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O. Introduct ion 

The theory of semianalytic and subanalytic sets originates in the work of Loja- 
siewicz [19, 20, 21] and (for subanalytic sets) has been elaborated by Gabrielov [11], 
Hironaka [17, 18] and Hardt  [13, 14]. Hironaka, in particular, has used his desingu- 
larization and local flattening theorems to prove the following fundamental results: 
Let M be a real analytic manifold and let X be a subanalytic subset of M. 

Theorem 0.1 (Uniformization theorem). J Suppose that X is closed. Then there is a 
real analytic manifold N (of  the same dimension as X )  and a proper real analytic mapping q~ : N -+ M 
such that ~(N) = X. 

~I Research partially supported by NSERC operating grant A9070. 
Research partially supported by NSERC operating grant A8849. 
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Theorem 0 .2  (Rectilinearization theorem). - -  Assume that M is of  pure dimension m. 
Let K be a compact subset of  M .  Then there are finitely many real analytic mappings ~ : R "  ~ M 

such that: 

(1) There is a compact subset L~ of  R"~,for each i, such that [J~ r is a neighbourhood 
of K in M.  

(2) For each i, q~i-l(X) is a union of  quadrants in I I"  (of. Definition 5.4).  

Hironaka has used these theorems to establish the basic properties of subanalytic 
sets, as well as to give new proofs of Lojasiewicz's theorems on semianalytic sets. Den- 
kowska, Lojasiewicz and Stasica [6, 7, 22], on the other hand, have used Lojasiewicz's 
" normal part i t ions" [21] to prove subanalytic analogues of his semianalytic results. 
Their approach seems motivated partly by an understandable reluctance to use resolution 
of singularities when it suffices to use techniques whose proofs are completely accessible. 
But they do not obtain Theorems 0.1 and 0.2 above. 

From the point of view of analysis, Theorems 0.1 and 0.2 express the most 
important aspects of resolution of singularities. However, they are essentially different 
from resolution of singularities because the morphisms involved are not required to 
be bimeromorphic. In this article, we give short elementary proofs of Theorems 0.1 
and 0.2, using neither desingularization nor local flattening. Our approach (Theo- 
rems 4.4 and 5.1) stands in the same relation to local resolution of singularities of real 
or complex analytic spaces as Zariski's uniformization theorem [28] does to desingu- 
larization of algebraic varieties. But our proos are much simpler than those of [28]. 

The definition of " subanalytic set " adopted here is " locally, a projection of 
a relatively compact semianalytic set ". (See Section 3.) From this point of departure, 
Theorem 0.1 is an immediate consequence of the analogous assertion for real analytic 
sets (Theorem 5.1). (Theorem 5.1 in the complex case would seem already close to 
resolution of singularities.) For Theorem 0.2 we use, in addition to Theorems 0.1 
and 4.4, the fact that, if X is a subanalytic subset of R", then the Euclidean distance 
function d(x, X) has subanalytic graph; this is equivalent to subanalyticity of the 
complement of a subanalytic set (cf. Theorem 3.10 and Remarks 3.11). 

In  the various treatments of semianalytic and subanalytic sets, the order of develop- 
ment of the theory is, of course, dictated by the definitions of departure and the techniques 
employed (normal partitions in the case of Lojasiewicz et al., desingularization in the 
case of Hironaka, ...). Interest ill the theory has recently grown, stimulated partly by 
applications. But much of the literature is available only as mimeographed notes, and 
has an aura of technical difficulty which is unjustified. 

One of our aims in this article is to describe certain simple techniques from which 
the fundamental properties of semianalytic and subanalytic sets can be obtained in a 
systematic way. For this reason, we present an exposition of the basic theory, although 
we have made some choice of topics to keep the paper of reasonable length. None of 
the results presented here is original. Neither are the techniques of Sections 1-3: Elemen- 
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tary treatments of semialgebraic sets, based only on the Tarski-Seidenberg theorem 
and Thom's  lemma, have already been given; for example, in the excellent exposition 
of Coste [4]. We apply the same techniques to semianalytic sets, using the Weierstrass 
preparation theorem in the simplest possible way. Our  proofs of the " fiber-cutting 
l e m m a "  (Lemma 3.6) and the theorem of the complement  for subanalytic sets are 
essentially those of [6, 7], al though we avoid the use of normal  partitions. 

The  reader interested only in the uniformization and rectilinearization theorems 
can go directly to Sections 4 and 5, referring to Section 3 only for the subanalyticity 
of the distance function and the fact that  any closed subanalytic set is, locally, a proper 
image of an analytic set of the same dimension (Proposition 3.12). 

Sections 6 and 7 illustrate how useful the uniformization theorem is (though it 
can be avoided in our proof of ~ojasiewicz's inequality, which follows an idea at tr ibuted 
to H6rmander  by 1%jasiewicz). Two simple techniques play important  parts in our 
t reatment of subanalytic sets: the use of functions with subanalytic graphs (in particular, 
the distance function d(x, X)), and a fiber-product construction (which greatly simplifies 
Tamm's  proof of subanalyticity of the smooth points of a subanalytic set [26]). 

The  only prerequisites for this article are the Weierstrass preparation theorem 
and some related elementary properties of analytic sets. The paper is otherwise self- 
contained, with the exception of Theorem 1.3, a simple proof of which is given in [4]. 
The  bibliography is not meant  to be a complete guide to the literature, but we have 
tried to include the original sources of all the results presented. 

We are grateful to GiUes Raby for pointing out some errors in the original 
manuscript.  

I. The Tarski-Se|denberg theorem and Thorn's l e m m a  

Definition 1.1.  - -  The  class of semialgebraic subsets of R" is the smallest collection 
of subsets containing all {x ~ R " :  P(x) > 0}, where P(x) = P(xl, . . . ,  x,) is a poly- 
nomial, which is stable under finite intersection, finite union and complement.  

Clearly, X C R" is semialgebraic if and only if there exist polynomials f~ (x )  and 
g~i(x), i ~- 1, . . . , p ,  j = 1, . . . ,  q, such that  

X----- U { x : f ~ ( x )  = 0 ,  g , ~ ( x ) > 0 , j =  1 , . . . , q } .  

We begin with the approach of ~ojasiewicz [21] and P. Cohen [3] to the Tarski- 
Seidenberg theorem (cf. [4]). 

Definition 1.9.. __ Let X be a subset of R". A function f :  X --~ R is aeraialgebrai~ 

if, for every semialgebraic subset T of R p+I, 

{(t, x ) E R ' + " : x  EX,  ( t , f (x) )  E T }  

is semialgebraic. 
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This definition implies that  X is semialgebraic. Clearly, polynomials are semi- 
algebraic. I t  is easy to see that  differences and products  of  semialgebraic functions are 
semialgebraic. 

Theorem 1.3 .  - -  Let P (x , y ) ,  x -=- (xa, . . . ,  x , ) ,  be a polynomial. Then there is a semi- 

algebraic partition { Ax, . . . ,  A,, } of  R "  such that, for  each k ~ 1, . . . ,  m, either P has constant 

sign (>  0, < 0, or = O) for  all x ~ A k and y e R ,  or there exist finitely many continuous semi- 

algebraic functions ~ < . . .  < ~,k on A k such that 

(1) { ~l(x), . . . ,  ~,k(x)} is the set of  zeros of  P(x,y) ,  for  each x e Ak; 
(2) the sign of P(x,y) ,  x e Ak, depends only on the signs of  y --  ~.(x), i = I, . . . ,  r,.  

Proof. - -  See [4, Th~or6me 2.3] .  [] 

Corollary 1.4 .  - -  Let Pl(x,y) ,  . . . ,  Pt(x,y)  be polynomials, where x = ( x l , . . . ,  x , ) .  

Then there is a semialgebraic partition { A1, . . . ,  A, ,  } of  R "  such that, for  each k = 1, . . . ,  m, 

the zeros of Px, . - - ,  P, on A~ are given by continuous semialgebraic functions ~x < . . .  < ~,k' 

and the sign of each Pj(x,y)  on A~ depends only on the signs of y --  ~.(x), i = 1, . . . ,  r k. 

Proof. - -  Induct ion  on t. Suppose that  P1, . . . ,  P, satisfy the assertion. I f  P,+~ 
is another  polynomial ,  let B1, . . . ,  B,  denote a part i t ion o f R  ~ and ~1, �9 . . ,  ~,t the roots 

of  Pt + 1 on Bt, as provided by Theorem 1.3. The  assertion for Pa, . . - ,  P, + 1 follows 
by dividing each A, c~ B t into semialgebraic subsets such that all ~. - -  ~j have constant  
sign on each of  them. [] 

Theorem 1.5.  (Tarski-Seidenberg theorem).  - -  The image of a semialgebraic set 
X C R "  + 1 by the projection R "  + 1 ~ R "  is semialgebraic. 

P r o o f . -  Say X = U~~ n ~ - l {  P~j(x,Y)o,~0}, where each Po is a polynomial  
and  ~ denotes either > or = .  Apply  Corollary 1 .4  to the P~; the project ion of  X 
is a union of  certain A~. [] 

Corollary 1 .6 .  - -  A function is semialgebraic i f  and only i f  its graph is semialgebraic. 

Proof. - -  Let  X C R "  and let f : X  ~ R  be a function. Suppose that  f is 
semi-algebraic. Let  T = {(y, z) e R* :y  = z}. Then,  according to Definition 1.2, 

graph f = {(x,y) ~ R "+ 1 : x e X, ( y , f ( x ) )  ~ T ) is semialgebraic. 
Conversely, suppose that  g r a p h f  is semialgebraic. Let  T C R r + 1 be semialgebraic. 

Then  

fit, x) (t,f(x)) 
----~({(t, x , y ) : ( x , y )  e graph f ,  ( t , y ) ~  T}) ,  

where ~ is the projection =(t, x , y )  = (t, x), is semialgebraic,  by Theorem 1.5. [] 
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Definition 1.7 .  - -  Let  X C R "  and Y C R "  be semialgebraic. A mapping  f :  X -+ Y 
is semialgebraic if its componen t  functions are each semialgebraic. (Equivalently,  if 
g r a p h f C R  '~+" is semialgebraic,  or if g o f  is semialgebraic for every semialgebraic 
function g : Y ~ R.) 

Corollary 1 .8 .  - -  The image of a semialgebraic set by a semialgebraic mapping is semi- 

algebraic. 

I t  follows from the Tarski-Seidenberg theorem that the closure (and thus the 
interior) of  a semialgebraic set is semialgebraic. The  basic properties of  semialgebraic 
sets are all consequences of  the Tarski-Seidenberg theorem and the following lemma 
of  Thorn. In  Section 2 below, we will use the same techniques locally to deduce  the 
basic properties ofsemianalyt ic  sets, so we say nothing more abou t  semialgebraic sets here. 

Lemma 1 .9  (Thom's  lemma).  - - L e t  Pl(x), . . . ,  P,,(x) be afinitefamily of  polynomials 
in one variable, which is stable under differentiation. Let 

A---- f i  { x ~ R  : V,(x) ~, 0 }, 
{--1 

where each ~ denotes either > ,  < or = .  Then: 

(1) A is either empty or connected (and therefore a point i f  ~ is = for  one nonconstant 
polynomial P~, or an open interval otherwise). 

(2) I f  A 4= fk, then A = I'll'= 1 { x : P,(x) ~i 0 }, where ~ means >>., <~ or = ,  according 
as ~ is > ,  < or -~. 

Proof. J Induct ion  on m. The  assertion is trivial when m = 0. Suppose it is true 
for m -  1, where m 1> 1. Arrange P1, . . - ,  P,, so that  P,, has maximal  degree in this 
family. Then  Pa, . . . ,  P,, - x is stable under  differentiation. Let  A' = ['1~'_--1 x { x : P,(x) c~ 0 }, 
so that  A = A' r3 { x : P,,(x) ~,, 0 }. Suppose A' 4= O. I f  A' is a point,  the result is clear. 
I f  A' is an open interval, then the derivative of  P,, has constant  sign on A', so that  P,, 
is monotone  (or constant) on ~,'. The  result follows. [] 

2. Semlanalyt lc  sets  

Let ar be a ring of  real-valued functions defined on a set E. Let  S ( d )  denote  the 
subsets o r e  which a r e "  described b y "  ~r i.e., the smallest family of  subsets o r E  containing 
all { f (x)2> 0},  f E d ,  which is stable under  finite intersection, finite union and  

complement .  
Equivalently,  S ( d )  means the subsets of  E of  the form X = U~'-x 1 ~ - 1  X~.j, 

where  each X~, is either { f j (x )  = 0 } or { f j (x )  2> 0 }, f j  E d .  (We say that  X is " des- 

cr ibed b y "  {f~t }.) 
9 
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Let M be a real analytic manifold. I f  U is an open subset of  M, let 0(U) denote 
the ring of real analytic functions on U. 

Definition 2.1. - -  A subset X of M is semianalytic i f  each a e M has a neighbourhood U 
such that X n U �9 S(0(U)).  

Lojasiewicz's version of the Tarski-Seidenberg theorem [21]: 

Theorem 9..2. - -  I f  X �9 S(~r . . . ,  tk]), then n(X) �9 S(~1), where ~ : E x R k --~ E 

is the projection n(x,  t) = x. 

Proof. - -  Suppose that X is described in E • R k by the functions 

f ~ ( x , t ) =  X X~,,(x) t ", j = l , . . . , s ,  

where each coefficient )'i.~ �9 "~'' (We use multiindex notation: ~ = (~q, . . . ,  %) e N k, 
where N denotes the set of all nonnegative integers, ]0t]--= "1 + . . .  + ~ ,  and 
t" = t~ 1 . . .  t~k.) Then X is the inverse image of a semialgebraic set X'  by the mapping 
A(x ,  t) = (X(x), t), where X(x) = (X,.,(x)). Therefore, 

7r(X) = rc(A-l(X')) = { x : (X(x), t) e X', for some t} = X-x(~'(X')), 

where 7r'((Xj.,), t ) =  (Xj,~). Since 7r'(X') is semialgebraic, by the Tarski-Seidenberg 
theorem, then ~r(X) �9 S(~1). [] 

In  fact, the analysis behind the Tarski-Seidenberg theorem extends to O(M) [y] 
and thence (using the Weierstrass preparation theorem) to semianalytic sets: 

Definition 2.3. - -  Let X be a subset of M. A function f :  X -~ R is semianalytic if 
its graph is semianalytic in M • R. 

Proposition 2.4. - -  Let f l ( x , y ) , . . . , f ~ ( x , y )  �9 0(M) [y]. Then there is a semianalytic 

partition { A t ,  . . . ,  A, ,  } o f  M such that, for  each k = 1, . . . ,  m: 

(1) The zeros o f  f l , . . . , f t  on A k are given by continuous semianalytic functions 
~1< . . .  < ~,~. 

