
A PROOF OF THE C 1 STABILITY CONJECTURE 
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I N T R O D U C T I O N  

Two continuous maps, f x : X  1 ) and f2:  X~) are topologically equivalent if there 
exists a homeomorphism h : X  1 ~ Xz such that h- l f~  h = f ~ .  A C'  diffeomorphism f 
of a closed manifold M is C'  structurally stable if it has a C" neighborhood q / such  that 
every g e o# is topologically equivalent to f .  This concept was introduced in the thirties 
by Andronov and Pontrjagin [1], in the limited (when compared with its present range) 
framework of flows on the two dimensional disk. The turning point of its development 
that connected it with much richer possibilities, came in the early sixties, through the 
work of Smale who, as a consequence of his improved version of a classical result of 
Birkhoff about homoclinic points, showed that structural stability can coexist with 
highly developed forms of recurrence [24]. 

Immediatly afterwards, the understanding of the mechanisms that grant structural 
stability grew substantially through the papers of Anosov [2], Smale [25] and Palis 
and Smale [16], that proved several new classes of dynamical systems to be structurally 
stable. On the light of these results, and intending to unify them, Palis and Smale conjec- 
tured in their joint paper that the two conditions known as Axiom A and the Strong 
Transversality Condition (whose definitions we shall recall below) are necessary and 
sufficient for a C'  diffeomorphism to be C'  structurally stable. Their sufficiency was 
proved in the well known papers of Robbin [20] for (r 1> 2) and Robinson [22] (for 
r = 1). The question of their necessity was reduced to prove that C'  structural stability 
implies Axiom A (Robinson [21]). This problem became known as the Stability Conjec- 
ture, and it is the objective of this paper to prove it in the C 1 case. 

Theorem A. - -  Every C x structurally stable diffeomorphism of a closed manifold satisfies 
Axiom A. 

In the next section we shall prove this result. The proof will be supported on six 
theorems. Three of them were already known; the other three wiI1 be proved in the 
remaining sections. 

21 



162 R . I C A R D O  MAlqI~  

Several relevant problems closely connected with the Stability Conjecture remain 
open; notably the C ~ case (that looks beyond the scope of the available techniques) 
and, even in the C 1 case, the characterization of the more flexible form of stability known 
as fl-stability as well as the corresponding problems for flows, for which the methods 
we use here open realistic possibilities. The case of flows on compact manifolds with 
boundary that are tangent to the boundary pose a different type of problem. Recent 
examples show that Axiom A is not necessary for structural stability [7]. 

Before developing the discussion of these questions, we shall first recall the definition 
and main virtues of Axiom A dynamics. 

From now on M will denote a closed manifold and Diff ' (M) will be the space 
of C'  diffeomorphisms of 1V[ endowed with the C'  topology. We say that A is a hyperbolic 
set o f f  e Diff ' (M) if it is compact, invariant (i.e.f(A) = A) and there exists a continuous 
splitting TM[A ---- E '  (9 E" (where TM/A is the tangent bundle restricted to A) that is 
invariant (i.e. (Dr)  E" = E*, (Df)  E" = E") and there exist constants C > 0, 0 < X < 1 
such that 

II(W")/E'(x)II-< cx-, 
[l(Df-")/E"(x) ]1 <- Cx" 

for all x e A and n/> 0. Expositions of the rich theory of hyperbolic sets can be found 
in the books of  Bowen [3], Newhouse [14] and Shub [23]. Given f s Diff ' (M) and 
x e M define the stable and unstable manifolds of x as: 

W}(x) = { y E M [  H+m d( f" (x ) , f " (y ) )  = 0 }  

W~1(x ) = {y e M ] lira d ( f - " ( x ) , f - " ( y ) )  = 0 }. 
n-~ + o0 

When dealing with only one diffeomorphism, as will be the case in this section, we shall 
denote these sets as W'(x) and W"(x). 

When x belongs to a hyperbolic set, then W*(x) and W"(x) are C'  injectively 
immersed submanifolds ([25], [6]). 

The nonwandering set f2 ( f )  o f f  is defined as the set of  points x e M such that 
for every neighborhood U of x there exists n/> 1 satisfying f " ( U )  c~ U 4 = o. When f~ ( f )  
is a hyperbolic set and the periodic points are dense in f~:(f), we say t h a t f  satisfies 
Axiom A. In this case it is known [25] that 

(1) M =  O W ' ( x ) =  O W"(x). 
E ~(I) �9 ~ ~(.f) 

Using this property it is easy to see that W' (y)  and W~(y) are C'  injectively immersed 
manifolds for a l l y  e M, because by (1), for a l l y  E M, there exists x e f l ( f )  such that 

y e W'(x) and then W'(x) = W' (y) .  Since W'(x) is a C '  injectively immersed manifold, 
the property is proved. 

We say that an Axiom A di f feomorphismf  satisfies the Strong Transversality Condition 
when 

T,  W'(x) + T,  W"(x) = T,  M 
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for all x E M, or, what is equivalent by (1), if for all p and q in f~ ( f ) ,  W'(p) and W~(q) 
intersect transversally. There are several characterizations of diffeomorphisms satisfying 
Axiom A and the Strong Transversality Condition. For instance, f e I)iff '(M) satisfies 
Axiom A and the Strong Transversality Condition if and only if every tangent vector 
v e T1V[ can be decomposed as v ~ v + + v - ,  where v + and v- satisfy 

lim inf (Dr") v-  I I (Df" )  v+ II = II II = 0. 

For this and other characterizations, see [11]. 
Let us now discuss the open problems related to Theorem A. The first one must 

be the C r case of Theorem A with r ~> 1. Unfortunately there is little to say about this 
question. Not being even known whether a C a structurally stable diffeomorphism has 
at least one periodic point it seems, to say the least, difficult to prove that they are dense 
in the nonwandering set as the definition of Axiom A requires. Even if this density 
property is proved and unless the method used to achieve this feat sheds new light on 
these questions, other disturbingly simple unanswered questions remain (see the Intro- 
duction of [12]). 

Turning to more feasible questions, we have the problem of characterizing 
f2-stability, that is defined as follows: f is C r f~-stable if it has a C'  neighborhood q /such  
that g/ f2(g)  is topologically equivalent to f / f 2 ( f )  for all g ~ a~. Smale proved that i f f  
satisfies Axiom A plus the so called no cycles condition then f is f~-stable [26]. The 
converse problem has been reduced to proving that C" f2-stability implies Axiom A 
(Pulis [15]). When r >  1 this problem runs into the same (or worse) stumbling blocks 
than the Stability Conjecture. When r----- 1 we think, as we say above, that the tech- 
niques developed here make of it a realistic target. Similar comments hold for the corres- 
ponding problems for flows on boundaryless compact manifolds. But in the quite natural 
attempt to study structural stability in the space of flows on a compact manifold with 
boundary that are tangent to the boundary,  new and different problems arise. Labarca 
and Pacifico [7] have found examples that show that in this framework there exist struc- 
turally stable flows that do not satisfy Axiom A. The conjecture itself, then, must be 
reformulated in terms that so far have not been proposed. 

Returning to the case of diffeomorphisms of a closed manifold M, define ~- ' (M) 
as the set of diffeomorphisms f :  M~ having a C" neighborhood ~ such that all the 
periodic points of every g ~ ~ are hyperbolic. I t  is easy to see [4] that C r structurally 
or f2-stable diffeomorphisms belong to ~ " ( M ) .  Moreover most of  the steps toward proving 
that  structural or f2-stability imply Axiom A use only the weaker fact that such diffeo- 
morphisms belong to ~- ' (M).  For this reason we conjectured in [12] that every element 
of ~ " ( M )  satisfies Axiom A. For the reasons we have just explained, this conjecture 
contains the questions of whether structural or f2-stability imply Axiom A. Once more, 

and for the same reasons than in the previous problems, let us leave aside the case r > 1. 
When dim M ---- 2 (and r ----- 1) we proved this conjecture in [12]. Even if the techniques 
developed here fall short of extending this result to the n-dimensional case, it is interesting, 
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and promising, that most of  the steps of the proof of Theorem A require only the hypo- 

thesis f c #Za(M). It  is only in the last step where we need the whole weight of  the 
structural stability o f f .  

On the other hand, if we define o*a(M) for flows in the obvious, analogous form 
to that used for diffeomorphisms, it is not true that flows in o~a(M) satisfy Axiom A. 
An exemple is the Guckenheimer-Lorenz attractor [5], that also plays the key role in 
the construction of the example of Labarca and Pacifico mentioned above. 

I wish to thank Jacob Palls for several important corrections and to Claus Doering 
for his deep and exhaustive revision of the first version of this work. 

I .  - -  P r o o f  o f  T h e o r e m  A 

As we explained in the Introduction, in this section we shall prove Theorem A, 
using for this purpose six theorems that either have been already proved elsewhere or 
will be proved in the next sections. 

Let M be a closed manifold and let ~ ( M )  be defined as in the Introduction. 
Let P ( f )  denote the set of  periodic points of  the diffeomorphism f and, if x e P ( f ) ,  
let E'(x) and E~(x) be the stable and unstable subspaces of T~ M, i.e. the subspaces 
associated to the eigenvalues of D f  ~ : T,  M ~ (where n is the period of x) that have res- 
pectively modulus < 1 and > 1. Clearly (Df)  E~(x) ' = E*(f(x)), (Df)  E~(x) = E~(f(x)) 
and, if x is hyperbolic, T,  1V[ = E'(x)@ E~(x). Denote by P ( f )  the closure of P ( f ) .  

The first step of the proof of Theorem A is the following corollary of Pugh's Closing 
Lemma [19] proved in the Introduction of [12]. 

Theorem 1.1. - -  I f  f e ~ ( M ) ,  then •( f )  = P( f ) .  

Now define P~(f)  as the set of  points x e P ( f )  such that dim E'(x) = i. By I .  1 

dim M 

n ( f )  = 0 P, ( f )  
i = 0  

when f e ~ ' I (M).  Then, i f f  e ~ ( iV i ) ,  it is sufficient to show that P~(f)  is a hyperbolic 
set for all 0 ~< i ~< dim M. The cases i ----- 0 and i = dim 1V[ follow from a theorem due 

to Pliss. 

Theorem 1.2 (Pliss [18]). - -  f i f e  ~(1Vi), then P0( f )  and PaimM(f) are finite. 

Obviously this implies that P 0 ( f )  = P0( f )  and P ~ , ~ ( f )  = P ~ ( f )  are hyper- 
bolic sets w h e n f  e a~'a(M). To prove the hyperbolicity of the sets P , ( f )  for 1 ~< i ~< dim M 
the basic strategy is the obvious one: to start with the splittings T,  1V[ ---- E"(x) @ Eu(x) 

that we have when x e P ( f )  to show that this splitting of T M / P d f )  extends to a 
splitting of T M / P , ( f )  satisfying the definition of hyperbolicity. The next result provides 
the extension and some indications of its hyperbolicity. Its statement uses the concept 
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of dominated splitting, that will appear also in several results of  this section and is defined 
as follows. Given a compact invariant set A of a d i f feomorphismf  we say that a splitting 
TM/A = E @ F is a dominated splitting if it is continuous, invariant and there exists 

C > 0  and 0 < X <  1 such that 

II(Df")/E(x)l[. I I (Df-") /F(f"(x)) l l  < CX" 

for all x ~ A and n/> O. In  geometric terms this is equivalent to say that for every one- 
dimensional subspace L C T,  M, x e A, not contained in E(x), the angle between (Df") L 
and F(f"(x))  converge exponentially to zero as n -+ + oo. 

