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Abstract-A chaotic system with available prior knowledge is identified with both the sequential hybrid near-al net- 
work and the standard Artificial Neural Network (ANN). The identified models are validated with phase portrait, re~rn 
map, the largest Lyapunov exponent and correlation dimension instead of using Sum of Square Errors (SSE). In- 
terpolatioil and Extl'~)ola[ioil capability of the models are compared. This is delnoilsta-ated for nonisothennal, irrevers- 
ible, first-ordei; series reaction A---~B--+ C ix a CSTR. 
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INTRODUCTION 

hldustdal chemical processes involving chemical reactions, heat 
and mass b-ansfer, separatious and fluid flow are inherently and 
strongly nonlinear and exhibit complicated dynamic behavior. In 
the past, a considerable number of studies have been carried out 
for the processes showing multiple steady states, oscillatory behav- 
ior and chaos [Kim, 1998]. Most of the studies were based on the 
mathenlatical models of systems derived fionl govemmg physical 
laws. In actual industrial processes, however, it is usually very dif- 
ficult to obtain rigorous maffmnatical models of the systems be- 
came of both the complexity of the systems and the lack of avail- 
able system lmmmeters. An alternative method is to use the stand- 
ard black-box Artificial Neural Network (ANN) based only on 
the irput-output data of the systems. Recently, it has been widely 
used as a universal fimction approximator when there is no prior 
knowledge about the systems because of its ability to describe non- 
linear systems. It has been proved that the standard ANN can ap- 
proximate arbib-my complex functions well and describe even com- 
plex nonlinear phenomena such as steady state multiplicity and os- 
cillatory behavior only if the internal parameters such as the num- 
ber of inputs, neurons, layers and the b-ansfer functions of neurons 
are properly chosen, and a sufficiently large data set with desired 
propeiIy is available. Tim inherent capability of the stazMard ANN 
is due mainly to the combination of nonlinear transfer functions 
used for each node. The standard ANN also has noise smoothing 
effect if the internal parameters are properly chosen or if the batch 
mode leamiug of  back-propagation is used. 

It has, however, many disadvantages. If  the training data set does 
not have proper quality and the internal parameters are not prop- 
erly chosen, the standard ANN suffers from serious malfimction. 
For example, if the training data set is CoiTupted with noise mid the 
number of internal lmeameters is more than needed, the standard 
ANN fits the noise as well as the system dynamics. It is also im- 
possible to realize what kind of interaction occurs between process 

*To whoin correspondence should be addressed. 
E-mail: kschung@postech.ac.ta 

696 

variables since all componeigs of the stmldard ANN are thought to 
be partially responsible for the output of the network. Although the 
stmldard ANN can be simplified by various pruning tedmiques, 
such as sensitivity analysis of weights with respect to the output 
error of ANN, we still cannot give physical meanings to the re- 
sullmg network. Therefoi-e, we cannot gualarltee the extmpolatioi1 
capability of the standard ANN beyond the limits of h-aining data, 
even in case the standard ANN is trained very well. 

Ailolher recourse is to use the hybrid (sbvctured) nem-al net- 
work approach. If  prior knowledge about a system is available, it 
is smart to incoiporate the prior knowledge into the black box mod- 
el of the system. Recently, there have been many attempts and an 
excellent stmamary of the subject is given in the paper of Thomp- 
soil and Kralnei. 1994. In the hybrid neural network approach, the 
first principle models from physical considerations such as mass 
and energy balance or empirical correlation are used as prior knowl- 
edge about a system, and the ANN model complements the uncer- 
tain paris of the first principle models. It is also possible to regard 
the hybrid neural network model as file ANN coilsb-ained by file 
first principle models. There can be several approaches in the ac- 
tual implementation of the hybrid neural network, but here we deal 
with only the seque,ltial hybrid neural network approach, where 
the ANN model is combined with the first principle models in se- 
ries. In die approach, the ANN serves as a nonparanletric estimator 
of the unmeasured process parameters which are the intermediate 
values to be used in the first principle models, and estimates the 
dependence of the process imrameters on the state variables of the 
system. In this sense, the approach provides more general parame- 
ter estimation strategy and usually gives better estimations than 
classical paranleter esthnation schemes such as nonlinear progiam- 
ming (NLP) optimization and kalman filter lmmmeter estimation 
[Psichogios mid Uigm; 1502]. The approach has many advmltages. 
Because the ANN component approximates only the uncertain parts 
of the first principle models, the size of the ANN can be drastically 
reduced. Therefore, the tmitmg is more focused, and then poteiNal 
error sources are greatly reduced As a result, the sequential hybrid 
neural network model usually shows better performance and is 
more robust to noise than the standard ANN model. Moreover, be- 
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cause the hybrid model is based mainly on the first principle mod- 
els, it can also be used for exb-apolation purpose as well as  i l I[elpO- 

