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Abstract 

Let M be a complete Riemannian  manifold of bounded  nonpositive sectional 
curvature and finite volume. We construct a topological Tits building A(~I) associated 
to the universal cover of M. I f  IV[ is irreducible and rank (M) >I 2, we show that  A(~I) 
is a building canonically associated with a Lie group and hence that  M is locally 
symmetric. 

I N T R O D U C T I O N  

Let M be a complete connected Riemannian  manifold of bounded  nonpositive 
sectional curvature and finite volume. For any geodesic y, let rank-(  be the dimension 
of the space of parallel Jacobi fields along y. Let rank IV[ be the min imum of the ranks 
of all geodesics. This definition and the basic structure of such manifolds M with 
rank M >/ 2 were discussed in [BBE] and [BBS] (cf. also [El]  and [S]). W. Ballmann 
in [B] and independent ly ourselves, though somewhat  later in the generality presented 
here, found the following 

Main Theorem. - -  Let M be a complete connected Riemannian manifold o f finite volume 

and bounded nonpositive sectional curvature. Then the universal cover ~r of  M is a f la t  Euclidean 
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space, a symmetric space of  noncompact type, a space of  rank 1 or a product of  spaces of  the above 

types. 

Corollary. - -  Suppose in addition that ~r does not have a Euclidean factor. Then M has 
a finite cover that splits as a Riemannian product of  spaces of  rank 1 and a locally symmetric space. 

This follows from the Main Theorem by [E2, Proposition 4.5].  Using Proposi- 
tion 4.1 of [E2], the Main Theorem follows from 

5.1.  Theorem. - -  I f  M is as in the Main Theorem, ~I is irreducible and rank M >1 2, 
then M is locally symmetric. 

Therefore we may assume that  I~I is irreducible and has rank at least 2. In  parti- 
cular, we will always assume that  i~I has no Euclidean factor. 

Ballmann's proof  relies on Berger's characterization of symmetric spaces by their 
holonomy [Be, Si, B]. Our  approach generalises Mostow's proof of the Mostow-Margulis 
Rigidity Theorem [M, Ma] and the arguments of Gromov's Rigidity Theorem [BGS]. 
It  is also closely related to Gromov's  notion of the Tits distance on the ideal boundary 
of  a manifold with nonpositive curvature [BGS, w 

Let us give a brief outline of the paper.  
Section 1 discusses preliminaries. 
In  Section 2 we refine the notion of Weyl simplices introduced in [BBS]. Recall 

that  they are subsets of the unit  tangent spheres to k-flats F at points p ~ F where 
k = rank M. Weyl simplices are very rigid. In  fact, we show that they are all isometric. 
In  Section 3 we define Weyl simplices at infinity. We show that they fit together to 
form a spherical Tits building A = A(I~I) covering 1~i(oo). This is a simplicial complex 
together with a family { Z } of finite subcomplexes called apartments satisfying the axioms 

(B1) A is thick i.e. every codimension 1 simplex in a top dimensional simplex is contained 
in at least 3 top dimensional simplices; 

(B2) every apar tment  is a Coxeter complex;  
(B3) any two elements of A belong to an apar tment ;  
(B4) if Z and Z'  are two apartments  containing A and A' ~ A, then there is an iso- 

morphism of Z onto Z' which leaves A, A' and all their faces invariant. 

Our  version of Axiom B2 is stronger than needed (cf. [T, 3.1]).  

The  building A(i~I) is set up to formalise the intersection pattern of the regular 
k-flats at oo. For example, any Weyl simplex C in l~i(oo) arises as the intersection 
Fl(oo ) n F~(oo) for two regular k-flats F t and F~; see Figure 1. 

Buildings are very rigid objects. Quite generally, they arise as the buildings of 
parabolic subgroups of an algebraic group over some field [T]. Our  first aim is to prove 
that  A(I~) is the building at tached to a real algebraic group. This calls for topology. 
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r,(co) 

a ~ ( = )  

Fxo. 1 

In ['BS] we developed the notion of topological Tits buildings and classified some of 
them with 

Theorem [BS, Main Theorem]. - -  Let A be an infinite, irreducible, locally connected, 
compact, metric, topologically Moufang building of rank at least 2. Then A is the building of para- 
bolic subgroups of a real simple Lie group G. 

The group G is the group of all automorphisms of A which are also homeomor- 
phisms of A. Topologically Moufang means that there are plenty of topological auto~ 
morphisms of A [BS, 3.1]. We finish Section 3 by showing that A(I~I) with the topology 
induced from 1~(oo) satisfies all the topological hypotheses of the last theorem. 

In Section 4 we show that A(I~I) is irreducible if and only if 1~I is irreducible. 

In  Section 5 we finally show that M is symmetric. By the above, A(I~) is the 
building of a real simple Lie group G. The symmetric space G/K (K a maximal compact 
subgroup of G) provides us with a model space, as in Gromov's Rigidity Theorem. 
Adapting Gromov's arguments [BGS, Chapter 4], we show that after a change of 
scale ~I is isometric to G/K. Actually our proof is considerably simpler, since I~I(oo) 
already carries a building structure. 

We are indebted to V. Schroeder for explaining Gromov's Rigidity Theorem 
and showing how its proof should be adapted. Before, we could prove the Main Theorem 
only for compact M. We would also like to thank H. Garland, S. Hurder and A. Katok 
for their help and encouragement. 

Most of this work was done at the Mathematical Sciences Research Institute 
in Berkeley to which we are grateful. We would also like to thank the University of 
Maryland, State University of New York and the National Science Foundation for 
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financial support. The second named author is also grateful to the Institut des Hautes 
]~tudes Scientifiques. 

1. Notat ion and Prel;m~n~ries 

The results of ['BBE] and [BBS] are fundamental to our work. We will use the 
notation and concepts introduced there. In particular we refer the reader to [BBE, w 
for a survey of basic information about manifolds with nonpositive curvature. 

By M we will always denote a complete, connected Riemannian manifold with 
bounded nonpositive sectional curvature and finite volume. Also we assume that the 
Riemannian universal cover I~I has no Euclidean factor. We denote by k the rank of M 
[BBE, w Unless otherwise specified, geodesics will have unit speed. 

As in [BBE] and [BBS], ~I(oo) denotes the sphere of points at infinity for i~I and 
l~f = ~I v l~f(oo). I f  v ~ S~I or SM, then y, is the unique geodesic with ~o(0) = v. 
I f p  e I~i and x ~ M \ ( p } ,  then V(p, x) is the unique vector in S o ~"~ with yv~.,~(t) = x 
for some t E (0, oo]. The geodesic symmetry about a point p E i~I is denoted by ~ .  I f  F 
is a flat in 1~I, then F(oo) is the set of points at infinity for F, i.e. 

F(oo) = { y,(oo) : v ~ SI~I is tangent to F }. 

The horosphere H(v) of a unit vector v is defined in [BBE, w If  v E SI~I and p E iM, 
then v(p) is the unique vector of S~ i~I asymptotic to v. 

The reader might like to review the definitions of regular and p-regular vectors 
([BBE, w and [BBS, 2.1]).  We denote by 9t the set of  all regular unit vectors. I f  v 
is regular or p-regular, F(v) is the unique k-flat to which v is tangent (cf. [BBE, w and 
[BBS, w The strong stable and unstable manifolds and horospheres W~ W~(v), H'(v) 
and H*(v) of a regular vector v are defined in [BBE, w 

We call a geodesic y of 1~I periodic if it is a lift of a closed geodesic in M, and we 
call v e SM periodic if y, is periodic. An isometry q~ of i~I is an axial isometry of a periodic 
geodesic y if there is a constant -r > 0 such that r o y(t) = y(t + 7) for all t. We call -~ 
the period of cp. Axial isometrics of y arise from the covering transformations of M cor- 
responding to the closed geodesic covered by y. 

1.1.  Lemma. ~ Let y be a periodic regular geodesic tangent to the k-flat F. Suppose q~ is 

an axial isometry for  y and x ~ M ( oo ). I f  n >1 0 

x, v(oo)) v(oo)). 

I f  n is large enough, equality holds i f  and only i f  x ~ F(oo). Any limit point o f {  ?" x : n >i 0 } 
lies in F (oo). 

Proof. - -  Let "r > 0 be the period of ~. Consider the ideal triangle T with ver- 

tices y(0), y(nz) and cp"x. The sum of its angles at y(0) and y(nv) is at most 7r. Hence 
<r x, y(oo)) ~< <~,~,(?" x, y(oo)) = -,~0,(x, y(oo)) as q~ fixes y(oo). I t  is clear 

that equality holds if x e F(oo). 
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I f  n is large enough,  any  parallel Jacobi  field along the regular  geodesic "( between 

3'(0) and  3'(nv) must  be tangent  to F. I f  ~o~(q~"x, 3'(00)) = -,~_ao~(x, 3'(oo)), the ideal 
triangle T is flat. Hence  q~" x e F(oo) .  Since F is invar iant  under  % x E F(oo) .  