Theorem 1.3. - -  I f  f e ~ ( M )  there exist C >  0, 0 <  ?~< 1, m >  0 and a C 1 neigh- 
borhood ql o f f  such that for all g E q/ and 0 < i < dim M there exists a dominated splitting 

- -  t ~ a  s 

TM/Pdg  ) = E, | F,~' satisfying: 

a) I I (Dg m)/Eg(x)ll I I (Dg-")lE~(g'(x))l[ ~< x for all x ~ P,(g), 
b) E~ (x) E$(x) and E,~'(x) = E"(x) / f  x ~ P~(g) 
c) I f  x ~ P~(g) and has period n > m, then 

[ nlm]-- 1 

II  II(Dgm)lE"(gmJ(x))ll <. Cx t'm" 
i = O  

[ n/m] 

rI I I (Dg-m)/E"(W(x))II  <. cx t~/'~, 

d) For art x ~ P,(g) 

lim 1 , -1  
- Y, log][(Dg=)/E'(gm~(x))l[ <. log x 

n--, .+ ao n j f f i0  

lim l " - a  - Y, log[[(Dg-m)lE"(gm~(x))[[ <, log X. 
~ + o o  n . q - o  

Observe that d) is interesting only when the period of x is ~< m. Otherwise it is 

just a corollary of c). 
Theorem I.  3 was independently proved in [17], [10] and [8]. The statement used 

above is taken from [12], where there is also a proof of 1.3. 
After Theorem 1.3 the problem becomes to show that the splitting 

T M / P , ( f )  = E~ @ E~' is hyperbolic for all 1 <~ i < dim M. If  there is a hyperbolic 
splitting it must be this. The following, and fundamental,  step is a theorem saying 
that to prove the hyperbolicity of the splitting TM]P~(f )  = E,~ @ E~' it suffices to show 
only that D f  contracts the subbundle E~. To state this result it is convenient to intro- 
duce a definition: given a compact invariant set A o f f :  1V[ ~, we say that  a subbundle 
E C T M / A  is contracting if it is continuous, invariant and there exist C > 0 and 0 < X < 1 

such that 

l l (Df") IE(x) l  I ~ CX" 
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for all n t> 0 and x e A. We say that it is expanding if there exist C > 0 and 0 < X < 1 
such that 

[[(Df-")/E(x)[ l <. CX" 

for a l l x e A a n d n / >  0. 

Theorem 1.4. - -  f f  f ~ o ~ ( M ) ,  0 <  i <  dim 1Vi and F,~ is contracting, then F,~ is 
expanding. 

This theorem will be proved in Section I I  as a corollary of a slightly more general 
result. 

Now our problem is reduced to show t h a t f  ~ ~ ( M )  implies that E l is contracting 
for all 0 < i < dim M. To recognize the contracting property the following easy lemma 
is extremely useful because it translates this property into averages with respect to 
ergodic measures. 

Denote by ,/t '(f/A) the set of  invariant probabilities on the Borel a-algebra of  A 
endowed with the weak topology, i.e. the unique metrizable topology such that 

for every continuous ~ : A -~ R. 

Lemma 1.5. - -  Let h be a compact invariant set o f f  E Diffa(M) and E C T M [ A t  be a 
continouus invariant subbundle. I f  there exists m > 0 such that 

f l o g  I I I < 0 

for  every ergodic ~ ~dt ' ( f=/A) ,  then E is contracting. 

Proof. ~ I t  is easy to see that if for each x ~ A there exists n > 0 such that 

[[(Df")/E(x))[[ < 1, 

then E is contracting. Stronger than this is to say that for each x ~ A there exists n > 0 
satisfying 

I I  [[(Df")[E(f"J(x))[I  < 1. 
j - O  

Suppose this property is false. Then there exists x c A  such that 

II  [ l (Df") lE(f" ' (x))[[  >1 1 
j = O  

for all n. Hence, for all n, 

Xn--]l 
- Y, log >i o. 
n j = o  
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Define a probability ~. by 

?Z . f - O  

and let { ~-k ] k >I 0 } be a convergent subsequence. Its limit ~t 0 belongs to . / t ' (f=]A) and 
I I  

d~t., 

I nk--1 
= lim - Z log [l(Df")/E(f='(x))[[ >10. 

k ~ + ~ o  //k 1-O 

But if the integral with respect to ~t 0 of ]J(Df=)/E II is ~> 0, by the Ergodic Decomposition 
Theorem there exists an ergodic t~ E.~C(f"/A) with the same property and the l emma is 
proved. 

Now suppose that  f ~ ~ a ( M )  and let us try to prove that  f satisfies Axiom A, 
which, as we explained above, is reduced to the contracting property of ~ for all 
0 < i < d im M, and  we shall try to do it by induction on i and  using L e m m a  1.5. I f  

f ~  ~ ( M ) ,  P o ( f )  is hyperbolic by Theorem 1.2. Now suppose that  P , ( f ' )  is hyperbolic 
for 0 ,< k ,< j  and let us try to prove the hyperbolicity of  P ~ + l ( f ) .  For this purpose we 
need the following result, that  was implicitly proved in [12] and will be explicitly proved 
in Section I I I .  

Theorem 1.6. - -  I f  f ~ . ~ ( M )  and m > 0 is given by 1.3, there exists 0 < ko < 1 suck 
that i f  P~(f  ) is hyperbolic for all 0 ~ k < i and ~ ~ r  satisfies 

(1) flog II(Df')lE: II d~ >I log Xo, 

then, 

(2) ~( U ~ ( f ) )  > 0. 

To  complete the induction step, it suffices to show that  

(3) ~( U P~( f ) )  ----- 0 

for all bt ~.~r because, by Theorem 1.6, this implies that  there are no 
measures ~ ~.~r satisfying (1). Hence 

f l o g  D = ~ '  t I1( ~f )t , -  II ~ < log xo < 0 

for all ~t ~..W(f"/P~+l(f) ) and then, by L e m m a  1.5, ]~]+1 is contracting and, by 1.4, 
P j + l ( f )  is hyperbolic. This would complete the induct ion step and also the proof  of 
the Axiom A property fo r f .  However we are not able to prove that  (3) holds for every 
V. ~. .~( f" /P~+l( f))  using only the hypothesis f ~  # 'a(M).  We shall do it when f is C 1 
structurally stable (thus proving Theorem A). For this we need the following theorem, 
for whose statement we shall recall the definition of a basic set. A bast2 set o f f  e Diff1(M) 
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is a hyperbolic set A that is transitive (i.e. there exists x e A whose co-limit set is A) and 
isolated, i.e. it has a compact neighborhood U satisfying 

f'l f " (U)  = n .  

The transitivity implies that the dimension of the fibers of the stable subspace of the 
hyperbolic splitting of TM/A is constant and we shall call it the index of A and denote 
it Ind(A). The stable and unstable sets of A are defined by 

W~,(A) ---- {y ] fi+mo d ( f " ( y ) ,  A) = 0 } 

W~(A) = (y  I . ~ m  d ( f - " ( y ) ,  A) = 0 }. 

When it is clear with respect to which diffeomorphism we are considering W~(A) 
and W~(A), we shall denote them by W'(A) and W~(A). The following theorem will 
be proved in Section V. 

Theorem 1.7. - -  Let h be a compact invariant set o f f  e Diffl(M) such that fl(f/A) = A 
and having a dominated splitting TM/A = E �9 F. Suppose that there exist basic sets A1, . . . ,  A ,  

o f f  and constants m > O, c > 0 and 0 < X < 1 satiffying: 

I) Ind(A,) < dim E(x) for  all 1 <. i <<. s and x e A.  

II) There exists a C 1 neighborhood all o f f  such that i f  g e ql coincides with f in a neigh- 

borhood of  O A~ then 
1 

W~(A,) c~ W~(A,) = A, 

for  all l <<. i <<. s. 

III) I f  ~ ~Jt ' ( f " /A)  satisfies 

flog I I ( D f ' ) / E  II d~  >/ - -  c 

8 

then ~( y )A, > 0. 

IV) II(Dff')/~(x)ll II(Df-~)/F(f~(x))ll <. ~ for  all x ~ A .  

Then, given 1 <<. i <<. s such that A - -  Ai is not closed, there exist g ~ Diffl(M) arbitrarily C x 
$ 

near to f ,  coinciding with f in a neighborhood of  [3 A k and 1 <<. r <<. s, r 4: i, such that A - -  A ,  
is not closed and 1 

w:(A,) n W~(A,) ,  ~. 

Besides this theorem, we shall need the following minor remark. If  g e ~ 
denote by N(i, n, g) the number of fixed points of g~ contained in P,(g). 
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Lemma I ~. - -  I f  f e o~ there exists a C i neighborhood qZ o f f  such that 

a) N(i, n, g~) : N(i, n, g~) for  all gi e ql, g~ e ~ ,  n > 0 and 0 <<. i <~ dim M; 
b) i f  g e all and g coincides with f in a neighborhood of  P,( f ) for some 0 <<. i <~ dim M, then 

P,(g) ---- P , ( f ) .  

Proof. - -  Let ~ o~-l(M) be an open connected neighborhood o f f .  To prove a) 
it suffices to show that N(i, n, g~)/> N(i, n, gi) because then, reversing the roles of gl 
and g,, it follows that N(i, n, g,) ~< N(i, n, gl) and then N(i, n, gl) = N(i, n, gz). Let  
g(t) e all, 0 <~ t<<. 1, be a continuous arc of diffeomorphisms with g(0) = gx, g(1) = gz. 
For every fixed point x of g~ there exists an arc x ( t ) e  M, 0~< t<~ 1, such that 
g(t)" ( x ( t ) ) =  x(t) and x(0 = x. The existence of this arc follows from the implicit 
function theorem recalling that, since g ( t ) e  ~ for all 0 ~ t~< 1, then if 
g(t) ~ ( p ) = p  it follows that D ( g ( t ) ) ( p ) -  I : T ~  M )  is an isomorphism. Moreover 

observe that i fx  ~ Pt(gi) then x(t) e P,(g(t)) for all 0 <~ t ~< 1 (again because g(t) e ~ ( M )  
for all 0 ~< t ~< 1). Then, for each fixed point x of g~ in P~(gi) we have found a fixed 
point x(1) of g~' in P,(g,) and obviously the correspondance x ~ x(1) is injective. This 
proves that N(i, n, g2) I> N(i, n, gi). To prove b), suppose that g ~ q/ coincides with f 
in a neighborhood of P , ( f ) .  Clearly every periodic point o f f  in P i ( f )  is also a periodic 
point o f g  in P~(g). Then P,(g) D P , ( f ) .  But since N(i, n,g) = N(i, n , f )  for all n >  0, 
we have P,(g) = P , ( f )  and then P,(g) = P , ( f )  completing the proof of b). 

