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Abstract—A chaotic system with available prior knowledge is identified with both the sequential hybrid neural net-
work and the standard Artificial Neural Network (ANN). The identified models are validated with phase portrait, refurn
map, the largest Lyapunov exponent and correlation dimension instead of using Sum of Square Errors (3SE). In-
terpolation and Extrapolation capability of the models are compared. This is demonstrated for nonisothermal, irrevers-

ible, first-order, series reaction A—B—Cina C3TR.
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INTRODUCTION

Industnal chemical processes mvolving chemical reactions, heat
and mass transfer, separations and fluid flow are inherently and
strongly nonlinear and exhibit complicated dynamic behavior. In
the past, a considerable mumber of studies have been carried out
for the processes showing multiple steady states, oscillatory behav-
ior and chacs [Kim, 1998]. Most of the studies were based on the
mathematical models of systems derived from governing physical
laws. Tn actual industrial processes, however, it is usually very dif-
ficult to obtain rigorous mathematical models of the systems be-
cause of both the complexity of the systems and the lack of avail-
able system parameters. An alternative method is to use the stand-
ard black-box Artificial Neural Network (ANN) based only on
the input-output data of the systems. Recently, it has been widely
used as a universal function approximator when there is no prior
knowledge about the systems because of its ability to describe non-
linear systems. Tt has been proved that the standard ANN can ap-
proximate arbitrary complex functions well and descnibe even com-
plex nonlinear phenomena such as steady state multiplicity and os-
cillatory behavior only if the internal parameters such as the num-
ber of wputs, neurons, layers and the transfer fimetions of newrons
are properly chosen, and a sufficiently large data set with desired
property 1 available. This mherent capability of the standard ANN
is due mainly to the combination of nonlinear transfer functions
used for each node. The standard ANN also has noise smoothing
effect if the mternal parameters are properly chosen or if the batch
mode learning of bacl-propagation is used.

Tt has, however, many disadvantages. Tf the training data set does
not have proper quality and the mtermnal parameters are not prop-
erly chosen, the standard ANN suffers from serious malfunction.
For example, if the traming data set 15 corrupted with noise and the
number of internal parameters is more than needed, the standard
ANN fits the noise as well as the system dynamics. Tt is also im-
possible to realize what kand of interaction occurs between process
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variables since all components of the standard ANN are thought to
be partially responsible for the output of the network. Although the
standard ANN can be sunplfied by various prunmg techriques,
such as sensitivity analysis of weights with respect to the output
error of ANN, we still cannot give physical meanings to the re-
sulting network. Therefore, we canmot guarantee the extrapolation
capability of the standard ANN beyond the limits of training data,
even in case the standard ANN is trained very well.

Another recourse 1s to use the hybrd (structired) neural net-
work approach. Tf prior knowledge about a system is available, it
18 smart to meorporate the prior knowledge mito the black box mod-
el of the system. Recently, there have been many attempts and an
excellent summary of the subject is given in the paper of Thomp-
son and Kramer, 1994. In the hybrid newral network approach, the
first principle madels from physical considerations such as mass
and energy balance or empirical correlation are used as prior knowl-
edge about a system, and the ANN model complements the uncer-
tain parts of the first principle maodels. Tt is also possible to regard
the hybnd neural network model as the ANN constrammed by the
first principle models. There can be several approaches in the ac-
tual implementation of the hybrid neural network, but here we deal
with only the sequential hybrid neural network approach, where
the ANN model is combined with the first principle models in se-
ries. In the approach, the ANN serves as a nonparametric estimator
of the unmeasured process parameters which are the intermediate
values to be used in the first principle models, and estimates the
dependence of the process parameters on the state variables of the
system. In this sense, the approach provides more general parame-
ter estimation strategy and usually gives better estimations than
classical parameter estimation schemes such as nonlinear program-
ming (NLP) optimization and kalman filter parameter estimation
[Psichogios and Ungar, 1992]. The approach has meny advantages.
Because the ANN component approximates only the uncertain parts
of the first principle models, the size of the ANN can be drastically
reduced. Therefore, the tramuing 18 more focused, and then potential
error sources are greatly reduced. As a result, the sequential hybrid
neural network model usually shows better performance and 15
more robust to noise than the standard ANN model. Moreover, be-
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cause the hybrid model is based mainly on the first principle mod-
els, 1t can also be used for extrapolation purpose as well as mnterpo-
lation.