lation. 
In any ANN, important steps are in the selection of appropriate 

ntalber of layers and of neurons in each layer, the choice of  the 
transfer fitnction used for each neuron and the training algorithm in 
order to obtain a good identified lnodel, and also the validation of 
the modal. Usually, a trial and error procedure based on criterion of 
minimization of sum of squares of ANN training errors and com- 
parison of  the time series of the original system with the model 
generated time series by calculating the mean square error between 
them are used for this purpose. For chaotic systems, however, this 
criterion may not provide usefifl infbmaatiorL Idantified models can 
show different dynamical behaviors even though the training errors 
are roughly the same, and the criterion of minmfizafion of the mean 
square error between the time series is just a necessary condition 
for an identified model to capture the dynamical properties of the 
system; it is defufitely not sufficie~lt. In the case of a chaotic sys- 
tem, although the initial prediction of an identified model can be 
very accar'ate, preclicted values diverge fi-om the original thne se- 
ries at much later prediction times no matter how good the model 
is. This is due to the inacctracies in the modal and the existence of  
positive Lyapunov exponents. Because nearby trajectories diverge 
locally in state-space for a chaotic system, the initial error due to 
the modeling error, however small, is magnified. The modal gener- 
ated time series thus becomes completely different fioln the origi- 
nal time series in the long rurr Therefore, more sophisticated cri- 
teria are requirec[ One of the criteria is to compare a~-actol-s (phase 
polWaits), and reconstructed atWactors (or reku-n maps, the 2-dimen- 
sional projection of reconslmcted attractors). Because there exists a 
smooth invertible transformation between file original states and 
the recorlS~ucted states with appropriately chosen delay time and 
embedding dimension, we can check if an ide~fied model cap- 
rares the original dynamic behavior of the system by compafiug 
the reconstructed attractors. In many cases, however, although the 
location and the overall st~pe of the atb-actol-~ look similar and thus 
the dynamic behavior of the system seems to have been reason- 
ably captured, detailed characteristics such as the density of trajec- 
tories in some region of the a~-actor and the local divergence rate 
of nearby trajectories are somewhat different Therefore, other cri- 
teria like Lyapunov expone~]t and correlation dimension that quan- 
tify numerically the matching between the dynamic behaviors are 
also required. From the criteria, we can detelmine and validate the 
optimal ANN model describing the systeln'S chaotic dynamical be- 
havioE 

In this paper, we identify a chaotic chemical reaction system with 
both the sequential hybrid neural network and the standard ANN, 
and validate the identified models with the criteria used for nonlin- 
ear dynamics instead of sum of square en-or (SSE). Then we coin- 
pare the interpolation and the exlmpolation capability of the opti- 
mal sequential hybrid neural network model with those of the op- 
tilnal standard ANN model. 

NeuraF Nehe:~rk 
Parameler Estimator Fir= Pgncigle MoOel 

I I [ 1 
x Jt] 

: k~ ~ x ~ [ t + l ]  