Now let us return to the problem to which we had reduced the proof of Theorem A. 
The problem was to show that  i f f i s  C i structurally stable (and t h e n f  e ~z'i(M)) and P~( f )  
is hyperbolic for all 0 ~< k ~<j, then P r  is hyperbolic. As we explained above, the 
hyperbolicity of P~ + a ( f )  is reduced to show that (3) holds for all ~ e ~ r  + ~( f ) ) .  
Suppose that there exists ~o e ~ ' ( f " / P ~ + a ( f ) )  which does not satisfy (3), i.e.: 

(4) F0( U P , ( f ) )  > 0. 
o ~  

To exhibit a contradiction between the existence of ~0 and the structural stability 

o f f  we shall use 1.7 and 1.8. First observe that the hyperbolic set U P , ( f )  can be 
0 ~ < ~  

decomposed as 

U P , ( f )  = A ~  u . . .  w A . .  

where At,  . . . .  A, are disjoint basic sets. This follows from a straighforward adaptation 
of Smale's Spectral Decomposition Theorem [25]. Moreover, let us show that there 
exist sets A t such that P ~ + i ( f )  -- As is not closed. This will follow from the next lemma. 

Lemma 1.9. - -  I f  A~ m P ~ + i ( f )  4: ~ then P ~ + i ( f )  - -  A,  is not closed. 

Proof. ~ Suppose that there exists A s such that  A, o P i + ~ ( f ) #  o 
P ~ + l ( f )  - - A i  is closed. Then we can decompose P j + l ( f )  as 

P j + l ( f )  ---- ( P j + l ( f )  ~ A,) u (P~+ i ( f )  --  h,) 

and 
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and both sets in the union at right are compact  and obviously disjoint. Moreover 
P s + l ( f )  --A~ is not empty  because if it were, then P ~ + l ( f )  would be a subset of the 
hyperbolic set A i that  has index <~ j and this is impossible because P a + l ( f )  contains 
hyperbolic periodic points whose stable subspace has dimension j + 1. Now take neigh- 
borhoods U and V of A~ n P~'+a(f) and Pj+ a ( f )  - - A ,  respectively, such that  

(5) f ( U )  n V = o. 

Take a sequence of points { x, } C P j + a ( f )  converging to a point  of P~+a( f )  n Ai. 
Let y ,  be the orbit  of x,.  We claim that  for n sufficiently large, y .  C U. I f  this is false 
there exist arbitrarily large values of n with y~ --  U ~: o. On  the other hand,  since 
x,  �9 y ,  converges to a point  in P ~ + l ( f )  n A~, for large values o f n  we have y .  n U ~ ~. 
T h e n  for infinitely many values of n the orbit y .  contains points both in U and U". 
By (5), an orbit  y .  that  intersects U cannot  be contained in U u V. Then  there are 
infinitely many  values of n such that  y~ contains points in the complement  of U u V. 
Therefore, since every y ,  is contained in P~+a ( f ) ,  this contradicts the fact that  P ~ + l ( f )  
is contained in U u V and proves the claim, i.e. that  for n large, y .  C U. Then  

(6) y .C  l i f t ( U ) .  

Taking U very small, the intersection at right is a hyperbolic set close to the hyperbolic 
set A~. Then  its stable fibers have dimensions ~< Ind(A~)~< j .  Then  by (6) the stable 
subspaces of the points o f y .  have dimensions ~< j ,  contradicting the property y ,  C Pj + a ( f ) .  
This contradiction completes the proof  of the lemma. 

Corollary 1.10. - -  There exist values of i such that P j + a ( f )  --A~ is not closed. 

Proof. - -  I f  P~+a(f )  -- A~ is closed for all 1 ~< i~< s then, by L e m m a  1.9, the 
intersections P~+a( f )  n A~ are empty  for all 1 < i ~< s. But then 

S 

U  gf)) =  0(U &) = 0 

because the support  of ~0 is contained in P j + a ( f ) ,  thus contradicting (4). 
Now let us show that  we can apply Theorem 1.7 to the set A = P j + a ( f ) ,  the 

dominated  splitting T M / P ~ + a ( f )  ~ F,~.+ ~ | ~'~+a, the basic sets A1, . . . ,  As, m > 0 and 
0 < ~ < 1 given by 1.3 and c = - - l o g  ),0 given by Theorem 1.6. Since Ind(A~)~<j 
for all i and d im F,~.+~(x) = j  § 1 for all x �9 P~+a(f ) ,  hypothesis (I) is satisfied. Clearly 
~2(f]P~+a(f)) ~ P~+a(f)  because of the density of the periodic points in P~+a ( f ) ;  
also IV) follows from I .  3. Moreover, Theorem I.  6 says that  every ~ � 9  
satisfying 

f log [1 (Df")/F,~ +a II d~ - c = log Xo 

must  also satisfy 

~(A~ u . . .  u A,) = ~.( J.i]}.~< P , ( f ) )  > O, 
0,,~. k,,~ ~ 
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thus proving hypothesis I l l ) .  It  remains to check hypothesis II) .  Suppose that a diffeo- 
morphism g is so close t o f t h a t  it belongs to the neighborhood q / o f f  given by Lemma I.  8. 

Suppose that g coincides w i t h f  in a neighborhood of 6 A k and by contradiction suppose 
that 1 

for some 1 ~< q ~< s. Without loss of generality we can assume that there exists 
p ~ W~(Aq)n W~(Aq) -  Aq that is a transversal homoclinic point associated to A~ 
(perturbing g a little if necessary). Then  there exist periodic points z, arbitrarily close 
to p, and having a stable subspace with dimension equal to Ind(Aq). Denote by I this 
index. Then z E Pt(g). Moreover observe that p not only does not belong to A~ but 

A k. In  fact, i fp  ~ A, for some 1 ~< k ~< s, it follows that its whole orbit is also that p r 1 

contained in A k. Since this orbit accumulates in Aq, it follows that A k n Aq 4= o thus 

implying k = q and contradicting p ~ A~. Then we can assume that z r 6 A~, because 
1 s 

it can be taken arbitrarily close to p ~ [.JA,. Let n be the period of z. Then 
1 

N(/, n, g) > N(t, n , f )  because the fixed points of g" in Pt(g) include all the fixed points 
o f f "  in P t ( f )  (because g coincides with f i n  a neighborhood of P t ( f ) )  and also z (that 

S 

is not an element of P t ( f )  because z ~ [.J Ak, which contains P t ( f ) ) -  This contradiction 
1 

with Lemma I.  8 completes the proof of hypothesis II) of  Theorem I.  7. 
Now let us apply 1.7 to A1, . . . , A  s and P i + l ( f ) .  We take A t such that 

P j + a ( f )  - - A  t is not closed (that exists by Corollary 1.10), and 1.7 yields a difl'co- 

morphism g arbitrarily C 1 near to f ,  coinciding with f in a neighborhood of 0 Ak, 
/ 

1 
and A, such that the set ] i~+l ( f )  - -A~ is not closed, r 4= i and 

(7) 

But (7) is not enough, as far as we can see, to contradict the structural stability off ,  
unless we pick A~ with some extra properties that will yield that contradiction. Let us 
explain how to choose A i. Let t be the minimum of the indexes of the sets A k such that 
P ~ + l ( f )  -- A, is not closed. Take A t such that P i + l ( f )  -- Ai is not closed, Ind(Ai) = t 
and there do not exists sets Ak, with k 4: i, such that P~+~(f)  -- A k is not closed and 

W~(~.) ,', W~(A~) 4= o. 

Let us show that there exists such a A~. I f  it does not exist, there is a family of different 
basic sets A~, . . . ,  A,p such that their indexes are all t and 

W;(A~) n W~(A,,,) . 

for 1~< n <~ p and 

n o .  
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Moreover all these intersections are transversal because of the structural stability o f f .  
Then  it is well known that  a point  z in, for instance, W~,(A,~) r3 W~,(A~), belongs 
to P t ( f ) .  Therefore z belongs to some set A~. Hence the orbit of z is contained in A~. 
This implies that  A~ intersects A~ and A~2 thus implying q = i x ----i s. This contra- 
diction with the fact that  all the sets A~, . . . ,  A,p are different, completes the proof  of 
the existence of A~ exhibiting the properties described above. 

Now let ~ be the neighborhood o f f  given by L e m m a  1.8 and take g ~ ~ as above, 

coinciding w i t h f  in a neighborhood of [J A,, and such that  there exists A,,  with r + i, 
X 

satisfying (7) and such that  P~+~(f)  - - A ,  is not closed. Observe that  since the inter- 
section in (7) must  be transversal, because of the structural stability o f f  (Robinson [21]), 
then Ind(A~) >/ Ind(A,).  But since Ind(A~)--~ t, the definition of t implies 
Ind(A,) = Ind(A~) ---- t. Moreover without  loss of generality we can assume that  g is 
topologically equivalent to f .  Let h : M ~  be a homeomorphism such that  gh-~ hf. 
Clearly h ( P ~ ( f ) ) =  P,(g) for all 0 ~  i~< dim M and then h(P~(f))= P,(g) for all 
0 ~< i~< d im M. Hence 

$ 

(8) h([.JA~) = h( [J P~( f ) )  = [J l~k(g). 

But, by part  b) of Lemma  I.  8, ]~k(g) ---- Pk ( f )  for all 0 ~< k ~< j because g and f coincide 
in a neighborhood of the union of the sets P k ( f ) ,  0 ~< k ~< j .  Then  (8) implies 

1 1 

and it is easy to check that  for all 1 ~< k ~< s, h(Ak) is another  set of the family A1, . . . ,  A, 
with the same index as A k. Define T ( f )  as the set of pairs (n, q) such that  n ~e q, 
Ind(A,)  -= Ind(Aq) ---- t and 

(9) W~(A,) r~ W~(hq) + o. 

Define T(g) exactly in the same way r e p l a c i n g f  by g. From the fact that  h maps every 
set of the family Ax, . . . ,  A, onto another set of the family with the same index, it follows 
that  

(10) gT(g) = # T(Z) .  

Moreovcr, all the intersections in (9) are transversal by the structural stability o f f .  
Hence, when g is sufficiently close to f ,  if (9) holds for certain values n and q, it holds 
also rcplacing f by g. Then  T(g)D T ( f ) .  But by (10) this implies 

( l l )  T(g) = T ( f ) .  

