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Abstract - An accurate and realistic model for transient diffusion and adsorption in a biporous pellet is typically re- 
presented by two coupled second-order partial differential equations. The model, however, has been rarely used in 
practice because of its mathematical complexity and bulky numerical computation, and approximations of the model 
have been used instead. But the accuracy of the available approximations has been limited and not enough for de- 
tailed analysis and simulation of the mass transfer process. Therefore, in this study, we develop for the first time 
high-order approximations, of up to third order, for noncyclic and cyclic adsorption in a biporous pellet, respectively. 
The approximations are in the form of a state equation which consists of first-order differential equations; the number 
of the equations is the same as the approximation order. The approximations are easy to use and their acx;awacy dramat- 
ically increases with increasing approximation order, so that the second- or the third-order approximations can effectively 
substitute the complex biporous diffusion model. 
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INTRODUCTION 

Adsorbents commonly used in dynamic sorptive separation 
processes are made of micropomus powder and hence have bi- 
disperse pore structures: micropores in the powder particles and 
macropores formed between the particles in pelleting. For these 
two distinctly different pores in the adsorbents, the realistic mass 
transfer model for the adsorbents should account for the mass 
transfer in the macropores and in the micropores separately, 
resulting in a biporous diffusion model. Because of its com- 
plexity and bulky numerical computations, however, the bipo- 
rous diffusion model has rarely been used in the simulation 
and analysis of transient adsorption processes. Instead, various 
approximations of the mass transfer have been used with vary- 
ing degrees of success. 

The well-known approximation is the Glueckauf linear driv- 
ing force (LDF) equation [1955] : 

dq 1 5 ~  ( f - q )  (1) 
dz 

This approximation has been widely adopted to represent the 
finite mass transfer between the adsorbent and its surrounding 
[Kim et al., 1995; Xiu, 1996]. Since the LDF equation is bas- 
ed on a monopomus diffusion model, it involves the ditfusional 
time constant, 0p, which is defined with an overall effective dif- 
fnsivity, D r It is well known that in principle two ditfusivities, 
the macropore ditfusivity and the micropore ditfusivity, are need- 
ed to describe the mass transfer in biporous adsorbents. Ap- 
parently the LDF equation is not compatable with the biporons 
diffusion model unless there is a way of combining the two dif- 
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fusMties into a single overall diffnsivity. Furthermore it has been 
shown that the LDF approximation is equivalent to assuming 
a parabolic concentration profile in adsorbents [Liaw et aL, 1979; 
Do and Rice, 1986], a valid assumption only when the time 
rate change of the concentration at the outer surface of the pel- 
let, f, is slow. Kim [1989] has also found that the LDF equa- 
tion is a truncated series solution of a monoporous diffusion 
model, represented in terms of time derivatives of f. Consequ- 
ently, the LDF equation is not valid in rapidly changing pro- 
cesses where the concentration profile is not parabolic, and the 
time derivatives in the remainder of the series solution grow 
larger than the terms in the LDF equation. 

Recently Kim [1997] developed a first-order approximation 
for cyclic adsorption in a biporous adsorbent : 

d~ - A f - B ~  (2) 
dz 

where p = q -  co+(A/B)co, the constant co is the time average 
of f over a period T, and A and B are coefficients which are 
functions of the cycle speed w(=2rdT). As the cycle period in- 
creases, the approximation has been shown to approach the LDF 
equation when the time constant for x, 0, is defined with an 
overall diffusivity, Dp, determined fzom the formula by Kim 
[1990]. This in fact suggests that the LDF, although based on 
the monoporous diffusion model, can be used as a first-order 
approximation for adsorption in biporous adsorbents for long 
cycle periods or noncyclic adsorption. For short cycle periods, 
however, the LDF equation as well as other approximations 
based on the monoporous diffusion model [Nakao and Suzuki, 
1983; Kim, 1996] all have failed to predict the responses of 
biporous adsorbents with reasonable accuracy, whereas the ap- 
proximation, Eq. (2), based on the biporous diffusion model has 
been found to be reliable. 
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Although the first-order approximations are adequate in eh- 
cidating the essential features of the mass transfer, they may 
not be accurate enough for a detailed analysis and optimiza- 
tion. In this regard, high-order approximations, precise enough 
and yet much easier to use than the pore diffusion model, are 
thus necessary. Recently, Lee and Kim [1998] developed meth- 
ods for high-order approximations for adsorption and diffusion 
in a particle with a unimodal pore size distffoution. The meth- 
ods are extended in this study to develop high-order approxi- 
mations for biporous diffusion and adsorption. 