~ i Plar~t Dyn~u,~ic . x ~ [ t + l ]  x[t] Equation 

u . l l l - - - - , C )  v 

T H E O R E T I C A L  B A C K G R O U N D S  

In the sequential hybrid neural network, the ANN comtx)nent 
estimates the anmcasured process parameters which are intermedi- 
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Fig. 1. Schematic representation of the sequential hybrid neural 
naworM 

ate values to be used in the first gindple model. The inputs to the 
ANN component are current state variables and current manipu- 
lated variables, and then the ANN estimates current process par- 
ameters. The obtained parameter values are considered as consta~ 
between sampling instal .  Then the parameter values with the in- 
puts to the ANN component are propagated ttn-ough the first prin- 
ciple model. The outputs of the fn-st principle model are the es- 
timates of the process state variables for the next sampling time. 
The schematic representation of the sequential hybrid neural net- 
work is given in Fig. 1. 
1. Modified Error Back  Propagation 

In the standard ANN, weights are uFdated by using the error sig- 
nals between the outputs of the ANN and the target values as dri- 
ving force. One of the most famous ineth~ls is the error back-pro- 
pagation algorithm [Runmelhm et al., 1986], where the output er- 
rors of the ANN are hack-propagated through the network so that 
weights are updated inthe local direction of steepest descent of the 
error signals. In the sequential hybrid neural network, however, the 
standard error back-propagaticr algoriflml cannot be applied di- 
rectly, because the target values of the outputs of the ANN compo- 
nent are unmeasured process parameters and therefore the output 
errors of the ANN component are not directly available. Therefore, 
the modified error-hack propagation algorifi-rn [Psaltis et al., 1988] 
is introduced, where the elrors between the outputs of the fnst prin- 
ciple modal part (the plant) and the target values of the process state 
variables are ~-arlslated into the error signals for the outputs of the 
ANN component by Jacobian (differential gain) of the plant. In the 
algorithm, the plant can be thought of as an additional, but unmod- 
iflable, layer since the output errors of the plant are propagated back 
through the plant without modifying ~ .  The translated error 
signals are then used as the driving force to update the weights of 
the ANN component. More details about the modified back propa- 
gation algorithm are given as follows. The objective fltnction to be 
minimized can be expressed as 

J : ~ .  (d~ y~)~ (1) 

where Yk and ct~ denote the k th plant output and the k th target 
value, respectively. If  we differentiate the objective fitncfion (I) with 
respect to the ANN's weight between the i th neuron of the m -  1 th 
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layer and rite j tit neuron of rite m tit layer, wv, we obtain tions [Katflert et al., 1981]: 

OJ EGOy~ (2) 
aw~ ~ aw~ 

where e~=d~-y~ is the k th plant oulput error and m denotes the fi- 
nal layer of the ANN. Front the chain rule, the gradient becomes 

bw~ 2,e~7--== 2 , e ~ - ~  = , ~ 2 , e ~ -  (3) 

where ~ is the j th output of rite ANN, that is the j th Ulmmasured 
process parameter, and OyjO~ is the differential gain of the plant. 
If  we define p and q as the input to the neuron and the output fi-om 
the neuron, respectively, the weighted sums of the outputs of the 
m -  1 th layer, ~ ,  and the output of the i th neuron of the m th lay- 
m; c(' can be written as 

p;' :Zw,;' r r :r  (~) 

where f]' is the transfer ftatcticn of the j th neuron of the m t h  lay- 
er. If we incolparate the above notation into the gradient expres- 
sion, 

0J 

aw~ 
b__~_~, by k , ~-- 3y k 

2.a~--  = ~(P,~)qT- ~a~-~, = ~ -  8, ~ 

, 0y~ 
where, r : f~" (P::')~G~~ 

And therefore rite alltoLlttt of weight updated is 

(5) 

~ J  m 1 Av~. = - c ~ - - = c % .  6s. (6) 

where c~ is the learning rate. For all other layers, the gradient of the 
objective function with respect to the weight and the amount of 
weight updated can be derived fi-om the similar procedure as above, 
and the results are given as follows. 

