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Abstract-Molecular dynamics simulations have been carried out to investigate nearest-neighbor distribution 
fimctions and closely related quantifies for the system of hard-spheres. The nearest-neighbor distribution fimction and 
the exclusion probability function were computed to examine the density dependence on the structul-al ~void' and 
'particle' properties. Simulation results were used to access the applicabilities of various theoretical predictions based 
on the scaled-particle theory, the Percus-Yevick equation, and the Camahan-Starling approximation. For lower density 
systems the three different approximations give the nearest-neighbor distribution fimctions which are very close to one 
another and also to the resulting simulation data. Among those theoretical predictions, the Canlallan-Starling approxi- 
marion gives remarkably good agreement with the simulation data even for higher density systems. Also calculated is 
the nth moment of the nearest-neighbor distribution functions, in which the corresponding length scale is directly 
related to the measurement of  the characteristic pore-size distribution. 
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INTRODUCTION 

Two-phase randonl media, such as composite materials, amor- 
phous solids and porous media [Alder, 1992; Dullien, 1992], 
are of  great fundamental as well as practical importance to 
engineel-s and scientists working in many areas such as hetero- 
geneous catalysis, membrane separation, effective conductivity 
and diffusion of molecules in micropores. The structural or mor- 
phological information can be ascertained either theoretically 
or experimeNally. From the theoretical point of view, it is desired 
to determine the static and dynamic properties of two-phase 
disordered media to obtain the optimized microstrucmres under 
equilibrium conditions. Experimentally, it has also become pos- 
sible to obtain two- and three-dmlensional phase information by 
using a variety of  experimental techniques. An example is the 
experimental microtomograptfic methods together with theoret- 
ical approaches to study the structural and transport properties 
of  a porous magnetic gel [Rintoul et al., 1996]. 

The detailed sbnactta-al functions and their closely related quan- 
tities can be evaluated exactly only for a few cases including the 
one-dimensional system of hard-rods. For two or more dimen- 
sional cases such as the systems of hard-discs and bard-spheres, 
however, complete morphological information is not known an- 
alytically since an iiffinite set of statistical functions that charac- 
terize related microstmctures are required to be determined. Re- 
cently, Torquato and his co-workers [Torquato et al., 1990] de- 
rived an integral representation of N-point distribution functions 
and applied them for model interaction systems [Torquato and 
AveUaneda, 1991 ; Qumtafilla and Torquato, 1997]. By using the 
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lower-order correlation functional information, they investigated 
upper or lower bounds on many of the properties of such higher 
dimensional systems. Reliable and unmnbiguous results have be- 
come increasingly necessary to eliminate any underlying uncert- 
ainties involved in these theoretical predictions. Consequently, 
computer simulations have proven to be an extremely useful di- 
agnostic tool for investigating such systems [Allen and Tildesley, 
1987; Gubbins and Qtm-ke, 1997]. 

In this study computer simulations via the molecular dynam- 
ics method for hard-spheres systems have been carried out to 
access the applicabilities of various theoretical expressions ap- 
pearing in the literature, namely, the scaled-particle, Percus- 
Yevick and Carnahan-Starling approximations. Such information 
including the nearest-neighbor distribution function and the ex- 
clusion probability function can be used to investigate not only 
the qualitative characterization of the microsb~acture but also the 
dynamic transport problem in the medel random media. The 
selected examples for dynamic propemes include the applica- 
tion of gmudsen diffusion in fully or partially overlapping porous 
media [MacElroy, 1996; Suh et al., 1999] and membrane gas 
separation [Aoki et al., 1996]. Many of the results obtained in 
this work can also be easily extended to random model pore 
systems, e.g., the penetrable-concentric-shell model pore [Suh 
et al., 1999], in which the solid matrix is represented as as- 
semblies of penetrable spheres randomly distributed in the pore 
phase. 

NEAREST-NEIGHBOR DISTRIBUTION FUNCTIONS 
AND RELATED QUANTITIES 

Torquato et al. [1990] first introduced the so-called nearest- 
neighbor distribution functions and their related quantities for 
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the system of/V identical hard-spheres of diameter o according 
to the N-paint probability density function. They defined the two 
different types of probability fimctions of  Hv(r) and Hp(r), which 
are referred to as the 'void' and 'particle' nearest-neighbor distri- 
bution functions, respectively. H~(r) provides a meastn-e of the 
probability associated with finding the nearest pal~cle at a di- 
stance r from any arbib-ary point in the system. Similarly, Hp(r) 
represents the probability of  finding the nearest particle at a di- 
stance r from an actual particle at the origin. For statistically ho- 
mogeneous media, as demonstrated in their work, one can relate 
the nearest-neighbor distribution fimctions to the radial distribu- 
tion functions. Note that Hv and Hp are the normalized probabil- 
ity fimctions and have dimensions of inverse length. 