T H E O R Y  

Consider adsorption and diffusion in a spherical pellet with 
bidisperse porous stmcatm. An adsorbate diffuses into the pel- 
let through the macropores, the interparticle void, and then into 
microparticles, which are assumed to be spheres of uniform size. 
Further assume that the diameters of the micropores are com- 
parable with the diameter of the diffusing molecules. In this 
case, the diffusing molecules are under the force field exerted 
by the atoms consisting the pore walls, and distinguishing the 
adsorbed molecules and the molecules moving from one ad- 
sorption site to another is not physically reasonable. This ap- 
proach is usually adopted in formulating diffusion and adsorp- 
tion in zeolite crystals and carbon molecular sieves [Hashimoto 
et al., 1976; Chiang et al., 1984]. 

The mass balance equations are 

Macropore : 

~Ca _ 1 ~ (2~Ca)  3(l-Ca) D ~ b  
E a - - = E a D  a -  - - I r a ~ / -  

r~ 2 Or. C Or,, ) R b b ~  ,',=". (3) 

Micropore : 

~t V~-~- b ~ (4) 

Initial conditions : 
C~ (r:, t) = 0, Ob (r=, rb, O = 0 (5) 

Boundary conditions : 

ac~ I =0, =0 (6) 
~ra r,=0 ~ r,=0 

C:(Ra, t)=F(t), Qb(r=, Rb, t)=KCa(ra, 0 

Here adsorption equilibrium is assumed at the outer surface 
of the microparticle and the equilibrium is linear with respect 
to the macropore concentration. F(t) is an arbitrary time-vary- 
ing concentration at the outer surface of the biporous pellet. 

Next we define dimensionless variables and parameters 

t r~ r b 
,=-~, x=~-- ,  y= Rb 

c~ Ob KoF(0 
too= c---U 

H = 0D~ 0D b 
: R~, nb=--~b  2 , Ko=s (7) 

Here Ko is the apparent adsorption equilibrium constant in 

the pellet, the equilibrium ratio of the adsorbate amount per 
unit volume of the pellet to the adsorbate concentration in the 
bulk surrounding the pellet. The time constant, 0, can be de- 
fined in any proper way, such as the space time of an ad- 
sorber or any time constant of the process involved. 

Usually the volume-average concentration is of main interest 
since the mass exchange rate between the pellet and its sur- 
roundings can be conveniently represented by the time-deri- 
vative of the average concentration. The dimensionless vol- 
ume-average concentration is 

= 3fl0[ea c, + 3(1 - ea)KS10Cb y2 dy]x2 dx (8) 

Now we need a Laplace transform of ~ to develop approxi- 
mations for the mass exchange. The solution of the biporous 
model, Eq. (3)-(6) can be readily obtained in Laplace trans- 
form, and the Laplace-domain solution is substituted into Eq. 
(8) to give 

~=  3ea.~_~(~f~ oath ~/-~-1) F(s) 
Ko 

- G(s) F(s) (9) 

where 

a=  ~ -  [1 + 3(l-e") K Hsb / C  c~ ~ b  -- 1]] e, (10) 

G(s) is the transfer function of the biporous system, relating 
(~ and F(s). 

We approximate G(s) by a rational funtion. 

G,(s)= b"-ls"-l+b"-2s"-2 +'"+b~ (0<n) (11) 
ans" +a_l s"-I +.. .+als+l 

The method of determining the 2n coefficients is different 
for noncyclic and cyclic adsorption and well described in 
Lee and Kiln [1998]. 