(2) The sign of  each f~ (x , y )  on A k depends only on the signs o f  t h e y  - -  ~ ( x ) .  

Proof. - -  Say f j ( x , y )  = Y'I=I<~ X~.~(x)Y ~, J = 1, . . . ,  t. Then each 

f~ (x , y )  = P~(X(x),y), 

where X = (~.~.,) and P~(X,y) is a polynomial. For the Pj(~,,y), consider the semialgebraic 
partition { A~ } and, for each k, the continuous semialgebraic functions ~ (X) given by 
Corollary 1.4. Then f~(x, ~'(X(x))) = P,(X(x), ~(X(x))) = 0, when X(x) e A;. Take 
A ~  ---- X -  X(A~.) and ~ = ~' o X. []  
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There is a several-variable version of Thom's lemma, due to Efroymson [10], 
which can be extended, locally, to analytic functions (3): 

Definition 2.5.  - -  Let U be an open subset of M. A finite family f , ,  . . . , f , ,  
is separating if, for any semianalytic subset A of U of the form 

A =  n {x u :f,(x) 0), 

where each a, is either ~>, < or = ,  we have: 

(I) A is either empty or connected. 
(2) I f  A 4: O, then the closure of  A in U, 

4--1 

where ~ is ~>, ~< or = ,  according as ni is > ,  < or = .  

r 

It is easy to see that (2) is equivalent to: 
(2') I f  A $ O and B is also given by sign conditions on the f i ,  then B C ~, if and 

only if every strict sign condition (i.e., > or < )  on thef~ in B is also satisfied in A. 

Theorem 9.. 6. - -  Any finite fami ly  of  analytic functions on M can be completed, in some 
neigkbourhood of  a given point, to a separating family.  

Proof. - -  Induction on m = dim M. Let f l , - - - , f ,  ~/V(M). By the Weierstrass 
preparation theorem [24, Chapt. II, Th. 2] we can assume that any given point of M 
admits a coordinate neighbourhood U such that: 

(1) U = U'  • I, where U'  is an open subset of R " - '  and I is an open interval. 
(2) Let (x,y) = (xl, . . . ,  x , , _ l , y )  denote the coordinates of U = U'  • I. Then 

each f ~ ( x , y ) =  u ~ ( x , y ) g i ( x , y ) ,  where u s is an analytic function vanishing nowhere 
in U, and gj is a monic polynomial in y whose coefficients are analytic functions on U', 
such that, for each x e U', all real roots of  g~(x,y)  belong to I. 

Each gj ~ O(U') [y] C O(U' • R).  Clearly, it is enough to show that g l , . . . , g p  
can be completed to a separating family, shrinking U'  if necessary. If  m = 1, this is 
just Thom's lemma: we get a separating family by adding all nonconstant derivatives 
of all orders. 

In general, we add all nonconstant derivatives of  g,,  . . . , g ~  with respect to y 
ofall  orders, to get g x , . . . , g p ,  gp+ 1 . . . . .  gp +~, all monic iny  (except for constant factors). 

By Proposition 2.4, there is a semianalytic partition {B1, . . . ,  B,} of U'  such that, 

(s) A similar approach is taken by F. Fernandez, T. Recio and J .  Ruiz, Generalized Thorn's lemma in semi- 
analytic geometry, Bull. Palish Acad. Sci. Mat~. 35 (1987), 297-301. 
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for each k = 1, . . . , s ,  the zeros of  gx, - . . , g ~ + ,  over B~ are given by  continuous 
semianalytic functions ~x < . - -  < ~tk, and the sign of  each g~(x,y) on B~ depends only 
on the signs of  t h e y  --  ~.(x). After shrinking U '  if necessary, each B k can be described 
by finitely many  analytic functions on U' .  By induct ion (again perhaps shrinking U ' ) ,  
we complete  the list o f  functions which describe the B~ to a separating family, say 
g~+~+a(x), . . . , g = + q + , ( x ) .  

Then g~, . . . ,  g~ + q +, is a separating family in U '  • R:  Suppose that  

p + f f + r  

A ---- f l  {(x,y) :gj(x,y) ejO}, 
J = l  

where each , j  is either > ,  < or = .  Let  
p + q + r  

B = n {(x,y) :g,(x) aj 0 }, 
J = p + f f + l  

and  let ~x <  . . .  < ~ denote the roots o f g a ,  - " , g p + a  over B. Let  r e : U '  • R - - * U '  
be the projection. By Thom's  lemma,  if x o e B, then A t3 :t-l(x0) is either empty,  or 
a root  (xo, ~(xo) ), or an interval {(xo,y ) : ~.(x0) < y  < ~.+x(x0)} (where,  in the latter 
expression, ~. may  be - - o o  and ~+x  ma y  be + oo). Then,  since the sign of  gj(x,y), 
j = 1, . . . , p  + q, on B depends only on the signs of  t h e y  - -  ~(x), A is either empty,  
or {(x, ~.(x)) : x  e B } ,  or {(x,y) :x  eB ,  ~.(x) < y <  ~+l(x)} .  In  each case, A is either 

empty  or connected.  
Suppose A =I: 13. Let  

p + q + r  

A' = ['1 {(x,y) :g~(x,y) ~jO}, 
J = l  

where ~j is >1, ,< or = ,  according as ~ is > ,  < or = ,  and let ~, be the closure of  A 
in U '  • R.  Clearly, A C A'. I t  remains to show that  A 'C  ~,. By induction,  

~ + q + r  

= n { x : gj(x) -~ 0 }. 
J ~ l ~ + q + l  

Let  x o eB .  Since the gj (x ,y ) , j  = I , . . . , p  + q, are monic with respect to y,  we can 
find a ne ighbourhood V'  o fx  o in U '  and K > 0 such that  the roots 51, . . . ,  ~t are bounded  
in absolute value by  K on B n V'.  Thus,  for all x e B n V',  A- c~ ({ x } X [ - -  K,  K]) 4= 13, 
so that  ~, c~ ,~-~(x0) 4= 13. By Thorn's lemma, there are two possibilities for the fiber 

of  A' over Xo: 

(1) A point, which therefore coincides with the fiber of  A over x 0. 
(9) A closed interval with non-empty  interior. Suppose that  (xo,y) belongs to 

its interior. Then  surely g#(xo,y ) o~0, j = 1, . . . , p  + q, where each oj is a strict 
inequality.  So (Xo,y) ~ A. Thus  the whole closed interval lies in A. 

Therefore,  A' C A. [] 
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Corollary 9.. 7. - -  Let X be a semianalytic subset of  M.  Then: 

(I) Every connected component of  X is semianalytic. 

(2) The family of  connected components of  X is locally finite (in particular, finite i f  X is 
relatively compact). 

(3) X is locally connected. 

Proof. ~ I t  is enough to show that each a e M has a neighbourhood U such that 
X n U has finitely many connected components, all semianalytic in U. Let U be a 
neighbourhood of a such that X n U can be described using finitely many elements 
f l ,  - - . , f~  of O(U). By Theorem 2.6, shrinking U if necessary, we can completer1, . . . , f ~  
to a separating family f l ,  . . . , f ~ , f ~  + 1 , . . . , f r  +," Then X n U is a disjoint union of 
finitely many connected semianalytic subsets of U, each given by a sign condition on 

c a c h e ,  j---- 1 , . . . , p + q .  [] 

Corollary $. 8. ~ The closure, and thus the interior, of  a semianalytic set is semianalytic. 

Proof. ~ This is again immediate from Theorem 2.6. [] 

Corollary 2 .9 .  - -  (1) Let X be a semianalytic subset o f  M,  and let U C X be a semianalytic 
subset o f  M whixh is open in X .  Then, locally, U is a finite union of  semianalytic sets of  the form 

{ x x :fl(x) > 0, > 0 }, 

where the f j are analytic functions. 

(2) Every closed semianalytic subset of  M is, locally, a finite union of  sets of  the form 

{ 0 }, 

where the f j are analytic functions. 

Proof. - -  (1) Locally, we can complete a list of analytic functions used to describe X 
and U to a separating family, say f l , . . . , f ~ .  Then U----[J~'-i T~, where each 
T~ = [1~ = 1 { x :f~(x) o~ 0 }, T~ ~ O, and ,~j is either > ,  < or = .  Let V, be the open 
semianalytic set given by the intersection of the sets with strict sign conditions in the pre- 
ceding representation of T~. Then each TiC V,, so that UC X n N~'=I V,. 

To show X n V~ C U, for each i : X  n V~ is also a union of semianalytic sets 
given by sign conditions on each ft" Let A be one of these sets. By the definition of V,, 
every strict sign condition satisfied in T~ is also satisfied in A. Therefore T~ C A (by 
condition (2') following Definition 2.5). Since U is open in X, U n A # ~. Thus, 

['Jj=l{ f j (x)  ~ 0 } ,  so that necessarily, A C U (U is a disjoint union of sets of the form 
A must either be one of these, or be disjoint from U). 

(2) follows from (I). [] 
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Thom's  lemma suggests a stronger version of  Theorem 2.6: 

Proposition 9..10. - -  Let f x ,  . . . , f p  e O( M) .  Let a e M .  Then there is a semianalytic 
open ntighbourhood U of  a, and a separating family hi,  . . . ,  hp, hp+l,  . . . ,  k , + ,  e O(U) such 

that h i ---- f t [ U, j =- 1, . . . ,  p, and the collection { A~ } of  subsets of  U of  the form 

91 { x e U : h~(x) ~0}, 
J - I  

where each ~ is either >,  < or -----, is a semianalytic stratification Of U;  i.e.: 

(1) U is the disjoint union of  tht A k. 
(2) Each A k is a connected semianalytic subset and analytic submanifold of  M.  
(3) ( "  Condition of  the frontier " . )  I f  A~ n At  #- fl, then AkC A t and dim A ~ <  dim A . 

Proof. ~ This follows the proof  of  Theorem 2.6,  the notat ion of  which we take up 
again here. We can assume that  U and  U'  are semianalytic and,  by induction, that  

the subsets 
~ + q + r  

B ----- ['l { x E U '  : g~(x) ~ 0 }, 

where g t is either > ,  < or --~, form a semianalytic stratification of U' .  Shrinking U '  if 

necessary, we can assume that,  for each B, the roots ~x < --- < ~t ~ . . . ,  gp+ ~(x,y) 
over B have graphs which are semianalytic in M. Then  U is a disjoint union of  semi- 

analytic sets of  the form 
p + q  

A ---- r] {(x,y) e u '  • i : x e B, gi(x,y) ~i 0} ,  
$ = I  

where each ~j is either > ,  < or -=. Since { gl ,  . . . ,  g~ + ~ } is stable under  differentiation 

with respect toy ,  every root ~(x) of each gi(x, y) over B is a simple root of  one of the g~. 
Since B is an analytic manifold,  the ~ axe analytic and  A is an analytic manifold.  The  
condit ion of  the frontier is also clear from the proof  of  Theorem 2.6.  [] 

Corollary ~.. 11. - -  Let { X~. } be a locally finite family of  semianalytic subsets of  M.  Then 
there is a locally finite semianalytic stratification { A~ } of  M which is " compatible " with each X~ 
(i.e. each X~ is a union of  certain Ak). 

Proof. - -  Each point  a e M admits a neighbourhood in which the X~. are described 

by finitely m a n y  analytic functions f l ,  . . . , f ~ .  Then  Proposition 2.10 means there is 
a semianalytic neighbourhood U of  a and  a finite semianalytic stratification of  U which 

is compatible with X, t3 U. The  global assertion follows. [] 

Remark 9.. 12. - -  Corollary 2.11 allows us to define the dimension of a semianalytic 

set X: I f  X = [J~ A~ is a stratification, pu t  dim X = max~ d im A k. 
This definition is independent  of the stratification: d im X = d if  and  only if X 
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contains an  open set homeomorphic  to an open ball in R ~, bu t  not  an open set homeo- 
morphic to an open ball in R ' ,  for e > d. 

The  following theorem of  Lojasiewicz [21] (which has a global analogue for semi- 

algebraic sets) distinguishes semianalytic from more general subanalytic sets: 

Theorem 2.13.  - -  Let X C M. Then X is semianalytic of dimension <~ k i f  and only if, 

locally in M,  there is an analytic set Z of dimension <<. k such that X C Z, X --  X is semianalytic 

of dimension <<. k -- 1, and X -- (interior of X in Z )  is semianalytic of dimension <<. k --  1. 

Example 9.. 14 (Osgood). - -  Let  G(y)  = G ( y l , y 2 , y s )  be a formal power series such 

that  G(xa, x I x,,  xl x z e") = 0. Then  G ----- 0. Write G(y)  = ~?= 0 G~(y), where G~(y) is a 
homogeneous polynomial  of o rde r j .  Then 0 = G(x~, x~ x2, x~ xz g ' )  = ]E. x~ G~(I, x2, x 2 e~). 

Therefore, for each j ,  Gj(1, xs, x2 g ')  ---- 0; hence G~ = 0. 
Le t  q~ : R z -~ R s be the mapping  r x2) -= (Xl, xx xs, Xl x2 g ' ) .  Then  

x = + 1 }) 

is not  semianalytic: Since there are no nontrivial convergent power series relations 
G(xl ,  xl xs, xx xs e*') = 0, R s itself is the smallest real analytic set containing (the germ 

at 0 of) X. 
Thus,  the Taxski-Seidenberg theorem is false for semianalytic sets. 

Lemma 9.. 15. - -  Let A C B C M,  where B is semianalytic. Let AI  = A n B (the closure 

of A in B) and let A z = A --  B --  A (the interior of A in B).  Then A is semianalytic i f  and 

only i f  A 1 --  A and A -- A s are semianalytic. 

Proof. - -  " Only  i f "  is clear. " I f " :  B -- A 1 and  A s are disjoint open and  closed 
subsets of  their union B -- (A1 --  A~), which is semianalytic since 

A ~ - - A  s - -  (A l - A )  u ( A - - A , ) .  