It follows that the 'void'  and 'particle' exclusion probability 
functions, Ev(r) and Iv,~,(r), are defined by means of the nearest- 
neighbor distribution fimctions, i.e., 

E.(r)= 1 ~ Hv(r)dr (1) 

and 

E.(r) 1-~ Hp(r)dr (2) 

Differentiating Eqs. ( l)  and (2) with respect to r, we have 
simple relationstfips between the exclusion and nearest probabili- 
ties functions as 

Hansen and McDonald, 1976]. 
Using the scaled-particle theory, the analytical expression for 

the 'void' and 'particle' quantities can be written as 

Es(x)=(1 11)exp[ q(8axS+12bx~+24cx+d)], 
if x( r/o)_>0.5 (9) 

Ee(x) = exp[-q { 8 a(x 3 - 1 ) + 12b(x 2 - 1 ) +24c(x- 1 ) }1, 
if x(=r/o)_> 1 (10) 

where 

._1+1]++1 ~ 
a01) ~ (11) 

-3q(l+~l)  b(n)- - -  (12) 
2(1 ~])' 

C(rl ) 3n2 (13) 
4(1 -rl) '  

d(q) 1 lq '+7q 2 (14) 
2(1 -r l) '  

a I l d  

"/l 3 11=~Po (15) 

H v ( r ) = - - -  

a l i a  

H?(r)= - -  

dEw(r) 
dr (3) 

dE.(r) 
dr (4) 

From the physical definition for rigid hard-sphere systems, a 
spherical cavity of radius r and its volume 4rn3/3 can contain at 
most one particle center if 0___r___~/2. Thus, for 0___r___~/2, the 
exclusion probability Ev(r) can be given by 

4 ~ r  3 
E v ( r ) = l - T P ,  if  0~1~(x/2 (5) 

and, from Eq. (3), one may also have 

Hs(r)=4sr~p, if 0 <r<~5/2 (6) 

where p is the particle number density. 
Furthermore, in the case of the 'particle' problems, spheres 

are totally impenetrable and one sphere excludes another from 
occupying the same place. For the range of 0___r___~, one can 
state the exact relations that 

Ep(r)=l, if 0_<r_<o (7) 

Hp(r)=0, if 0<r<~5 (8) 

Except for one-dimensional hard-rod systems, it is not pos- 
sible to evaluate the nearest-neighbor distribution function for 
higher dmlensions because the N-point probability density func- 
tions are not exactly known. As derived in the previous work 
[Torquato et al., 1990], ffaree different approximation schemes 
were considered, namely, scaled-particle, Percus-Yevick and 
Caruahan-Starling approximations [Reed and Gubbins, 1973; 

is a reduced packing density that is identical to the packing 
fraction of impenetrable hard-spheres. 

The 'void '  exclusion distribution Ev(r) is directly related to 
the probability of i n s e ~ g  a test particle into the system of hard- 
spheres. This quantity can be evaluated from radial distribution 
functions between a single test particle (at ftffftfite dilution) of 
radius r -  ~/2 and hard-spheres of diameter ~. If one considers 
the Percus-Yevick solution for such a special binary mixture of 
hard-spheres, then 

Ev(x)=(1 - l l ) e x p [ ~ { 8 ( 1  +2q)x~- 18qx~ +2.511-1 }], 

if x(=r/c0 _>0.5 (16) 

Ep(x)= e x p [ ~ { 8 ( 1  +2q)(xS- 1)-1811 (x2-1)} 1 , 

if x(=r/c0 _> 1 (17) 

Guided by computer simulation data, Carnahan and Starling 
devised a simple but vei N accurate hard-sphere equation of state 
and related thermodynamic properties. The Camahan-Starling 
equation of state can be recovered by adding the two Percus- 
Yevick equations of state, i.e., the compressibility and the virial 
equation of state with weights of two-third and one-third, respec- 
tively. By means of the Canlahan-Starling approximation, we 
have 

Ev(x ) (1 1])exp[ q(8ex3+12fx~+24gx+h)], 

if  x( r/o)_>0.5 (18) 