Finally suppose y is a limit point  of  { q~" x : n I> 0 }. T h e n  

-NLa0,(9~y, 3,(00)) = -,4La0,(y , 3'(oo)) for all k >i 0. 

Hence  y EF(oo) .  �9 

2. Isometry of Weyl SimpHces 

We define Weyl  simplices for so-called t - regular  vectors. This extends the defi- 
nit ion of  the set ~(v)  for p-regular  vectors v in [BBS]. Since the set o f t - r egu la r  vectors 
is a union of  asymptote  classes this allows us to define Weyl  simplices at infinity from 
which we then construct  a Tits building (cf. Section 3). O u r  main  goal in this section 
is to show that  all Weyl  simplices are isometric. 

Call v e $1~f t-regular if v is asymptot ic  to a regular  vector. Let  ~ be the set of  all 
t - regular  vectors. Since the set ~ of  all regular  vectors is open and  dense, so is .~o. 

2 . 1 .  Examples. - -  (i) I f  M has rank 1 then every unit  vector v is t-regular.  In  
fact, i fT  is a periodic regular  geodesic with T(co) 4= %(oo) then 3',(oo) is jo ined to y(oo)  
by a geodesic 3" (cf. L e m m a  3.6) .  Clearly 3" is regular.  

(ii) Suppose 1~I = l~I t • l~I, and  n~ : l~I ~ l~I~ is the projection onto the i-th factor. 
I f  y e S ' I ,  set v ~ = d n ~ v  for i =  1,2.  T h e n  v is t - regular  if and  only if v~4= 0 and  
[I v, I [- '  v, is t - regular  for i ---- 1, 2. 

(iii) Unlike p-regular  vectors, t - regular  vectors can be tangent  to more than one 
k-flat, where  k is the rank of  M. Suppose that  in Example  (ii) both ~I x and  ~I z have 
rank 1. T h e n  v E S~I is t - regular  if vx 4= 0 4 = v2. But if ei ther v~ is tangent  to a 2-flat 
in l~I,, then v is tangent  to a flat of  dimension at least 3 (cf. Proposition 2.22) .  

I f  v ~ . ~ ,  set 

A(v) -= { q E M : v(q) is p-regular  }. 

2 . 2 .  Definition. - -  I f  v e .~,  the Weyl simplex of  v is 

~g(v) = { w e S~, ~ f  : w(q)  is tangent  to F(v(q)) for all q e A(v) }. 

We will see later (cf. T h e o r e m  3.8) that  this set actual ly is a spherical simplex. 
I t  is easy to check that  this agrees with Definition 2 .4  of  [BBS] when v is p-regular.  

Clearly ~(v) is closed for any  v ~ ~ and,  if q~ is an isometry of  i~f, ~ ( d ~ ( v ) )  = d~(C~(v)). 

W h e n  v is p-regular,  ~(v) is a convex subset of  the k - -  1 dimensional  uni t  sphere S,, F(v) 
by L e m m a  2 .5  of  [BBS]. I f  v, w ~ .if' are asymptotic,  there is a bijection ~(v)  ~ ~ (w)  
defined by u -+ u (nw) .  I t  follows f rom the Convexity L e m m a  [BBE, I.  5] that  this map  
is an isometry if v and  w are both  p-regular.  
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2.3 .  Remark. - -  I f  v is uniformly recurrent and regular, A(v) = M by [BBS, 2.2]. 
Hence the map u---> u(q) defines an isometry if(v) ~ i ( v (q ) )  for every q E ff, i. 

We now define the interior of  a Weyl simplex. I f  v is p-regular, Int  i ( v )  will be 
the (topological) interior of i (v )  in S~ F(v). For v E .~, set 

Int  i (v )  ---- { w e i (v )  : w(q) e Int  i ( v (q) )  for all q ~ A(v) }. 

Set O~(v) = i ( v ) \ I n t  i (v ) .  

We begin our proof that all Weyl simplices are isometric by studying Weyl sim- 
plices where this is true locally. The first major step will be to show in Proposition 2.12 
that all of  these Weyl simplices are isometric. 

such 

(R1) 

(R2) 
(R3) 

(R4) 

8.4.  Definition. - -  A vector v e A ~ is rigid if v has an open neighborhood U C .oq ~ 
that for every u e U we have : 

u ~ I n t i ( u ) ;  
Int  i ( u )  _ U;  
i ( u ' )  = i ( u )  for every u' e Int  i ( u ) ;  

i(u) 
A rigid Weyl simplex is the Weyl simplex of a rigid vector. 

Note that i ( v )  is a k -  1 dimensional convex set when v is rigid. This follows 
from [BBS, 2.7],  since U must contain a regular uniformly recurrent vector. The next 
lemma shows that the set of  rigid vectors is dense; it is clearly open. Also it is invariant 
under the action of isometries of l~I, and Lemma 2.8 shows that it is a union of asymp- 
tote classes. 

2.5. /wmnm. - -  I f  v ~ S~r is regular and uniformly recurrent in both the positive and 
negative directions, then v is rigid. 

Proof. - -  Let U ___ 9t be the neighbourhood of v defined in the Rigidity Lemma 
[BBS, 2.10]. Recall that [BBS] defined the Weyl chamber C~(w) of a p-regular vector w, 

o 

and ~(w) as the (topological) interior of Cg(w) in S,~ F(w). It  is easy to prove the 
following: 

a) I f  w is p-regular and w' e C~(w), then i ( w ' )  = i ( w ) .  
b) I f  w and w' are p-regular and asymptotic, then the map u ---> u(~w') on S,,,0 M 

defines isometrics from i ( w ) ,  Int  i ( w ) ,  C~(w) and C~(w) to C~(w'), Int  i ( w ' ) ,  C~(w') 
and C~(w') respectively. 

The construction of h, in the proof of the Rigidity Lemma shows that any u e U 
is asymptotic to a vector u' e ~(v') for some v' e WU(v). Moreover it is clear that U 
can be constructed so that v' e 9t for each u e U. Hence all the vectors in the following 
argument  are p-regular. 
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We note some obvious consequences of part  1) of the Rigidity L e m m a  and its 
proof: 

c) In t  i ( v ' )  = ~(v') and so Int  i ( u )  = ~(u).  
a) i(v')  ,,=o 

o 

e) v" 

(R1), (R3) and (R4) follow from a) ~ e); (R2) follows from c), since it is clear 
o 

from 2) of the Rigidity L e m m a  and its proof  that  ~(u) _~ U if u E U. �9 

2.6.  Lemma. ~ Let a sequence { v, } ~ .~  converge to v ~ .~.  

(i) Then i im i ( v , )  _~ i ( v ) .  
(ii) I f  in addition v is rigid, ~(v , )  ~ if(v) and O~(v,) -+ Off(v) in the Hausdorff metric 

on compact subsets of  Sffl.  

Proof. ~ (i) is proved in almost the same way as L e m m a  2.8  of [BBS]. (ii) fol- 

lows easily from (i), since i (v )  is convex and i ( v , )  l,~ ~(v) for all large enough n. �9 

2 .7 .  Lemma. - -  I f  v is rigid and q E ~I, the map i ( v )  ~ i ( v (q ) )  given by u ~ u(q) 
is an isometry. 

Proof. - -  Define ~ : S.~I-+ S~ M by ~(u) = u(q). Then  ~ is continuous and for 
any w ~ .~o, , [ i ( w )  is a bijection onto ~(w(q)) .  Choose a sequence { v, } of uniformly 
recurrent regular vectors converging to v. By Remark 2.3,  ~] i ( v , )  is an isometry for 
each n. Since i ( v , )  ~ ~(v) by L e m m a  2.6,  it follows that  ~ [ ~(v) is an isometry. �9 

2.8.  Lemma. - -  I f  v is rigid and v' is asymptotic to v, then v" is rigid. 

Proof. - -  Let U be an open neighborhood of v satisfying (R1), (R2), (R3) and 
(R4). Then  U'  = { u(q) : u ~ U, q E 1~I } is an open neighborhood of v'. I f  u' is asymp- 
totic to u, then ~(u ' )  = { w(~u') : w ~ i ( u )  } and In t  C~(u') = (w(~u')  : w E In t  ~(u) }. 
We see easily that  U '  satisfies (R1), (R2) and (R3); (R4) follows from the previous 

lemma. �9 

2.9.  Lemma. - -  Suppose Vo ~ SM is rigid and w ~ Sff/l has "~(Vo, w(zwo) ) < "~(Vo, 0~(v0)). 

Then w is rigid and ~ (w)  "~ ~(vo). 