Therefore, A~ is semianalytic and  then A ---- A s u (A -- Az) is semianalytic. [] 

Proof of Theorem 2.13. - -  " I f "  is clear. " Only  i f " :  Locally, X is a union of  finitely 

m a n y  sets of the form 

�9 5 A =  Fl{f~(x)= __ > 0 } n j = , + l { f j ( x  ) = 0 } ,  

w he re fx ,  . . . , f ,  axe analytic.  Then  [ ' ]~ . l{ f j (x )  > 0}  is open and  

Y =  f l  {L(x)=0} 
5-- r +  1 

is an  analytic set. After perhaps shrinking the local neighbourhood,  there is a proper 

analytic subset Y' of  Y such tha t  Y --  Y'  is an analytic manifold of dimension ---- d im Y 

[24, 27]. Since A is open in Y, ff  d im Y > dim A, then A C Y'. In  this case, repeat  the 
a rgument  using Y'...  Eventually,  A lies in an analytic set Z of  dimension = dim A 
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because any decreasing family of germs of analytic sets stabilizes (as the ring of convergent 
power series is Noetherian [24]). 

Now, ~ , -  A is semianalytic, and A -  (interior of A in Z) is semianalytic, by 
Lemma 2.15. Since, by Corollary 2.11, we can stratify A and A -- A simultaneously, 
the frontier of A has dimension < dim A. Let A~ be the interior of A in Z. Stratify A 
and A~ simultaneously. Then A2 includes all strata of A of dimension = dim A. (Such 
a stratum cannot include frontier points of another stratum, by the condition of the 
frontier.) Thus, A -- A 2 has dimension < dim A. [] 

3. Sub=n, , lyt ie  s e t s  

Let M denote a real analytic manifold. 

Definition 3.1.  - -  A subset X of M is subanalytic if  each point of M admits a neigh- 
bourhood U such that X n U is a projection of a relatively compact semianalytic set 
(i.e. there is a real analytic manifold N and a relatively compact semianalytic subset A 
of M x N such that X n U = ~x(A), where ~ : M x N ~ M is the projection). 

From the basic properties of semianalytic sets we obtain: The intersection and 
union of a finite collection of subanalytic sets are subanalytic. Every connected component 
of a subanalytic set is subanalytic. The family of  connected components is locally finite. 
A subanalytic set is locally connected. The closure of a subanalytic set is subanalytic. 

We will prove that the complement (and thus the interior) of  a subanalytic set 

is subanalytic. 

Definition 3.9.. - -  Let X C M and let N be a real analytic manifold. A mapping 
f :  X ~ N is subanalytic if its graph is subanalytic in M x N. 

Clearly, the image of a relatively compact subanalytic set by a subanalytic mapping 

is subanalytic. 

Definition 3.3.  I Let X be a subanalytic subset of M. Let x e X. Then x is a smootk 
point of X (of dimension k) if, in some neighbourhood of x in M, X is an analytic sub- 
manifold (of dimension k). We say that X is smooth if every point of X is a smooth point; 

i.e., X is an analytic submanifold of M. 

In the following four lemmas of  [6, 7] (cf. [11]), U and V are finite-dimensional 
Euclidean spaces, W = U | V, and n : W - ~  U denotes the projection. 

Lemma 3.4.  - -  Let X be a relatively compact semianatytic subset of W. Then X is a finite 
union of connected smooth semianalytic subsets A such that, for eack A: 

(1) The rank rk,(~ [ A) is constant on A. 
(2) The linear subspaces T ,  A n V,  x e A, admit a common complement in V,  and the 

subs~Oaces rc(T z A), x e A, admit a common complement in U. (Here, T ,  A denotes the tangent 

space of A at x.) 
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(3) There is an analytic function g in a ncighbourhood of  ~, such that g > 0 on A and 
g = 0  on A - - A .  

Proof. - -  Let  k ~ dim X. The result is obvious if k = 0. I f  k > 0, there is a semi- 
analytic subset Y of  X such that  dim Y < k and  X -- Y consists of smooth points of 
dimension k. By induct ion on k, we can assume that  the result holds for Y. Therefore, 
we can assume X is smooth and  also connected. 

Let  X 0 = { x ~ X : r k ~ ( ~ l X )  is maximal} .  Then  X o is semianalytic and  

d i m ( X -  X 0 ) <  k. Locally, X 0 lies in an analytic set of dimension k; therefore, we 
can assume there are analytic functions ha, . . . ,  h , _ ,  (n = dim W) defined in a neigh- 

bourhood o f X  o such that  each h, vanishes on X 0 and,  i f Z  ----- { x : the gradients grad h,(x) 
are linearly dependent  }, then dim X 0 c~ Z < k. By induction, we can assume rkx(n [ X) 

is constant  on X and  the gradients grad h,(x) are linearly independent  on X. 
Let  G,(W) denote the Grassmanian of k-dimensional linear subspaces of  W. Given 

linear subspaces E of  U and  F of V, let GE, F = { T ~ Gk(W ) : F is complementary  to 
T r3 V in V, and  E is complementary  to n(T) in U }. Clearly, GE, x, is an open semi- 
algebraic subset of  Gk(W ). There exist finitely many  such pairs (E, F) such that  
Gk(W ) = U G~.r .  

Now X =  [ J [ E , F ) { x c X : T , X ~ G E ,  ~}. Each set in this union is open in X;  
we will have (1) and  (2) once we show it is semianalytic.  Let  Z = {(zl, . . . ,  z,_~) e W " - k  : 

zx, . . . ,  z ,_~ are linear dependent  }. I f  (zl, . . . ,  z,_~) ~ W " - ~  --  Z, let S(zx, . . . ,  z,_~) 

denote the orthogonal complement  of  the subspace spanned by z x , . . . ,  z ,_~.  Then  
S : W " -k  -- Z ~ G~(W) is a continuous semialgebraic mapping.  Put 

H(x) = (grad ha(x), . . . ,  grad h,_k(x) ) .  

Then  S-I(G~.,F) is a semialgebraic subset of W "-~, and  

{ x e X : T ,  X ~ G~. ,  } --- X c~ H - ' ( S - ' ( G ~ , , ) )  

is semianalytic. 
To get (3), suppose we have A satisfying (1) and  (2). Locally, ~, --  A lies in an 

analytic set Y of dimension <~ dim A, so, by induction,  it suffices to prove (3) for A --  Y. 
We can assume Y = {x : gl(x) . . . . .  g,(x)  ~ 0}, where the gj axe analytic functions. 

Take g = Zg~. [] 

Remark 3.5 .  - -  I t  is clear from L e m m a  3 .4  (1) how to extend the definition of 
dimension from semianalytic to subanalytic sets. The  dimension of a subanalytic set is 

the highest dimension of its smooth points. 

Lemma 3 .6  (Fiber-cutting lemma).  - -  Let X be a relatively compact semianalytic subset 

of W.  Then there are finitely many smooth semianalytic subsets B of X such that: 

(1) ~x(X) = •(UB). 

(2) For each B, 7: [ B : B ~ U is an immersion. 

(3) For each B, the subspaces ~(T~ B), x ~ B, have a common complement in U. 
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Proof. - -  Let k = dim X. Write X as a finite union of  connected smooth semi- 
analytic subsets A as in L e m m a  3.4. For [Jd~A<k A, the result holds by induction. 
On the other hand,  each A such that  dim A = k and rk(Tr I A) = k already satisfies (2) 

and  (3). Consider A such that dim A = k and rk(~ I A) < k. By induction, it is enough 
to find a semianalytic subset Z of A such that  dim Z < dim A and n(A) = re(Z). 

I t  follows from L e m m a  3 .4  (2) that,  for every x ~ A, the fiber A~(~I = A n ~-a(~(x))  

is a submanifold o f~ - l (~ (x ) )  and,  for each connected component  C of A,c,~ , C -- C + O. 

The function g of L e m m a  3 .4  (3) is positive on C and  zero on C -  C. Let  
Z = { x e A  : d~g I (T, A n V) = 0 }, where d~g denotes the tangent  mapping of  g at x; 
i.e. Z is the set of  critical points of  the restrictions o f g  to the fibers A,c,) , x E A. I t  follows 

from the first assertion of L e m m a  3 .4  (2) that  Z is semianalytic. For every component  C 
as above, g is not  constant  on C, so that  dim Z < dim A, and  g has a positive maximum 
on C, so that  Z n C + (3 and  ~(Z) -=- ~(A). [] 

Lemma 3.7 .  - -  A,sume that, in U, the complement of every subanalytic sets is subanalytic. 

Let B denote a bounded smooth semianalytic subset of W such that ~ ] B : B ~ U is a local diffeo- 

morphism. For every u ~ U, let ~,(u) denote the number of points in the fiber B, = B n ~-a(u). 

Then ~(u) is bounded on U. 

Proof. 1 Clearly Ez(u)< 0% for all u E U, and  Ez is lower semicontinuous. Let  

C = ~(B --  B). Then  C is a closed subanalytic subset of  U of  dimension < dim U;  
in particular,  it is nowhere dense in U. Therefore, it is enough to prove that  Ez is bounded 
on U -- C. By the hypothesis, U -- C is subanalytic,  hence has finitely many  connected 
components.  But ~t(u) is constant on each of them. [] 

Definition 3.8.  - -  Let  q~:X ~ Y  be a mapping between sets. For any positive 
integer s, let X~ denote the s-fold fiber product  

= { �9 = . . . ,  x ' )  x ' :   (xl) . . . . .  

and let ~o:X~ ~ Y denote the induced mapping ~ o ( z ) =  ~(xl). 

Lemma 3.9.  - -  Assume that, in U, the complement of every subanalytic set iJ subanalytic. 

Let X be a relatively compact subanalytic subset of W.  Suppose that the number of points ~(u) in 

a fiber X ,  = X n ~- l (u)  is bounded on U. Then W -- X is subanalytic. 

Proof. ~ For each s, let 

A 0 = { � 9  (x l , . . . , x ' )  E W ~ : x  ~ - - x  ~ f o r s o m e i + j } .  

Then  X ' n  ( W , ' -  A)  is a relatively compact  subanalytic subset of  W ~ Put  

C , = { u ~ U : ~ z ( u ) / > s } a n d D , - - - - { u ~ U :  ~t(u) = s } .  Then  C 0 = n ( X  ~ 1 7 6  
and  hence D,  ---- C, --  C, + 1 are subanalytic.  There  exists t such that  

U - - - - D o U D 1 u . . .  u D  t. 
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Now W - -  X ---- Ut0_0(~-X(D,) - -  X) .  But  each 

~ - I ( D , )  - -  X = ~ - I ( D , )  n p ( ( W  x X ~ n (W~ § - -  A~ 

where p :  W • W ~ --,-W is the projection.  Since (W X X ~ n (W~ + 1 -  A,+I) is sub- 

analytic  in W • W'  and  " W'-relat ively c o m p a c t "  (i.e. its intersection with p - a ( K )  

is relatively compact ,  for every compac t  K C W ) ,  then ~-~(I)~ - - X  is subanalytic.  

Hence  W -  X is subanalytic.  [] 

Theorem 3 .10 (Theo rem of  the complement ) .  - -  Let M be a real analytic manifold 
aM let X be a subanalytic subset of  M.  Then M --  X is subanalytic. 

Proof. ~ We can assume that  M is an n-dimensional Eucl idean space W and  that  

X is relatively compact .  T h e  result is trivial if  n - -  0. We argue by induct ion on n. Th e re  

is a finite-dimensional vector  space Z and a relatively compac t  semianalytic subset B 

of  W x Z such that  X = n(B), where ~ : W x Z -+ W is the projection.  By the fiber- 

cut t ing lemma,  we can assume that  B is smooth,  ~ [ B is an immersion, and the ~ (T  x B), 

x e B, have a common  complement  V in W. 

Case 1. dim B < n. Let  U be a complement  of  V in W, and  let n0 : W g U | V --+ U 

be the projection.  Since dim U < n, our  theorem is t rue in U, by  induction.  By L e m m a  3.7 ,  

the n u m b e r  of  points in the fiber B n (n 0 o ~ ) - l ( u )  is bounded  on U. Therefore ,  the 

n u m b e r  of  points in ~(B) n ~ol(u)  is bounded.  By L e m m a  3.9 ,  the complement  of  

X := ~(B) in W is subanalytic.  

Case 2. d im B = n. T h e n  r= [ B is a local diffeomorphism. Le t  C = B - -  B. T h e n  

~(C) is subanalyt ic  and  of  dimension < n, so that  W --  r=(C) is subanalytic,  from Case 1. 

Since W -  r=(B) is open and  closed in W -  r~(C), it is also subanalytic.  Now 

W --  ~(B) = (W --  =(g))  u (r~(]]) - -  n(B)) = (W --  ~(B)) v (=(C) - -  =(B) n r=(C)). 

Since =(B) n ~(C) is subanalyt ic  of  dimension < n, it follows from Casc 1 that  W --  n(B) 

is subanalytic.  [] 

Remarks 3.11 .  - -  (1) Let  X be a subanalyt ic  subset of  R".  T h e n  the distance 

function d(x, X) = mince ~ I x --  z] is subanalytic:  We can assume that  X is rclatively 

compact .  Let  A = {(x, z,y) e R"  • 1t." • I t  : z e X , y  >/ ] x - -  z ] }. T h e n  A is subanalytic.  

Le t  = denote  the project ion ~(x, z,y) = (x,y).  Then{(x ,y )  e R"  • IR :y  >f d(x, X)} = =(A) 

is subanalytic,  and  the assertion follows from the theorem of  the complement .  

I t  is easy to see that,  conversely, subanalyt ici ty  of  the distance function implies 

the theorem of  the complement .  

(2) Let  M and IN" be real analyt ic  manifolds and  let X and  T be subanalytic 

subsets of  M and  N, respectively, where T is compact .  I f  f :  X x T ~ R is a cont inuous 

subanalyt ic  function,  it follows as in (1) that  g(x) = mint e T f ( x  , t) is a subanalytic 

function on X. 

Proposition 3.12.  - -  Let M be a real analytic manifold and let X be a closed subanalytic 
subset of  M.  Then each point of X admits a neighbourhood U such that X n U = re(A), where 
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A is a closed analytic subset of U • R ~, for some q, dim A = dim X n U,  and rc I A is proper 
(where ~ : U x R" --~ U is the projection). 

Proof. - -  First assume that  X is semianalytic.  Le t  a e X. By Corol lary 2 .9  (2), 

a has a ne ighbourhood  U such that  X c~ U is a finite union of  sets of  the form 

Y = { x  e U  :f,(x) >/ 0, i = I, . . . , p } ,  

where each f~ e O(U). Let  A C U x llt ~ be the closed analytic  subset 

A = {(x,y) = (x, yx,  . . . , y , )  :f~(x) - -y~  = 0, i = 1, . . . , p  }. 

T h e n  d i m A  = dim Y, Y ------ ~(A) and  rc ] A is proper ,  where ~ : U x IR ~ -+ U is the 

projection.  