Now observe that  (i, r) r T ( f )  because by the way we chose i, no pair with i in the 
first cntry belongs to T ( f ) .  But, on the other hand,  (i, r) e T(g) because of (7) and 
the property proved above (Ind(A,) = t). This contradicts (l 1), concluding the proof  
of Theorem A. 
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H.  - -  P r o o f  o f  T h e o r e m  I .  4 

Theorem I.  4 will follow as a corollary of the following more general result. I f  A 
is a compact  invariant set o f f ~  Diffa(M), we say that  a dominated  splitting TM/A = E | F 
is homogeneous if the dimension of the subspaces E(x), x cA ,  is constant. We say that  a 

compact  neighborhood U of A is an admissible neighborhood if TM/f'If"(U) has one and 

exactly one homogeneous dominated splitting T M ] ~ f * ( U ) =  E|  extending the 
n 

splitting TM]A = E | F. I t  is known, and not difficult to show, that  if T M / A  has a 
homogeneous dominated  splitting, then A has an admissible neighborhood U (see [6] 
for instance). Moreover it is clear that  every compact  neighborhood of A contained in U 
is another  admissible neighborhood.  To simplify the notation, in what  follows we shall 

write ['l f " ( U )  = M ( f ,  U).  
n ~ z  

Theorem I I .1 .  - -  Let A be a compact invariant set of g ~ Difta(M) such that ~(g]A) = A, 
let TM/A = E @ F be a homogeneous dominated splitting such that E is contracting and suppose 
c > 0 is such that the inequality 

l im inf  1 ~ log ][(Dg-a)/F(g~(x))]] ~ - c  
n--*+eo  n J - 1  

holds for a dense set of points x ~ A. Then either F is expanding (and therefore A is hyperbolic) 
or for every admissible neighborhood V of A and every 0 < u < 1 there exists a periodic point 
p e M(g, V) with arbitrarily large period 1% and satisfying 

N 

v~ ~ H II(Dg-1)/~(gJ(p))ll < 1, 
w  

where F is given by the unique homogeneous dominated splitting TM/M(g ,  V) = E ~9 F that 
extends T M / A  = E | F. 

Let us see how Theorem 1 .4  follows from I I .  1. Suppose that  f ~  ~-X(M) and E l 
is contracting. Let m be given by Theorem 1.3 and apply I I .  1 to g = f ' ,  A = P~(f)  

and the splitting TM]P~( f )  = El �9 ~I'- Then,  by Theorem I I .  1, either E~' is expanding 
(and then Theorem 1.4  is proved), or, given an admissible neighborhood V and 
0 < ~" < 1, there exists a periodic point  p ~ M ( f ' ,  V), with arbitrarily large period N, 
such that: 

N 

v~' <~ II II(Dg-~)l~,(g'(p))ll < I. 

The fact that  this product  is < 1 implies that  F(p) is contained in the unstable subspace 

E~(p). Then,  by Theorem 1.3 
I~1 lff 

II  [l(Dg-~)/~(g~(p))ll <. II  I I (Df-~) /E~( f 'a(p)) l l  <. Cx ~. 
J - X  J - I  
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Thus y~<  Ck s. But if we pick y satisfying ~, < y "( I and N sufficiently large this is 
a contradiction. 

To prove Theorem I I .  1 we shall use several lemmas that will be useful also in 
Section IV to develop the tools that in Section V will be used to prove Theorem I.  7. 

From now on, g, A and TM/A ~- E �9 F will be as in the statement of I I .  1. We 
shall use the following definitions. We say that a pair of  points (x, g"(x)) contained 
in A, n > 0, is a y-string i f  

I-[ [](Dg-a)/F(g'(x))[] ~ V" 
j - 1  

and we say that it is a uniform y-string if (g*(x), g"(x)) is a y-string for all 0 ~< k < n. 
The first step in the proof of I I .  1 is the following lemma, that is a sophisticated 

modification of the Shadowing Lemma ([23], [14]), (or Anosov Closing Lemma) and 
can be proved with similar methods. An explicit proof was given by Liao [8] (only for 
k = 1, but obviously the proof applies also to the general case). 

Lemma I I .2 .  I Given 0 < "7 < 1 and ~ >  0, there ex/sts r = r ~ ) >  0 such that 
if i =  1, . . . ,k ,  are ,,niform  -stri,gs satisfying x,+,)< for aU 
1 <~ i < k and d(g"k(xk) , x l ) <  r then there exists a periodic point x of  g with period 

N = n 1 at- . . .  q - n ,  such that 

d(g"(x), g"(xl) ) ~. 

for 0 <~ n <<. n land,  setting N~ = n x +  . . .  + n~, 

d(gN'+"(x), g"(xl+~) ) < 

for  0 <~ n <~ n~+x, 1~< i<~k. 

Before continuing with the proof of I I .  1, let us first give a rough outline of it. 
Suppose that F is not expanding. Then to prove I I .  1 we have to show that given 0 < ~, < I 
and an admissible neighborhood V of A, there exists a periodic point p ~ M(g, V), 
with arbitrarily large period N, such that 

(1) y" < 1-I I](Dg-l)/F(g'(p))[[ < 1. 

Choose y < ~ < 1. The periodic point p satisfying (1) will be the point p = x obtained 
applying I I . 2  to -~ and a suitable choice of uniform y-strings (x~, g'~(x,)). Since by I I . 2  
the points of the orbit of x are 3-near to the points gt(x~), 1 <<. i <. k, 0 <. t <<. n~, then 
the condition x ~ M(g, V) will be satisfied if we work with a sufficiently small ~. To 
check (1) let us analyze the product in (1). Define ~ by 

H 

~ " =  II  [](Dg-X)/F(g'(x))]] 
J - 1  

and y, by 

~r'~' = l-I [l(Dg-1)lF(gJ(x,) )[I. 
1[--1 
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W h a t  we want  to prove is y N <  ot~ < 1. But  observe that,  again by the 8-condition 

that  x satisfies, ~s is such that  ~[(I-I y~)~m becomes  arbi trar i ly close to I i t~  is sufficiently 
i 

small. For  the purpose of  this informal outl ine we shall assume 

= II yp .  
i 

Then  ~ < 1 is satisfied. The  p rob lem is to check y S <  as.  Take  y < ~" < ~. We  shall 

show that  we can choose xx, . . . ,  x k and  nl,  . . . ,  n, ,  with a value of  k, say k = 2n -J- 1, 
such that  when i is even we have y~ > ~. Moreover  every Yi satisfies y,/> C where  C 

is the min imum of  the norms I [ ( D g - ' ) / T ,  M I[, x z M. Then  

n 

J t - 1  j - O  

Let  N 1 be the sum of  the ni's for even values of  i and N9 the corresponding sum for odd  

values of  i. Then  

a s > / ~ '  C~,.  

Since~  > % i f N  1 is sufficiently larger than Ns,  then a s > T s. Therefore  we shall choose n~ 

much  larger than n~ + 1 for every even i. The  selection of  the points x~ and the integers n~ 

requires the hypothesis of  I I .  1 abou t  the existence of  a dense set of  points z where a 

subsequence o f  the products  

~l [](Dg-a)/F(g~(z))[[ 
5--1 

converges exponential ly to 0, together  with the fact  that  since F is not  expanding,  there 
exists a value of  z such that  this p roper ty  does not  hold. Then ,  we shall carefully pick the 
points x~ in such a way  tha t  (xog"i(x~)) is a uniform -~-string (thus implying y~ < 7) 
bu t  with ~,i not  too small ( that  is, y < u and also satisfying all the propert ies  that  we 

used in our  sketch. 

The  selection of  the points x~ requires several lemmas that  in Section I V  will be 

also useful to prepare  the p roof  of  T h e o r e m  I .  7. 

Lemma I I . 3 .  ~ For all 0 < Yo < Y3 < 1 there exist N(y0, Ys) > 0 and 0 < c(y 0, Ys) < 1 
such that i f  (x, g"(x))  is a yo-string and n >1 N(y0, Y3), then there exist 0 < n x <'. . . . < n~ <. n, 

k > 1, suck that k >1 nc(yo, Y3) and (x, g"i(x)) is a uniform y3-string for  all 1 <~ i <. k. 

We shall not  prove this l emma because it is an immedia te  reformulat ion of  a result 

of Pliss ([17], [18]). 
Let  us say that  (x, g"(x) ) is an (N, y)-obstruction, 0 < "r < I, 0 <<. N < n, if (x, g"(x)) 

is not  a y-string for all N ~< m ~< n. 
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Lemma I I .4 .  ~ Take 0 < T0 < Y3 < 1, 0 < T, < Y3 and a To-string (x, g"(x)). Let 
0 < nx < . . .  < n~ ~ n be the set of  integers such that (x, g ' (x ) )  is a uniform Vs-string, and 
let N = N ( y 2 ,  y3). Then, for all 1<<. i < k ,  either n ,+x- -n ,~<  N or (g*i(x),g"i§ 
is a (N, Tz)-obstruction. Moreover, either nl <<. N or (x, g"t(x)) is (N, Tz)-obstruction. 

Proof. - -  I f  n,+ 1 - -  n, > N and  (g"i(x), gm§ is not  a (N, y2)-obstruction, 
there exists n, + N~< m~< n,+ 1 such that  (g"i(x), g ' (x))  is a y2-string. Hence ,  by  I I . 3 ,  

that  can  be appl ied because m - - n ,  i> N = N(Tz, T3), there  exists n , <  r <  m such 
that  (g"~(x), g'(x)) is a uniform g3-string. H e n c e  (x, g'(x)) is a uniform T3-string and  r 
should be in the sequence nl < . . .  < nk. But  on the other  hand  n, < r < m ~< n, + a- 

Lemma I I .5 .  - -  I f  0 <  T0 < y 3 <  1, 0 <  T I <  T 2 <  Ts, and (x, g"(x) ) is a To-String 
containing a (N, V~)-obstruction (g'(x), g'+t(x) ) such that 

a) n 1> N(ro, r3), 
b) nc('(0, Ts) > r + g, 

c) r + t  t> N(y1, T~) and 

d) (r + t) c(Tt, 73) > r + N, 

then there exists a uniform T3-string (x, g"~(x) ), r + t <<. m <~ n, that is not a Tl-string. 

In  a more  informal language these condit ions require  n to be  large wi th  respect  
to r + t and r + g to be large with respect  to r + N. 

Proof. ~ Let  0 < n x < . . .  < n k ~< n be the integers such that  (x, g"i(x)) is a uniform 
T3-string. By a), we can  apply  I I .  3 tha t  implies 

k i> he(To, Z3)- 

Then,  by  b) 
k >  r + t .  

Hence  n k > r + g because obviously n k >I k. Let  j be the smallest integer such that  

(2) n~ >t r + t. 

Let  us prove that  (x, g"~'(x)) ( that  is a uni form T3-string) is not  a yl-string, thus complet ing 
the p roof  of  the lemma.  Suppose that  (x, g"J(x)) is a Tx-string. By c) 

nj I> r + t 1> N(Tx, T~), 

then we can  apply  I I . 3  to the Tx-string (x,g"i(x)) and  0 < T x<  T2. I t  yields a family 
0 < ml < . . .  < m, ,< nj such that  (x, g'~'(x)) is a uniform Ta-string for all j (hence all 

the numbers  m, belong to { nl, . . . ,  n~ }, since T2 < Ta) and 

s >I nj c(Ta, Tg) /> (r + g) C('~'I, Z2)" 

Applying d) we obta in  

m . _  1 >/ s - -  1 >/ (r + t) c(T1, Ta) - -  1/> r + N. 