Proof. - -  I f  v is close enough to v0, then v is rigid, i ( v )  ,,o C~(v0) and it is clear 

from L e m m a  2 .6  (ii) that  .~t.(v, w ( ~ v ) ) <  .~r(v, O~(v)). By the Closing l . emma [BBS, 
at. 5], there is a periodic regular vector v with all the above properties. Let q~ be an axial 
isometry ofT,.  Let w, ----- (d~" w) (~v). By Lemma  1.1, { w, } has a limit vector w' ~ S,,  F(v) 

with -~(v, w') <. -~(v, O~(v)). Since In t  i ( v )  is open in S,~ F(v) by [BBS, 2.7],  

w' ~ In t  C~(v). Hence  w' is rigid and ~(w')  = ~(v) ,Bo ~(v0). For some large m, w,, is 

6 
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rigid and ~(w,,) t,__o ~(w).  Since w,  is asymptotic to dq;' w, it follows from Lemma 2.8 

that d~" w is rigid, and hence that w is rigid. By Lemma 2.7, C~(w) i,o C~(dg, ~ w) i,o ~(w,,) 

and hence C~(w)t,_.o C~(v0)" �9 

8.10. Corollary. - -  Suppose { v,  } is a sequence o f  rigid vectors such that -~;(v,,  0~(v,)) 

is bounded away from O. I f  v, converges to v, then v is rigid. �9 

Before we show that all rigid Weyl simplices are isometric we introduce: 

2.11. Definition. ~ The center c (~(v) )  of  a Weyl simplex C~(v) is the unit vector 
in the same direction as 

~7~,~ I d~t S 

where S is the (unique) great subsphere of smallest dimension which contains Cg(v), Ezs is 
Lebesgue measure on S, and I : S~ NI ~ T, , /~I  is the inclusion. 

We list some obvious properties of c which will be used in the following. 

(i) I f  v is rigid, r  

(ii) For any isometry ~ of l~I, 

= 

(iii) I f  v and v' are rigid and asymptotic, c(~(v)) and c(g'g(v')) are asymptotic. 

(iv) I f  v is rigid and v, ~ v, c (~ (v , ) )  ~ r 

2.12. Proposition. ~ All  rigid Wef t  simplices are isometric. 

Proof. ~ By [BBS, 4.5] there is a periodic regular vector w such that y ,  has an 
axial isometry cp which is a pure translation of F(w). Lemma 2.5 tells us that w is rigid. 
By Lemma 1.1, we can assume, after replacing r by a power r that if x E M(oo),  
then -~,(q~x, y~(oo))<-~t~,,(x,  u  unless x ~ F ( w )  (co). Let ~ be a rigid Weyl 

simplex. We shall show that ~ i,__o C~(w). Let I) be the set of  all rigid vectors in Sffl that 
are centers of Weyl simplices isometric to ~ .  I t  follows from the properties of the center 
and Corollary 2.10 that D is closed. Let D O = D t~ S , ,  i~I. 

We shall show below that if v ~ Do and v r C~(w), there is a vector v t e D O with 
-~t(vl, w ) < - ~ ( v ,  w). Since Do is compact,  it follows that there is vo iD0 r3 C~(w). 
Since vo and w are both rigid, we see that if w 0 ~ Int  C~(w) is close enough to v0, then 

W ~ W 0 ~ V 0 ~ �9 

Now we construct v I from v. Either v belongs to S ~  F(w) or it does not. In  the latter 

case, we take v I = (d~?v) (~v). It  is clear that v 1 e D O and <~:(vx, w) < -~(v, w) by our 
choice of w and 9, since ,(,(co) CF(w) (oo). 

In  the former case we use the next two lemmas. 
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8.13. Lemma. - -  I f  v e S,~ F (w) \~ (w) ,  there is a vector w' ~ W'(w) such that v(nw') 
is not tangent to F(w'). 

Proof. - -  Since w is periodic and regular, A(w) = l~I which is the union of all 

F(w") for w" ~ W~ by [BBE, 2.12]. Since v r ~(w),  there is p e 1~1 with v(p) not 
tangent to F(w(p)). Choose w' ~ W'(w) so tha tp  e F(w'). Ifv(nw') were tangent to F(w'), 
we would have v(q) tangent to F(w') for every q ~ F(w'). �9 

2.14. Lemma. - -  Suppose w' ~ W'(w). Let + be an axial isometry of  .(,,. Then for  any 
v E S~,~ F(w), there is a vector v' ~ S=~, F(w') such that %( oo ) is a limit point of{ +-  "(To' (oo)) }. 

Proof. - -  Let "~ be the period of ~b, so dq~"(w) = g"'(w), where gt is the geodesic 
flow. For n~> 1, let w', = g"'(dq;-"w').  Clearly w', e H~ for each n. Moreover 

ds~,(w',, w) = ds~(g"" w', g"~ w) -+ 0 by [BBE, 3.10]. Define +, : S,, ,  F(w') --* S ~ .  F(w',) 
by + . ( u )  = (d+-" u) (~w',). Clearly +, ----- P,  o d+-",  where P,  is the parallel transla- 
tion in F(w~,) from +-"(~w')  to ~w',. Hence each +, is an isometry. Since w is regular, 
F(w',) converges to F(w), so { q;,} has a subsequence that converges to an isometry 
• : S,,,o, F (w ' ) -+  S~,~ F(w). Choose v' = ~ - l ( v ) .  Since ~b,(v') is asymptotic to d+-"  v', 
we see that %(00) is a limit point of{ +-"(T,,(oo)) }. �9 

Apply Lemma 2.14 with q; = q~ and take va = v'(~w). Using Lemma 1.1 we see 

that 

w) = v . , ( oo ) )  

o v ,  ( o o ) )  = w) ,  

with equality only if-(o,(Oo) e F ( w ) ( o o ) .  Note that ~.~,(oo)~:T,(oo) by our choice 
of w' in Lemma 2.13, and recall from the beginning of the proof that ~ was chosen 
to fix every point in F(w)(oo) and so that <~, (~?x,y , (oo))<- , :~ , , (x ,y ,o(oo))  if 
x e l~I(oo)\F(w) (oo). We see that "4:(vi, w) < -,:):(v, w). Now we show that v x ~ D 0. 
Let v, = (dg-" v') (~w), so v is a limit vector of{ v~,}. Since v E D there is an m such 

that v~ is rigid and ~(v~,) ,,o ~(v) uo ~ .  It  follows that v' is rigid and ~(v') ,,o ~ .  Clearly 

c(ff(v)) = v is a limit vector of {c(ff(v,))}. Since <~(v ' , , c ( f f ( v ' , ) ) )=-~(v ' , c ( f f ( v ) ) )  

for all n, we see that v ' =  c(i~(v')). Hence v '~  D and thus v t ~ D O . �9 
Before we extend this result to 

tors--the r-periodic vectors. 

We will call a vector v p-rigid 

all Weyl simplices we study a further class of vec- 

if it is p-regular and rigid. We call v r-rig/d if it is 

p-rigid and p-rigid vectors are dense in S,~ F(v). Note that if v and w are p-regular and 
w ~ S,, F(v) then F(v) = F(w), since F(w) is the unique k-fiat tangent to w. I f  w is also 
rigid, we see that Int  ~(w) is open in S,,, F(v). Moreover every vector in Int  ~(w) is 
p-rigid. Since all rigid Weyl simplices are isometric and distinct rigid Weyl simplices 
have disjoint interiors, it follows that there is a number  d such that a p-rigid vector v 
is r-rigid if and only if S~, F(v) contains d p-rigid vectors with distinct Weyl simplices. 
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Note that these d Weyl simplices cover S~, F(v) and are the only rigid Weyl simplices 
in S,~ F(v). 

2.15. Definition. - -  A vector is r-periodic if it is periodic, regular and r-rigid. 

2.16. Lemma. ~ I f  w is r-periodic and u ~ O~(w) ,  then u is not p-regular. 

Remarks. - -  We will see in Proposition 2.20 that u is not even t-regular. In  the 
case that M is compact, it was already known [BBS, 4.8] that the boundary of  the Weyl 
simplex of a p-regular vector contains no p-regular vectors. 

Proof. - -  I t  is obvious from the discussion above that there is a p-rigid vector 
v E S,,~ F(w) \~(w)  such that u ~ ~(v) r3 C~(w). Suppose now that u isp-regular. Applying 
Lemma 2.6 to sequences in Int  ~(v) and Int  C~(w) which converge to u shows that 
~(u) _ ~(v)c~ ~(w).  Hence v(p) and w(p) are tangent to F(u(p)) for all p E A(u). 
As w(p) is always p-regular (by Remark 2.3), we see that F(w(p)) = F(u(p)) and v(p) 
is tangent to F(w(p)) for all p cA(u) .  Since the set of p-regular vectors is open, A(u) 
is a neighborhood of rru = nw. 