Tn any ANN, important steps are in the selection of appropriate
mumnber of layers and of neurons 1 each layer, the choice of the
transter function used for each neuron and the training algorithm in
order to obtamn a good 1dentified model, and also the validation of
the model. Usually, a trial and error procedure based on criterion of
minimization of sum of squares of ANN training errors and com-
parison of the time series of the original system with the model
generated time series by calculating the mean square error between
them are used for this purpose. For chactic systems, however, this
criterion may not provide useful information. Tdentified maodels can
show different dynamical behaviors even though the training errors
are roughly the same, and the criterion of mimmization of the mean
square error between the time series is just a necessary condition
for an identified model to capture the dynamical properties of the
systern; 1t 18 definitely not sufficient. In the case of a chaotic sys-
tem, although the initial prediction of an identified maodel can be
very accurate, predicted values diverge from the ongmal time se-
ries at much later prediction times no matter how good the model
1. This is due to the inaccuracies in the model and the existence of
positive Lyapunov exponents. Because nearby trajectories diverge
locally in state-space for a chaotic system, the initial error due to
the modeling error, however small, is magnified. The model gener-
ated time series thus becomes completely different from the ong-
nal time series in the long run. Therefore, more sophisticated cri-
teria are required. One of the criteria 1s to compare atiractors (phase
portraits), and reconstructed attractors (or return maps, the 2-dimen-
sional projection of reconstructed attractors). Because there exists a
smocth mwvertible transformation between the origmal states and
the reconstructed states with appropriately chosen delay time and
embedding dimension, we can check if an identified model cap-
tures the original dynamic behavior of the system by comparing
the reconstructed attractors. Tn many cases, however, although the
location and the overall shape of the attractors look similar and thus
the dynamic behavior of the system seems to have been reason-
ably captured, detailed characteristics such as the density of trajec-
tories in some region of the attractor and the local divergence rate
of nearby trajectories are somewhat different. Therefore, other cri-
teria like Lyapunov exponent and correlation dimension that quan-
tify numerically the matching between the dynamic behaviors are
also required. From the criteria, we can determine and validate the
optmmal ANN model describmg the system’s chaotic dynamical be-
havior.

T this paper, we identify a chaotic chemical reaction system with
both the sequential hybrid neural network and the standard ANN,
and validate the identified models with the criteria used for nonlin-
ear dynamics nstead of sum of square error (SSE). Then we com-
pare the inferpolation and the extrapolation capability of the opti-
mal sequential hybrid neural network model with those of the op-
timal standard ANN model.

THEORETICAL BACKGROUNDS

TIn the sequential hybrid neural network, the ANN component
estimates the inmeasured process parameters wiich are mntermedi-
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Fig. 1. Schematic representation of the sequential hybrid neural
network

ate values to be used m the first principle model. The mputs to the
ANN component are current state variables and current manipu-
lated venables, and then the ANN estimates current process par-
ameters. The obtained parameter values are considered as constants
between sampling instants. Then the parameter values with the in-
puts to the ANN component are propagated through the first prin-
ciple model. The outputs of the first principle model are the es-
timates of the process state variables for the next sampling time.
The schematic representation of the sequential hybnd neural net-
work is given in Fig. 1.
1. Modified Error Back Propagation

Tn the standard ANN, weights are updated by using the error sig-
nals between the outputs of the ANN and the target values as dri-
ving force. One of the most famous metheds 15 the error back-pro-
pagation algorithm [Runmelhart et al., 1986], where the output er-
rors of the ANN are back-propagated through the network so that
weights are updated in the local direction of steepest descent of the
error signals. Tn the sequential hybrid neural network, however, the
standard error back-propagation algontiim cannot be apphed di-
rectly, because the target values of the outputs of the ANN compo-
nent are unmeasured process parameters and therefore the output
errors of the ANN component are not directly available. Therefore,
the modified error-back propagation algorithm [Psaltis et al., 1988]
18 mtroduced, where the errors between the outputs of the first prin-
ciple model part (the plant) and the target values of the process state
variables are translated into the error signals for the outputs of the
ANN component by Jacobian (differertial gain) of the plant. In the
algorithm, the plant can be thought of as an additional, but unmod-
ifiable, layer since the output errors of the plant are propagated back
through the plant without modifying anything. The translated error
signals are then used as the driving force to update the weights of
the ANN component. More details about the modified back propa-
gation algorithm are given as follows. The objective function to be
minimized can be expressed as