Ep(x) exp[-~l{ae(x~- 1) +12 f(x~- 1)+24g(x-1)}], 
if  x(=r/cs) > 1 (19) 

where 
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e(n)-  1+~3 (20) 
- ( l - q )  3 

-q(3+q) 
f in ) -  - -  (21) 

2(1 13) ~ 

q2 
g(n) (22) 

2 ( l -q )  3 

-9q2 +7T1-2 
h(n) (23) 

2(1 q) '  

By the relationships between the exclusion and nearest pro- 
babilities defined in Eqs. (3) and (4), one can straightforwardly 
calculate Hv(r) and Hp(l-) for the aforementioned approxima- 
tions. Although the 'void' and 'paa~icle' quantities are not the 
same for r<cL they are related to one another for the range 
o f r > o  

E , ,  E /r )  Ar2=E/a)  for r_>a (24) 

and 

H/r)  
Hp(r) = for r>o  (25) E/o) 

In the limit of rl--+0, it is clear that H~(r) Hp(r). 

Fig. 1. The 'particle' exclusion probability function E~r)  as a 
function of  the reduced separation distance r / o  for I] = 
0.2. Theoretical predictions based on the scaled-particle, 
Percus-Yevick, Carnahan-Starling approximations are 
represented as the solid, dotted and chain-dotted curves, 
respectively. Also shown as the open circles correspond 
to the M D  simulation data. 

R E S U L T S  A N D  D I S C U S S I O N  

As described in the previous section, the three approximations 
based on different statistical fllemmdynamic approaches were 
made to determine the nearest-neighbor distribution functions 
and its related quantities. It should be noted that the introduction 
of smlplifying approximations in those equations is required only 
because of the mathematical intractability of the formal equation 
of the N-point probability density functioi1 One of the interest- 
ing questions investigated in this study is related to the applica- 
bilities of such theoretical approximations. This can be directly 
tested by conlparing against conlputer simulation results, and 
molecular-based simulations used in this way can provide essen- 
tially exact data for precisely defmed model systems. 

In this regard we carried out molecular dynamics (MD) simu- 
lations using the hard-sphere dynamics algorithm introduced in 
the pioneering work of  Alder and Wainwright [1959]. In this 
method, all possible collisions were evaluated and scanned to 
determine the minimum collision time. Then the particles were 
moved at constant velocity clmmg the time for the first pair to 
collide. Post-collisional velocities for a colliding pair were as- 
signed according to elastic collision dynamics and new collision 
times were reevaluated for the particles involved in possible 
collisions. This procedure is repeated as many times as is desired. 
The conventional periodic boundary conditions were applied in 
a cubic fimdamental cell to approximate an infinite system. At 
lower densities of 1"1-<0.35, the initial configurations were gener- 
ated by randonfly inser(mg spheres to assist in the equilibration 
of  the system. For higher densities, the initial positions were 
taken from the regular sites on a thce-centered-cubic lattice. The 
initial velocities of  particles were assigned from the equilibrium 
Maxwell-Boltm-narm distribution function. The MD calculations 

Fig. 2. The 'partide' nearest-neighbor distribution function Hp 
(r) as a function of the reduced separation distance r /o  
for 11 =0.2. Lines and symbols  are the same as in Fig. 1. 

were performed for the system containing 500 hard-spheres. 
Starting configurations were aged, or equilibrated, during 10 ~ 
collision steps before data were accumulated and the resulting 
ensemble averages for a given condition were obtained from the 
final 7 10 collision steps. 

In Fig. 1 through Fig. 4, we have plotted the MD simulation 
data together with the aforementioned theoretical predictions for 
the 'particle' exclusion probability functions, Ep(r), and the 'par- 
tide' nearest-neighbor distribution functions, Hp(r), as a function 
of r in units of the sphere diameter, ~. The open circles in these 
figm-es correspond to the MD data, and the solid, dotted and 

Korean J. Chem. Eng~(Vol. 17, No. 3) 



354 S.-H. Suh et al. 

Fig. 3. The 'particle' exclusion probability function Ep(r) as a 
function of  the reduced separation distance r /~  for 1"1= 
0.4. Lines and symbols are the same as in Fig. 1. 

chain-dotted curves to three different theoretical predictions 
based on scaled-particle, Percus-Yevick, and Caz~tahan-Starling 
approximations, respectively. For the case of low density (rl= 
0.2), as displayed in Figs. 1 and 2, three approximations give 
the values of Ep(r) and Hp(r) which are very close to one another 
and also to the MD data. The good agreement with the resulting 
simulation data apparently indicates the support to theoretical 
predictions. 