By Lemma 2.13, there is w' ~ W*(w) with v(Ttw') not tangent to F(w'). Let + be 
an axial isometry of 3', and define w', ~ W'(w) as in Lemma 2.14. The proofs of 
Lemmas 2.13 and 2.14 show that vQ:w',) is not tangent to F(w',) and w', -+ w. This 
contradicts the previous paragraph. �9 

2.17. Lemma. - -  The r-periodic vectors are dense in Sff/I. 

Proof. - -  Periodic regular vectors are dense, so it will suffice to prove that the set V 
of all r-rigid vectors is open and dense. Since the set of  p-rigid vectors is clearly open 
and dense, density of V follows from 1) of [BBE, 2.7]. I fv '  is close to a p-rigid vector v, v' 
is p-rigid and S,~, F(v') is close to S,~ F(v). I f  v E V, S,~ F(v) contains d p-rigid vectors 
with distinct Weyl simplices. We see using Lemma 2.6 (ii) that if v' is close enough to v, 
S o, F(v') also has this property, and so v' E V. Thus V is open. �9 

2.18. Theorem. - -  All  g-regular vectors are rigid. A l l  Weyl  simplices are isometric. I f  

v ~ L#, C~(v) is a k ~ 1 dimensional convex subset o f  S ~  ff.I. 

Proof. - -  First suppose v is a p-regular vector. By Lemma 2.17, v is the limit of 
a sequence { v, } of r-periodic vectors. Observe that - ~ ( v , ,  O~(v , ) )  is bounded away 

from 0. For otherwise v would be a limit of  vectors in O~(v, )  which is impossible by 
Lemma 2.16, since the set &p- regu la r  vectors is open. Since each v, is rigid, Corol- 
lary 2.10 shows that v is rigid. 

Every t-regular vector is asymptotic to a p-regular vector, so it follows from 
Lemma 2.8 that all t-regular vectors are rigid. Hence all Weyl simplices are k ~ 1 dimen- 
sional convex sets, which are isometric by Proposition 2.12. �9 

Using this theorem we can restate Lemma 2.6 and Corollary 2.10. 
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2.19 .  Corollary. - -  Suppose { v, } ~_ .2 ~ converges to v. 

(i) I f  v is t-regular, then l ( v , )  ---> i ( v )  in the Hausdorff metr~. 

(ii) I f  <~(v,, O i (v , ) )  is bounded away from O, then v is t-regular. �9 

No w it is easy to prove some useful propert ies of  Weyl  simplices. 

2.20 .  Proposition. - -  The boundary of  a Weyl simplex cannot contain an g-regular vector. 

Proof. - -  Suppose v ~ . ~  and  w ~ C~(w) is g-regular. Consider  a sequence 

{ w, } ~ In t  C~(v) which  converges to w. By Corol lary 2 .19 ,  i ( w )  ---- lim i ( w , )  = i ( v ) .  

But  now w ~ 0 i ( w ) ,  which is impossible, since w is rigid by  T he o re m 2 .18 .  �9 

2 .21 .  Proposition. - -  Every vector v ~ S~I  is contained in a Weft  simplex. 

Proof. - -  Choose a sequence { v, } of  g-regular vectors converging to v. By passing 

to a subsequence we may  assume that  the sequence ( w,  } of  centers o f  i ( v , )  converges 

to a vector  w. I t  is clear from Corollary 2 .19  that  

i f(w) = lim i ( w , )  _ { v}. �9 

2 .22 .  Proposition. - -  I f  v ~ .~,  there is a unique k-flat F through ~v such that i ( v )  ~_ S,~ F. 

Moreover S ~  F is a union of  Weyl simplices. (Compare Example 2.1 iii.) 

Proof. - -  Uniqueness  follows f rom the fact that  i ( v )  is a k - -  1 dimensional  convex 
subset  o f  S~  1~[. To  prove existence, choose a sequence of  r-periodic vectors { v, } conver-  
ging to v. For  each n, let v, ,  . . . ,  ~ be the centers of  the Weyl  simplices conta ined 

in S, ,  F(v,) .  By passing to a subsequence we can assume that  F(v,) converges to a k-flat F 
passing through ~v and  v~, converges to an g-regular vector  d ~ S, ,F(v)  for i = 1, . . . ,  d. 

d 

I t  is clear that  i (va ) ,  . . . ,  C~(v~) are all distinct. I t  follows that  S=F(v)  = [.J i ( d ) ,  
~=1 

and  i ( v ) =  i ( d )  for some i. �9 

2 .23 .  Proposition. - -  I f  v ~ .~,  then - -  v E . ~  and i ( - -  v) = - -  i ( v) = { - -  w : w ~ i (v )} .  

Proof. - -  We prove this first when v is p-regular.  Observe  that  a vector  u is p-regular  

if and only if - -  u is. Suppose w ~ i ( v )  and  - -  w r ~ ( - -  v). Then  the great  circle arc 

joining v to w contains a vector  u E I n t i ( v )  such that  - - u ~ 0 ~ ( - - v ) .  T h e n  u is 
p-regular  by [BBS, 2 .5]  and  - -  u is non-t-regular  by  T he o re m 2 .18 ,  which is impossible. 

I t  follows that  - - i ( v )  ~ i ( - - v ) ,  and hence i ( - - v )  - - - - -  i ( v ) .  
N o w  suppose v ~ ~ and  choose a sequence { v, ) o f  p-regular  vectors converging to v. 

Since .2' is open,  <):(v,, O~(v,))  is b o u n d e d  away  from 0, for otherwise v would  be a limit 

o f  non-g-regular vectors by  Proposit ion 2 .20.  But  < ~ ( - - v , ,  0 ~ ( - - v , ) )  ~- "~l~(v,, O i ( v , ) )  

since ~ ( - -  v.) = - -  i ( v , ) .  H e n c e  - -  v E A a by  Corol lary 2 .19  (ii). By Corol lary 2 .19  (i), 

i ( v , )  ~ ~(v)  and  - -  i ( v , )  = i ( - -  v,) ~ i ( - -  v). Thus  i ( ~  v) = - -  t ( v ) .  �9 
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3. The  Tits  Bui ld ing  o f  a M=nl fo ld  o f  Nonpos i t lve  Curvature 

We define Weyl simplices at infinity and show how they give rise to a topological 
Tits building. 

Call a point x at infinity regular if it has g-regular representative geodesic rays. 
Otherwise we call x singular. Note that the set ~ (oo)  of regular points is open and dense 
in M(oo).  We call x e M(oo) r-periodic if x = ~,,(~) for an r-periodic vector v. 

3.1.  Lemma. ~ The r-periodic points are dense in M(oo).  

Proof. - -  This follows from Lemma 2.17. �9 

3.2.  Definition. - -  Let x e ~ (oo)  with geodesic representative yo. The Weyl simplex 
of x is the set 

c ( x )  = { v (oo) : w }. 

The interior of C(x) is the set C(x) = { y,,(oo) : w e Int  C~(v)} and the boundary of C(x) 
is OC(x) = C(x)\C(x).  I f  w is the center of  g~ we call ~',o(c~ the center of  C(x). 

Clearly these definitions do not depend on the choice of representative geodesic 
for x. Since the Weyl simplex of an g-regular vector is tangent to a (unique) k-flat, we 
see that C(x) ~ F(oo) for some k-flat F. Note that C(x) is closed in F(oo) and ~(x) is 
its topological interior as a subset of  F(oo). We see from Proposition 2.21 and 2.20 that 

(i) Every point of/~I(co) lies in a Weyl simplex; 
(ii) A point of M(co)  is regular (singular) if and only if it lies in the interior (boun- 

dary) of a Weyl simplex. 

3.3.  Proposition. - -  The set of  Weyl simplices is compact in the Hausdorff topology. 

Proof. ~ Let { x, } _c ~ (oo) .  Fix a point p in IM. Choose w, E S~ IM such that 
Yw,(oo) is the centre of C(x,). Passing to a subsequence, we may assume that { w, } con- 

verges to a vector w ~ S~ ~I. Since all Weyl simplices are isometric, .~;~(w,, O~(w,)) 

is uniformly bounded away from 0. By Corollary 2.19, w is t-regular and ~(w,)  --+ C~(w) 
in the Hausdorff  metric. Hence C(x,) ~ C(y) where y =-f,o(oo). �9 

3.4.  Lemma. - -  I f  F is a regular k-flat, then F(oo) is a union of finitely many Weft 

simplices. 

Proof. - -  I f  F is a k-flat such that Sp F contains a dense set of  regular vectors, then 
F(co) is clearly a finite union of Weyl simplices. Since these k-flats are dense in the space 
of all regular k-flats by Lemma 2.17, the claim follows from Corollary 2.19. �9 

Now we come to the key lemma of this section. We say that a flat F joins two 
points x , y  ~M(oo)  if x ~F(oo)  and y ~F(oo) .  
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,t,(-- ~,) 

8 .5 .  Lemma. - -  Let v e SNI be r-periodic (Definition 2.15) .  Then any point y E ~[( co ) 

can be joined to y~(-- co) by a regular k-flat F. Moreover, i f  ~ is an axial isometry of  y , ,  there is a 
sequence of  integers n k ~ co such that ~-k [ F(co) converges to a homeomorphism ~ : F(co) ~ F(v) 
that maps Weyt simplices to Weyl simplices and is the identity on F(co) c~ F(v) (co). 