J=§§(dk v (1)

where y; and d; denote the k th plant output and the k th target
value, respectively. If we differentiate the objective function (T) with
respect to the ANNs weight between the 1 th neuron of the m—1 th
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layer and the j th neuron of the m th layer, w§, we obtam

aWU :_2 k )

where €,=d,—v, is the k th plant output error and m denotes the fi-
nal layer of the ANN. From the chain rule, the gradient becomes

:72 ka 2 kayk 2 kayk (3)
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where A, is the j th output of the ANN, that s the j th unmeasured
process parameter, and dy,/dA, is the differential gain of the plant.
If we define p and q as the mput to the newron and the output from
the neuron, respectively, the weighted sums of the outputs of the
m-~1 thlayer, ", and the cutput of the i th neuron of the m th lay-
er, " can be written as

P =Xwig g =5 )

where £" is the transfer function of the j th neuron of the m th lay-
er. If we mcorporate the above notation into the gradient expres-
101

8] ayk omy m—1 ayk m=1gm
B Y L S (P 5
aw:; - ; G, (p)q. ; G, 40 (5

. 9y
where, & ={"(p/ )zekalk
And therefore the amount of weight updated 1s
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where o is the leaming rate. For all other layers, the gradient of the
objective function with respect to the weight and the amount of
weight updated can be derived from the similar procedure as above,
and the results are given as follows.
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In numerical caloulation, the differential gain, dy,/0A, is usually
approximated by determining how the plant outputs change as the
unmeaswred parameters chenge at the operating point, that 1s, the

nunerical derivative.
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PROCESS MODEL

We consider the dynamic behavior cccurring in a nomisothermal
CSTR with two irreversible consecutive fist-order reactions, A—>
B—C,; the first exothermic, the second endothermic. The system
can be described by the following dimensionless differential equa-
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tions [Kahlert et al., 1981]:

dx, . X5

pm =1-x, —Dax, exp]i1 +Exj {10)
%zfx +Dax, ex DaSx, exp| —= (1)
T ! pL Te ] : pL +exj

dX3

=yt

n DaBx, exp[1 +Exj

—DaBaSx, eXpI: ] B(x; —u) (12)
where the variables x,, x, denote the dimensionless concentrations
of species A, B, x; 13 the dimensionless temperatire m the reactor,
Da 15 the Damkahler number, € 1s the dimensionless activation en-
ergy, S is the ratio of the two rate constants, K is the ratio of ac-
tivation energies, B 15 the dimersionless adiabatic temperature rise,
ol is the ratio of heat effects, 3 is the dimensionless heat transfer
coefficient, and u is the dimensionless coolant bath temperature and
can be viewed as en externally mampulable vanable. The system
is known to show deterministic chaos when the system parameter
values are Da=0.26, €=0.0, 3=0.5, k=1.0, B=57.77, 0=0.42, 3=
7.9999, and u=0.0, that 15, when there 13 no control action. Fig. 2-3
show the 3-D phase portrait of the system and the 2-D projection
of the 3-D phase portrait, respectively. The sunulation was carried
out on IBM RS6000/370 using the IMSL subroutine ode_adams_
gear. Fig. 4 shows the second return map of the state vanable x;.
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Fig. 3. x,—x, plane projection of 3-D phase portrait of the system.
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X3[k+2]

x3[k]
Fig. 4. Second return map of the system.

The largest Lyapunov exponent and correlation dimension are cal-
culated for the time series data of the system using m-house 1m-
plementations of the Wolf’s algorithm [1985] for the largest Tyap-
unov exponent and the Grassberger and Procaccia algorithm [1983]
for correlation dimension. The obtaned values are 0.00446 for the
largest Lyapunov exponent and 1.535 for correlation dimension as
summarized in Table 1. The bifurcation analysis of the system

Table 1. Summary of the largest Lyapunov exponent and corre-
lation dimension

The largest Correlation
Lyapunov exponent dimension
Original system 0.00446 1.535
Hybrid model with h=4, 0.00446 1.541
(trained with full data)
Hybrid model with h=7, 0.00436 1.854
(trained with full data)
Standard ANN with h=8, 0.003942 1.402
(trained with full data)
Hybrid model with h=4, 0.005129 1.301
(trained with partial data)
10 ~—
—— stable steady state
g - - unstable steady state
n - stable periodic branch
: - unstable periodic branch
8- " " w  Hopfbifurcation
Qx 4 period doubling
- Y
6
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Fig. 5. Bifurcation diagram of the system.

equation is also carried out by using numerical continuation tech-
niques which are mmplemented m the software package AUTO
[Doedel, 1986]. From the analysis, we obtain the bifurcation dia-
gram as shown in Fig. 5. All the detailed analysis is given in the
paper of Kim, 1998.