A P R O O F  O F  T H E  C x S T A B I L I T Y  C O N J E C T U R E  177 

But m,_l  = n, for some 1 < i < j .  Hence 

m,_ 1 = h i<  r + r 

because j was the minimum index such that (2) holds. Then r + N ~< n, < r + t. 

Since (g'(x), g '+t(x))  is a (N, 73)-obstruction, (g'(x), g'i(x)) is not a 73-string. But this 
contradicts the fact that (x, g"i(x)) is a uniform 73-string. 

I f  x �9 A, denote by J(x, A) the set of  points y �9 A that can be written as 

y = lira g""(x.),  
n ~ + Q o  

where { x . [ n > /  0} is a sequence converging to x and lim m . =  + o o .  Clearly to 
n---~ + ao 

obtain J (x ,A) ,  it is sufficient to use sequences {x .  In >/0 } contained in some dense 
subset of  A. Moreover the hypothesis f~(g]A) = A implies 

x �9  A) 

for all x �9 A. 

Let us say that a compact  invariant set Z C A  is a (t, 7)-set (t � 9  +, 0 <  y <  1) 
if for every x �9 X there exists --  t <  m < t such that ( g" - " ( x ) ,  g=(x)) is a y-string for 

all n > 0. Clearly this implies that F I X  is an expanding subbundle. 

Take 70 such that exp(- -  c) < Y0 < 1, where c is as in the statement of Theorem I I .  1. 
Then, by hypothesis, there exists a dense set A o C A such that if x �9 A o then there are 
infinitely many values of n satisfying 

I I  ][(Dg-1)/F(g~(x))l[ < 7g. 
~ 1  

T a k e  7 1 ,  7 2 ,  ~ 3 ,  78 w i t h  

(3) 0 <  70 < 7~<  73<  ~3<  7 a <  1. 

Lemma I I . 6 .  ~ For every r > 0 there exists N(r such that for  all x c A ,  either J(x, A) 
is an (N(r y3)-set or there exists y � 9  A) such that (y ,  g"(y))  is an (N, "~3)-obstruction 

for  all n > N(r where N = N(73, T3) is given by I I .  3, and moreover y satisfies one of  the 
following properties: 

a) cl(x,y) <<. r 
b) there exists z o �9 A arbitrarily near to x and m > 0 such that d(g"(zo) ,y  ) < r and 

(Zo, g"~(Zo)) is a uniform V3-string. 

Proof. - -  Denote by A(N) the set of points y e A  such that ( y , g " ( y ) )  is 
an (N, y3)-obstruction for all n > N. I t  is easy to check that given r > 0 there exists 

N(r > N such that when ( y , g " ( y ) )  is an (N,~3)-obstruction and n >  N(r then 
d(y ,  A(N)) < r (here we use that 73 > Y3). Given x e A and z EJ(x, A) there exists a 

sequence {x ,  ]n/> 0 } C A 0  converging to x and satisfying z = lim g",(x,)  and 
lim m, = + co. For n >/ 0 define 

n-+-t- co 

5"(n) = { m > 0 [ (x, ,  g"(x , ) )  is a uniform y3-string[} u { 0 }. 
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By I I .  3 it is easy to see that 5a(n) is unbounded (since Y0 < Yz and x, ~ A0). Set 

k + = min 5a(n) n [m,, + oo) 

and k~ = max 5P(n) n [0, m,). 

Suppose that lim inf(k + -- k~-) ~< N(e). Then there exists 0 ~< m ~< N(e) such that gin(z) 
is the limit of  a subsequence of{ g~"+(x,)] n t> 0 }. Hence, if r > 0, (g"~-'(z), g"(z)) is a 
yz-string because it is the limit of a sequence of y3-strings (g~- ' (x , ) ,  g~(x,))  (that indeed 

are -(z-strings for r ~< k + because (x,, gk.+(x,)) is a uniform ys-string for all n). Therefore, 
for some 0~< m~< N(r (g" - ' ( z ) ,g '~(z ) )  is a y3-string for all r ~  0. I f  this holds for all 
z ~J(x ,A)  then J(x, A) is a (N(,), y3)-set. I f  it does not hold for all z ~J(x, A) this 
argument shows that we can pick z such that for many n, k + - - k ~  > N(r Hence 
k + - - k ~ - >  N because N ( , ) >  N. Then, by Lemma 11.4, (g~(x,), g~"+(x,)) is an 
(N, ~2)-obstruction. Therefore d(g~(x,,), A(N)) < r for infinitely many values of n. I f  
for an unbounded set of  these we have k~- > 0, we t akey  ~ A(N) such that d(g~(x,,),y) < r 
and then this pointy,  the point z 0 = x, and m = k~- satisfy the requirements of Lemma I I .  6 
and option b). I fk~  = 0 for all sufficiently large values ofn that satisfy d(g~(x,,), A(N)) < r 
then d ( x , , , A ( N ) ) <  ~ and since x, ~ x  we obtain d(x,A(N))~< r Taking y e A ( N )  

such that d(x,y)  <~ r it follows that y satisfies I I .  6 and option a). 

Lemma I I .  7. - -  I f  F is not expanding, for  all �9 > 0 tkere exists a compact invariant set 
A(e) C A such that every x ~A(r has the following property: there exist x o arbitrarily near to x, 
no >1 0 and y ~A(~) such that d(g"O(Xo),y ) < ~, (y ,  g"(y))  is an (N, y~)-obstruction for  all 
n > N(r and, i f  n o > O, (Xo, g"~ is a uniform "(s-string. Moreover A(r is the closure of 
its interior. (One has N = N(~,,  Yz) and N(r is given by 11.6). 

Proof. - -  Let Y, be the union of all the (N(r X3)-sets. Then its closure I~ is an 

(N(,),  Xs)-set. Since F is not expanding, Y, 4= A. Define A(r as the closure of the open 

s e t A - -  ~. Given x e A ( r  take ~ - e A - - ~  near to x. Since ~ r  the set J (~ ,A)  (that 
contains ~ because fl(g/A) -~ A) cannot be an (N(r X3)-set. Then by 11.6, there exist 
a point y eJ(~,  A) such that (y,  g~(y)) is an (N, yz)-obstruction for all n > N(,) ,  and 

x 0 arbitrarily near to ~- (hence near to x) and n o i> 0 such that d(g'~(Xo),y) < r and, 

ifn o > 0, (x0, g"(Xo) ) is a uniform y3-string. To complete the requirements of  Lemma I I .  7 

we have only to show t h a t y  e A(r But ~- e A --  l~. Hence there exists a neighborhood U 

of ~ with U n Z = o. Therefore if a point z eJ(~-, A) is given by z = lim g"~(x~), 
~--*- + oo 

where { x, [ n/> 0 } C A is a sequence contained in A converging to ~ and m~ -+ + o% 

it follows that x~ e U for large values of  n. This means that  x~ e A --  Z C A(r implying 
g",(x , )  cA(c) for n large enough; thus z cA(c).  This proves J(~-,A) CA(c). In parti- 

cu la ry  ~A(r becausey  eJ(~,  A). 
Now let V be an admissible neighborhood of A, let TM/M(g ,  V) = F, @ F be 

the homogeneous dominated splitting extending TM/A = E �9 F and let 0 < y < 1 
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be given. Take  
that  

(4) T < k0 z Va 

(5) ko ~ W < 1. 

To, "f~, T2, ~ ,  Ta such that  (3) and  T < To and  choose 0 < k o < 1 such 

Take  ~ > 0 that  such if a, b c M(g,  V) and  d(a, b) < ~ then 

(6) II(Dg-~)lF(a)ll >i ko II(Dg-1)lF(b)ll. 

Let  , = ~(8, T3) be  given by  L e m m a  I I .  2. We  claim that  if F is not  expanding  there 
exists a sequence { x~ ] i I> 1 } CA(r and  a sequence of  integers n i/> 0 such that: 

I) d(g'(x,), X~+l) < ,]2 for all i t> 1. 
II)  I f  n~> 0, then (xi, gm(xO) is a uniform T3-string. For all even values of  i, 

n, 2> 0 and  (xi,g"i(x~)) is not  a Tl-string. 
I I I )  I f  K = min{ll(Dg-1)/F(x)[[] x c A } ,  then 

T1 'i K"i-1 >/ (k0 Yx)"i + -i-1 

for every even value of  i. 

We  shall construct  this sequence by  induct ion.  We  should begin by the cases i = 1 
and  i ----= 2, bu t  we shall proceed directly to the induct ion step that  is sufficiently illumi- 
nat ing abou t  the construct ion of  the first two terms of  the sequence.  Suppose then 
(xi, g"i(x~)) const ruc ted  for 1 ~< i ~<j, j even. Since g"i(x~) a A(r we can app ly  I I . 7  
tha t  gives a poin t  x j+ x arbi trar i ly near  to g"i(x~) (in par t icular  we can  assume 
d(g"i(x~), x~+l) < e/2) and  no >/ 0 such that  g"o(x~+l) is e/4-near to a point  y c A ( , / 4 )  
such that  (y, g"(y)) is an (N, T2)-obstruction for all n > N(r Moreover ,  if n o > 0, 
then (x~+a,g~(xj+a)) is a uniform Ta-string. Since A(r is the closure of  its interior, 
and  in its interior there is a dense set o f  values of  x such tha t  (x, g"(x)) is a T0-string for 
infinitely m a n y  values of  n, there exists x~+2 e A(r so near  to y that  

d(g"O(xa+l), xj+~) < r 

and such that  (x~+2, g"(x~+2) ) is a T0-string for infinitely m a n y  values of  n. Take  

N I >  N(r taking xj+ 2 sufficiently near  to y ,  we obta in  that  (x~+2, gNl(xs+2)) is 
an (N, T~)-obstruction. Taking  N 1 large with respect  to N, and  a value of  n large with 

respect  to N1 and  such tha t  (xi+2, g"(x~+2) ) is a T0-string, we can  apply  L e m m a  I I . 5  
(with r = 0, g - - N 1 ) ,  and  obta in  NI~< n j + ~ <  n such that  (xj+2, g"i§ ) is a 

uniform Ta-string bu t  is not  a T~-string. Then  x i+ l ,  xj+2,  hi+ 1 = n o and  n~+~ satisfy 
condit ions I) ,  I I ) .  Condi t ion I I I )  holds if nj+~ is large wi th  respect  to n~+~. T h e n  to 
satisfy it, take in the previous construct ion N 1 so large that  

TI' K'~§ >/ (ko Y1)" + -/.1 

for all n >/N1.  I t  will hold for n = nj + 2. 
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Now take two points xt, xk, with g and  k odd,  k > t such tha t  d(xt, xk) < r To 

simplify the nota t ion  translate the indexes in order  to have C = 1, k = 2t + 1. T h e n  

d(g"k(x~_~), xl) = d(g"k(xk_l), x~) + d(x~, xl) <~ r + ~]2 = ~. 