Remark. - -  It  is possible for two points in 1~(co) not to be joined by a k-flat. In 
rank 1 for instance, the Heintze examples [BBE, Introduction] contain 2-flats. I f  x 4:y 
are two nonopposite points at infinity of such a 2-flat, then x a n d y  cannot  be joined by 
a geodesic. 

v.(oo) 
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Fxo. 2 

Proof. m By Corollary 3.4,  F(v) (co) is the union of finitely many Weyl simplices, 
which are permuted  by ?. After replacing 9 by a power of q) if necessary, we may assume 
that  q~ fixes each point  of F(v) (co). 

I t  is clearly sufficient to prove the l emma in the case that  y is regular and the 
center of C(y) .  By L e m m a  1.1 there is an increasing sequence nx, n~, . . .  such that  
~p"~y-+y'E F(v) (co). By Proposition 3.3,  y '  is regular and is the center of C(y ' ) .  Let 
w----V(~v,y') and set z ' =  y~(--  co) e F(v)(co).  By Proposition 2.23, z' is the center 
of C(z'). Since v is r-periodic and y '  is regular, we see from the discussion before Defi- 
nition 2.15 that  w is p-regular. Hence F(v) contains a regular geodesic y, parallel to y,,, 
with y ( - - c o )  = z' and y(co) = y ' .  Let H u be the strong unstable horosphere of "~(0). 

Consider the continuous injective map  f : H U •  C(z ' ) -~ l~ I ( co )  given by 
f ( p ,  z") = Yves.,")(-- co)- As H ~ x  C(z') and NI(co) have the same dimension, f maps 
a neighbourhood of (y(0), z') homeomorphical ly onto a neighbourhood U ofy' .  Moreover 

f ( p ,  z")  is the center of its Weyl simplex if and only if z" = z'. Since q~"~y -~y' ,  we 
can assume that  c?"ky e U for every k/> 1. We see that  for each k there is a geodesic yz 
joining z' to c?"ky which passes through a point  qk of H ". As k -+ co, q~ -+ y(0) and 
Yk -+ Y- Since y is regular, we can assume that  every y~ is regular. 
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Since q~ fixes F(v)(oo),  ~-"ko ~'k is a regular geodesic joining z' t o y  for each k. 
These parallel regular geodesics must all lie in a regular k-flat F. Clearly y e F(oo). 
Also { q~-"kqk } ~_ F. Since {q~} is a bounded sequence in 1~, ~ is an axial 
isometry for T, and n ~  0% it is easily shown that lira ? - "kw k = ~.~ 

~ --r oo 

Hence T~ oo) e F(oo). Finally, since ?-k F contains y~ and { ),~ } converges to the 
regular geodesic y which lies in F(v), we see that ?-k F(oo) -+ F(v) (oo). I t  is clear from 
Lemma 3.3 that the Weyl simplices of  q~"kF(oo) converge to those of F(v)(or) .  �9 

Before proceeding to construct the Tits building, we extend the argument used 
in the above proof to join z' to ?-ky. 

3.6. Lemma. ~ Let v be a regular vector. There are neighbourhoods U of  "G(-- oo) and 

V of  ~,(oo) and continuous maps Q : U  • V - + S M ,  y ' : U  • V - + ~ ( o o )  with 
Q(-fo(--  oo), ~.~ = v such that for each (x,y) e U  • V the geodesic yoa~.u> joins x to 
~'(x,y) ~ C(y). 

~,(g(a, 0)) 

~ g ( . ,  b) 
k(a, b, u) 

// 
gu,(a, O) 

FIG. 3 

Proof. ~ Let B " -*  be the unit ball in R "-k. Since the foliations W* and W" are 
transverse near v, there is an injective and continuous map g : B  " -k  • B"-*---~ S~I 
such that g(0, 0) = v, g( . ,  0) is a diffeomorphism onto a neighborhood of v in W"(v) 
and g(a, .) is a diffeomorphism onto a neighborhood of g(a, 0) in W'(g(a, 0)) for 

each a ~ B "-*. Given u e ~(v), we let h(a, b, u) be the vector at n(g(a, b)) asymptotic 
to the vector u' at n(g(a, 0)) that is negatively asymptotic with u. Note that h maps 
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{ a} • { b } • l ( v )  isometrically onto i ( g ( a ,  b)). Also h is continuous and injective. 
Define 

H : B  x 13 x x x  (oo) 

by H(a, b, u, w) = (y~,, ~,,,(-- oo), y~,,b,,,,(oo)). 

Note that  H maps { a ) X { b } • i ( v )  x if(v) onto C(y~~ b,,,(-- oo)) • C(y~~ b,,~(~176 
Also H is continuous and injective. By invariance of domain,  the image of  t t  is a 
neighbourhood of (y , ( - -  oo), yo(oo)) in 1~I(oo) • i~(oo). Let U, V _c ~ (oo )  be 
neighbourhoods of y , ( - - o o )  and y,(oo) respectively such that  U • V _  im1 / .  
Given ( x , y ) ~ U  X V, let ( a , b , u , w ) =  H- l (x ,y ) .  Then  the geodesic Y~,,b,u~ joins 
x to y ' =  y~~ Since y = y~~ we see that  y ' ~ C ( y )  because 
C(y) = C ( y ' )  = C(yh~,. b,,~(oo)). I t  is clear that  y ~  b,,~ varies continuously with x andy .  
We define Q.(x ,y)  = h(a, b, u). �9 

Consider a regular k-flat F. Let Y, = X F be the set of Weyl simplices in F(oo) 
and all their intersections. For A, B E ~ we say that  A is a face of B if A C B. Our  first 
goal is to show that  Z with this order relation is a Coxeter complex. 

We identify F(oo) with S=F for some point p ~ F. This gives F(oo) the geometric 
structure of the uni t  sphere in k-dimensional Euclidean space. Clearly this structure 
is independent  of the choice of p. 

Let C, C ' ~  X. Then  C n C' is convex. 1/ence we can speak of the codimension 

of C n C', codim C n C', in F(oo).  I f  C 4= C' then codim C n C'/> 1 since ~ n C'  = ~.  
I f  codim C n C' = 1 then C n C' lies in the set 1/ of points at infinity of a unique 
hyperplane in F. We call such a set H a hypersphere. Denote by ~ the collection of hyper- 
spheres in F(oD). Let W be the group generated by the orthogonal reflections in the 
hyperspheres H ~ ~ .  

3 .7 .  Lemma. ~ (i) Let C, D E E. I f  codim C n D = 1 and i f  w is the reflection in 

the hypersphere H spanned by C n D, then w(D) = C. 

(ii) I f  C, D e Z are Weyl simplices, then there is a sequence of  Weft  simplices 

C = C o ,  C x , . . . , C . , = D  in Z such that c o d i m C ~ _ l n C ~ =  1 for  i =  1, . . ., m. 

(iii) I f  w ~ W then w ( . ~ )  C .,'f'. 

Proof. - -  (i) Because the r-periodic vectors are dense, we may assume by the conti- 
nuity of Weyl simplices and fiats that F contains an r-periodic vector v with y,(oo) e C. 
Let q~ be an axial isometry of y,. 

By the definition of Weyl simplices, there is a regular k-flat F' such that  C C F'(oo) 
but  I ~ n F'(oo) = O. By L e m m a  3.5 there is a sequence of integers n~-~ oo such that  
q~,k [ F '(oo) converges to a homeomorphism �9 : F '(oo) ~ F(oo) that  maps Weyl sim- 
plices to Weyl simplices. By Corollary 3 .4  there is a Weyl simplex D 'C  F'(oo) such 
that  ~(D')  = D .  Clearly D '4 :  C and D ' n C = D n C .  As n ~ ,  q~-"(D') sub- 

7 
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converges to a simplex in F ( ~ ) .  Clearly any such limit contains D n C. Since ~"kD' 
converges to D it is clear from Lemma 1.1 that l i rn  ~ - "  D'  = (3. Since all the ~ - "  D'  

are isometric there is a sequence m~ -+ co such that ~-"k D'  converges to an isometry 

: D'  ~ C. Also ~ : D' ~ D is art isometry. Thus the map W o ~ -1  : D ~ C is an 
isometry that leaves (3 n D pointwise fixed. Hence W o ~ -1  = w [ D. Hence w(D) = C. 

(ii) Since Y. is finite the set 

X = U { E n E ' : E , E ' E E ,  c o d i m E n E ' ~ > 2 }  

has codimension at least 2 in F ( ~ ) .  Since the simplices in Y~ cover F(oo),  there is a 
path y C F(co) that starts in (3, ends in D and does not intersect x. Furthermore we 

may assume that y consists of great circle arcs which have only transverse intersections 
with the hyperspheres H �9 Clearly the sequence of Weyl simplices that y intersects 

satisfies the claim of (ii). 