0J m - l ) '  m - 1  m - 2  m m m - 2  m -1  ( p , ) %  Z6;w,~ : % 6, (7) 
aWo,,, -~ J 

1 ~ m-2"~g ~ m  ~n where, 61: '-~= l~"-~/'(pi:'- )~ 2., ~ w,~. 
J 

1 bJ 28~ 1 A~,. =-~7--7=~_, =c~o2 (s) 
aw2- 

In numerical calculatio,l, the differential gain, OyjO~, is usually 
approxiraated by determining how the plant outputs change as the 
unmeasured parameters change at the opex-ating point, that is, the 
numerical derivative. 

ay..___~ =y~(s +AL) y~(s (9) 

P R O C E S S  M O D E L  

We consider the dynamic behavior occurring in a nonisothermal 
CSTR with two irreversible consecutive first-order reactions, A 
B ~ C ;  the fn-st exothennic, the second endothennic. The system 
can be described by the following dimensionless differential equa- 

dx, I x3 1 dt 1 - - X  1 -Dax I exp 17ex3 (10) 

dx2 + ~ ~" " ~ x  3 F ~ x 3 ~    'exPL J 
- -  eXpL17~x~ A (11) DaSx~ 

dx~ x3 ex(  l 
D a B c ~ S x ~ e x p [ ~  l [~(x3 u) (12) 

where the variables x~, x2 denote the dimensionless conceim-ations 
of species A, B, x3 is the dimensionless temperature in the reactor, 
Da is the Damkotfler nLlnl[iX~l, g is the dimensionless activation en- 
ergy, S is the ratio of the two rate comtants, ~; is the ratio of ac- 
tivation energies, B is the dmmnsionless adiabatic tempex-attae rise, 
0~ is the ratio of heat effects, [3 is the dimensionless heat b-msfer 
coefficient, and u is the dimensionless coolant bath temperature and 
cmt be viewed as an extemaUy manipulable variable. The system 
is known to show deterministic chaos when the system parameter 
values are Da=0.26, g=0.0, S=0.5, K=I.0, B=57.77, 0~=0.42, [3 = 
7.9999, and u=0.0, that is, when there is no control action. Fig. 2-3 
show the 3-D phase portrait of the system and the 2-D projection 
of the 3-D phase porb-ait, respectively. The simulation was carried 
out on IBM RS6000/370 using the IMSL subroutine ode_adalns_ 
gem-. Fig. 4 shows the second return map of the state variable x3. 
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Fig. 2 .3 -D  phase portrait of  the system. 
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Fig. 3. xl-x:  plane pDajection of 3-D phase portrait of file system. 
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Fig. 4. Second return map of the system. 
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The largest Lyapunov exponent and correlation dimension are cal- 
culated for tile lmle series data of tile systenl using in-house im- 
plementations of the Wolffs algorithm [1985] for the largest Lyap- 
unov exponent and the Grassberger and Procaccia algorithm [1983] 
for correlation dmlension. Tile obtained values are 0.00446 for tile 
largest Lyapunov exponent and 1.535 for correlation dimension as 
summarized in Table 1. The bifilrcation analysis of the system 

Table 1. Summary of the largest Lyapunov exponent and con~- 
lation dimension 

The largest Correlation 
LyaptalOV exponent dimension 

Original system 
Hybrid raodel with h 4, 

(b-ained with full data) 
Hybrid model with h 7, 

(trained with full data) 
Standard ANN with h 8, 

(trained with full data) 
Hybrid model with h 4, 

(trained with partial data) 

0.00446 1.535 
0.00446 1.541 

0.00436 1.854 

0.003942 1.402 

0.005129 1.301 
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Fig. 5. Bifurcation diagram of the system. 

equation is also carried out by using numerical COlNtmation tech- 
niques which are implemented in tile software package AUTO 
[Doedel, 1986]. From the analysis, we obtain the bifurcation dia- 
gram as shown in Fig. 5. All the detailed analysis is given in the 
paper ofKml, 1998. 

SYSTEM IDENTIFICATION 

We assume that the first principle model of the system in the 
same foml as above is available fi-om tile mass and energy bal- 
ance. All of the parameters are assumed to be available from the 
individual experiments or the literature except the ratio of the two 
rate constants, S. The lmrameter values are Da=0.26, ~=0.0, ~:=1.0, 
B=57.77, 0~=0.42, ~=7.9999, which are the same values as in sec- 
tion 3, and S is assumed to vary in complex ways with chemical 
composition and tempera~a~re of the system, that is, the state vari- 
ables. Here we consider only the case with no control action (u=0). 