SYSTEM IDENTIFICATION

We assume that the first principle model of the system in the
same form as above 1s available from the mass end energy bal-
ance. All of the parameters are assumed to be available from the
ndividual experiments or the literature except the ratio of the two
rate constants, S. The parameter values are Da=0.26, €=0.0, k=1.0,
B=57.77, 0:=0.42, =7.9999, which are the same values as in sec-
tion 3, and S 15 assumed to vary m complex ways with chemical
composition and temperatire of the system, that is, the state vari-
ables. Here we consider only the case with no control action (u=0).

Fust, we deal with the sequential hybrid neural network winch
utilizes the above first principle model as the prior knowledge. Tn
this method, the dependence of the ratio of the two rate constants,
S, on the state variables is described by the ANN component, and
then the ANN component is combined with the first principle mod-
el to compose the sequential hybrid neural network. We use the
three layer feed forward neural networlk as the ANN componert.
The inputs to the ANN component are the state variables x;, x, and
%;. Bach neuron m the hidden layer has the sigmoidal activation
function, while the linear activation function is used for the output.
layer. The biases of the neurons in the mput layer are assumed to
be zero. We train the sequential hybrid neural network by the mod-
ified error-back propagation algorithm proposed by Psaltis et al.:
however, we mprove the algorithm with momentun and an adap-
tive learmning rate to increase the speed and the performance. Mo-
mentum helps the network avoid being trapped into local minimum,
and the adaptive learning rate accelerates the training speed by
keeping the leaming step size as large as possible while keeping
learming stable. The trammng data are obtamed by integrating the
system equations in section 3 and by sampling at every 0.001 di-
mengsionless time. The training is carried out on DEC Alpha Server
2100 wmg MATLAB. We adapt only the number of hidden nodes
and determine the optimal model which best describes the chaotic
trajectory of the system according to the critena of phase portrait,
retirn map, the largest Lyapunov exponent and correlation dimen-

Fig. 6. 3-D phase portrait of the hybrid model with h=4 (trained
with full data).
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Fig. 7. x,—X, plane projection of the 3-D phase portrait (T'he hy-
brid model with h=4, trained with full data).
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Fig. 8. Second return map of the hybrid model with h=4 (trained
with full data).

sion.

Among an enormous mumber of cendidates, we find two candi-
dates by trial and error which seem to describe the chaotic behav-
ior of the system closely. The numbers of hidden nodes (h) are 4
and 7, respectively. Fig. 6 denotes a 3-D phase portrait of the hy-
brid model with 4 hidden nodes, and Fig. 7 is the x,—x, plane pro-
jection of the 3-D phase portrait. Fig. 8 shows the second retum
map reconstructed from the time senies data of the state varable
X, Figs. 9-11 denote the corresponding results when the number
of idden nodes 1s 7. The figures say that the hybrid model with 4
hidden nodes describes the chaotic dynamics of the system better
then the hybrid model with 7 ludden nodes. In addibon, we also
calculate the largest Lyapunov exponent and correlation dimension
to check the matching between the dynamic behaviors quantita-
tively. The calculations are carried out by using the same method
as before. The obtamned values are summarized m Table 1. From
the results, we conclude that the hybrid model with 4 hidden nodes
is the optimal model and, moreover, the model describes the cha-
otic dynamics of the system almost perfectly.

Next we compare the performance of the obtained optimal hy-
brid model with that of the optimal standard ANN model. We use
the three layer feed forward neural network as shown in Fig. 12.

November, 2000
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Fig. 9. 3-D phase portrait of the hybrid model with h=7 (trained
with full data).
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Fig. 10. x,—x, plane projection of the 3-D phase portrait (The hy-
brid model with h=7, trained with full data).
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Fig. 11. Second return map of the hybrid model with h=7 (train-
ed with full data).