(iii) It  suffices to prove this for a reflection w in a hypersphere H �9 ~ .  Suppose H 
is spanned by (2 n C' for some Weyl simplices C, (3' in Y.. Let D be a Weyl simplex 
in F ( ~ )  and let Co = C, C1, �9 �9 C,, = D be a sequence of  Weyl simplices as in (ii). 

By (i) we know that w(C0) �9 Y.. Suppose that w((3~) �9 ~; for i = 0, . . . ,  j - -  1. Let w" 
be the reflection in the hypersphere H "  spanned by Cj_  1 n Cj. Clearly w(H")  inter- 
sects 0w(Cj_l)  in a set of  codimension 1 in F(co) .  Since w((3j_l) �9 y. it is clear that 
w(H")  �9 Let w' � 9  be the reflection in w(H") .  By (i) we have w"(Cj) : Cj_ t 
and w ' ( w ( C j _ ~ ) ) � 9  As w = w' w w "  we obtain 

w(C;) = w' w w " ( a j )  = w ' ( w ( a j _ ~ ) )  �9 x .  

By the obvious induction, we have w(D) �9 E. Since any H ~ ~ is spanned by the inter- 

section of two simplices in Z, the claim of (iii) follows. �9 

We refer to [T, chapter 2] or [Bou] for the definition and properties of Coxeter 

complexes. 

3.8. Theorem. ~ The ordered set (E, C) is a Coxeter complex. In particular, the faces 

of  a Weft  chamber form a simplex when ordered by inclusion. Moreover, F_, is the geometric realization 

of  the Coxeter complex in the (k - -1 ) - sphere  F(oo).  

Proof. - -  Since W permutes the Weyl simplices, W is finite. There is no common 
fixed point of  W in F ( ~ ) .  In fact suppose x is a common fixed point. Then x �9 [7 H 

r r � 9  

and hence the point opposite to x in F(oo) is also in [7 H.  Then the diameter of  any 

Weyl simplex in Z is 7:. This is impossible by [BBS, Lemma 1.6]. 

Fix a point p ~ F. For H e.g," let I~I C F be the hyperplane passing through p 

with I2I(~) = H.  By the above, the family of hyperplanes H, H E ~", satisfies the condi- 

tions (D1) and (D2) of [-Bou, V, w Let ~ be the set of all cones C C F based at p with 

(~(m) = C for some C �9 Z. Order ,~ by inclusion. Clearly (Z, C) and (Z, C) are iso- 
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morphic. By [Bou, V, 3.9, Proposition 7] the cone C for C e Y, is a simplicial cone. 
By [-Bou, V, 1.6], (~ with all its faces is a simplex. Hence (Z, C) is a complex. By 
Lemma 3.7 (ii), Y, is a chamber complex. Clearly ~ is thin. Since W maps Weyl simplices 
to Weyl simplices by Lemma 3.7 (iii), Lemma 3.7 (i) shows that Z is a Coxeter complex. 

That  Y, is the geometric realization also follows from this construction. �9 
Now we will introduce the Tits building on the sphere at infinity of M. We refer 

to IT, chapter 3] for the definition and basic properties of buildings. 

S.9. Definition. - -  Let A be the set consisting of the Weyl simplices at infinity 
and all their intersections. I f  A, B E A we say that A is a f ace  of B if A C B. 

By Theorem 3.8, (A, C) is a complex. 

S. 10. Definition. - -  A subcomplex Z of A that is isomorphic to a complex Y'F for 
some regular k-flat F is called an apartment if the union of  the Weyl simplices in Y, is 
homeomorphic to a (k - -  1)-sphere. The collection of all apartments is denoted by ~r 

Remark .  - -  Since the set of apartments of a spherical building is unique [T 3.1, 
3.26] it is not too crucial exactly how we define art apartment.  

S. 11. Theorem. - -  The  pa ir  (A, M) is a spherical T i t s  building. 

Proof.  - -  We check the axioms B1-B4 for Tits buildings (cf. Introduction). 

(B1) Let B ~ A have codimension 1. Then B is a wall of  a Weyl simplex C. Let 7, 
be a regular geodesic with y,(oo) E ~ and let F ---- F(v). Let I) 1 be the Weyl simplex 
in Z~, that contains B and is adjacent to C. By the definition of Weyl simplices there 
is a regular geodesic T~ such that gw(oo) e C and F(w) (oo) n f) l  = O. Let 1)2 be the 
Weyl simplex in F(w)(oo) adjacent to C and containing B. Now B C C ,  D1, D2 
and hence A is thick. 

(B2) This axiom follows from Theorem 3.8. 
(B3) For p E ~i let % be the geodesic symmetry about p. Since - -  ~(v) = ~ ( - -  v) 

for any t-regular vector v by Proposition 2.23 it is clear a~ induces an automorphism 
of the complex A. 

Let Dr, D2 be two Weyl simplices and let 7 be a regular geodesic with Y(oo) ~ I) 1. 
By Lemma 3.6 there is a neighborhood U of Y(-- oo) such that any x ~ U is joined to 
a point in I) 1 by a regular geodesic. By Lemma 3.1 there is an r-periodic point x e U. 
Let p e 1~I be a point on a geodesic joining x to a point in 1) 1. Since x ~ ~ D1, Lemma 3.5 
shows that there is a regular k-flat F joining % 1)x to % D 2. Hence 1)x and 1)2 belong 
to the apartment  ~, X F. Since any two elements of A are contained in Weyl simplices, 

axiom (B3) is proved. 
(B4) Let Z and Z' be two apartments such that ~ c~ Z' contains two elements A 

and A' of  A. We consider first the case where A is a Weyl simplex. After replacing Z 
and Z' by their images under a geodesic symmetry (as in the proof of (B3)), we may 
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assume that the Weyl simplex A contains an r-periodic point x. Let v be an r-periodic 
vector with x = y , ( - -  co), and 9 an axial isometry for y, with x = lim 9 - " ~ v .  Choose 

a sequence of  integers n k ~ oo such that, for any Weyl simplex C ~ ~ u Z', ~-, C 
converges to a Weyl simplex in F(v) (oo). This is possible by Lemma 3.5 since Y. w Z' 
contains only finitely many simplices. Note that ~-k [ Z w Z' converges to a continuous 
map �9 : ]g u Y.' ~ F(v) (oo). Clearly C n O(Y~\C) = O. Since O] C is the identity, 
O[  Y.\CI is a map between k -  1 dimensional discs that fixes their common boundary. 
Suppose p e F(v) (oo ) \C  is not in O ( ~ \ C ) .  Let P be the projection along rays emanating 
from p of  F ( v ) ( o o ) \ C  to 0C. Then P o �9 is a retract of  ZkC onto 0C. By [Sp, Corol- 
lary 4 .7 .4 ]  this is impossible. Hence  O[Y~ and similarly O [ ~ '  are surjective. Since 
the number  of  Weyl simplices in ~, ~ '  and X~,~ are the same and �9 is a morphism, 
O ] Z  and �9 [ Y~' are isomorphisms. Hence  (O [ X') -1 o (O ] Z) is an isomorphism from Z 

to X' that fixes Y~ rn Y~' pointwise. 
Now we consider the general case. Choose Weyl simplices C and C' such that 

A c_ C E X and A' c C' ~ Y.'. After replacing Z and Z' by their images under a geodesic 

symmetry, we can assume that ~ contains an r-periodic point. By Lemma 3.5, there 
is a regular k-flat F such that C, C' __c_ F(oo). We have seen above that there are iso- 

morphisms �9 : Z ~ X~, and O' : X' -+ El, that fix C u A' and A u C' respectively. 
Hence O ' -1o  O:Y. ~ Z'  is an isomorphism that fixes A and A' and all their faces. 

This proves (B4). 
Finally notice that A is spherical since there are only finitely many Weyl simplices 

in an apartment. �9 

Note that the chambers of  A are the Weyl simplices. We will use the two names 

interchangeably from now on. 
Finally we topologize A. We refer to [BS, Section 1] for the definition and basic 

properties of  topological buildings. The set A 0 of vertices of  A is a subset of 1~I(oo). 

Give A 0 the induced topology. By Proposition 3.3 the space of chambers of  A, Cham A, 
is closed in A0 k. Hence the set A~ of faces of  dimension i is closed in A~. Therefore A is 

a topological building. 

3 . 1 3 .  Proposition. - -  The topological building A is compact, metric and locally connected. 