In  fact, we can assume tha t  U is an open ne ighbourhood  of  a = 0 in IR". T h e n  

there exists e >  0 such that  D ---- { x = (xl, �9 . . ,  x,,) : ~ , <  r } C U. T h e n  

B = { ( x , y , t ) : Y . x ]  + t ~ = r - -y~  = O,i = 1, . . . , p }  

is a compac t  real analytic subset of  U X R ~+~ such that  d i m B  = d i m Y  c~D and 

Y n D = n '(B),  where n '  : U x R ~+1 ~ U is the projection. 

Our  assertion for X subanalyt ic  follows using the fiber-cutt ing lemma.  [] 

The re  are several equivalent  definitions of  " subanalytic ":  

Proposition 3.13 .  - -  Let M be a real analytic manifold, and let X be a subset of M.  Then 
the following conditions are equivalent: 

(1) X is subanalytic. 
(2) Every point of M has a neighbourhood U such that 

x n u = U (f , ,(A,,)  --f,2(A,2)), 
t = l  

where, for each i = 1, . . . ,  p and j -= 1, 2, A~j is a closed analytic subset of a real analytic 
manifold Nij , f~s : N~ ~ U is real analytic, and f ~  I A~j : A~j -+ U is proper. 

(3) Every point of M has a neighbour~od U such that X c~ U belongs to the class of  
subseU of U obtained using finite intersection, finite union and complement, from the family of closed 
subsets of U of the form f ( A ) ,  where A is a closed analytic subset of a real analytic manifold N, 

f :  N ~ U is real analytic, and f l A is proper. 

Proof. J (2) implies (1), by  the theorem of  the complement .  (1) implies (3): 

Suppose that  U is an open subset of  M and  A is a relatively compac t  semianalytic subset 

o f  M • R ~ such that  ~(A) = X n U, where ~ : M X R ~ ~ M is the projection.  Le t  

t3 ---- A - -  A. T h e n  ~(A) = ~(A) --  (~(A) --  ~r(A)) = re(A,) - -  (:~(C) - -  (~(A) n ~(C))) .  

Since r  - -  (=(A) n ~(C)) is subanalytic,  by the theorem of  the complement ,  and  

of  dimension < d im r~(A), the result follows by induct ion and  Proposit ion 3 .12.  
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(3) implies (2): By (3), every point of  M has a neighbourhood U such that  X t3 U 
is a union of  sets of the form X' = [']~=l(g~l(A,1) --g~.,(A,2)) , where each Ai~ is a 
closed analytic subset of  a real analytic manifold N~,, and  g jk :N, t - -~  U is a real 

analytic mapping such that  g~,[ Aj, is proper. Let  A~ C l-I] = 1 N~t be the fiber product  

of  the A;1 over U, and  let ga = g~ o nl : l-I]_ ~ N~.~ --* U, where 7r~ is the projection 
to N n . Let  A 2 be the disjoint union of  the Aj~ x U Ai~; Az is a closed analytic subset 
of  the disjoint union N 2 of the N~: x N~.  Let  g, : N~ --* U be the mapping induced 

by the gia o ~ : ,  where r ~  : N~a x N~., ~ N~ is the projection. Then  g, I A t is proper, 
k = 1, 2, and  X ' =  gx(Ax) --g:(A~),  as required. [] 

A bound on the fibers of  a subanalytic mapping [8, 13]: 

Theorem 3 .14 .  - -  Let M and N be real analytic manifolds, and let X be a relatively compact 

subset of M. Let q~ : X --* N be a subanalytic mapping. Then the number of connected components 

of  a fiber q~-l(y) is bounded locally on N. 

Proof. - -  Let  ~ : N  x M -~ N be the projection. I t  suffices to prove that  if X is 
a relatively compact  subanalytic subset of  N x M, then the number  of  connected 

components  of a fiber X~ = X t3 rc- l(y)  is bounded,  y ~ N. Then  we can assume that  
X is semianalytic and  N, M are tinite-dimensional vector spaces. We argue by induct ion 
on the max imum dimension k of the fibers X v. Write X as a finite union of  connected 

smooth semianalytic subsets A, as in L e m m a  3.4. 
First suppose that  k = 0. For each A, we can write N = U |  where V is a 

linear complement  of  ~r(T, A), ibr all x ~ A. Let  xl : N --* U be the projection. Then  

(r~ l o 7 0 [ A is a local diffeomorphism, artd the result follows from L e m m a  3.7. 
In  general, it suffices to prove the result for each A. Let  k = dim A -- rk(:~ I A). 

Then  every component  of  each fiber Av, y e~ (A) ,  is a submanifold of  x - l ( y )  of 
dimension k. Le t  Z = { x e A : ( d , g )  l ( T  z A c ~ M )  --~0}, where g is the function of  
L e m m a  3 .4  (3). We have already shown, in the proof of  L e m m a  3.6, that,  for every 
y E ~(A), Z intersects each component  of  A~, and dim(Z n A~) < k. The result follows 

by induction. [] 

4. Transfot~,~ing an analytic function to normal crossings by blowings-up 

Let  N denote the nonnegative integers. Le t  K = R or G. For each positive integer m, 
let P ' - 1 ( K )  denote the ( ( m -  1)-dimensional) projective space of lines through the 

origin in K " .  

Definition and remarks 4 .1 .  - -  Blowing-up. Let  V be an open neighbourhood of  0 

in K ' .  Put  

V' = {(x,t) e V  x P " - ~ ( K ) : x ~ t } ,  



22 EDWARD BIERSTONE AND P I ERRE D. M I L M A N  

and let rc : V '  -+ V denote the mapping  ~(x, t) = x. Then  ~ is proper, ~ restricts to 
a homeomorphism over V - -{  0 }, and  n - l (0 )  = P " - I ( K ) .  The  mapping n : V '  ~ V 
is called the blowing-up of V with center { 0 }. 

In  a na tura l  way, V '  is an algebraic submanifold of V • P"~-I(K): Let  
x = (xl, . . . ,  x,,) denote the affine coordinates of  K " ,  and let ~ = [~1, - . . ,  4,,] denote 
the homogeneous coordinates of  P " - I ( K ) .  Then 

V'  ={ (x ,  ~) e V  • P " - ~ ( K ) : x ~ j  = x ~ , , i , j =  1, . . . , m } .  

We can cover V '  by coordinate charts 

V; = { ( x , ~ )  ~ V ' : ~ . +  0},  i =  1 , . . . , m ,  

with coordinates (xll, . . .  , x~,,), for each i, where 

x, = x~, 

x , j = ~ / ~ ,  j + i .  

With  respect to these local coordinates, n is given by 

x~ = x , ,  
x~ = x,  x~j, j ~ i. 

Suppose that  n > m and  that  W is an open subset of  K " - " .  Then  the mapping 
• id : V'  • W - ~ V  • W is called the blowing-up of V • W with center { 0 } • W.  

In the same way, if M is an analytic manifold (over K) and  Y is a closed analytic 

submanifold of  M, we define the blowing-up r~ : M'  ~ M with center Y: M'  is an  analytic 
manifold and  ~ is a proper analytic mapping such that: 

(1) ~ restricts to an analytic isomorphism M'  -- =-~(Y) -+ M -- Y. 
(2) Let  U s  M be a chart  with coordinates given by an analytic isomorphism 

q~:U --* V • W, where V, W are open neighbourhoods of  the origins in K " ,  K " - "  

(respectively), and ?(Y ~ U) = { 0 } x W. Let  n 0 : V'  ~ V  be the blowing-up of  V 
with center { 0 }. Then  there is an analytic isomorphism ~' : n-~(U) ~ V'  x W such 
that  the following diagram commutes: 

~ - I (U)  r  V ' x W  

l~ ~,• 
U ~> V x W  

Conditions (1) and  (2) above define ~ : M'  ~ M uniquely, up to an isomorphism 
of  M'  commut ing  with ~. 

Definition 4 .8 .  - -  Local blowing-up. Let  M be an analytic manifold (over K) .  Let  U 

be an open subset of  M, and let Y be a closed analytic submanifold of  U. Let  n : U '  ~ M 

denote the composition of the blowing-up U ' ~  U with center Y, and the inclusion 
U ~ M. We call r: a local blowing-up of M (over U, with smooth center Y). 
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We will consider mappings r c : W  ~ M obta ined as the composit ion of  a finite 
sequence of  local blowing, s-up; i.e., n = ~x o r~ 2 o . . .  o ~ ,  where, for each i = 1, . . . ,  k, 
~i:  U , + a - + U i  is a local blowing-up of  U, ,  and Ux = M,  U , +  1 = W. 

Definition 4.8 .  - -  Let  M be an analytic manifold (over ]K), and let 0 (M)  denote 
the ring of  analytic functions on M. Le t  f ~  dT(M). We say that  f is locally normal 
crossings if each point  of  M admits a coordinate  ne ighbourhood U, with coordinates 

x = (xt, . . . ,  x,,), such that 

f (x )  = x~t ..  . x ~  g(x), x ~ U, 

where g ~ E~(U), g vanishes nowhere  in U, and each ~, E N. 

Theorem 4.4.  ~ Let M be an analytic manifold (over K ) .  Let 3" ~ d~(M). (Assume that 
f does not vanish identically on any component of M.)  Then there is a countable collection of analytic 
mappings r~j : Wj  ~ M such that: 

(1) Each n, is the composition of a finite sequence of local blowings-up (with smooth centers). 
(2) There is a locally finite open covering { U~} of M such that ~ ( W j ) C  U~, for all j .  
(3) I f  K is a compact subset of  M,  then there are compact subsets L~ C W i such that 

K = I.J i ~(L~).  (The union is finite, by (2).) 
(4) For each j ,  f o ~, is locally normal crossings on W~. 

Remark 4.5 .  ~ We will call a countable  collection of  mappings { na : W~ --> M } 
satisfying (1)-(3) a Z-covering of M.  Z-coverings can be " composed " in the following 
way: Let  { n, : Wj ~ M } be a Z-covering of  M, and let { U~ } be as in (2). For each j ,  
suppose that  { 7:j~ : W ~  -~ W; ~} is a ~-covering of  W~. I f  { V~ } is a locally finite covering 
of  M by relatively compac t  open subsets, then the mappings r~, I ~J-I(V,) : ~-~(V,) ~ M, 
for all i and  j ,  form a X-covering of  M ;  hence we cart assume that  the U~ are relatively 
compact .  Then,  for each j ,  there is a finite subset K ( j )  o f{  k } such that the mappings 
~ o r~, : W~, ~ M, for all j and  all k ~ K ( j ) ,  form a Z-covering of  M. 

Let  a ~ M. Let  ~,~., or ~,  denote the local ring of  germs of  analytic functions 
on M at a, and  let mo denote the maximal  ideal of  0 , .  Suppose that  f is an analytic 
function on a ne ighbourhood  U of  a. Let  f ,  denote the germ o f f  at a. 

Definition 4.6 .  - -  Assume that  f ,  is not  identically zero. Put  

i~ , ( f )  = m a x { k  ~ N  : f ,  ~ m,~}, 

v , ( f )  = min{ ~z,(g) :f~ = g. h t,, 
i = 1  

where g e 0 ,  and 

t, ~mo --  m.2, i = 1 . . . . .  r}.  

(Take vo( f )  = 0 i f f (a )  # 0.) 

Clearly, v , ( f )  = 0 if and only if either f(a)4= 0 or f ,  is a product  of  factors 
l~ r r r t , -  rrt~ (" smooth factors ").  Both ~ , ( f )  and v , ( f )  are upper  semicontinuous 
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as func t ions  o f  a ~ U .  ( I t  is easy  to see tha t ,  in fact ,  they  are  u p p e r  s e m i c o n t i n u o u s  in 

the  ana ly t i c  Zar i sk i  topo logy ,  b u t  we will n o t  use this result . )  

Proof  o f  Theorem 4 . 4 .  - -  I n d u c t i o n  on  m = d i m  M.  I f  m = 1, then  f is a l r e a d y  

local ly  n o r m a l  crossings.  

L e t  a ~ M.  Suppose  f ( a )  = 0. P u t  d = v a ( f ) .  T h e n ,  in some  n e i g h b o u r h o o d  U 

o f  a, f fac tors  as f = t ~  . . .  g,", g, w h e r e  ~ta(g) = d a n d  the  gi a re  d is t inc t  fac tors  such  

t h a t  ~t~(t,) ----- 1. O f  course ,  ~ ( f )  = d + ~n, .  

I f F ,  G ~ 0 ( U )  (or  0~), we  will say t h a t  F is equivalent to G ( a n d  wr i t e  F . ~ G )  

if F equals  G t imes  a fac tor  wh ich  is inver t ib le  in 0 ( U )  (or d~a). 

T h e r e  a re  local coo rd ina t e s  x = (Xa, . . . ,  x,,) c e n t e r e d  a t  a such  t h a t  

L ( 0 ,  . . . ,  0 ,  x~)  ~ x : , ,  

where  e = Iz~( f ) .  I t  follows t h a t  ga(0, . . . ,  0, x,,) ,~ xa,, a n d  each  t,.~(0, . . . ,  0, x,,) -~ x,,. 

By  the  Weiers t rass  p r e p a r a t i o n  t h e o r e m ,  we  can  a s sume  t h a t  U = V • D,  w h e r e  V,  D 

a re  o p e n  n e i g h b o u r h o o d s  o f  0 in K " - 1 ,  K ( respec t ive ly) ,  a = 0, a n d  

f ( x )  ~ g, (x)"l . . .  t , (x)" ,  g(x) ,  

x = (xl ,  . . . ,  x,,) ~ U,  where :  

(1) t,(x) = x~, + ~,(,q, . . . ,  x ~ _ , ) ,  i = 1, . . . ,  , ,  

d 

g(x) ---- xn,, + ~=icj(Xa, . . . ,  x , ,_1) x~,,, - ' .  

(2) T h e  a~ are  dis t inct .  Fo r  e a c h  i = 1 , . . . ,  r, a, ~ d~(V) a n d  a~(0) = 0. Fo r  

e a c h  j =  1 , . . . , d ,  c , ~ d ~ ( V )  a n d  ~0(c j ) /> j .  

(3) { x ~ U : f (x )  = 0 } = { x ~ V • K : t l (x)"a  . . .  t , ( x ) " , g ( x )  = 0 }. 

Clear ly ,  we c a n  a s sume  t h a t  M = U = V • K .  P u t  ~ ' =  ( x l , . . . , x , , _ x ) .  I f  

d > 0, then ,  a f ter  a c o o r d i n a t e  t r a n s f o r m a t i o n  
t 

x k = x , ,  k = 1, . . . , m - -  1, 

, 1 q ( ~ ) ,  x~=x~+~ 

we can  fu r the r  a s sume  t h a t  q ( ~ ' )  -= 0; i.e., 
d 

g(x) = xa.~ + Y, zcj('~)_, xam -~ 

T h e  s igni f icance  o f  this r e p r e s e n t a t i o n  is tha t ,  since U - a  g]Oxn~ -~ = d! x, , ,  t hen  ~,(g)  = d, 

x = (xl,  . . . ,  x,,), on ly  if x,, = 0. 