Figs. 3 and 4, respectively, depict Ep(r) and Hp(r) for the high 
density ofrl=0.4. Although the general agreement is good, more 
profound deviations, compared with the lower density system in 
Figs. 1 and 2, are found between the approximations themselves 
and between the approximations and the MD data. As can be 
seen in these figures, the functions of Ep(r) and Hp(r) decrease 
with increasing separation distance r because the probability of 

finding a nearest-neighbor particle center reaches its maximum 
at r o and diminishes raonotonically for r_>~. It should be 
noted that the radial distribution fimction for the corresponding 
hard-sphere systems, which is related to the probability of  find- 
ing particle at a distance between r and r+ di; does not behave 
monotonically but does exhibit oscillatory behavior even at the 
moderate density regime [Hazlsen and McDonald, 1976]. 

One of  the interesting features illustrated in Fig. 4 is that 
theoretical results obtained from the Percus-Yevick approxima- 
tion cat  either underestimate oi- overestilnate the values of  Hp(r) 
depending on the separation distance r. The Percus-Yevick solu- 
tion for the radial distribution function of hard-sphere systems 
is known to be more inaccurate with increasing the pal~icle 
density. For high density systems, the value at contact is too 
low and the amplitude of the oscillations decreases too slowly 
with increasing distance [Reed and Gubbins, 1973]. The low 
contact value leads to the underestimation of Hp(r) near the 
contact distance, while a consequence of mismatching oscilla- 
tion phase results in the overestimation of Hp(r) with farther 
extending the particle separatioix On the contrary, as shown in 
Fig. 4, the scaled-particle theory gives higher values of Hp(r) 
near the contact distance and slightly lower values for r/o_> 
1.03. Among three theoretical equations, the Camallan-Starling 
approximation is shown to be the best and in excellent agree- 
ment with the simulation results. 

In Figs. 5 and 6, respectively, we have plotted the 'void' 
exclusion probability functions, E~(r), and the 'void' nearest- 
neighbor distribution functions, H~(r), for a few selected runs 
of 1"1=0.2, rl=0.3 and r 1 =0.4 to illustrate the manner in which 
the functions of Ev(r) and H~(r) change with increasing density. 
In evaluating those functions in the MD computations, 10•215 
10 laltice points are thrown into the fundamental cubic cell 
with the equal time interval. For each lattice point, the smallest 
distance from the point to the nearest particle is calculated and 

Fig. 4. The 'particle' nearest-neighbor distribution function H~ 
(r) as a function of the reduced separation distance r /o  
for 11 =0.4. Lines and symbols are the same as in Fig. 1. 
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Fig. 5. The 'void' exclusion probability function E~(r) as a func- 
tion of  the reduced separation distance r / o  for 1]=0.2, 
q =0.3 and q =0.4. The open circles and the chaindotted 
curves correspond to the MD simulation data and the 
Carnahan-Starling approximation, respectively. 
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Table 1. Molecular  dynamics  s imulat ion data for the nth  too- 
meut  of  the 'void' and the 'particle' properties, lv ~ and 

I1 t~ /~  t~>/G ~ t~> /~  ~ ~>/~ l~>/~ ~ g>/G ~ 

0.15 0.77305 0.66401 0.61697 1.1419 1.3176 1.5378 
0.20 0.69130 0.52792 0.43405 1.0974 1.2112 1.3453 
0.25 0.63342 0.44090 0.32895 1.0691 1.1467 1.2343 
0.30 0.58963 0.38028 0.26180 1.0499 1.1042 1.1637 
0.35 0.55498 0.33547 0.21563 1.0362 1.0748 1.1161 
0.40 0.52668 0.30105 0.18236 1.0262 1.0537 1.0826 
0.45 0.50317 0.27388 0.15748 1.0189 1.0384 1.0586 

Fig. 6. The  'void' nearest-neighbor distribution function Hp(r) 
as a function of  the reduced separation distance r / ~  for 
~ = 0 . 2 ,  ~=0 .3  and ~=0 .4 .  Lines and symbols  are the 
same as in Fig. 5. 

the quantities of E / r )  and H~(r) are determined by binning tilese 
distances. In the end, all counters are divided by the total sam- 
pling number. 