The Laplace domain approximation, Eq. (11), can be re- 
presented by a time-domain state equation [Kailath, 1980] : 

�9 ~ r " 
an-1 1 0 "" 0 ,-1 
a n an 

_ an-2 0 1 "" 0 b"-2 
an a n 

dz(v)= : ! i  "'. i z(0+ : fir) (12) 
d-'r 

- a---L 0 0 . . .  1 ba a. -C 

____1 0 0 - . .  0 b0 
an L-- 

where z(x)=(zt, z2,'" ", z~) r, and 7,(0)=(0, 0, "" ", 0) r. An appro- 
ximation of q based on G.(s) is now given by 

q (~)=ZI( ~ (13) 

n is the order of the state equation and also equal to the num- 
ber of the first-order differential equations. 
1. Approximations for Noneyelie Forcing 

Here the coefficients are determined by the method of Pade 
approximation [Bender and Orzsag, 1978], in which the coeffi- 

January, 1999 



High-Order Approximations for Noncyclic and Cyclic Adsorption in a Biporous Adsorbent 71 

cients are chosen to make the first 2n terms of the Taylor ser- 
ies expansion of G,(s) coincide with the first 2n terms of the 
Taylor expansion of G(s). In Table 1, the first six coefficients 
of the series are listed, with which the Pade appro "xtmation of 
up to third order can be readily obtained. We list the Pade ap- 
proximations and the corresponding state equations in Table 2. 
2. Approximations for Cyclic Forcing 

In this case, the surface concentration, fix), is periodic with 
a period T. Also the response of the biporous pellet to this 
change becomes periodic with the same period. Hence the forc- 
ing function and the response can be expanded in Fourier series. 

f('0= CO +k~__l(c k cos kw~:+ d k sin kwl:) w= 
27r (14) 

= T 

~(T) = coG(0) + ~11G(ikw) I [ok cos(kwr+ Z G(jkw)l 

+d k sin(kwlr+ A G0kw))] (15) 

where ck and dk are the Fourier coefficients of f(x), j=4-Si-, 
[G(jkw)[ is the amplitude ratio, and Z G(jkw) is the phase lag. 

For cyclic forcing, Lee and Kim [1998] proposed the method 
of frequency matching between G(s) and its approximation 
G,(s). In this method, G,(s) is determined by the condition that 
equates G(s) and G,(s) at s-~kw (k=l, 2, .-., n). The condition 
gives 2n algebraic equations: n equations from equating the 
real parts of G0kw ) and G.(jkw) and another n equations from 

Table 1. Taylor series coefficients of G(s) 

Coefficient 

s o Ao=l 

. 1 V iq +Ko-ea]  

2 K~ + 2 (1-eo)K 2 
S2 A2 31~ (e.H~) ------S 2 ~  (~H)H---~+'~ H2Ko 

1 (1-e~ 1 (-34~o~+27 ~ +7~) 
S3 A3 1575 KoHb 3 23625 (I-I eo)KoH ~ 

(1 - e~ )K 

2 Ko(1-e=)K 1 I~ 
1575 (H e.)2H b 1575 (H2e,) 2 

s4 A4 = 2 (1-e.)K 2 (1-e.)K(5K(1-E~) + 3e.) 
31185 KoH 4 + 70875 Koe~H,H 3 

2 (l-e.)K(17(1-e. )K + 10e. ) 
+ - -  

165375 (ca Ha)ZHb 
4 I~ (1-e~)K 2 K~ 

+ - -  + 
23625 (eaHa)2n b 31185 (eoHo) 4 

1382 (l-e,)K 
s5 As 212837625 HSKo 

2 (1-e.)K{691(1-e, )K+350e, } 
81860625 (e. H.)H~ K o 

2 (1-e~)K{ 112K2(1-e. )2 + 150Keo (1-e.) + 4Sea 2} 
7441875 (e H~)2H~K ~ 

2 Ko(1-e ~)K{41K(1-e~ ) + 20e. } 

2480625 (eo Ho)2H b 
2 I~ K(1-e,) 1382 I~ 

93555 (e~H~)4Hb 212837625 (E~Ha) 2 

Table 2.Approximations for noncyclic adsorption 

Pade [1] 
m 1 

a1=-  ~ ,  bo=l  

dq _ 15 

d't [ Ko + K o _ e  * 

LEaH. HbKo ] 

i f - q )  