I f  d = 0, t hen  a f te r  a c o o r d i n a t e  t r a n s f o r m a t i o n  
t x~ = x ~ ,  k = 1, . . . , m - -  1, 

x~. = x., + a~(~) ,  

we c a n  a s sume  t h a t  a l (~ '  ) =-- 0. 
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L e t  AI(~ '  ) deno t e  the  p r o d u c t  o f  all nonze ro  func t ions  f rom the  fol lowing list and  

all o f  the i r  nonze ro  differences:  

a~', i =  1, . . . , r ,  

~ " ,  j = 2, . . . ,  d. 

By induc t ion ,  there  is a Z -cove r ing  ( ~ k : V k  -~ V } such tha t  each  A so ~ is local ly 

n o r m a l  crossings in V~. T h e n  (~k  • i d : V ~  • K - ~ V  • K }  is a Z -cove r ing  o f  U. 

The re fo r e ,  by  R e m a r k  4 .5 ,  we can  assume tha t  As(~'  ) is local ly  n o r m a l  crossings in V.  

Shr ink ing  V if necessary,  we can  assume tha t  A I ( ~  ) is equ iva l en t  to a m o n o m i a l  

~,0 = xOl~ . .  . x,,-1.'~ T h e n  each  nonze ro  a~("~) a' ~.-,"~' a n d  each  n o n z e r o  c ~ ( ~ ) a m ~  "t', 

whe re  0t ~ ( ~ ,  . .  ~ - l  y~ = ., 0t,,_l) E N ~ a n d  = (Y~, . . . ,  Y~- I )  ~ N ~ - I -  M o r e o v e r ,  by 

L e m m a  4 . 7  below,  these exponents ~/, yi are totally ordered with respect to the induced partial 
ordering from N " - 1  (0c<, ~3 means  ~k,< [3k, k ---- 1 , . . . ,  m - -  1, where  ~ = ( ~ 1 , - . . ,  0t,,_x) 

a n d  [3 = ([31, . . . ,  [3,,_x) ). 

Lemma 4 . 7 .  - -  Let y = ( Y a , - - . , Y p ) -  Let 0c, [3, y ~ N ~ and let a(y),  b(y),  c(y) be 
invertible elements of K { y  }. I f  

a(y) y" - -  b(y) y ~ = c(y) y v, 

then either or<<. ~ or ~ <~ ~. 

Proof. - -  P u t  ~k = r a in (%,  [3k), k = 1, . . . , p ,  whe re  ~ = (0tl, . . . ,  %) ,  

[3 = ([31, . - - ,  [3~). L e t  ~ -~ (81, - . - ,  ~ ) .  I f  8 -~ 0~, t hen  0t ~< [3. Otherwise ,  choose k such 

tha t  8k 4: ~-k. T h e n ,  o n { y  :y~ -~ 0 }, we h a v e y  " -  8 = 0 and  0 4: - -  b(y) y~-~  -~ c(y) yV-n.  
Since b a n d  c are  inver t ib le ,  if follows tha t  [3----y. T h e n  a ( y ) y ~ -  (b(y) + c ( y ) ) y  ~, 

so tha t  [3 ~ 0t. [] 

In  v iew o f  R e m a r k  4 . 5 ,  the p r o o f  o f  T h e o r e m  4 . 4  will be c o m p l e t e  once  we p rove  

the  fol lowing two assertions: 

Case 1. d > 0. T h e r e  is a (finitely indexed)  Z -cove r ing  { ~ : W~ -~ U } such tha t ,  

for each  t, , ~ ( f o  ~ )  < d, for  all y ~ W~. 

Case 2. d = 0. T h e r e  is a (finitely indexed)  N-cover ing  { z~ : W~ ~ U } such that ,  

for  each  t, f o  rq is local ly n o r m a l  crossings on  W~. 

Case 1. W e  will use an  induc t ive  a r g u m e n t .  T o  set up  the induc t ion ,  it is conven i en t  

to begin  wi th  f o f  the fol lowing more  genera l  form: 

f (x )  ,~ "~ gt(x) "~ . . .  t,(x) '~ . . .  ,r g(x), 

where  0t e N "~-~, r,< s, the  ,~, are  dis t inct  smoo th  factors,  g a n d  ga, . . . ,  t ,  a re  as before ,  

a n d  g,+ x, . . . ,  t ,  van ish  n o w h e r e  on { x,, ---- 0 }. (At this first stage we real ly  have  0t = 0 

a n d  s = r.) O f  course,  v , ( f )  = d only  if  ~,(g) = d. T h e  exponen t s  0t ~ a n d  -fl o f  the  

n o n z e r o  ~ '  (i = 1 , . . . ,  r) and  ~ t "  are  to ta l ly  o rde red .  

4 
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Let ~ denote the smallest among these exponents; say ~ =: (or, . . . ,  ~,,_,). Then 

" -*  d!. [o [  ~ ] ~ _ x  0~>t Put 

Z =-{x � 9  : ~,(t~'~ " " C ' g ) = d +  ~; n,}. 
i - - 1  

Clearly, 
Z = { x � 9  = d  andre(x) = 0 ,  i =  1, . . ., r } 

= { x e U : x , , =  0 and Z ~ >  dl}, 
k 6 J(z) 

where J(x) = { k  :x ,  = 0, k = l , . . . ,  m -  1 }. Let S denote the collection of subsets I 
o f { 1 , . . . , m - -  1} such that 0,< ] ~ k e , % - - d ! <  ~ ,  for all g e I ;  i.e., the minimal 
subsets I o f{  1 , . . . ,  m -  1} such that ]~ke~ o r , -  d! >/ 0. For each I ~S, put  

Z I = { x  e U : x,, =: 0 and x~ = 0, k e I } .  

The Z~, I e S, are the irreducible components of Z. 
Let I �9 S. Let 7t : U '  -+ U be the blowing-up with center Z x. Then U'  identifies 

with 

{(x,~,) e U  x P " - ~ ( K ) : ~ - - - - 0 ,  k r  u { m } ,  and x , ~ , - x , ~ , k ,  l e I  u { m } }  

(ct: Definition 4.1). As in 4.1, U '  is covered by coordinate charts 

U ~ , : ( ( x , ~ )  e U ' : ~ k * O  }, k e l u { m } ,  

where U~ has coordinates y = (y , ,  . . . , y , , )  such that 

x z = y ~ ,  t r  

x~ = y , ,  

x , = y , y , ,  l e ( I w { m } ) - - { k } .  

Since, for every x �9 Zx, a,(x) = O, i = 1, . . . ,  r, and ~,(c,) i> j ,  j = 2, . . . ,  d, it follows 
that ~y(fo ~) = 0 at each p o i n t y  of U'  -- [J~�9 U'k. Therefore, it suffices to consider 

fo  ~ for each k e I, where ~k = ~ [ U~. 
Fix k e I. I f /  : (y~, . . . ,y,~) e U~, p u t ~ ' =  (y~, . . . , y , , _ , )  and ~k(.~) = ~k(Y)'. 

n t ~ t t Clearly, Ut = V~ • K, where Vk = ( y  �9 U~ :y,, = 0 }, and ~ : V~ -+ V. Then 

where 

(t~ o ~k) (Y) ~ -Yk(Y~  + a~(y ) ) ,  i = 1, . . . ,  r, 

= Yk g (Y) ,  ( g o , k )  (Y) d , 

t i 1 , . . , r ,  
a ' ( y )  Y~ 

d 

g, (y)  = y d  + Z c;(y)ya~ -~ ,  

1 
c;(y) ----)~(c~o~k) (y )  �9  j = 2 , . . . , d .  
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I t  follows t ha t  each  n o n z e r o  a~Ly ) , ~ y ~  and  each  n o n z e r o  

= . ,  [3=_x) e N  m-~, = (~x, "" ", ~r~-~) e N  '~-~, and  

f~ = ~ ,  t 4: k, 

= - 

e , k ,  

l C . I  

c'~(y)d"~y , whe re  

In  pa r t i cu la r ,  the  exponen t s  ~ and  3J are  to ta l ly  o r d e r e d  in the same w a y  as the ch * 

and  yJ. 

I f  v v ( f o  n,) < d, for  all y e U'k, we are  done .  Suppose  v v ( f o  r:k) = d, for  some 
t Y = (Yx, �9 �9 �9 ,Y,,) ~ Uk. I t  follows t h a t  ~tv(g' ) = d, a n d  hence  tha t  y , ,  = 0. The re fo re ,  

: , , a ,  H ,~SJ since each  Lc~)" , ~ y  , we have  fz0(g' ) ---d.  Likewise,  for  each  i = I, . . . , r ,  i f  
t t a,( .~)  = 0, y ~ V k ,  then  a;(O) = O. 

L e t  v = (vx, . . . , V m _ a )  deno te  the smallest  a m o n g  the nonze ro  exponen t s  ~ 

a n d  8J; then  v is associa ted t o f o  ~k in the same way  as ~ is associated t o f .  L e t  q deno te  
t the  n u m b e r  o f  indices i = 1, . . . ,  r such tha t  as(0 ) = 0. I f  q = r, then  

v t =~rt ,  g4=k,  

= t ~ i a t  - -  d!; V k 

in pa r t i cu la r ,  Iv  I <  [ n [ (while,  as before,  Iv  [ t> d!).  In  o the r  words,  e i ther  q <  r or  

q --- r and  i v  I < ] ~ 1. I t  follows tha t ,  af ter  t r ans fo rming  f by  a E -cove r ing  involving  

finitely m a n y  sequences  o f  at  mos t  ( the in tegra l  p a r t  of )  [ ~ [/d! local b lowings-up  

over  successive coo rd ina t e  charts ,  as above ,  e i ther  r or  d mus t  decrease.  Case 1 follows 

by  induc t ion .  

Case 2. T o  set up  an a p p r o p r i a t e  induc t ion ,  it is aga in  conven i en t  to begin  with f 

o f  a m ore  genera l  form: 

f ( x )  ,~ "s ta(x)"l . . .  t , ( x ) ' ,  

where  ~ ~ N " - a  a n d  the t~ are  d is t inc t  smoo th  factors g~(x) = x,, + a,(~') ,  as(0 ) = 0, 

such tha t  ax(x ) - 0 and  A l ( x  ) ,~  x , 0 c where  A I is the p r o d u c t  o f  all n o n z e r o  a s 

and  thei r  differences.  (At this first stage we real ly  have  ~ = 0.) I n  pa r t i cu la r ,  the 

exponen t s  0: o f  the n o n z e r o  a , ( ~ ) ~ , , ~ i  are  to ta l ly  o rde red .  

L e t  ~ deno t e  the smallest  a m o n g  these exponen t s ;  say , = ( '1 ,  . . . ,  ~,~-1)- T h e n  
t t t - - I  ] ~ [  --=Y'~=l ~ / >  1. L e t  

Z = { x ~ U : t i ( x  ) = 0 ,  i =  1, . . . , r }  

= { x ~ U : x , , = 0  and  Y, ,k~> 1}, 
k ~ d(x) 

where  J ( x ) = { k : x , = O , k = l , . . . , m - - 1 } .  For  each  k = l , . . . , m - - 1 ,  let  

Z k -= { x ~ U : x~ = x m = 0 }. T h e  Z~ whe re  % 1> 1 a re  the  i r r educ ib le  c o m p o n e n t s  o f  Z.  
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Let  n : U '  

such that  a, I> 1 

t and  U '  = U ,  u 

Let  ::t = r~ I U~ 
The  char t  

x,. =y , ~  and  x t 

U be the blowing-up with center  Z , ,  for some k = 1, . . . ,  m -  1 

�9 T h e n  

U '  = { ( x , ~ )  e U  • P ' ~ - l ( K ) : ~ = O , t ~ : k , m ,  and  x , ~ , , = x , , ~ , } ,  

U~,  where,  for I = k, m, U~ is the coordinate  char t  {(x, ~) �9 U '  : ~t ~: 0 }. 

U~, has coord ina te sy  = (y~, . . .  ,y,,) in which n,, is given by x, = y , y , , ,  

= Yt when t 4: k, m. Let  

6 , X~ ---- {y  �9 U,.  : 1 q- a,(r~.(y)~)Lr,. = 0 }. 
~ = 1  

T h e n  X~, is a closed analyt ic  subset of  U~,. Clearly, X~. n (U~. - -  U'k) ---- r and  f o n . ,  

is locally normal  crossings on U~. --  X ' .  

T h e  char t  U~, has coordinates  y = (Yl, . - . ,Y. , )  in which ~k is given by x~ = y ~ ,  

x,, =YkY.~ and x t = Y t ,  l ~: k, m. Le t  . ~ =  (Yx, . . .  ,Ym-1) and  ~k(.~) = nk(Y) ~. Clearly, 
t ~ t t s t U~ V~ • K ,  where V,  = {y  �9 U~ :y,,  = 0 }, and  ~ : V~ -~ V. L e t f '  = f o  ~ .  T h e n  

i f ( y )  . ~ y  q(y ) ,a  . .  l ; ( y ) "  

where ~ = ([~1, . - . ,  ~ , , - i )  � 9  with ~t = ~ t , t  ~: k, and  ~k = ~k + n~ + . . .  + n,, 

and  where each 

t ; (y)  = y , ,  + ai(y) ,  

, = _1 (a, o ~ k ) ( Y ' )  E O ( V ; ) .  
a~ (y) Y~ 

Therefore ,  each nonzero  a~(y) . . . .~ i ,  where ~ = (~], . . . ,  ~ _ ~ )  � 9  " - t ,  ~ = ~ --  1, 

and [~ = ~ ,  t # k. 

Suppose that  a~ (0) = 0, i = 1, . . . ,  r. T h e n  A/, (~)  ~ ) ' ~ ,  where r �9 N ' -  1, and  the ~' 

are totally o rdered  in the same way as the ~. Le t  v = min [~; say v = ( 'q,  . . . ,  vm_x). 

T h e n  v ~ = ~ - -  1 and  ~ : t = o t ,  r  so that  1~< I v l  = [ ~ 1 - -  1. Therefore ,  after 
t 

repeat ing the process of  blowing up [ ~ ] times, we can assume that  a~o :I: 0, for some 

/ o = 2 ,  . . . , r .  
t 

Let  b~, p =  1 , . . . , s ,  denote  the distinct values - - a t ( 0 ) ,  i =  1 , . . . , r .  
t t T h e n  2 ~< s~< r, since a I _~ 0. For  each p, let I(p) = { i :  b~ = - -  ai(0 ), i = 1, . . . ,  r}.  