As shown in Figs. 5 and 6 for the ~void' properties, the tileo- 
retical results obtained form the Camahan-Starling approximation 
are again seen to be in remarkably good agreement witil the MD 
simulation data. The quantity Ev(r) has the interpretation of the 
volume fraction of space occupied by a system of pcssibly over- 
lapping spheres of radius r centered at each of tile actual sphere 
centers. Similarly, Hv(r), which is identical to the one defined in 
the scaled-particle theory, can be interpreted as being the inter- 
facial area per unit volume of  a system of possibly overlapping 
spheres of radius r centered at each of the actual sphere centers. 
The quality of our MD sampling employed here was coiffhmed 
by the fact that the resulting simulation values for E~(r) at r=(~/2 
were very close to the expected value of E~ ((~/2) = 1 - r 1. When 
r_>(~/2, a spherical cavity centered in the void region, i.e., the 
region exterior to the spheres, and the measurement Hv(r)/(1-rl) 
in tiffs range is related to the pore-size disb-ibution function. The 
pore-size distribution deduced from Hv(r) in Fig. 6 indicates much 
narrower distributions for the higher density system (I"1=0.4) than 
those for the lower one (r 1 0.2), as one may expect. 

Finally, we have calculated the nth moment of Hv(r) and 
Hp(r), which can be defined as 

l~"=Iu r'Hrtr)dr (26) 

l~":[r~ (27) 

or, using the integration by parts, 

l~ : n ~ l  ~ E~(r)dr (28) 

l;'): n~ ['-'Ee(r)dr 

:~" +n~ 1 ~ 'Ep(r)dr (29) 

Fig. 7. The  1st  m o m e n t  (mean)  of  the 'particle' nearest-neigh- 
bor distribution function l~  ) as a funct ion of  11. Lines 
and symbols  are the same as in Fig. 1. 

Fig. 8. The  2nd m o m e n t  (variance) of the 'particle' nearest-  
neighbor distribution function lp (2) as a function of 1]. 
Lines and symbols  are the same as in Fig. 1. 

In Table 1 the MD simulation results for lv and lp up to tile 
third moment are presented to investigate the density depend- 
encies on the pore geonlebies. The conespondmg length scale 
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. (~) _ (~) 
of  lr and lp is directly related to the measurement of the 
characteristic pore-size distribution. For instance, the 1 st and the 
2nd moment of 6 are the mean and the variation of nearest- 
neighbor distance, respectively. In Figs. 7 and 8 we illustrate 
the MD data for lp (~) and lp (2) together with the theoretical results 
determined from the three different approximations. Theoretical 
values fronl Eqs. (26) through (29) were calculated by numeri- 
cal integration using the trapezoidal role with the integration 
step of 10 -4 ~. As can be seen in these figures, these approxi- 
mations are in reasonable qualitative agreement with simulation 
results over most of the range of  the densities investigated in 
this work. In the cases of the scaled-particle and the Percus- 
Yevick approximations, the discrepancy is gradually amplified 
with increasing densities. As observed in the 'void' and 'particle' 
probability functions, the Cal~kahan-Starling approxinlalion again 
yields the best result and the scaled-particle theory gives the 
next best agreement compared to our MD simulation data. 

C O N C L U S I O N  

In the present worlq we have reported preliminary simulation 
results via the molecular dynamics simulation method to inves- 
tigate nearest-neighbor distribution functions and their related 
stmc~Jral properties for hard-sphere systems. The 'void' and the 
'particle' properties such as nearest-neighbor distribution func- 
tions and exclusion probability functions were calculated to ex- 
amine the density dependence over a wide range of reduced pack- 
ing densities. Our simulation results were used to access the ap- 
plicabilities of various theoretical predictions appearing in the lit- 
erature including the scaled-particle theory, the Percus-Yevick 
equation, and the Camahan-Staling approximation. For lower 
density systems these three different approximations give the 
nearest-neighbor distribution fimctions which are very close to 
one another and to the resulting MD simulation data. In the cases 
of the scaled-particle and the Percus-Yevick approximations, the 
discrepancy is gradually amplified with increasing densities. As 
has been observed for the equation of state of hard-sphere sys- 
tems, the Camahan-Starling approximation, in comparison with 
MD simulation data, has proven to be successful both qualita- 
tively and quantitatively in predicting the nearest-neighbor distri- 
bution functions over the entire l-anges of density conditions in- 
vestigated in this work. Also calculated is the nth moment of 
nearest-neighbor distribntion functions, in which the correspond- 
ing length scale is directly related to the measurement of the 
characteristic pore-size distribution. The density dependencies on 
the pore-size characteristics would be very useful in gaining a 
better understanding of  how effectively the modification of parti- 
cle packing densities influences random pore geometries at the 
molecular level. 
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