of 11 Y~ v~x~ 11, Theorem 13.2 gives 
~GJ 

U e 
P~([[ 2~ ~,x~[[>t M + u ) ~ < 4 e x p  

e a 16qb 2" 

Now 

~ J  i ~ N  

and (13.13) follows. [] 
If  we combine Proposition 13.3 with Theorem 3.1.1,  we have the following 

relation, for any u, v, t > 0, and any k e N: 

(13.14) P'(l[ y' ~x, llt> 2 v + u + t )  

1 ~< 
qk+l p(B)q -t- P(E, 1] Y~,<N ~ x~ 11 >I v) + 4 exp l~qb i 

+ P (  Y, [Ix~ll*> t), 

where P' refers to the fact that we now consider the joint probability in (a,) and (x,). 

Theorem 13.4. - -  Set 

a = 2 E [ I  ~ a~X,[], s 2 = E s u p {  ~ w'(X~.)2; w ' E W ' , l l w * l ] ~ < l } .  
i~<l,l i~l , l  

Then, for q, k e N,  u, t > 0 we have 

P(ll x ~, N I[ ~> 2aq + 3t + u) 
i~<N 

q"'2~+1 ( 
,< ~ + 4 exp -- - -  

us)  
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Proof. - -  We use (13.14) with v = aq + t and b 2 = 2s 2, so that P(B) >i 1/2. We 

then control the term P(E~ [1 y~ a,~ x~ 1[ >I v) using Proposition 13.1. [] 

A slightly more general bound (that allows truncation of the variables X~.) is 
proved in [L-T2] Theorem 6.17, and (when combined with techniques to control the 
quantity b above) is at the basis of numerous results. An alternative approach, that 
relies rather on Theorem 4 . 2 . 4  is developed in [T3]. The bounds developed by iso- 
perimetric methods are sharp in most situations (see however [Ro] for a beautiful 
example where other ingredients are needed). 

We now turn to a more specialized topic and we continue the investigation of r.v. 

of the type Z = sup ~ ~ X~ that was started in Chapter 8. In order to apply Corol- 

la W 8 .2 .2 ,  we need to have (4.4.6) ,  where h(x,y) = [ x - - y  1, or, if e~ is always positive, 
h(x,y) = (x --y)+. When the variable X 1 is positive (i.e., its law ~ is supported by R+),  
inspection of Theorem 4 .4 .1  shows that (whatever choice of 0, ~) no integrability 
condition on X 1 except boundedness, will insure that the conditions of this theorem 
hold for this choice of h. We will now give an example that shows that this is not an 
artifact of our approach. We will show that (13.11) cannot be essentially improved, 
even if P(I X~] 4 0) is arbitrary small. This implies (by scaling) that, given anyfinite 

function q) : R + -+ R +, with q)(O) ---- O, one can find a real r.v. X 1 with t '~(1 X 1 I) dX ~< 1, 

and vectors (v,)~ < ~r such that (13.11) is violated. 
* /  

Example 13.5. --- This example is essentially a re-interpretation of the example 
presented at the end of Section 4.3. Consider an independent sequence (X~.)~<~ r of 
Bernoulli variables such that P(X~ = 1) = p is small. Consider the family o~ of N-tuples 

of form a~ = 1/%/@N if i e I, ~i = 0 otherwise, where I varies over all subsets of 
{ 1, . . . ,  N } of cardinality ~< 2pN. Then a = 1. Consider 

Z =  sup Z "~X~--  
1 

Y~ X~; card I ~< 2Np }. 
,V/2-~ sup {,e i 

We can also view Z as l[ E X~ e~ [Is, where e, is the canonical basis of R ~, and where 

the n o r m  I I.ll  is given by II x = sup 2:  ,lx, [. 
The main observation is that 

1 

Since the probability of the event on the left goes to 1, as N -+ o% the r.v. Z is asymptoti- 

cally normal, of mean ~r and variance %/(1 - -p ) /2 ;  so its deviation from its median 

does not decay faster than exp -- Kt ~. 
The conclusion to be drawn from Example 13.3 is that, in order to extend Theo- 

26 
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rem 13.2 to the case where X 1 is unbounded,  we must require conditions of a different 
nature than integrability. 

Theorem 13.6.  - -  There exists a universal constant L with the foUowing property. Consider 
a convex function ~ on R + such that d/(x) <~ x ~ i f x  <<. 1 and ~(x) >1 x i f x  >>. 1. Consider a proba- 
bility measure ~t on R .  Assume the following: 

(13.13) V t > O ,  ~z({x; I x [ > > . t } ) < ~ 2 e x p ( - - L ~ ( 2 t ) ) .  