Choose i ( p ) � 9  Put  U ~ =  U~, with coordinates z = ( z ~ , . . . ,  z,,) centered at 

b r - (0, . . . ,  0, b~) defined by 

zt = Y t ,  g = 1, . . . , m - -  1, 

z,, = y, ,  + a~ln}(yl, ...,Yn,-I)- 

Then ,  for each i =  1, . . . , r ,  l ~ ( y ) = t ; ' ( z ) ,  where t ; ' ( z ) = z , , + a ~ ' ( ~ ' ) ,  with 

a~'(7) = a;(~') - -  a;,~}(~'). Put  X ~ = { z �9 U ~ : t ; ' ( z )  = 0, for some i r I(p)}.  Since each 
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a~(~') --  a'j(~') , ~ , 4 i ,  for some 3, '~ ~ N ' - t ,  it follows that  X" ca{ z : t ; ' ( z )  = 0}  = ~,  
for all i ~ I(p). In U ~ - -  X ~, f '  coincides with an analytic function 

i f ( z ) . ~ 7 ~  II t , ( z ) , ,  z ~ U ' ,  

where "I" ~ N'~- : ,  " ~~ a~=l -- 0, and  AI,,(~' ) , - -z  , for some + ~ N =-~. But I(p) has fewer 
than r elements. 

Since the U ~ -  X ~, p =  l , . . . , s ,  together with U ~ - - X ~  cover U ' ,  Case 2 
follows by induct ion on r. [] 

Remark 4.8 .  ~ Our  proof  of  Theorem 4 .4  shows that there is a countable  collection 
of  analytic mappings = j : W j  ~ M satisfying conditions (1)-(4) of  the theorem and 

having the following addit ional  property:  Write each ~ as nil o ~ 2 o . . .  o n ~ . ~ ,  
where, for each k = 1, . . . ,  k ( j ) ,  n ~ :  U~.,+~ ~ U ~  is a local blowing up of  U~, with 
smooth center Y~,, and U n = M, Ui.,,~+~ : W~. Let  E;, denote  the union of  the 
inverse images in U~, of  Yn ,  " " , Y ~ . * - ~ ,  k = 2, . . . , k ( j )  -t- 1. Then  each E~, is a 
union of  smooth hypersurfaces in U~,; when k : k ( j )  + 1, these hypersurfaces are 

t r a n s v e r s e .  

Corollary 4.9 .  - -  Let IV[ be a real analytic manifold. Let f E O(M). (Assume that f is 
not identically zero on any component of M . )  Then there is a real analytic manifold N and a proper 

surjective real analytic mapping ~ : N -+ M such that: 

(1) f o ~ is locally normal crossings on N. 

(2) Tl~re is an open dense subset of N on which ~ is locally an isomorphism. 

Proof. - -  Let  { n~ : W~ -+ M } and { U s } be as in Theorem 4.4.  Suppose a e Wj .  
Choose a coordinate  ne ighbourhood V~.~ of  a in W~, with coordinates x = (Xx, . . . ,  x,,) 
vanishing at a, such that ( f o ~ z ~ ) ( x ) =  x ~ l . . ,  x~..g(x), x ~ V~.,, where g(x) is an 
analytic function vanishing nowhere  on V~.~ and each a, e N. Let  S:' denote  the 
s p h e r e { ( x a , . . . , x , , , t ) : ~ +  . . .  + x ~  + t  2 = r  For sufficiently small c, there is a 

mapping  ~j,, : Sj,, ~ Vj.o, where Sj.o = S~, defined by ~ , , (x ,  t) = x, (x, t) e Sj, , .  

Clearly, f o  ~ o ~ ,o  is locally normal  crossings on S~,,. 

Let  { K~ } be a locally finite covering of  M by compac t  subsets. For each i, there is a 
finite subset J( i)  o f { j  } such that K, ---- [.J~ea,*, n~(L,~), where each L,j C W~ is compact .  
For each L,~, choose a finite subset A( i , j )  o f  Wj such that L~jc[.J ,  eA(~.~ ~, ,(S~,,) .  
We can take N to be the disjoint union of  the S~,,, where a e A( i , j ) ,  j e J ( i ) ,  for all i, 
and  take = : N ~ M to be the mapping  given by ~ o q~., on each sphere Sj,, in this 

union. [] 

Remark 4 .10 .  - -  We can require that  the mapping  n : N -+ M of  Corollary 4 .9  

satisfy the following addit ional  condition: 
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(3) Every point  of  M admits an open ne ighbourhood  U such that  n ]  ~ - a ( U )  is 

relatively algebraic; i.e., there is a positive integer q and a commuta t ive  d iagram 

~-~(U)  '>  U • W(R) 

\ /vroJectlon 

U 

where t is a closed embedding  and the image o f t  is defined by homogeneous  polynomial  

equations (in terms of  the s tandard  homogeneous  coordinates in POOR)) , whose coefficients 

are real analyt ic  functions on U. 

A blowing-up has this proper ty ,  by Definition 4 .1 .  Corollary 4 .9  with the addit ional  

assertion (3) can be proved  by induct ion on the lengths of  the sequences of  local 

blowings-up involved in the mappings ~ of  T h e o r e m  4 . 4  (of. [18, Lemmas  7 .2 .1  

and  7 .2 .2 ] ) .  

5. U n l f o r m i z a t i o n  and rect i l inear lzat lon  

T h r o u g h o u t  this section, M denotes a real analytic manifold. 

Theorem 5.1  (Uniformizat ion theorem).  - -  Let X be a closed analytic subset of M. 
Then there is a real analytic manifold N (of  the same dimension as X )  and a proper real analytic 
mapping ~ : N  ~ M such that qo(N) = X. 

Pro@ - -  Let  a e M. Le t  X a denote  the germ of  X at a. Let  f l ,  . . . , f ,  be real 

analytic functions defined in a ne ighbourhood  U of  a, such that  

X c~U = { x e U : f , ( x )  = 0, i =  1 , . . . , n } .  

Let  r = dim X, .  We can assume there is a closed analytic subset Z of  U such that  

dim Z < r and  X c~ U -- Z is smooth and of  pure  dimension r. I t  suffices to find a 

compac t  real analytic manifold N such that  dim N = r, and a real analyt ic  mapping  

q 0 : N - +  M such that  q~(N)C X ~ U and (?(N) includes a ne ighbourhood  of  a in 

X n U --  Z. We will prove this by induct ion on codim Xa = m --  r, where m --  dim M~. 

I f  codlin X,  = 1, then the result holds, by T h e o r e m  4 .4 .  

Let  f - - = f l - - . f , .  By Theo rem  4.4 ,  there are finitely real analytic mappings 

that: 

is the composit ion of  a finite sequence of  local blowings-up with 

r:i : W,- ~ U such 

(1) Each re, 

smooth centers. 

(2) There  is a compac t  subset I,, of  W~, for each j ,  such that  [J~ ~(L~) is a neigh- 

bourhood  of  a in U. 

(3) For  each j ,  . fo  ~ is locally normal  crossings on W~. 

For  each j ,  write ~ as ~r~l o ~j2 o . . .  o ~r~,~ul, where,  for each k = 1, . . . ,  k ( j ) ,  
~k : U~',~+I --~ U~k is a local blowing-up of  U~k over  an open subset V~k of  Ui ,  , with 
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center a closed analytic submanifold Yi* of  Vj, ,  and where Uj,  ----- U, Uj.~(j~+I = W~. 
For each k = 2, . . . , k ( j )  + 1, let Esk denote the union of  the inverse images in U~, 
of  Yn,  . - - ,  Y~,k-1. We can assume, in addit ion to (1)-(3) above, that  each E~, is a 
union of  smooth hypersurfaces in Ujk and, when k = k(j) t -  1, these hypersurfaces 
are transverse (Remark  4 .8) .  Choosing U small enough, we can assume that 

V n = U n = U, for each j .  
For each j ,  pu t  X n = X c3 U and define 

X~,k+ x = ~ a ( X j ,  uY~k), k = 1, . . . , k ( j ) .  

We can assume that,  for each j and k, there exists ask s Ui ,  such that Vi,  is an open 
ne ighbourhood of  ask , small enough so that: 

(1) X ~  c~ V,k is a finite union of  closed analytic subsets X~, t of  V~k , where the 
X~,t.b are the irreducible components  of  X~k.b, b = a~,. 

(2) For each,P, every connected component  of the smooth points of  X~, t is adherent  

to ajk. 

For each j and k, let L ( j ,  k) denote the set of  those ~' such that X~.kt.b is not  an 
irreducible componen t  of  E~,.b, where b = a , .  k. I f  g e L ( j , k ) ,  then dim X~kt.b<~ r. 
Suppose that  Xjkt, bC Y~k.b, where g E L ( j ,  k) and dim X~kt, n = r. Then  X ~  C Y~,. 
Since dim Y~, < m, the codimension of  X ~  t in Yj, is less than that  of  X c~ U = X n 
in U = U j,. By induction, there is a real analytic manifold N;,  t of  dimension r, and 

a proper  real analytic mapping ~'~,t:N~,t-+Y~, such that ?;,t(N'~,t) C X~,t and 
?'~,t(N'~t) includes the smooth points of  dimension r of  X~, t. Therefore,  there is a 
compac t  real analytic manifold N~, t of  dimension r, and a real analytic mapping 

~ t : N ~ . , t - + Y ; ~ C  U ~  such that ~,~t(N~t)C X ~  t and ?~kt(N~kt) includes the smooth 
points of  dimension r of  X~, t within some neighbourhood of  the image of  L~ in U~k. 

Now, for each j ,  1-[~'=,(f~ o ~zj) (x) is locally normal  crossings in W~; therefore, 
we can find finitely many  points a~  of  L~ such that: 

(1) For each p, there is a coordinate ne ighbourhood W,u of  a~ ,  with coordinates 
x = (x,, . . . , x , , )  centered at a~ ,  in which l-IT=,f~(~(x)):-= x~ . . .  x~,'u(x), where 
each ~, is a nonnegative integer and u(x) is an analytic function vanishing nowhere in W~v. 

(2) There  is a positive number  e~v, for each p, such that  the balls 

B~  = { x  e W ~ : x ~  + + ~ " . . .  x,, <~ ej~ } cover a ne ighbourhood of  L, in W~. 

I t  follows from (I) that each (fi  o r=~) (x), x e W~,, is a monomial  in (xx, . . . ,  x,,) 

times an invertible factor. For each p, let 

X~, = {x e W~, : s  = 0, i = 1, . . . ,  n}. 

t t Then  X ~  is a union of  coordinate subspaees of  W ~ .  Write X ~  = X ~  ~ E~r , where 

E;~ is the union of  the irreducibh" components  of  X~= lying in E~.~o ~+t and X'~ is the 
union of  the remaining irreducible components  (each of  which must  have dimension ~< r). 
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Let  X~,Q denote the irreducible components  of  X~, of  dimension r; each is a coordinate 
subspace of W ~  of  dimension r. For each p and  q, let S~,~ denote the s tandard  

r-dimensional sphere of radius r  and let q , ~  : S j~  -+ W, denote the s tandard  mapping 

onto the ball Bj,  c~ Xj~q. 
We can take N to be the disjoint union of  all Nj, t and S ~ ,  and take q~ : N -~ M 

to be the mapping defined by ~:~ o rc~z o . . .  o n , . , - x  o %,t on each N~, t and  by u s o +~~a 

on each Si~.  [] 

The uniformization theorem 0.1 for subanalytic sets is an immediate consequence 

of  Theorem 5.1 and Proposition 3.12. 

Remark 5.2.  - -  In  Theorem 5.1, we can require that  each point of M admit  an 
open neighbourhood U such that  ~ [ q~-~(U) is relatively algebraic. This follows from 
our proof, because of Remark 4.10. I t  then follows from our proof of Proposition 3.12 

that,  if X is a closed semianalytic subset of  M, there exists a real analytic manifold N 
(of the same dimension as X) and  a (proper) real analytic mapping ~ : N -+ M such 
that  q~(N) =: X and each point of  M admits an open neighbourhood U such that  
q? [ q~-~(U) is relatively algebraic. Conversely, if ~ : N ~ M is a real analytic mapping 

satisfying the latter condition, then q~(N) is semianalytic, by Theorem 2.2. 

Lemma 5.8.  - -  Letf~,  . . .  ,f~ be continuous subanalytic fimctions on M. Then there exist 
a real analytic manifold N, of the same dimension as M,  and a proper surjective real analytic 
mapping ~0:N ~ M such that each .f~ o ~ is analytic on N. 

Proof. - -  Define f : M - + R  q by f =  (f~, " - , f o ) "  Then  f is a subanalytic 
mapping.  By Theorem 0.1,  there is a real analytic manifold N such that  

d im N ---- dim graphf---= dim M, and a proper real analytic mapping �9 : N" ~ M • R ~ 

such that  O(N) = g raph f .  Write �9 = (% g), where ~ : N ~ M and .g : N ~ R~; say 
g = (gl, �9 �9  g~). Then q~ is a proper surjective real analytic mapping and each f~ o ~ ---- g 

is analytic. [] 

D~nition 5.4.  - -  A subset Q of R "  is a quadrant if there is a parti t ion of { 1, . . . ,  m } 

into disjoint subsets I0, I+ and  I , such that  Q = { x =  ( x t , . . . , x , , )  ~ R " : x , = 0  if 

i ~ I 0 ,  x ~ > 0 i f j ~ I ~ . a n d x  k < 0 i f k ~ I  }. 

Proof of the rectilinearization theorem 0.2.  - -  We can assume that  M = R " .  We can 
find a neighbourhood U of K, and closed subanalytic subsets X,~ of  U, i---- 1, . . . ,  p, 

j = 1, 2, such that  

X n U  = U (X,~--X~2). 
i = l  

For each i and  j ,  let d,j denote the distance function d,~(x) = d(x, X,~), x e U. Then  
X o = { x e U : do(x ) = 0 } and d,j is subanalytic, by Remark  3.11 (1). By L e m m a  5.3,  
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there is a real analytic manifold V such that  dim V = m, and  a proper surjective real 

analytic mapping r -7 U such that  each d~j o ? is analytic on V. Then,  by Corol- 
lary 4.9,  there is a real analytic manifold N of dimension m, and a proper surjective 
real analytic mapping ~ : N ~ V such that  1"I~, ~ d~ o ? o ~ is locally normal  crossings 

on N. Theorem 0.2  follows easily. [] 

6. Lojasiewlcz's inequality; metric properties of subanalytic sets 

To prove Lojasiewicz's inequality, we will use the following result of  [21] on 

subanalytic sets in low dimensions: 

Theorem 6 .1 .  - -  Let M be a real analytic manifold and let X be a subanalytic subset of  M.  