Proof. - -  Clearly A is metric. By Proposition 3.3, A is compact. To show that A 
o 

is locally connected, let C ~ Cham A. Choose v ~ .oq ~ with y,(oo) e C. By Theorem 2.18, 
v is rigid. Let U ___ .~  be a connected open neighborhood of v satisfying the properties 
of  Definition 2.4.  Set V ---- { y,(oo) : u E U }. Clearly V is a connected neighborhood 
of  ~ in 1~(oo) and V is a union of  interiors of  Weyl simplices. Hence Cham A and thus A 

are locally connected. �9 

3.13. Lemma. - -  Let T be a regular geodesic contained in the k-flat F. Set x = y(oo) 

and a, ---- e,a,,o a,~0,. I f  y e !TcI( oo ) then - ~ o , ( a , y ,  x) ~ - ~ o , ( y ,  x) for  t >~ O. For t suf- 
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fickntly big, equality holds i f  and only i f  y e F(Qo). Moreover any limit point o f  asy as t -~ oo 
lies in F(oo).  

Proof. - -  Clearly 

-r  x) <~ -~..a,,(a,y, x) = = ---r x) 
- -  = 

I f  equality holds then T(t), T(0) and aj (y)  span a flat half strip. Suppose t is so large 
that any Jacobi  field along y that is parallel between y(0) and y(t) is parallel from y(oo) 
to y ( - -  oo). Then as(y  ) and hence y lie in F(oo).  The remaining claim follows as in 

Lemma 1.1. �9 

Let G be the topological automorphism group of A [BS, Section 1]. Clearly the 
actions on l~I(oo) of  geodesic symmetries and covering transformations are elements 
of  G. I f  C �9 A let G c be the stabiliser of  C in G. Let Opp  C be the set of elements of A 
opposite C. Clearly G c acts on Opp C. Note that Opp  C is open in Chain A [BS, 1.9]. 

3.14.  Lemma. - -  I f  C �9 Cham A then G c acts transitively on Opp C. 

Proof. ~ As  in the proof  of (B3) in Theorem 3.11, we may assume that C contains 
an r-periodic point x. Let D �9 Opp C. We first show that G c. D contains a neighborhood 
of D. By Lemma 3.5 there is a regular geodesic y that joins x to a point .y �9 D. By 
Lemma 3.6 there is a ball ~ about  D in Opp C such that: for all B �9 :~ we can pick a 
geodesic u depending continuously on B and joining x to a point y(B) in B so that 
.(D) = y .  By Proposition 2.23, -~q,B(0)(y(B), 0 B ) - - ~ ( x ,  0 C ) >  0. We may assume 

that ~ is small enough so that for all B �9 M, 

(*) <~B(o,(y(B),y) ~< -~.(o,(y(B),  0B). 

Set a~ = %B,)o ~v,~0)" Then a~ �9 G c depends continuously on B and t. I t  is clear from 

Lemma 3.13 that we can choose a ball :~' with D �9 ~ '  _ ~ such that a~(D) �9 ~ for 
all (B, t) �9 ~ '  x [0, oo). Let S = a~ ' .  By Lemma 3.13 and (*), a~(D) ~ B as t --* ~ y  
Moreover <~.vB(o)(a~y,y(B)) -~ 0 monotonically for each B. Hence a~(D) ~ B as t -+ oo 
uniformly for B �9 S. We get a continuous map ~ : S x [0, co] ~ ~ such that ~(B, oo) = B 
for all B � 9  and ~(S x [0, ~ ) )  c_ Go.D.  As a0B(D) = D  for all B � 9  a-gives rise to 

o 

a continuous map a : :~' -+ ~ with a(B) = B for each B e S and a(:~') _~ Ge.D.  Since 
S is not a retract o f ~ ' ,  we see that a ( ~ ' )  ~_ :~' (of. the proof  of (B4) in Theorem 3.11). 

o 

It follows that ~ '  ~ Gc.D.  

Finally we show that G c is transitive on Opp  C. Let v be an r-periodic vector 

with y~(oo) = x. Set E = C(y~(-- oo)). Let q~ be an axial isometry of y,.  I f D  �9 Opp C, 

then q~-" D ~ E as n --* oo. Since G c. E contains a neighbourhood of  E, we see that 

D �9 Gc.E.  �9 
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3.15. Proposition. - -  The building A is topologically Moufang. 

Proof. ~ Let Y~ and Z' be two apartments in A that intersect in a halfapartment A. 
According to Definition 3.1 of [BS] we have to find g ~ G such that g(Z') = Y. and 
g restricts to the identity on A. Let  G be a chamber in A. Let D and E be the chambers 

opposite to C in Z and Y~' respectively. By Lemma 3.14 there is g E G e such that 

g(E) = D. Hence g(Z') --~ Z. Clearly g [A = idA. �9 

4. I r r e d u c i b i l i t y  

We prove the following criterion for reducibility of  the building A attached to M 

in the last section. 

4 .1 .  Theorem. - -  The building A is reducible i f  and only i f  ~I is reducible. 

Proof. - -  Since M is simply connected, it is reducible if and only if it is a Rie- 
mannian product  of two factors of positive dimension. Clearly A is reducible if M is. 

Suppose that A is reducible. This means that A is the join of  two Tits buildings A x 

and A s. Any vertex of  A is either a vertex of  A x or of A s. We say that a vertex of A is of 

the first or second kind if it belongs to A 1 or A 2 respectively. 

4 .2 .  Lemma. - -  I f  x , y  ~ ~r 0o ) are vertices of  A of  different kinds, then ~a (x ,  y)  = ~/2 

for  every q ~ ~vI. 

Proof. ~ Let Z be an apartment containing both x and y. Then ~ is the join of 
apartments Et and Z~ in A t and As respectively. Since x , y  are of different kinds, it is 
clear that x , y  lie in a common chamber C of A. By Lemma 2.7 and Theorem 2.18, 
- ~ ( x , y )  is independent of  p ~ ~[. Consider a point p in a regular k-flat F such that 
F(oo) ~ C. Since F(co) carries the geometric realization of the Coxeter complex Z in 

which ~ t  and Y~ are orthogonal we have that . ~ ( x , y )  = ~/2. �9 
Now we construct two distributions on 1~I which will give rise to the desired split- 

ting as a product.  For p ~ 1~I, i = 1, 2, let V~(p) be the subspace of T~ i~I spanned by 

D~(p) = {v E S~ ~[ : v points to a vertex of  A(M) of the i-th kind}. Then V t and V2 

are orthogonal by Lemma 4.2.  They span TI~[ because any vector in SI~[ lies in a Weyl 
simplex whose vertices are all in Dt  u D2. Clearly D~(p) varies continuously with p 
and hence dim V~(p) is lower semicontinuous (i ----- 1, 2). Since V t and V~ are comple- 
mentary, we see that dim V~ is constant and V~ is a continuous distribution for i = 1, 2. 

We will say that a C t curve 6(s) is an integral curve of the distribution V, if 

~(s) ~V~(~(s)) for all s. 

4.3.  Lemma. - -  Let ~ be an integral curve of  V t. Let x ~ ~f (  ov ) be a vertex of A(M) 

of the second kind, and let f be the Busemann function of  a vector pointing toward x [BBE, p. 179]. 

Then f o  ~ is constant. 
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Proof. - -  For any q ~ l~I, grade f = - - V ( q ,  x ) ~  D2(q) and so is orthogonal to 

Vx(q). �9 
Now consider a point p ~ 1~I. I f  v E D2(P), then - - v  ~ D~(p), since u is a 

vertex of A(M) by Proposition 2.23 and cannot be of the first kind by Lemma 4.2. 
It  follows from Lemma 4.3 that if o is an integral curve of Vx starting at p, t h e n ,  lies in 

s,(p) = n H(v) n H ( - -  v), 

where H(v) is the horosphere defined in [BBE, w Conversely, any C t curve o in St(p) 
is an integral curve of V x. For it is clear that St(q) = St(p) for any q E St(p). Hence 
for any s, +(s) is orthogonal to D~(o(s)), and so +(s) ~ Vt(a(s)). 

Thus V x is integrable and Sl(p) is its integral submanifold through p. Similarly V2 
is integrable and its integral submanifold through p is 

S,(p) = n H(v) c~H( - -v ) .  

4.4. Lemma. - -  For p ~ ~I, i = 1, 2, S~(p) /s totally geodesic and S,(p) = exp~ V,(p). 

Proof. - -  It  is clear from the Flat Strip Theorem lEO, Proposition 5.1] that 

S,(p) ~_ exp, V,(p). 
As S~(p) is an integral submanifold of V,, we see that S~(p) is open in expp V,(p). 

It  follows that S,(p) = exp~ Vi(p) , since Si(p) is obviously closed. Busemann functions 
are convex, and so it follows that S~(p) is convex and hence totally geodesic. �9 

It  follows immediately that each of the distributions V~ is parallel along its own 
integral curves. Since V t and V~ are orthogonal complements, we also see that each 
of them is parallel along the integral curves of the other. I t  follows that V x and Vi are 
both parallel, and so, by a theorem of de R h a m  [KN, p. 187], M splits as a Rieman- 
nian product. This completes the proof of Theorem 4.1. �9 

5. Class i f i ca t ion  

We adapt the arguments of Gromov's Rigidity Theorem [BGS, Chapter 4] to 

prove 

5.1. Theorem. ~ I f  M is a complete Riemannian manifold with nonpositive bounded 

curvature, finite volume and rank at least 2 whose universal cover is irreducible, then M is locally 

symmetric. 