Now we apply L e m m a  11.2 to ~ = 7a, the sequence xl, . . . ,  xk and  the sequence of  

integers h a , . . . ,  n~. However  L e m m a  I I . 2  requires every (xog"i(x,)) to be a uniform 

78-string (thus, in part icular,  n, > 0) and  we have satisfied this condit ion only when 

n, > 0. Since this holds for every even value of  i, we can expurgate the values of  i such 

tha t  n, = 0; in other words we apply  L e m m a  11.2 to the set S of  points x~ with  n~ > 0. 

I f  a certain xi is not  among these points, then  j must  be odd,  x~_ 1 and  xi + ~ are in S and  

d(g"~'-x(xi_l), x5+1) <<. d(g"i-*(x~_l) , xj) + d(xa, x~+ l) 

----- d(g'~-l(xj_l), xj) + d(g"i(xj), xj+a) ~ ~/2 + r = r 

Hence,  L e m m a  I I .  2 gives a periodic point  x, with period N = n x + . . .  + n,, such tha t  

a(g"(x), g"(xl) ) <~ 

for 0~< n~< nl and,  setting N, = n x . . .  + n,, 

d(g~i+"(x), g"(x,+l) ) < 

for 1 ~< i < k and  0 ~< n ~< n~ + 1. In  part icular,  every point  of  the orbit  of  x is ~-near 

to A. I f  ~ is taken  conveniently small, the above inequal i ty implies tha t  the orbit  of  x is 

conta ined in M(g,  V) as Theorem I I .  I requires. Moreover  it impIies by  (6) tha t  

[[(Dg-1)]F(g"(x))[] >1 k o I[(Dg-X)/F(g"(xl))[] 

for 0~< n a n  a and  

I[(Dg-~)/?(gs' +"(x) )[[ >I k o ][(Dg-X)/F(g"(x,+l) )[[ 

for I ~< i < k, 0 < n ~< n, + x. Hence,  setting N O = O, we have 

ni+l n/+l 

II [](Dg-1)/?(gS,+"(x))l[ >1 kg,+~ II [l(Dg-1)/F(g"(x,+a))ll 
n=l ~=I 

for 0 ~ i < k. Hence, if i is odd, 

ni+l 

rI [[(Dg-1)/?(g~,+"(x))]] >t k~§ 7~,§ 

and,  for i even, 

ni§ 

II  >>. kg,+  

Consequently,  
N 

l I  [l(Dg-~)l?(g"(x))l[ >i l Ik'~J +"m 7~i§ K"x, 
n = l  t 
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where the last product is taken over all the odd values in [1, k --  1]. Applying property (III) 
we obtain 

II  k~i + -i+x y~i+t K"J >i II k~'"J' + -i+1' ,(~i+ "i+* = Uo ~ ~-a ~. 
J J 

Since k~ Ya > Y by (4), we have proved 

II [[(Dg-X)[F(g"(x))[[ > V ~. 

Finally these same methods can be used to prove the desired upper estimate for the 
product on the left. Recalling that (x,, g'~(x)) is a y3-string if n, 4= 0, we obtain analo- 

gously that 

II II(Dg-:)/~(g"(x))l[ ~ ko~' V~. 

Since ~'8 and k o satisfy ko ~ 7~ < 1, by (5), this implies 
lq 

II [l(Dg-:)/F(g"(x))l[ < 1. 

HI.  - -  P r o o f  o f  T h e o r e m  1 .6  

Let . / / (M) be the space of probabilities on the Borel ~-algebra of M endowed 
with the weak topology. I f f ~ D i f f a ( M ) ,  let e fg ( f )  be the set of f - invar iant  elements 
of.//(iV D and . / t ' , ( f )  be the set of  ergodic elements of J l ( f ) .  Specially interesting for 
our purpose will be the f- invariant  probabilities supported on a periodic orbit o f f ,  
i.e. probabilities of the form 

l n - X  
= -  ~ ~/<~ 

n J - 0  

where x satisfiesf*(x) = x. Denote by . ~ ' , ( f )  the set of these probabilities. The following 
result is a corollary of the main Theorem in [12]. 

Theorem l l I .1 .  - -  Suppose tkat f e Diffl(M) and ~ e. .~t,(f") for some m > O. Then, 
given a neighborhood V of ~ and a compact set K disjoint from the support of ~, tkere exists a 
diffeomorphism g, arbitrarily C 1 close to f and coinciding with f on K, such that there exists a proba= 
bility ~o e.hg~(g") contained in V whose support is disjoint from K. 

Proof. - -  Recall that an invariant set A o f f  is said to have total probability if 
~z(A) = 1 for all [z ~ . / t ' ( f ) .  Define ~] ( f )  as the set of  points x ~ M such that for all 

> 0, every compact set K disjoint from the closure of the orbit of x, and every C 1 

neighborhood o/ /off ,  there exists g ~ a//which coincides with f on K and has a periodic 
pointy  such that, ifn is its period, one has d(fJ(x), gJ(y)) <<. r for all 0 ~< j ~< n. Theorem A 
of [12] states that E ( f )  has total probability. I t  is easy to see that  then t z (~( f ) )  = 1 
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for all ~ ~. / / ( f '~)  and all m + 0. Suppose that ~t, m, K and V are as in the statement 
of Theorem I I I .  1. We can assume that  there exist continuous functions ~ : M -+ R, 
1 ~< i ~< s, such that V is the set of  v ~./r satisfying 

for all l~<i~< s. Take x ~ Y , ( f )  and N > 0  such that 

(1) 1"-' ] - - -  Z ~,(fJ '( fk(x)))  <~ 1/4 
Rj=O 

for all 1~< i~< s, O~<k<~ m - - 1 ,  n>/ N. Such an x exists because ~ 6 . ~ e ( f  m) and 
~ ( ~ ( f ) )  = 1. I fx  is a periodic point off ,  take n/> N such thatf '~"(x) = x and define 

['1"0 = -- ~lmJ(x) " 

Then, by (1), ~0 6 V. Hence the theorem is proved taking g = f  and ~0. Suppose 
that x is not periodic. Take ~ >  0 such that if a, b 6 M  satisfy d(a,b)<~ ~ then 
[ qh(a) -- ~,(b) 14 1/4 for all 1 ~< i ~< s. By the definition of ~ ( f )  there exists g arbi- 
trarily C a near to f ,  coinciding with f on K and having a periodic point y such that if n 
is its period then d(fJ(x), gJ(y)) <~ ~ for all 0 ~ j ~ nm. Define ~0 as 

1 n--1 

n J ~ 0  

Observe that since x is not a periodic point o f f  then, taking g very near to f and r very 
small, the period o f y  becomes arbitrarily large. Then  we can assume n >t m(N + 1). 
Now observe that  { j n [ 0  ~ j ~< m --  1 } partitions {jm[ 0 ~< j <~ n --  1 } into a disjoint 
union of m sets, each with approximately [n/m] multiples of m. More precisely, 

write {jm I 0 <~ j <~ n -- 1 ) = 6 { N, m, N~ m + m, . . . ,  N, m + (n, -- 1) m }, where 
r=l  

N , m - - m <  ( r - -  1) n~< N , m =  ( r - -  1) n + k , .  The integers k,, n, and N, are 
obtained inductively by N l = k x = 0  and, for 1~< r~< m, n - - k , ~ < n , m < n - - k , + m ,  
k , + ~ = n , m - - n + k ,  and N , + a = N , + n , .  It  follows that O<~k,<~m--1 and 
0 ~ < k ,+  (n,-- 1) re<n,  as well as n ~ + n  2 +  . . .  + n , , = N , + ~ = n .  But 

gr,,,,,+~,,,(y) = g(,-1, .+r.+~.(y) ___ g~+j.(y) 

for each 1 ~< r ~< m, 0 ~< j ~< n, --  1, and therefore 

f 1 " - *  1 ~ . , - ~  ~d~z o = -  Z q~,(gJ'(y))=- Z ~,(g~+~"(y)) 
n J=0 n r = l  $=0 

for each 1~< i~< s. Moreover, since n , >  (n--m)/m>~ N, (1) implies 

[ fq)i. d ~ -  In r= l  ~ nf~Sq)i(f~+Jra(X))I 

<~-I ~ n, f~ ,d~----1  .-'~ ~p,(f"(f '(x)))[<~ I[4. 
n r= l  n r j=O 
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Hence, for all 1 ~< i ,< s, 

f f l '  f X " ' - x  { 

1 1 " " - ~  

n r = l  ~=o 
I12. 

Lemma 111.2. - -  Suppose that f E ,~ and P~(f )  is hyperbolic for 0 <<. k < i. Then, 

for every sufficiently small neighborhood U of [3 P z ( f )  there exists a C 1 neighborhood ado 
o f f  such that o<k<~ 

IJ P~,(g) = ['] g"(U) 
o~<k<i  n 

for all g e ado. 

Proof. ~ By the hyperbolicity of P k ( f )  for 0 ~< k < i, there exists a neighborhood ad o 
o f f ,  that we can and shall assume to be connected and contained in ~ such that 
for each g e ado there exists a homeomorphism 

ho: IJ Pk ( f )  ~ f l g ' ( W )  
o~<k<i  n 

such that ghg(x) ----- hof(x) for all x in the union on the left, and, for all x in that union, 

ho(x ) depends continuously on g e ado- Moreover, ha( U P k ( f ) )  is hyperbolic. Let 
us prove that  o.<~<~ 

(2) h,( 13 P k ( f ) ) C  I.J Pk(g). 
0~<~<~ o~<~<~ 

Suppose that x ~ P~( f )  and g e ado. Take a continuous arc of diffeomorphisms gt e ado, 
0~< t~< 1, with g o = f ,  g l = g .  Then x t = h~t(x ) is periodic for gt, with the same 
minimum period than x. Since every gt e ado C ~ a ( M ) ,  x~ is a hyperbolic periodic point 
of  g, for all 0 <~ t ~< 1. Then it easy to see that the dimensions of the stable manifolds 
of x t are the same for all 0 ~< t ~< 1. Hence x 1 = h~(x) e Pk(g)- This proves (2). Now 
let us show that 

h~( I.J P k ( f ) ) =  IJ Pk(g). 
o ~ < i  0~<k<i  

Denote by Pk.t(g) the set of  points in Pk(g) whose minimum period is t. It  is easy to see, 
using the fact that ado is connected and contained in # 'a(M),  that, for all 0 ~< k ~< dim M 
and t >1 1, ~Pk.t(g) is the same for all g e ado. Moreover, the argument  used to prove (2) 
shows that for all 0 ~< k ~< i, t >t 1 and g e ado, SPk. t ( f )  is equal to the number  of points 

in kg(P~(f)) with period t. Since SPk, t(g) = SP~, t ( f ) ,  this shows that Pk.t(g) C ho(P~(f) ) 
for all g/> 1. Hence 

Pk(g) = [-J P~,t(g) C hg(Pk(f) ). 
t~>x 
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This implies 

U Pk(g) C hg( U Pk(f)) ,  

thus proving the equality, which clearly implies 

Q g"(U) =hg(  U P , ( f ) ) =  U Pk(g). 
o ~ k < i  o ~ k < i  

Now let us prove Theorem I. 6. 
Given f ~ ' l ( M )  such that P~(f)  is hyperbolic for 0~< k <  i, take m >  0 and 

0 < X < 1 given by Theorem I.  3. Take any X < X0 < 1 and suppose that ~ ~. ,~( f"~(f ) )  
satisfies 

(3) f log II(IV')/ g II d~ ~> log ),o 

and let us prove that 

(4) ~( U P ~ ( f ) ) >  0. 
o~<k<i 

First suppose that Vt is ergodic but not supported on a periodic orbit. Then, if (4) does 
not hold, we have 

~( U P ~ ( f ) ) = 0 .  
o~<k<i 

Take a neighborhood U of U P~(f)  such that 
o < ~ < i  

t~(U) < 1/2 

and ~(0U) = 0. 