Then: 

(1) I f  dim X ~< 1, X is semianalytic. 

(2) I f  dim M ~< 2, X is semianalytic. 

Lemma 6.2 .  - -  Let k c N and let y ( z )  be a holomorphic function defined in a neighbourhood 

of  the origin in C. Let X denote the image of z t-* (z~,y(z)) .  Then, in some neighbourhood of 

0 E C z, X is the zero set of a holomorphic function 

f ( x , y )  = 1-I ( y  --  y(~x'/k)), 
c k ~  1 

where the product is over the k'th roots of  unity. 

Proof. - -  In some neighbourhood of 0 in C2 , f i s  a well-defined holomorphic function 
outside { x = 0 }, which extends continuously to { x = 0 }. Therefore, f is holomorphic 

in a neighbourhood of  0. [] 

Lemma 6 .3 .  ~ Let M be a real analytic manifold. 

(1) Let A C M be a semianalytic subset of dimension 1. Let a ~ A.  Assume A -  { a } 

is locally connected at a. Then there exist r > 0 and a real analytic mapping "f : ( - -  r ~) --* M 

such that "~(0) = a and "(((0, ~)) is a neighbourhood of a in a --  ( a }. 
(2) Conversely, let "f : I -+ M be a real analytic mapping, where I is an interval containing 0 

in R .  I f ' :  • O, then there exists ~ > 0 such that ":((0, ~)) is a (smooth) semianalytic subset of  M.  

Proof. - -  (1) is immediate  from Theorem 0.1. (Alternatively, it can be proved 

by induction on dim M, using Puiseux's theorem.) 
(2) We can assume that  M = R"  and  V(0) = 0. Write V(s) =- (gx(s), . . . ,  u 

I f  "f ~ 0, we can assume Tx(s) = s k, for some positive integer k. I f  n -= 2, the result 

follows from L e m m a  6.2.  When n > 2, therefore, there exists r > 0 such that,  for each 

i = 2 , . . . , n ,  the image of (0,r by the mapping x l = s  ~, x~=-: , (s) ,  x ~ = 0 ,  j +  1, i, 

is semianalytic. Thus V((0, r = f i t=z{ x = (xl, . . . ,  x,) : x  a = s *, x~ = y,(s), s ~ (0, ~)} 

is semianalytic. [] 
5 
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Proof of Theorem 6.1.  - -  (1) Let  N be a real analytic manifold and  let 
: M • N --7 M be the projection. By L e m m a  3.6, it is enough to prove that  if  X is 

a relatively compact  semianalytic subset of M • N and  dim X = 1, then =(X) is semi- 
analytic.  By L e m m a  6.3  (1), X is locally a union of  tinitely many  sets of  the form 
A = -;((0, r where u : (--  e, r -~- M • N is a nonconstant  analytic mapping,  perhaps 

together with a point. Each ~(A) = (re o "f) ((0, ~)) is semianalytic, by L e m m a  6.3  (2). 
(2) X -- int X and  X -- X are each subanalytic of  dimension ~< 1, hence semi- 

analytic,  by (1). But ,X is the union of X -- int X and  certain components of  its com- 
plement,  hence semianalytie. Therefore, X - - - - X . -  ( X -  X) is semianalytic. 13 

Theorem 6 .4  (Eojasiewicz's inequality).  - -  Let M be a real analytic manifold and let K 
be a subset of M. Let f ,  g : K -7 111. be subanalytic functions with compact graphs. I f  f -  1 (0) C g -  1 (0), 
then there exist c, r :> 0 such that, .for all x �9 K,  

If(x)[/> c ] g(x)l ' .  

Remark 6.5.  - -  In particular,  if M -- 11I.", X = f - ~ ( 0 )  and  g(x) = d(x, X), x �9 K,  

we get 
[f(x)l >l c d(x, X) ' ,  x � 9  

Proof of Theorem 6.4. - -  Let  L = {(u, v) �9 111.': u = [ g(x)], v ---- [ f (x)I ,  for some 
x e K }. Then  L is a compact  semianalytic subset of  11. 2, by Theorem 6.1.  Let  =(u, v) = u 

be the projection. We can assume that  0 e ~(L) and  0 is not an isolated point  of  n(L).  

By L e m m a  6.3  (1), there exist r > 0 and  a parametr ized analytic curve ~,(s) = (u(s), v(s)), 
s ~ (--  2~, 2~), such that  u(0) = 0, u(s) > 0 i f s  > 0, and  L n ([0, u(~)) x 111.) is bounded 
below by y([0, e)). By a change of the parameter  s, we can assume tha t  u(s) --= s ~, for 

some positive integer k. Then  v(s) is strictly positive on (0, r since, for all u �9 (0, r 
{ x ~ K - I  g(x)l --- u} is a compact  set on which If(x)l  does not  vanish, so has a nonzero 

minimum.  Let  ~ ---- ~k. Then  If(x)l ~> v(Ig(x)l > 0, whenever 0 < I g(x)[ < ~. There- 

fore, there exist c , r >  0 such that  I f(x)l  >-- clg(x) l ' ,  whenever [g(x)l~< ~/2. But 
{ x �9 K :] g(x)] >/ 3/2 }is a compact  set on which ] f(x)] does not  vanish, so the inequality 

is satisfied on all of K, after perhaps reducing c. [] 

Definition 6.6.  - -  Let  U be an open subset of I t "  and  let X, Y be closed subsets 

of  U. We say that  X and Y are regularly situated if, for all Xo �9 X n Y, there exist a neigh- 

bourhood V of x 0 and  c, r >  0 such that,  for all x � 9  

d(x, X) + d(x, Y) >1 c d(x, X c~ Y)'. 

Corollary 6.7.  - -  Let U be an open subset of 111.". Then any two closed subanalytic subsets 

of U are regularly situated. 

Proof. - -  We can assume that  the two closed subsets X and  Y are compact.  The  

thnctions f (x )  =- d(x, X) + d(x, Y) and g(x) = d(x, X c~ Y), restricted to a compact  
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neighbourhood of  X u Y, have compac t  subanalyt ic  graphs. Clearly, f -  ~(0) C g -  ~(0). 
The  result follows from Theorem 6.4.  [] 

Proposition 6 . 8  [21]. - -  Let g be a real analytic function on a neighbourhood of the origin 
in R",  such that g(O) = O. Then there are constants c, r such that 0 < r < 1 and 

] grad g(x) l >/ c I g(x) l" 

in some neighbourhood of O. (Here I grad g(x)l = (Y~=l(~g/Ox,)~) I'2, x = (xl, . . ., x ,) . )  

Proof (cf. [5, (3 .40)]) .  - -  Let  K be a ball centered at 0 in which gradg(x)  --= 0 

only ifg(x) = 0. By Theorem 6 .4  (wi thf(x)  = ] grad g(x)l ), there exist c, r > 0 such that 

I g radg(x)  t/> c I g(x)[',  x E K. 

Following the proof  of  Theorem 6.4 ,  we can assume that  r = ~z/k, where /z is the 
order ~t0(v ) of  v at 0 (cf. Definition 4 .6) .  By Lemmas  3 .6  and 6.3,  there is an analytic 
curve x = ~r(t) such that ~r(0) = 0, g(,( t ) )  +- 0 i f t .  0, and ] grad g(*(t))l - v(I g(cr(t))lvt). 
Then,  for t in a ne ighbourhood of  0, 

! ~ g(~(t) ) <~ c' ] grad g(~(t) )] = c' v([ g(~(t))ll'~), 

where c' is a constant.  From the Taylor  expansions ofg(~( t ) )  and v(s) at 0, it is clear 
that  r < 1. [] 

" Whi tney  regularity " of  a subanalyt ic  set [1, 15]: 

Definition 6.9 .  - -  Let  X be a compac t  subset of  R "  and let p be a positive integer. 
We say that X is p-regular if there exists C > 0 such that any two points x , y  E X can 
be jo ined  by a rectifiable curve -f in X of  length 

Iris< C l x - y l  1''. 

Theorem 6.10 .  - -  Let X be a compact connected subanalytic subset of  R".  Then there is 
a positive integer p such that X fi p-regular (where the curves can be chosen semianalytic). 

Lemma 6 .11 .  - -  Let U be an open subset of R" ,  and let q~ : U ~ R "  be a real analytic 
mapping, q~ = (~1, - . . ,  q~,). I f  .( is a rectifiable curve in U, then 

] q~('t')] ~< V/mnnl Y I. sup [&P' 

i, # 

Proof. - -  Let  a, b ~ U and let [a, b] denote the line segment from a to b. By the 
mean value theorem, if [a, b] C U, then, for each i = 1, . . . ,  n, 

' ~ ' ( a ) - - ~ ' ( b ) l < ' ~ / m [ a - - b [ "  sup 10~' [ , e t a .  b, ~ ( x )  . 
1<~ j <<. m 
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Therefore, if  y is a piecewise linear curve joining a and  b, 

l ~,(a) - ~,(b)l < ~ m l  "r l  sup I 0~' I 
�9 ~ ~ ( ~ )  �9 

This formula holds for any rectifiable curve y, by passage to the limit. The  assertion 

follows. [] 

Lemma 6.19.. - -  Let X and Y be compact subsets of  R "  such that X n Y = 0.  Suppose 

that X and Y are regularly situated, so that (by Definition 6 .6 )  d(x, Y) >1 c d(x, X ca Y) ' ,  
for all x e X ,  where c > 0 and r is a positive integer. I f  X and Y are each p-regular, then X o Y 

is pr-regular. 

Proof. - -  Choose C as in Definition 6.9,  common for X and  Y. Suppose that  x e X, 
y e Y. Choose z e X ca Y such that  d(x, X c~ Y) = [ x --  z ]. Le t  ga and  y,  be curves in X 

and  Y (respectively) joining x to z a n d y  to z (respectively), such that  ] Y1 I ~< C I x --  z I v" 

and Iv ,  l.< C l  y - -  z f'~'. Then Ix - - y [  >-- d(*, Y) >~ c d(x, X c~Y)'  = c l * - -  ~['. 
Therefore, Ix - -  ~ I-< (I x - - y  Ih)'" and I Y - z I.< Ix - y l  + (I x - - y  Ih)"'. An 
estimate on the length of  Ya u y , ,  as required, follows. [] 

Proof of  Theorem 6.10. - -  By Theorem 0.1,  there exist m e N, a real analytic mapping  
cp : R "~ -+ 112, and  a disjoint union K of finitely m a n y  spheres in R" ,  such tha t  q~(K) = X. 

By L e m m a  6.12, we can assume that  K is a single sphere. Clearly, there is cl > 0 such 

that  any  two points x, x' e K can be joined by a semianalytic curve of length ~< c a [ x --  x' I" 
Consider the following subanalytic functions on K • K C R "  • R " :  

f (a ,  x) -- I q)(a) -- ~(x)l 

g(a, x) = rain ([ a -- a ' [  + Ix --  x' I), 
(a' ,x ' lE .t-'a(O) 

where (a, x) e K • K. Then  f - l ( 0 )  C g- ](0). By Lojasiewicz's inequality,  there exist 

c~ > 0 and  a positive integer p such that ,  for all (a, x) e K X K,  

[ f(a, x) l >1 c2 [g(a, x)[=. 

Let b,y  e X = ~?(K); say b = ~(a), y = ~(x), where a, x e K.  Choose a', x' e K 

such that  q~(a') = ~(x') and  g(a, x) = l a --  a' ] + Ix  - -  x' [. Let  y],  y ,  be semianalytic 

curves in K joining a and a', x and  x', respectively, such that  I yl  I,< Cl [ a --  a ' [  and  
[ Y, I ~ c, I x --  x' 1. Then  y = r u q~(y,) is a semianalytic curve joining b ,y  in X ,  and 

Iv  I -  < I ~(vx)[ + I ~(Y,)[ 

< c,(I v, I + l v,  I), 

cPi 
where c, = A/mn sup ,~r , , , i  ~x~ (z) by L e m m a  6.11, so that  
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I 1-< clcs(la-a'l  + 
C 1 C 3 

~< =i7-; I ~(a)  - -  ~ ( x ) l ' '  
l, 2 

= C l b - y  I ' ' ,  

w h e r e  C = c, c8[c~/', t:l 

7. S m o o t h  p o i n t s  o f  a s u b a n a l y t i c  se t  

In this final section, we prove Tamm's  theorem that the set of smooth points of 
a subanalytic set is subanalytic [26]. As Tamm does, we use Malgrange's idea of "graphic  

points ", but  in a more direct way. 
Let N denote a real analytic manifold and let X denote a subanalytic subset of N. 

Definition 7.1.  - -  The singular set of X, Sing X, is the complement in X of the 
smooth points of the highest dimension (cf. Definition 3.3). 

Theorem 7.2.  - -  For each k ~ N, the set of smooth points of X of dimension k is subanalytic. 
In particular, Sing X is a closed subanalytic subset of X .  

Remark 7.3.  - -  For each k c_-N, the set of smooth points of dimension k of a semi- 
algebraic (respectively, semianalytic) set is semialgebraic (respectively, semianalytic): 
The semialgebraic result can be proved as in this section. For semianalytic sets, Propo- 
sition 7.4 below is not useful because the distance function is not necessarily semianalytic; 
nevertheless, the analogue of Theorem 7.2 can be proved using the graphic point 
tectmiques of this section together with Remark 5.2 and Proposition 2.10. However, 
the singular set of a real algebraic set is not necessarily algebraic! For example, if 

X = {(Yt,Y2,Ys) ~ lRs :Y~ --YlY2Y~ --Y~ = 0 }, 

then Sing X is the non-positive yz-aXis. (X is the image of the mapping YI----xl, 

Y2 -:- x~(x~ + x 1 x.,), y ,  ----- ~ + xl x 2.) 

Proof of Theorem 7.2. - -  The smooth points of X (of dimension k) are the smooth 
points of X (of dimension k) which do not lie in the closure of X -- X. Therefore, we 
can assume that X is closed. The set of smooth points of X of a given dimension k is 
open and closed in the set of all smooth points. We can assume that X C R". Of  course, 
X is the zero set of the distance function d(x, X), which is continuous and subanalytic. 
Then, by Proposition 7.4 below, our assertion is a consequence of Theorem 7.5 following 

(with g(x) = d(x, X)') .  [] 

Proposition 7 .4  (Poly-Raby [25]). - -  Let X be a closed subset of  R" and let ~(x) be 
tke distance function d(x, X). Let a E X. Then ~2 is analytic in some neighbourhood of  a i f  and 

only i f  X is an analytic submanifold in some neighbourhood of a. 
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Theorem 7 . 5 .  - -  Let N be a real analytic manifold, and let g : N -+ I I  be a continuous 

subanalytic function. Then { x e N : g is analytic at x } is a subanalytic subset of  N.  