The wputs to the standard ANN are the state variables x,, x, and
x;. All activation fimetions, biases and the traming data set used are
same as before. Levenberg-Marquardt optimization algorithm was
used to train the standard ANN, and the training was carried out on
a DEC Alpha Server 2100 using MATLAB. We adapt only the
mumber of hidden nodes and determine the optimal model which
best describes the chaotic trajectory of the system according to the
criteria of phase portrait, return map, the largest Lyapunov expo-
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x2 00 x1

Fig. 13. 3-D phase portrait of the standard ANN with h=8 (train-
ed with full data).
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Fig. 14. x,—x, plane projection of the 3-D phase portrait (The
standard ANN with h=8, trained with full data).

nent and correlation dimension as before. From the extensive trial
and error procedure, the optimal model is obtained when the mum-
ber of lidden nedes (h) i 8 among several candidate models hav-
ing roughly the same SSE. The 3-D phase portrait and its x,—x,
plane projection are shown in Figs. 13-14, respectively. The sec-
ond return map is shown in Fig. 15. We also calculate the largest
Lyapunov exponent and correlation dimension to check the match-
mng between the dynamic behaviors quentitatively. The calculations
are carried out by using the same method as before. The obtained
values are summarized in Table 1. The results say that the sequen-
tial hybrnid newral network shows much better mterpolation capa-
bility than the standard ANN although the standard ANN also de-
scribes the chaotic dynamics of the system quite well.

When we compare the extrapolation capability of the models, the
advantage of the sequential hybrid neural network becomes more
obvious. We tram the hybrid model with 4 lndden nodes and the

9

x3[k+2]

2 3, 6 3 10
X3[k]
Fig. 15. Second return map of the standard ANN with h=8.

standerd ANN with 8 lndden nodes using only the first cne-fifth of
the original training data set, and then simulate the identified mod-
els up to the same final time as the case of the origmal trainmg data.
The hybrid model shows quite good extrapolation capability as
shown in Figs. 16-18 and Table 1; however, the standard ANN can-
not extrapolate at all. Therefore, we can conclude that the sequen-
tial hybrid neural networle shows better interpolation and also far
better extrapolation capability than the standard ANN.

10

_—""02

Fig. 16. 3-D phase portrait of the hybrid model with h=4 (trained
with partial data).
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Fig. 17. x;—X, plane projection of the 3-D phase portrait (The
hybrid model with h=4, trained with partial data).
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Fig. 18. Second return map of the hybrid model with h=4 (train-
ed with partial data).

CONCLUSION

If prior knowledge about a system 1s available, 1t 18 smart to m-
corporate the prior knowledge mto the black box model of the sys-
tem. Tn this paper, we identify a chaotic chemical reaction system
with both the sequential hybrnd neural network and the standard
ANN, and compare mterpolation and extrapolation capability of
the models. The identified models are validated with phase por-
trait, return map, the largest Lyapunov exponent and correlation di-
mension instead of Sum of Square Errors (SSE). This is demon-
strated for a nomsothermal, mreversible, first-order, series reaction
A—B—C ma CSTR. The results say that the sequential hybnd
neural network shows good interpolation and extrapolation capa-
bility. When compared with the standard ANN, it shows better -
terpolation and also far better extrapolation capability.
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NOMENCLATURE
In Section 2
I : objective function
Vi - k th plant output
d, - k th target value
w, : weight between the 1 th neuron of the m—1 th layer

and the j th neuron of the m th layer
g,=d,—y, k th plant output error

A : ] th unmeasured process parameter (j th output of the
ANN component)

%, : differential gain of plant

dA,

P : input to neuron

q : output from neuron

o : weighted sums of the outputs of the m—1 th layer

November, 2000

q; - output of the 1 th neuron of the m th layer
£ : transfer function of the j th neuron of the m th layer
ol - learning rate

In Section 3

X : dimensionless concentrations of species A
X, : dimensionless concentrations of species B
X, : dimensionless temperature m the reactor
Da : Damkohler number

£ : dimensionless activation energy

S : ratio of the two rate constants

K : ratio of activation energies

B : dimensionless adiabatic temperature rise
o : ratio of heat effects

B : dimensionless heat transfer coefficient

u : dimensionless coolant bath temperature
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