Pade [2] 
-AIA 2 + A 3 -A1A3 + A 2 

a , -  A 2 _ A 2 ,  a 2-  A2_A 2 

bo=l,  b l=Al+a  1 

dq _ 1 C01f_alq)+z2 
dz az 

dz2 - 1 ( f - q )  d'r 

Pade [3] D = -  A4A 2 + A4 A2 +A32- 2A1A2A 3 +A 3 

l(A1A32 - A3A 4 + A1A2A4- A22A3 + A~A2- AsA12) al-- 

1 (-A22A 4 + A2A32 + AIA2A5 + A 2 -  AiA3A4- A3As) 32= 

D(2A2A3A4- A~A5 - A1A ~ + AIA3A s - A33) a3= 

bo=l  
ba=Al+a 1 
b2=Az+A1al +a2 

dq _ 1.(b2f_a2 q )+z~ 
dz a3 

dz2= ] Colf-a lq)+z 3 
dz a3 
dz~ = l ( f _ q  ) 
d'r 33 

equating the corresponding imaginary parts. With these 2n equa- 
tions, the 2n coefficients of G,(s) can be readily determined 
as shown in Table 3. As noted by Lee and Kim, when thus 
determined G,(s) is replaced with G(s) in Eq. (15), the result- 
ing approximation of ~ is shifted approximately by a constant 
from ~ because G,(0)4=G(0). The correction by a constant is 

q(O = zt(r) + coG(0 ) -  coG, (0) (16) 

DISCUSSION 

1. Noncyclic Adsorption 
We compare the step responses of the approximations in Fig. 

l(a) and (b). As we see, the error of approximation is decreas- 
ing rapidly with increasing order of the approximation. The third- 
order approximation is seen to be almost identical to the exact 
response, except at extremely small times. 

The first-order approximation, shown in Table 2, can be 
made identical to the LDF equation if 

Ko Ko-ea 
- -  + = 1 (17) 
e,,H~ HbK o 

This gives that 

P ~ + ( 1 - e ~ ) K  R 2 _  0 _ P ~  
(18) 

Da i~  Do Ko Dp 
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Table 3. Coefficients of approJdmations for cyclic adsorption 

Appro- Coefficients* 
ximation 

I I Cx l Freq[eo] bo=L_X:oOj Lv'J 

Freq =l-X10~ u  / iY,/ 

L ]  bl L-2x2o9 4Y2co 2 o 2o9j LY2] 

Freq [o~, 
20~, 3~] 

a 1 

a2 
a 3 

bo 

b l  

b: 

YI(O X1032 -Y10)3 ] 0 

-Xlt~ Y1092 Xl 0)3 0 (D 

2Y20~ 4X2(02 -8Y2093 1 0 

-2X2to 4Y2f.o 2 8X20.)3 0 2(o 

3Y3~ 9X3tod _27Y30 fl I 0 
0 3(o 

-3X2fo 9Y30~ 27X3to 3 

-o~- 
0 

-4o~ 
0 

-9(o2 

0 

-al Xl 
Y1 

!X21 
Y2 
X3 

*Freq [co,.--, No]= 

Yk=Im (G(jkw)). 

bN-1SN-1 + "'" +b~ Xk=Re(G(jkw)), 
aNsS +... +a~s+ 1 ' 

Eq. (17) defines the lime constant, 0, for the first-order appmxi- 
marion to become the LDF equation. Since the LDF equation 
is based on the monoporous diffusion model with an overall 
effective diffusivity, Dp, it involves the associated time constant, 
Op(=KoDp/R,2). In principle the monoporons diffusion model and 
the biporous diffusion model are incompatible with each other 
and cannot be used interchangeably. Nevertheless, if we define 
D e for the biporous pellet as in Eq. (18), then 0v=0 and the first- 
order approximation becomes the original dimensionless LDF 
equation. It is noted that the formula for D v, Eq. (18), has been 
developed by Kim [1990] in an attempt to describe the perfor- 
mance of an adsorber packed with biporous adsorbents using 
the simpler monoporous diffusion model. 
2. Cyclic Adsorption 

The first-order approximation for cyclic adsorption is iden- 
tical to the approximation developed by Kim [1997] since both 
approximations are based on the first partial sum of the series, 
Eq. (15). However, the method of determining the coefficients 
in the present approximation is much easier than the previous 
method which involves a slowly convergent double summation 
and numerical solution of a transcendental equation to evaluate 
each term in the summation. In the present method, the evalua- 
tion of the real and imaginary parts of the transfer function 
at a specified frequency and solution of the algebraic equations 
shown in Table 3 are all that is needed to evaluate the coef- 
ficients. Furthermore, the previous method by Kim could not 
be extended to develop higher-order approximations. 