These properties imply that there exists a neighborhood V of bt in ,~r such that 

(5) ,(U) < 1/2 

for all v e V. Take a neighborhood W of P , ( f )  such that there exists a dominated 
splitting TM/M(f ,  W) = E~ �9 E~' extending T1VI/P,(f) = ~ | ~ ' .  See Section II  
for the definition of M(f ,  W) and the existence of W. Take a neighborhood Wo 

of M(f ,  W) so small that there exists a continuous splitting T1V[/W o = E* �9 F_," extending 
TM/M(f ,  W) = F,~ @ E~'. Then, by standard properties of dominated split-tings ([6], [9]), 
there exists a neighborhood q/o o f f  such that for every g e q/o, M(g, W) is contained 

$ u in W 0 and has a dominated splitting TiVI/M(g, W) = Eg �9 Eg such that the number 

8(g) = sup{d(F,~(x), F,'(x)) Ix ~ M(g, W)} 

converges to zero when g - + f .  Take a continuous function ~b:M ~ R such that 

+(x) = log ][(Df")lE"(x)[ I for x e Wo. Then (3) can be written as 

f +  d~ >i log X0. 
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Take Xx and r > 0 such that 

Xi e" < ~o 

and X < X~ e-" 

and suppose that the neighborhood V of ~ is so small that 

f +  t> log Xa dv 

for all v E V. Using Theorem n I .  1 we can take g, arbitrarily C a near to f ,  and a periodic 
point x of g= such that the probability ~0 ~ ( g = )  given by 

~o = -  y'  ~o,ic,), 
n J - O  

where n is the period of x, is in V. Then 

(6) f + d~0 i> log Xa. 

Suppose that g is so near t o f t h a t  for a l ly  in the g~-orbit of x 

(7) log ][ (Dg ' ) /E ' (y )[  I >i log [[(Df") /E ' (y)[[  - -  ~. 

From (6) we obtain 

log Xi ~ ( +  d~o = 
1 

n - - 1  1 
- 5] t ~ i ( g " 5 ( x ) ) = -  X l og] l (D f" ) /E ' (g" ' ( x ) l  [. 

d n 1 = 0  /z i - 0  

Using (7): 

Then 

(8) 

1 , - I  ~ . 1 , , - a  
- ~ log ]](Dg'l/E~(g"'(x))][ >i - ~ log II(Df')/P~O(g"5(xllll - 
n j - o  n J ~ o  

>/log(Xx e- ' ) .  

n - - 1  

1-l I[(Dg")/Eg(g"5(x))ll >1 x'~ e-"5 
5 = 0  

Property a) of I .  3 says that for all j 

[](Dg )/Eo(g (x))ll.l](Dg-")lE'~(g~5+'(x))]l < x. 

Together with (8) this yields 

rl [l(Dg-")/~'~(g"5(x))l[ <~ (~-1 e')" < 1. 

Denoting as usual by E"(x) the unstable subspace of the periodic point x, this means that 

(9) E"(x) D F..~(x) 

because (Dg"") E~(x) = R~(x) and 

[l(Dg-"")/E'~(x)l I <~ H I](Dg-")/~(g"5(x))ll < 1. 
5=1 

24 
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Then,  by (9), x e F~(g) for some k~< i. Suppose that  k = i. Observe that  the hyperbolicity 
of the periodic point  x easily implies that  any subspace E C T,  M satisfying (Dg '~") E = E 
and E n EU(x)=  {0} must  be contained in E'(x). When k = i, 1.3 a) implies 
E"(x) = F,~(x). Hence ~;(x) n EU(x) = { 0 }. Then F,~(x) C E~ But F,~(x) and E'(x) 
have the same dimension, namely d im M -  d im EU(x). Therefore E~ = E*(x). 
By c) of 1.3 

n - - 1  

II [l(Dg')/E~ <~ CX% 
J - - 0  

This and (8) imply 

(10) X~' e-  '" ~< Ok". 

But since X < ),x exp(--  r this inequality is impossible if n is very large. On  the other 
hand,  the fact that  ~ is not supported by a periodic orbit implies that  the period of the 
periodic orbit that  supports its aproximation ~ (i.e. the period n of x) is arbitrarily large 
if i~0 is taken sufficiently near to i ~. Hence, taking ~ sufficiently near to i~, (10) becomes 
impossible, thus showing that  we cannot  have k = i. Then  x e Pk(g) for some k < i. 
But by L e m m a  I I I . 2 ,  if g is sufficiently near to f ,  we have 

Vk(g) C U, 

and then, by (5), 

~(P~(g)) ~< ~ ( U )  < 1/2. 

But x e P~(g) implies 

~(Pk(g)) ---- 1. 

This contradiction completes the proof  of (4), when ~ is ergodic and not supported in a 
periodic orbit o f f " .  Observe that  a l~ satisfying (3) cannot  be supported by a periodic 
point  o f f "  because if this were true, i.e. if f �9 had the form 

and f=" (y )  = y ,  then (3) would mean  

logx< ]ogxo.<flog [[(Df')/EfI[ d~---- l im 1 ,-x - Z log II(Df'~)/E~(f"'(y))ll, 
1 ~ + o o  t 1 - 0  

thus contradicting par t  d) of I .  3. Finally suppose that  some ~ E ~r ( f ) )  satisfies (3). 
By the Ergodic Decomposit ion Theorem we can write 

f(flog I I (Df ' ) / i~ '  II d~,)d~(x) = flog I I (D~)/ i~ '  II d~. >_. log x0. 

This means that  the set S of points x satisfying 

(11) flog I I ( D f = ) / ~  ' II d~.> log X 
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has positive measure with respect to ~t. Moreover 

o ~ < k < i  o~<k<~ s o ~ < ~ < i  

But when x E S, (11) holds, thus implying 

U > 0, 

because V, is ergodic. Then, since this union is invariant under f'~, 

tz.( O P k ( f ) )  = 1. 

Then (12) implies 

O > o. 

IV .  - -  C o n t r a c t i n g  s e q u e n c e s  a n d  a t t a i n a b i l i t y  

In this section we shall develop a perturbation technique that will be used in the 
next section to prove Theorem 1.7. But before entering into the somehow formally 

involved array of definitions and statements that form this method, we shall first expose 
the underlying ideas through the discussion of a simplified but  closely related problem. 

A loose description of  the aim of Theorem I.  7 is the creation of  linkings between 

transitive hyperbolic sets that are bound together by orbits that accumulate in all of 
them. The problem is, using tkis loose linking, to create a reaI linking, meaning by this 
an intersection between a stable and an unstable manifold of  these sets. A simplified 
version of this type of objective is the following old and still open question: Suppose 

t h a t f  ~ Diff*(M) has a hyperbolic point p such that there exists q e W*(p) --  {p } whose 
a-limit set satisfies a(q) n (W"(p) - - { p  }) # 0; then, is it possible to find a diffeomor- 

phism g, C k near to f such that it coincides with f in a neighborhood of  p and satisfies 
q E W~(p) n W~(p)? Even without the requirement that g coincide with f nearby p, 
this question admits an obvious formulation, as open and difficult as the above one 

but  for simplicity we shall discuss this question as we stated it. 
There are at least two possible approaches to this problem. The first is the local 

method that consists in taking n/> 0 such that the point f - " ( q )  is very close to a point 
z E W~(p) - - { p  } and trying to find a diffeomorphism ~, C ~ near to the identity, such 
that ~b(f-"(q)) = z and is the identity outside a ball B~(z) that  does not contain p. Then 

if B,(z) does n o t  contain points of the form fJ(q) for 0/> j 1> --  (n --  1), the sequence 
{ f J ( q ) [ 0 1 > j > /  --  ( n - -  1 ) } u { f J ( z ) l  j l >  0}  is an orbit of the diffeomorphism 

g = (~f-1)-1,  obviously contained in W~(p) o W~(p). But if we take r so small that 

fJ(q) (EBy(z) for 0t>j>1 --  ( n - -  1), and on the other hand such that f - " ( q )  eB,(z) ,  

then the C* distance between g and f becomes a function of  r and d(f-*(q), z). More 
specifically, ~b can be taken C ~ near to the identity i fd( f-"(q) ,  z)/r k is small, a condition 
that requires a special choice of  n which cannot be always satisfied. To make the local 
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method work we can add supplementary hypotheses, as in the results in [13] that will be 
stated again in the next section before using them (together with the results of this 
section) to prove I.  7. 

The other approach is more global. It  consists in taking a small neighborhood U 
of q and a diffeomorphism + that is the identity outside U and then defining the dif- 
feomorphism g = f  d? with the hope of finding qa near to the identity and also satisfying 
the relation g -  "(q) ~ W~(q) for some n > 0. Stated in this form it may seem outrageously 
naive, but the intention is to exploit the dynamics o f f  in such a way that the small 
perturbation introduced by + will be amplified under iteration in such a way that the 
orbit of q u n d e r f  (that accumulated in W"(p)) will move toward W"(p) and hit it. Again, 
to accomplish this project, we shall, in our situation, have supplementary hypotheses 
that grant certain expanding behaviour o f f -  1 through which the amplification of small 
perturbations will be obtained. In fact the proof of Theorem I. 7 exploits an alternative: either 
the local method works or there are enough expanding dynamics in f to make the global method work. 
What  we shall do now is to prepare the techniques of the second part  of  the alternative. 