The Main Theorem of the Introduction follows using Proposition 4.1 of [E2]. 

Proof. - -  Let A be the building attached to M as in Section 3. By Propositions 3.12 
and 3.15 and Theorem 4.1, A is an infinite, irreducible, locally connected, compact, 
metric, topologically Moufang building of rank at least 2. Let G be the topological 
automorphism group of A and G o the connected component of the identity in G. By 
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[BS, Main Theorem],  G O is a simple noncompact real Lie group without center. Let 
A(G ~ be the topological building of parabolic subgroups attached to G O [BS, 1.2]. 
By [BS, Main Theorem],  A is isomorphic with A(G ~ as a topological building. We will 
identify A with A(G~ Let X = G~ be the symmetric space attached to G ~ where 
K is a maximal compact subgroup of G O . As in Section 3, X(oo) carries the 
structure of a topological building which we can identify with A(G ~ = A. Clearly 
rank X = rank A = rank M. 

Call a k-flat F in /~I t-regular if F(oo) contains a Weyl simplex C. As in Corol- 
lary 3.4 it follows that F(oo) is the union of finitely many Weyl simplices. Hence F(or)  

determines an apartment  Z F in A. 

For the symmetric space X the correspondence F ~ ~ ~3F. between k-flats F ~ in X 

and apartments in A is bijective. Given a regular k-flat F in 1~i we let F ~ be the unique 
k-flat in X with ZF = ZF.. Next we define a map �9 : ~I -~ X. Let p E ffl. Then the 
geodesic symmetry % defines a continuous automorphism of A. By [M, 16.2], % deter- 
mines an involutory isomorphism | of G ~ As % is continuous, | is analytic. Thus @~ 
induces an isometry 0~ : X -+ X. Since 0~ has order 2 it has a fixed point p" in X. Sup- 
pose q" is a second fixed point. Then 0~ fixes the geodesic through p~ and q'. Hence % 
has fixed points in A which is impossible. Therefore 0~ has a unique fixed point p~ Set 

= p ' .  

5.2. Lemma. 

(i) The map ~ : ~ ~ X is continuous. 

(ii) I f  F C ~,I is an t-regular k-flat, then ~(F) C F'. 

(i) Since % E G depends continuously on p ~ if'I, it is clear that �9 : ~i ~ X is 

continuous. 

(ii) Let p ~ F. Then % F = F, hence ~ Z1, = Y~. Therefore 0~ F ' =  F'. Since 
F ~ is totally geodesic, F ~ contains the fixed point ~(p) of 0~. �9 

Call a geodesic 7 maximally singular if 7(oo) is a vertex of A and call a vector v 
maximally singular if T,(oo) is a vertex of A. Suppose y is a maximally singular geodesic. 
Let C1 and C2 be two opposite chambers in Star T(c~ Then C1 n C 2 = { y(oo)}. 
Let F~ be the t-regular k-flat through y(0) and C~. Then F1 n F 2 = y. By Lemma 5.2, 
~(y) C F ~ n F ~ .  Since F~(oo) nF~(oo)  = { y ( o o ) , T ( - -  oo)}, F ~ n F ~  is a maximally 

singular geodesic in X which we call 7". If'~x and "f2 are two parallel maximally singular 
geodesics, they have the same endpoints and hence y~ is parallel to "f~. Moreover, if 8a 
and 82 are any two maximally singular geodesics, the families of geodesics parallel to 
8~ and ~ make the same angle as do those parallel to ~x and 82. 
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5 . 8 .  Lemma. ~ I f  y is a maximally singular geodesic then �9 ] y : y ~ y" is affine. 

.w t 

/ l /  
/ /qq, 

/ v(o) / 

Y 
v(0 

Yt 

,-f 

F~o. 4 

Proof. ~ Let F be an t-regular k-flat containing y. Let C be a cone in F based at y(0) 

such that C(oo) is a Weyl simplex with y(oo) as a vertex. Let H be the hyperplane spanned 
by y(0) and the vertices of ~(oo)  other than y(oo).  Let y' be the mirror image of  y 

with respect to H.  Then y' is also maximally singular. Since A is irreducible, ~-(0) and 
+'(0) are linearly independent. Also y and y' are both transversal to H.  

Since * is continuous, �9 is affine on y if, for all n ~ N and t ~ R,  

dx [ r  r  = n 

where d x denotes the distance in X. Let  H t be the hyperplane through y(t) parallel to H.  
Since the hyperplane H is the span of  maximally singular vectors, ~ (H)  is parallel 

to ~ (Ht ) .  Let Y'a and Y'2 be the geodesics parallel to y' starting at y(t) and y(2t). Set 
t ~ t qa = Y1 c~ H and q2 Y2 c~ H a. Let Y1 be the geodesic parallel to y that starts at ql. 

Then Ya and y~ intersect at q2- As ~(Ya) and ~(Y2) as well as ~(y ' ) ,  ~(y;) and ~(y~) are 

parallel, we see that 

dx[*(y(0)) , ~(y(t))]  = dx[~(qt), ~(q:)] = dx[~(y(t)),  ~(y(2t))] .  

Hence  r  = 2 r  

The claim for general n follows similarly. �9 
Now consider an t-regular k-flat F. We will show that �9 : F ~ F" is affine. Our  

proof  is virtually the same as in [BGS]. Fix a point p ~ F and identify F with R k so t ha tp  

is the origin. Let C be a Weyl simplex in F(oo),  and let yl ,  . . . ,  Yk be the maximally 
singular geodesics starting at p for which yl(oo),  . . ,  yk(ov) are the vertices of  C. 
Then +t(0), . . . ,  ~'k(0) are linearly independent. Every point q ~ F can be written 

uniquely as 
q = vt(tt) + . . .  + Yk(t,) 

where t, e R.  Identify F" with R * using O(p) as the origin. Since the map $ ~ ~" on the 
set of  maximally singular geodesics in F preserves parallelism and �9 maps ~ into 8", 

we have 
r  = r  + . . .  + 

It  follows from Lemma 5.3 that ~ l  F is affme. 

8 
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Since every geodesic of  M lies in an t-regular flat, we see that, for each geodesic 7 
of 1~I, there is a constant ~(7) such that 

= xCv) a(ql,  q,) 

for any points qt and q2 on 7. We will show that ),(7) is independent of  7. 

5.4.  Lemma. - -  Let p be a point of  an t-regular k-flat F. Then X(7 ) is the same for all 
geodesics 7 with ~'(0)~ S~F. 

Proof. - -  Since ~ is affme and SpF is spanned by maximally singular vectors, 
we can assume that -( is maximally singular. I f  v and v' are vertices of  a Weyl simplex 

in Sp F, then -~p(v, v') ~< ~]2. Moreover this inequality is strict if v' and v are adjacent 
in the Coxeter diagram for A. Since A is irreducible, any maximally singular vectors 
w, w ' ~  S~F can be connected by a finite chain of  maximally singular vectors 
wz = w, w~, . . . ,  w,, = w' such that -r w,+l) < ~/2 for i ---- 1, 2, . . . ,  r a -  1. 

Thus it will suffice to prove that if v, w e S~ F are maximally singular vectors 

with <]t~(v, w) < ~x/2, then ~,(7~ = ),(7~). Let P be the plane in F spanned by v and w. 
The circle S~ P is a union of  one dimensional faces of  Weyl simplices. Since such faces 
have length at most ~/2 and -<}c~(v, w ) <  re/2, we see that there is a maximally singular 
vector u e S~ P that is not + v or • w. As �9 [ P is affine and preserves the angles between 

the maximally singular geodesics "f,,, 7, and 7~,, we see that ~,(yo) = ~,(y~) = ),(7~). �9 

It  follows that if F is an t-regular k-flat, then �9 I F is a multiple of an isometry 
from F to F" by a scalar X F for any g-regular k-flat F. We show that 7, F is constant. Let F 
and F be l-regular k-flats through a point p ~ 1~1. Let C and C be Weyl simplices in F(oo) 

and ~(oo). Jo in  C to C by a gallery C = Co, C1, . . . ,  C,, = C. Let F, be the t-regular 
k-flat through p and C,. Then 17, n F,+I contains a geodesic through p. Hence 
)'Fi = )'~i.~" Hence ~,y = ~ depends only on p. I f  q ~ 1~I there is an t-regular k-flat 

through p and q. Hence ~.F is a constant ~.. 
Since any two points of  ffl lie in an g-regular k-flat we see that 

~( ,~(p) ,  ,t,(q) ) = X a(p, q) 

for any p, q E M. 
Note that ~, 4= 0. Otherwise �9 maps ~i to a point in X. This would mean that 

% In = %]a for all p, q ~ ~I. This, however, contradicts Lemma 3.13, for example. 

Now it is clear that 1~I is locally symmetric. �9 
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