First. we deal with die sequential hybrid neta-al network which 
utilizes the above first principle model as the prior knowledge. In 
tilis raetilod, tile dependence of die ratio of tile two rate constants, 
S, on the state variables is described by the ANN component, and 
then the ANN component is combined with the first principle mod- 
el to compose tile sequential hybrid neural network. We use tile 
three layer feed forward neural network as the ANN component. 
The inputs to the ANN component are the state variables Xl, x2 and 
x> Each neuron in tile hidden layer has tile sigraoidal activation 
fimctiol~, while the linear activation function is used for the output 
layer. Tile biases of the neurons in tile input layer are assumed to 
be zero. We train the sequential hybrid netral network by the mod- 
ified error-back propagation algorithm proposed by Psaltis et al.: 
however, we improve tile algcdtiml with raorae,ltum and an adap- 
tive learning rate to increase the speed and the performance. Mo- 
melm~n helps the network avoid being trapped into local minimum, 
and the adaptive learning rate accelerates the training speed by 
keeping the learning step size as large as possible while keeping 
learning stable. Tile b-aizmg data are obtained by iz~gl-almg tile 
system equations in section 3 and by sampling at every 0.001 di- 
mensionless time. The ~ is carried out on DEC Alpha Server 
2100 using MATLAB. We adapt only tile nulnber ofhi&len nodes 
and determine the optimal model which best describes the chaotic 
b-ajectc~y of file systenl accordkg to tile clitelia of phase po~-ait. 
r e i n  map, the largest Lyapunov exponent and correlation dimen- 
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Fig. 6. 3-D phase portrait of the hybrid model with h=4 (trained 
with full data). 
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Fig. 9. 3-D phase portrait of the hybrid model with h=7 (trained 
0.02 2 with full data). 
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Fig. 8. Second l ~ u r n  map of the hybrid modelwith h=4 (trained 
with  full data). 

s ion. 
Among an enormous number of c~ldidates, we find two candi- 

dates by trial and error which seem to describe tile chaotic behav- 
ior of the system closely. The numbers of hidden nodes (h) are 4 
and 7, respectively. Fig. 6 denotes a 3-D phase portrait of tile hy- 
brid model with 4 hidden nodes, and Fig. 7 is the Xl-X2 plane pro- 
jection of tile 3-D phase portrait. Fig. 8 shows the second return 
map reconstructed fi-onl tile time series data of  the state variable 
x3. Figs. 9-11 denote the corresponding results when the number 
of hidden nodes is 7. Tile figures say tilat tile hybrid model with 4 
hidden nodes describes tile chaotic dynamics of tile system better 
than tile hybrid model with 7 hidden nodes, hi additioil, we also 
calculate tile largest Lyapunov exponent and correlation dmlension 
to check the matching between the dynamic behaviors quantita- 
tively. Tile calculations are carried out by using tile same method 
as before. Tile obtained values are summarized in Table 1. Fronl 
the results, we conclude that the hybrid model with 4 hidden nodes 
is the optimal model and, moreover, the model describes the cha- 
otic dynamics of the system almost perfectly. 

Next we compare the performance of the obtained optimal hy- 
brid model with tilat of tile optmlal standard ANN model. We use 
the three layer feed forward neural network as shown in Fig. 12. 

brid model  wi th  h=7,  trained wi th  full data). 

9 '- '  �9 . .  �9 

8 . . "  
j �9 . . ;  
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Fig. 11. Second return map of the hybrid model with h=7 (train- 
ed wi th  full data). 

Tile inputs to tile standard ANN are tile state variables x~, x2 and 
x3. All activatic~l functions, biases and tile ti-aitmlg data set used are 
same as before. Levenberg-Marquardt optimization algorithm was 
used to Irain the standard ANN, and the training was carried out on 
a DEC Alpha Server 2100 using MATLAB. We adapt only the 
ntrnber of hidden nodes and determine the optimal model which 
best describes tile chaotic trajectory of tile systenl according to tile 
criteria of phase pol-Wait~ return map, the largest Lyapunov expo- 
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Fig. 12. Schematic representation of the standard ANN. 
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Fig. 13.3-D phase portrait of the standard ANN with h=8 (Irain- 
ed with full data). 
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Fig. 14. xl-x2 plane projection of the 3-D phase portrait (The 
standanl ANN with h =8, trained with full data). 
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Fig. 15. Second return map of the standard ANN with h=8. 