Unlike the case of noncyclic adsorption, the first-order ap- 
proximation for the biporous diffusion model and that for the 
monoporous diffusion model with D e of Eq. (17) are in general 
quite different in their predictions. Only when the cycle period 
is long enough so that complete adsorption and desorption oc- 
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Fig. 1. (a) Comparison of step responses, (b) errors of approxi- 
mations (1-1==400, Hb=2.404, K=100, e,=03). 
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Fig. 2. (a) Comparison of responses, (b) errors of approxima- 
tions (1~=4~, Hb--2.404, K=100, E.;0.3 T=0.01). 

January, 1999 



High-Order Approximations for Noncyclic and Cyclic Adsorption in a Biporous Adsorbent 73 

cur within a cycle, Kim [1997] has shown that the first-order Qb 
approximations for both diffusion models tend to the LDF equa- q 
lion and hence become identical. Consequently, in cyclic adsorp- 
tions, the use of correct pore structure in formulating the in- Ra 
traparticle mass transfer is particularly important when the cycle rb 
time is short, ra 

Fig. 2(a) and 2(b) show, respectively, the responses and the s 
errors of the approximations for a square wave forcing: t 

T 
{1 when 0_< z<0.005 f(z)=f(z+O.O1) (19) z~(x) f(~)= when 0.005_< z<0.01 

As can be seen in the figures, the approximation error decreases 
dramatically with increasing order and the responses of the sec- 
ond- and third-order approximations are seen to virtually coin- 
cide with the exact response. 

CONCLUSION 

High-order approximations for adsorption and diffusion in 
biporous adsorbents are presented. Depending on the type of 
the concentration forcing at the outer surface of the adsorbent, 
noncyclic and cyclic, approximations of up to third order are ob- 
tained, respectively. The appro "xmaations are structuaUy simple, 
easy to use, and yet very accurate in their predictions. Hence 
the approximations provide a useful alternative to the complex 
biporous diffusion model in modeling or simulation of adsorb- 
ers packed with biporous adsorbents. 
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NOMENCLATURE 

A/ : ith coefficient of Taylor series of G(s) 
a i ,  b i : coefficients in approximation of G(s), Eq. (11) 
ci, di : Fourier coefficients of f(x) 
C~(t) : concentration in macropore [mol/m 3] 
D a : effective macropore diffusivity based on void area [m2/sec] 
Db : effective micropore diffusivity [m2/sec] 
Dp : overall effective diffusivity [m2/sec] 
F(s) : Laplace transform of fix) 
f(x) : dimensionless concentration of at the outer surface of 

adsorbent 
Freq[w, ---, Nw] : approximation for cyclic adsorption from fre- 

quency response matching at w, .--, Nw 
G(s) : transfer function defined in Eq. (9) 
Gn(s) : approximation of the transfer function, Eq. (11) 
Ha, Hb: diffusivity parameters defined in Eq. (7) 
K : adsorption equilibrium constant in microparticle, dimen- 

sionless 
K0 : apparent adsorption equilibrium constant, defined in Eq. (7) 
Pade[n] : nth-order Pade approximation 

: concentration in microparticle [mol/m 3] 
: dimensionless volume-average concentration in pellet, 
defined in Eq. (8) 

: radius of pellet [m] 
: radial variable in particle [m] 
: radial variable in pellet [m] 
: Laplace domain variable 
: time [s] 
: dimensionless cycle period 
: concentration variables in the state equation, Eq. (12) 

Greek Letters 
a : defined in Eq. (10) 
~ : macropore porosity in pellet 
0 : time constant [s] 
0p : diffusional time constant of monoporous diffusion 

(=r.oPd/D,) 
x : dimensionless time (=t/0) 
w : frequency (=2n/T) 
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