Proof o f  Proposition 7.4.  I First suppose that  X is an analyt ic  manifold near  a. 

We can assume that  a = 0 and that ,  near  0, X is the graph  of  an analytic mapping  

: U ~ R " -  ~, where U is an open ne ighbourhood  of  0 in IR ~, such that  q~(0) = 0 and 

Dq~(0) = 0. (Here,  D~(0) denotes the derivat ive or tangent  mapping  of  q~ at  0.) Given x, 

choose y e X such that  ~(x) = [ x - y  [; if  x is sufficiently close to 0, then y �9 g raph  

and x - - y  is normal  to X a t y  (since the tangent  mapping  of  h(z) = [ x - -  z [~, z �9 X ,  

vanishes at y ) .  

Le t  u �9 U. T h e n  the normal  space to X at (u, ~(u)) is {(--  Dcp(u)" w, w) : w �9 " - ~  }, 

where D~0(u)" denotes the adjoint  of  the linear mapp ing  Dq~(u). Define 

q) : U • R " - ~  ~ R ~ x R " - ~  by ~P(u, w) = (u, q~(u)) + ( - -  Dq~(u)" w, w). Since D~(0)  is 

the identity,  then @ is an analyt ic  isomorphism near  0. Thus,  for x in a sufficiently small 

ne ighbourhood  of  0, there is a unique  y such that  32(x) = I x - - y  12: if x = @(u, w), 

t h e n y  = (u, q~(u)); s a y y  = ~(x). So 32(x) = ]x - -  ~(x)] z is analytic.  

Conversely, suppose that  ~(x)  is analyt ic  near  a �9 X. All first part ial  derivatives 

o f~  2 vanish on X (since 3~ is nonnegat ive ,  and  zero on X).  Let  M be an analyt ic  manifold 

of  minimal  dimension containing a ne ighbourhood  of  a in X. I f  bz - 0 in a ne ighbourhood  

of  a in M, then X coincides with M near  a, and  we are done.  Otherwise,  there is a 

sequence { x.~ } C M such that  lim x,, : a and ~2(x,,) oe 0, for each m. Choose y,~ �9 X such 

that  32(x,~) = Ix,,  - - y , ,  12. T h e n  ~'(x~,) = [x~, - - y , ,  [* for all x~ on the line segment 

between x,, a n d y , , .  Therefore ,  the second derivat ive of  8~ aty,~,  in the direct ion x,, - - y , , ,  
is 2. Passing to a subsequence if necessary, x,,, - - y , ,  tends to a l imiting direct ion in the 

tangent  space T~ M, and  the second derivat ive of  8' in this l imiting direct ion is 2, by 

continui ty.  Therelbre ,  the first derivative of  82 in the l imiting direct ion defines a smooth 

analytic hypersurface H near  a; H D X since all first part ial  derivatives of  8' vanish 

on X. But H is transverse to M near  a, so H c~ M is a manifold of  smaller dimension 

than M conta ining X near  a; contradict ion.  [] 

We will prove Theo rem 7.5  using Malgrange 's  idea of  " graphic  points ": Le t  

K - - - - R o r  C. Le t  �9 = ( % f ) : M  + N  • K be an analytic mapping,  where M, N are 

analytic  manifolds (over K) .  Assume that  N is connected,  dim N = n, and that  ~ has 

generic rank n (i.e. maximal  rank n on each componen t  of  M).  

Definition 7 .6 .  I A point  a e M is graphic (with respect to ~ )  if there exists a germ 

of  an analytic  funct ion g at q~(a) such that  fa ---- g o q~a. (Here  f ,  and  q~ denote  the germs 

at a o f f  and  ~, respectively.) 

Notation. - -  Let  a e M. Let  0~a. o or 0 a denote  the ring of  germs of  analytic  functions 

on M at a. Let  q~: O~l --~ 0o denote  the homomorph ism q~.'(g) = g o  q~, where 

g e 0,,o,. Le t  g ,  denote  the formal  comple t ion  o.r 0 , ,  and ~Z: O,,a, --~ ga the induced 
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homomorphism:  Consider any local coordinate systems ( '~1 ,  " "  " '  Xm) and (Yl, . - . , Y , )  
centered at a in M and at ~(a) in N, respectively. T h e n  Oo (respectively, d~,) identifies 
with the ring of convergent  (respectively, formal) power series K { x } = K { Xl, . . . ,  x,, } 
(respectively, K[[x]]  = 1K[[xx, . . . ,  x,,]]). I f  G(y )  e g,,o, = lK[[y]],  y = (Yx, . . . , Y , ) ,  
then ~ ( G )  is given by formally substituting for y the Taylor  series without  constant  
term y = ~ D ~ q ~ ( a )  x~'/a! - -  t~(a). Here ~ = (~x, - . . ,  a,,) ~-N", ~! = ~,! . . .  ~,,!, 
x ~ =- x~' . .  . x,,~", and D ~ q~(a) = (01~1 q~/Ox~ . . .  Ox~,,) (a), where [ ~ ] = ~1 + . . .  + a,,. 

We use f ~ j ~  to denote the inclusion 0o --~ d~o. 

Theorem 7 .7 .  - -  Let a a M.  Then a is graphic i f  and only i f  a is formally graphic;  

i.e., there exists G a ~,,~, such that f~ = ?9~(G). 

Theorem 7.7 follows from: 

Lemma T . 8  [12, 2 3 ] . - - L e t  + = (+t, . . . ,  de,), where +~ e C {  x } = C{ xt, . . . ,  x,,} and 

+~(0) = O, j  = 1, . . . ,  n. Suppose that 6. has generic rank n. I f  G E C [ [ y ] ]  = C[[y~,  . . . , y , ] ]  
and ~?'(G) = G o ~ converges, then G converges. 

Remark 7.9.  - -  I f  ~b has generic rank n (i.e., a representative in a neighbourhood 
of 0 has generic rank n), then +" : C {y } --,.- C { x } is injective since, otherwise, Ker  qb* 
defines a germ of a proper  analytic subset of  C" at 0. I t  then follows from L e m m a  7.8 

that  ~* is injective. 

Proof of  Lemma 7.8 (cf. [2, Prop. 1.6]).  J Let  

\ Ox, h , ,  = 1 ..... , 

By reordering the x~ if necessary, we can assume that  8(x) . 0. Suppose f ( x )  = G(+(x)), 
where f ( x )  e C { x } and  G(y)  a C[ [y ] ] .  By the chain rule, 

Of j :  (OG '~ 0,~ 
i = l ,  ,m 

(OG/Oyj denotes the formal derivative.) Let  fc~'(x) = ((OGlOy,) o +) (x), j = 1, . . . ,  n. 
By Cramer 's  rule and  the faithful flatness of  C[[x]] over C{ x } (cf. [29, Chapt.  8, w 4]), 
each fr e C{ x}. Proceed inductively: For each ~ = ([31, . . . ,  [~,) a N " ,  there exists 

f ~ ( x )  e C{ x } such that  f 0  = f  and  

Of s ~ f ~  + ~} 0+~ i 1, . m 
Ox~ ~- a Ox~ 

(where ( j )  denotes the mult i index with 1 in the j - t h  place and zeros elsewhere). (In 

fact, f~ (x )  = ((0 I~1 G/Oy ~) o +) (x).) 
Let  U be a neighbourhood of  0 in C"  such that  f and  each +i converge in U, 

and  every irreducible component  of  the hypersurface X = { x e U : ~(x) = 0 } passes 
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through 0. Then  e a c h f  ~ converges in U (since its poles form a codimension 1 analytic 
subset of  U contained in { ~(x) = 0 }). 

Let  G~, l (y)-=.Y~f~(x)y~/~! ,  where x e U .  Clearly, Gc0~(y ) = G ( y )  and, if 
8(x) 4= 0, then Gc,~(y ) ~ C { y } .  In  fact, Gc,~(y ) defines a holomorphic function H(x ,y)  
in a ne ighbourhood of  {(x,y) e U • (3" :y  = 0, ~(x) 4= 0 }: Near  any point  a such that  
~(a) 4= 0, + admits a local holomorphic section ~; i.e., a holomorphic mapping  ~ in a 
ne ighbourhood of  +(a) such that  d/o ~ is the identity. For x near a, G~,~ o ~ e 0,  is the 
Taylor  expansion o f f  at x, so that  G~,~ o ~ o 8,~,~ e d~,~,~ is the Taylor  series o f g  = f o  or. 

Clearly, G,, l(y) = g(di(x) + y ) .  
Then G ~ , ~ ( y ) ~ C { y } ,  for all x e U  (in particular,  G e C { y } ,  as required) as 

follows: There  is an analytic subset Y. of  X, of  complex codimension at least 2 in U, 
such that  X -  Z is a complex submanifold of  U of  codimension 1. Let  a ~ X -  E. 
Choose coordinates (x~, . . . ,  x,,) centered at a in U such that  ( x x = 0 } defines X --  ~. 
Define a holomorphic function H(x ,y )  in a ne ighbourhood of  a = 0 in U • C", by 

1 f., H(~, x~, . . . ,  x,;y) d~, 
= - 

where 't' is a positively oriented circle a round 0 in the x~-plane. Then,  for all ~ e N", 

(0l~, ~ 1 f,f"(~, x,, ..., x,,) d~ =f'(x), ~y~ }(x,  0) = ~  ~ _ x ~  

so that  ~ ( x , y )  is an extension of  H(x ,y ) .  We can proceed by induction (or use Har tog 's  
theorem) to extend H(x ,y)  to be holomorphic in a ne ighbourhood of  U • { 0 }. [] 

Theorem 7 .10  (Malgrange).  - -  Consider �9 = (r : M --~ N • K as before ( N  is 
connected, dim N = n, and ~? has generic rank n). Then the set E of  non-graphic points is a closed 
analytic subset of  M,  contained in the critical set of  ~. 

Proof. - -  We can assume that K = C, M and N are open subsets o f  C "  
and C", respectively, and 8 ( x ) =  det(O~?JOx,)~.,= 1 . . . . . .  ~ 0, where ? = ( ~ 1 , - . . ,  9 ,) .  
I f  x ~ M - - E ,  then there exists g * e O ,  c,I such that  f , = g * o q ~ , .  Thus, for each 

[~ = (91, -- -, 9,) ~ N", we have f ~  ~ O(M --  E) defined by 

f~(x)  = ((D~g ~) o ?) (x). 

As in the proof  of  L e m m a  7.8,  each f ~  extends to a meromorphic  function on M (the 
quot ient  of  a global holomorphic function by a power  of  ~(x)). 

For each k = 1, 2, . . . ,  let P~ denote  the subset of  M where some f~ ,  [ 9[ ~< k, 
has a pole. Then  each P~ is a complex analytic subset of  M ;  in fact, locally, each Pk 
is the union of  the zero sets of  certain factors of  ~, so the sequence P1 C P2 C . . .  is locally 
stationary. Therefore,  P = L]~~ ~ Pk is a closed analytic subset o f  M. Obviously,  P lies 
in the critical set of  ~. 

Clearly, P C E. O n  the other  hand,  if x r P, then a l l f  ~ are holomorphic and hence 
continuous at x, so x r E by the following lemma. [] 
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Lemma 7.11.  - -  x r E i f  and only i f  there exists a sequence { x t } C M --  { x : 8(x) = 0 } 
such that x = lira x t and, for  all ~ c 1N", l imf~(x  t) exists. 

Proof. - -  " Only  i f "  has already been seen. " I f " :  By Theorem 7.7, it suffices 
to find G ~ ~ such that  f~ = ~ ( G ) .  For each t, since x t is graphic, there exists 

g,t O,~.t~ such that  f~t = g~to %t.  By differentiating, we get: 

f ( x  t) = g,t (9(xt) ) = fo(x t ) ,  

Of ( x t ) =  ~ Og't Oq~j 0 ~  

Let t tend to oo. The resulting equations mean J~, = r where G(y)  is the formal 

power series whose coefficients are the l imfa(xt) /~! .  [] 

Remark 7.12.  - -  Let  y be a curve in M -- E, with endpoints a and  a', say. Then 

fo ---= g~o %, fo, = g~ ~,,, where go E 0,~~ go, ~ ~o , ) .  Clearly, g~' is obtained by 
analytic cont inuat ion of g~ along q~(-f). In  part icular  g" is constant on connected com- 
ponents of  the fibers of  ~ (which clearly must lie entirely in M -- E or E). 

Now, let s be a positive integer. Let  M~ be the s-fold fiber product  of  M over N, 
and  let r : M~ ~ N be the induced mapping (Definition 3.8).  (M~ is a closed analytic 

subset of  M'.)  We say that  a ~ M~ is an s-fold graphic point if there exists g" E 0,~,) such 

tha t  foi = g* o %~, i = 1, . . . ,  s, where a = (a 1, . . . ,  a'). Let  EC M~ denote the set of 
non-s-fold graphic points. 

Corollary 7.13.  - -  With the hypotheses of Theorem 7.10, E is a closed analytic subset 

of M;. 

Proof. - -  We can assume that  IK----= (I. Let  X be an irreducible component  of  
(the germ at some point of) M~, and  let Y = { a ---- (a x, . . . ,  a ~ E X : a * E E, for some 
i = 1, . . . ,  s }. Then  Y C E and  Y is a closed analytic subset of X, by Theorem 7.10. Since 
X is irreducible, then X -- Y is connected [24]. Consider a ~ X -- Y, a = (a 1, . . . ,  a'). 

Then  each a ~ is graphic. I f  a is an s-fold graphic point,  then a '  is s-fold graphic, for all 

a '  ~ X - -  Y, by Remark  7.12. [] 

Proof of  Theorem 7.5. - -  Let  U be a relatively compact  connected open subanalytic 
subset of N. By Theorem 0.1,  there is a compact  real analytic manifold M, and a real 

analytic mapping  q) = ( % f )  : M ~ N • 11. such that  ~ ( M )  -= graph g[  U. We can 

assume tha t  9 has generic rank n -=-- d im U (on each component  of  M). By Theorem 3.14, 

there is a bound s on the number  of  connected components of the fibers of  9. Let 

'0 : M~ -+ N and  E be as above. Suppose that  y E U. Clearly, g is analytic at y if and 

only i f y  r cp(E) (of. Remark  7.12). The  theorem follows immediately.  [] 
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