standard ANN with 8 hidden nodes using only the fu-st one-fifth of 
the original ~aining data set, and then simulate the identified mod- 
els up to the same final time as the case of tile original tt-aizmlg data. 
The hybrid model shows quite good extrapolation capability as 
shown in Figs. 16-18 and Table 1; however, the standard ANN can- 
not extrapolate at all. Therefore, we can conclude that the sequen- 
tial hybrid neural network shows better interpolation and also far 
better extrapolation capability than the standard ANN. 

10, 

8, 

' ; Is  

4. 

0. 2: 

x2 0 0 xl 

Fig. 16.3-D phase portrait of the hybrid model with h=4 (trained 
with partial data). 

nent and correlation dimension as before. From the extensive trial 
and error procedure, the optimal model is obtained when the num- 
ber of hidden nodes (h) is 8 among several cmldidate models hav- 
ing roughly the same SSE. The 3-D phase portrait and its xl-x2 
plane projection are shown in Figs. 13-14, respectively. The sec- 
ond return map is shown in Fig. 15. We also calculate the largest 
Lyapunov exponent and correlation dimension to check the match- 
ing between the dynamic behaviors qumltitatively. The calculations 
are carried out by using the same method as before. The obtained 
values are summarized in Table 1. The results say that the sequen- 
tial hybrid netral network shows much be[ter mtelpalation catm- 
bility tilml tile stazldard ANN although the stazldard ANN also de- 
scribes the chaotic dynamics of the system quite well. 

When we compare tile exb-apolation capability of tile models, the 
advantage of the sequential hybrid neural network becomes more 
obvious. We train tile hyblid model with 4 hidden nodes mid tile 
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Fig. 17. xl x2 plane projection of tile 3-D phase portrait (The 
hybrid model with h =4, trained with partial data). 
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Fig. 18. Second return map of the hybrid model with h=4 (train- 
ed wRh partial data). 

C ONCLUSION 

If p r i o r  knowledge about a system is available, it is smart to in- 
corpol-ate the prior knowledge into the black box model of the sys- 
tem. In this paper, we idelNfy a chaotic chemical reaction system 
with both the sequential hybrid nero-el network and the standard 
ANN, and compare interpolation and extrapolation capability of 
the models. The identified models are validated with phase por- 
trait, retuli: map, the largest Lyapunov exponent and correlation di- 
mension instead of Sum of Square Errors (SSE). This is demon- 
strated for a nonisoff:emml, irreversible, first-orde:, series reaction 
A--+B---~C in a CSTR. The results say that the sequential hybrid 
neural network shows good interpolation and extrapolation capa- 
bility. When compared witt: tt:e standard ANN, it shows better in- 
te:polatic~: and also far better extrapolation capability. 
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N O M E N C L A T U R E  

In Section 2 
J : objective function 
ye : k th plant output 
clk : k th target value 
w~) : weight between the i th neuron of the m -1  th layer 

and the j th neuron of the m th layer 
se de-ye: k th plant output error 
%j : j if: urmmasured process parameter (j if: output of the 

0Y.__2~ 

P 
q 
p~ 

J 

ANN component) 

differential gain of plant 

input to neuron 
output from neuron 
weighted sums of the ontputs of the m -1  th layer 
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q~ 
i 

f7 
0~ 

�9 output of  the i th neuron of  the m th layer 
�9 transfer function of the j th neuron of the m th layer 
�9 learning :-ate 

In Section 3 
Xl 

X2 

X3 

Da 

S 
N 

B 
0[ 

U 

: dimensionless concentrations of  species A 
: dimensionless concentrations of species B 
: dimensionless temperature in the reactor 
: Damk6hler number 
: dimensionless activation energy 
: ratio of  the two rate constants 
: ratio of activation energies 
: dimensionless adiabatic temperature rise 
: ratio of  heat effects 
: dimensionless heat transfer coefficient 
: dimensionless coolant bath temperature 
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