Given any subset B of  R ,  with ~(B) >i 1/2, and any t >1 1, we have 

(13.14) ~z({ x; 4( inf  I x - - y  l) >t t}) ~< e-t(1 -- ~z(B)). 
u E B  

Consider independent real valued r.v. (X~.)~<~ distributed like ~t, and vectors (v~)~<~ in 
a Banach space W.  

Then, for all t > O, we have 

0 3 . i 5 )  P(lll y, x ,  v, II - M [/> t) ~< 2 exp - -  ~F~-(t) 

where M is a median 0fll Y. x ,  ~, l I, where 

w*  W',llw*ll< 1} 

and where ~ is defined in Section 8.2.  

Proof. - -  According to Corollary 8 .2 .2 ,  it suffices to prove that  the hypo- 
thesis of Theorem 4 .4 .1  holds when h(x,y) = I x - - y  l, in the case 0(x) = -- log x, 

1 
w(x) = -  ~ l o g x  (so that  H(~, w) holds by Proposition 2 .6 .1) .  Only (4.4.4)  has to 

be checked, since (13.14) is a rewriting of (4 .4 .5) .  
Consider B C R with ~(B) ~< 1/2. Set 

(13.16) s = i n f { l y l ; y e B  }. 

Clearly, h(x, B) ~< ] x [ + s. Thus, by convexity of d~ we have 

f ,  1 f 1 exp +(h(x, B)) d~(x) <<. exp ~ +(2s) exp ~ d/(2x) d~t(x). 

On the other hand, by (13.16) we have B n ] - - s , s [ =  ~, so that  B C { x ;  Ixl/> s} 
and hence by (13.13) we have exp ~(2s)<<. (2[~(B)) a/~'. Thus it suffices to show that  
for L large enough we have 

1 (2)1'~r~ 1 
- ~- I <~ ( =  exp --  w(x)), 

x~<2 , x /  ~xx 

where I = f  e x p l  +(2x)d~(x). I t  remains to show that, under  (13.13), lim I = 0 ,  
JR 2 L---~ oo 

uniformly in +, an easy exercise left to the reader. [] 
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Theorem 13.6 can be applied to the case where ~ is a measure v, of the type 
considered in Proposition 2.7.4,  although in that case the simpler Theorem 2.7.  I will 
yield the same conclusion. There are however, situations covered by Theorem 13.6 
that are not covered by Theorem 2.7.1,  because in (13.14) we require only t/> 1. 

particular, if the law of X satisfies (I3.14), and if l[ Z [[r ~< 1, the law of 3 (X + Z) In 

satisfies (13. I4) (it is not required that Z be independent of X). (The corresponding 
statement for (13.13) is also true, under mild conditions on +, replacing if needed 1/3 
by a smaller number.) 

In  conclusion of this section, we want to discuss a question that apparently is not 
fully clarified by the results of the present paper. Consider numbers (a~)~<~, and 
vectors (v~)~<~ in a Banach space. Of  which order are the fluctuations of the r.v. 

Z = [[ Y, a~(~) v, [[ around its median M, when p is seen as a random element of the 
i~<N 

symmetric group Ss, provided with 

Proposition 13.7. - -  a) Assuming 

( 18 .17 )  t ~> o ~ P(I z - M ]  

where as usual 

the uniform probability P? 

] ai[ <~ 1 for  each i, we have 

t ~ 

>~ t) ~< 4 exp 16a~ 

,~ = sup( Z w*(vy; w* ~ w*, II w* II < 1 }. 

b) Assuming 1t v~ (! ~ 1 for  each i, we have 
t 2 

(13.18) t~> 0 : ~ P ( I Z - - M [ ~ >  t )~<4exp  
16 E a~" 

Remark. - -  A first problem is to find a bound that contains simultaneously (13.17) 
and (13.18). 

Proof. - -  The proof follows that of Theorem 8.1.1,  using now Theorem 5.1 rather 
than Theorem 4. I. 1. Thus, we indicate only the key points. 

To prove a), one notes that ff p, �9 e S~ and I = { i ~ N; p(i) :~ v(i)}, then 

I ~ w*(~) a0,,, - y~ w*(a) a.,~, I.< r~ I w'(0~)I. 

To prove b), one observes that Z has the same distribution as [I :c a~ vo,,, II, and, 
with the notation above, one now has ~<s 

I t  should be pointed out that it seems likely that a phenomenon similar to that 
of Example 13.5 occurs in case a, and that (I 3.17) cannot be improved even if a large 
majority of the numbers a~ are equal to zero. 

Note added in proof. - -  After this work was completed, several new extensions of 
theorem 4.1.1  have emerged, with applications in particular to statistics [T7]. 
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