Let A be a compact invariant set o f f ~ D i f f l ( M )  having a dominated splitting 
TM/A = E | F. Given m > 0 and 0 < y < 1 we say that a pair of  points (x , f -""(x) )  
in A, n > 0, is an (m, "()-string, if 

~I I[(Df")/E(f-"5(x))]l <. ,r 

and we say that (x , f -""(x) )  is a uniform (m, 7)-string when ( f - " ~ ( x ) , f - ' " ( x ) )  is an 
(m, ~')-string for all 0 ~< j < n. These two definitions are just repetitions of those intro- 
duced at the beginning of section II,  applied now to g = f -  '~ and the dominated splitting 
TM/A ---- F |  

A pair (S , , ) ,  where S = { xl, x2, . . .  }CA is a sequence in A and v : S  - + Z  + is 
a function satisfying l i + m  v(xn) = + oo, is an (m, y)-contracting sequence if there exists 

such that (x , f -" t (x) )  is an (m, y)-string for all ~ <j~< v(x) and x ~ S. Moreover we say 
that (S, v) is a strongly (m, "~)-contracting sequence if (x,f-'*~')(x)) is a uniform (m, y)-string 
for all x ~ S. The sequence 

g = {f-"~ ' , ) (x , )  I n 1> 1 } 

will be called the sequence ofendpoints of (S, v). I f  (S', v') and (S", ~") are (m, V)-contrac- 
ting sequences, write (S', v')/> (S", v") if S" is a subsequence of S' and ~"~< v'[S". 

Theorem IV.1 .  - -  I f  (S, v) is an (m, y)-contracting sequence then, given "~ < Yx < 1, 
one of the following properties holds: 

a) There exists a strongly (m, W)-contracting sequence (S', v') ~< (S, v) whose sequence of 
endpoints converges to a point y such that for every 0 < Yz < Y1 there exists N > 0 such that 

[I ][(Df') /E(f-"~(y))[I  > V~ 
t = 1  

for all n >1 N. 
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b) There exists a strongly (m, y~)-contracting sequence (S', ~') ~< (S, ,~) such that S - -  S' 
is finite and ~ --  ~' is bounded. 

Proof. - -  I fx  ~ S, denote by 5P(x) the set of  integers n in (0, v(x)] such that (x , f -="(x) )  
is a uniform (m, y1)-string. By Lemma I I .  3 there exist No > 0 and c > 0 such that 

(1) Sp(x) >t c (x) 

when ~(x) >/ N o. Recalling that, by definition, if S = {xi, x~, . . .  }, then 

lim v(x,) ~ + 0% 
n - +  + co 

it follows that (1) holds for all x, with large n, say n/> n 0. Define S' -= {x,0 , X,o+l , . . .  } 
and, if x ~ S', let v'(x) be the largest integer in 5g(x). Clearly (S', v') is a strongly 
(m, yx)-contracting sequence and S -  S' is finite. Therefore, if ~ -  v' is bounded, 
(S', v') has property b). Let us suppose v -  ~' is unbounded and construct (S", v") 

satisfying a). Let S" be a subsequence of  S' such that, setting S" = {Yx,Y2, . .  �9 }, we have 

lim (~(y,) --  ~ '(y,))  = + oo 
n--~  + 00 

and the sequence of  endpoints satisfies 

lim f-,,~'cu,~(y,) = y .  
n--~  + co 

Let us prove t h a t y  satisfies the inequality required by property a), thus completing the 
proof  of  IV.l, since then the strongly (m, y1)-contracting sequence (S", v"), with 

~ " =  v']S", has property a). Given 0 < T~ < T1, take Tz<  T2 < Y1. By Lemma 11.3 
there exists N > 0 such that if ( y , f - " " ( y ) )  is a (m, yz)-string and n > N, there exists 

0 < n 1 < n such that ( y , f - " " ~ ( y ) )  is a uniform (m, ~)-string. Suppose then that for 
some n > N the inequality in property a) does not hold. Then ( y , f - " " ( y ) )  is a 
(m, y2)-string and since n > N we have 0 < n I ~ n such that ( y , f - ,~n l (y ) )  is a uniform 
(m, ~2)-string. Then there exists a neighborhood U o f y  such that (z , f -""a(z) )  is a uni- 

form (rn, Ya)-string for every z ~ U. Take j so large that 

(2) f-,,~'~vj,(y~) ~ U 

and ~ ( y a ) = ~ ' ( y j ) > n l .  Then (ya,f-~'cvi~+"a~(ya)) is a uniform (m, y1)-string, 

because so are (y~, f - ,~ 'cvj , (yj))  and (by (2)) (f- '~'~vJ'(yi) , f-" '~"vi '+"~'(yj)) .  Since 
~'(yj) + nx < v(yj),  it then follows that ~'(ya) + na ~ #O(yj), contradicting the defi- 

nition of v' and concluding the proof. 
The important  property of strongly contracting sequences, that in the next section 

we shall exploit to prove Theorem I.  7, is given by the following definition and theorem. 

Given a sequence S = { Xl, x2, �9 �9 �9 } converging to a point x 0 and a set E C M, 
we say that E is attainable from S if given ~ > 0, a neighborhood U of x 0 and a G 1 neigh- 
borhood q / o f f ,  there exist g ~ q / a n d  integers k > 0 and g > 0 such that 

a) x~ ~ U and g-t(x~) ~ ~, 
b) g-a(x) q~f - l (x )  for all x r U, and 

c) d( f - " (x~) ,  g-"(x~)) < ~ for all 0 ~< n ~< t. 
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Recall that by [6], the domination property of the splitting T M [ A  = E @ F  
implies that there exists a family of embedded C 1 disks D(y) ,  y �9 A, such that: 

1) y � 9  and TuD(y )  = F ( y ) ;  
2) f ( D ( y ) )  contains a neighborhood o f f ( y )  in the disk D ( f ( y ) ) ;  
3) D(y)  depends continuously on y. 

Define D,(y)  as the set of points in D(y)  whose distance in D(y)  t o y  is .<< r. 

Theorem I V . 2 .  - -  Given r >  O, m � 9  + and 0 <  y <  1, there exists r = g(r,m,u 
such that i f  (S, v) is a strongly (m, y)-contracting sequence and S converges to a non periodic point xo, 
then, i f  y �9 A is e-near to an accumulation point of  the sequence of  endpoints of  (S, ,J), D,(y)  is 
attainable from S. 

Proof. - -  Take a neighborhood Uo off -a(xo)  and a C oo function + : M ~ [0, 1] 
satisfying ~b(x) = 0 if x r Uo and +(f - l (x0)  ) = 1. For each v �9 Tt_l~,01M define a Coo 
vector field on M setting ~,(y) ----0 i f y  C Uo and 

~r(X) ~-~ ~b(X) "~ ( f - l (Xo)  , X) V 

when x ~ U0, where -c(f-X(x0), x) is the linear map from Tt_x(~0) M onto T~ M given by 
the parallel translation along the minimizing geodesic that joins f-a(Xo) to x. Since this 
geodesic is unique when f - l (Xo)  and x are sufficiently close, it follows that 4. is well 
defined Uo sufficiently small. For v small, say [[ v it < R, define a diffeomorphism 

f ~ : M ~  by 
f~ l (x )  = expt_,~, , ~,(x). 

Observe that if[[ v [[ is small, the map x ~ exps_~,, , ~,(x) is a map C 1 close to f - 1 .  Hence 
it is a diffeomorphism and then f , ,  that is the inverse of the map x ~ exp1_~, ~ ~,(x), 
is well defined. 

The idea of the proof consists in taking e o > 0 and studying the sets Z(k) given 
for each x, �9 S by 

Z(k) = {f~-~"k"(Xk) Ill v II < ~0 }. 

We shall prove that there exists a constant c > 0 such that for k sufficiently large ~(k) 

contains a disk D(k) tangent to E(f-*c**~"*(xk)) at f-*~*k~"(x,) which (treating M as a 
Euclidean space) can be written as the graph of a C 1 map 

~ :{ w �9 E ( f - " ' * ' ~ ( x ~ ) )  III w II < c } - .  F(f-" '~ '~(x~)) .  

This means that 

D(k) = { w + ,~ (w)  [ w �9 E(f -~ '* '%x~)) ,  ]l w i[ < c }. 

Moreover the maps % satisfy ]] (q~,)' (w)l] ~< c for all k sufficiently large and every w in 
the domain of q~k- These properties, plus a standard application of the proof of the implicit 

function theorem, imply that given r > 0, i f y  is near to a point f-~<'k~"~(Xk) with k suf- 
ficiently large, then D,(y)  c~ D(k) 4= o. This means that 

f~-~(*k~'(x~) �9 D,(y) .  
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Since r can be taken arbitrarily small and f , -  ~ and f - a  coincide outside Uo, this proves 
two properties (a) and b)) required by the attainability of D,(y) .  The last property 
(property c)) will require more careful estimates. 

To formalize this method we begin by taking a neighborhood W 0 of A 

such that there exists a continuous splitting TM/W0----E | F extending the splitting 

TM/A = E �9 F. For x ~ Wo let % : T ,  M -+ E(x) and ~ : T ,  M -+ F(x) be the projec- 
tions associated to this splitting and let S,(x) be the cone 

S,(x) = { v  ~ T= M I II,~=vll < * II =~ vii}. 

1 
co = ~ ~ g  {II(Df)/T, M I1% II(Df-1)/T, M I1-1 }. 

Using the domination condition we can choose 7 < Tx < 1, an arbitrarily small t 0 > 0 
and 0 < e I < r < t0, no 3- 0, t > 0, A > 1 such that for every x in a certain neighborhood 
Wl C W 0 of A the following properties hold: 

I) (Df-""*) S~o(x ) C S,o(f-='~(x));  

II) (Dr -~) S.,(x)c s~( f - ' (x ) )  for all o <. j ;  
III) (Df - t ' ~ )  S~,(x)c S.l(f-t '"*(x));  
IV) if x ~ Wx, v ~ S,l(x ) and w ~ T,  M satisfy I] v II >i A [] W [I, then v + w e S,o(x ) 

and II v + w II ~> (1/2) II v 11, 
V) r is so large that 

when t m >  tk. Moreover there exists ~ > 1 such that 

when t > gk. 
Furthermore,  recalling that x 0 is not periodic, we can choose U o so small that 

VI) f -  J(Uo) n U0 = ~ for all 0 < j <~ 2tn o m. 

The rest of the proof consists in showing, following the method outlined above, 
that given r > 0 there exists r = r m, 7) such that i f y  is c-near to an accumulation 
point of  the sequence of endpoints of (S, ,~), then for all ~ > 0 there exist an arbitrarily 

small v eTl_lt~o~ M and x e S  n Uo such that f~-"(x) e D , ( y )  for n = my(x) and 
d(f~-J(x), f-J(x))  < 8 for all 0~<j<~ n. Clearly this suffices to prove the theorem. 

Choose R > 0 so small that  from properties I), II) ,  I I I )  and the definition of  co 

follows that, when I1 ~ II < R, then 
I') (Df,-""*) ~ ( x )  C S,o(f,-""~ for all x ~ Wx, 
II ') (DL-') S~(x) c s~(fg ' (x))  for all j >/ 0 and x such that f~-'(x) ~ W x for 

all 0<. i<. j ,  

Set 
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I I I ' )  (Df,  - t ' "o)  S~(x) C S,~(f~-t""o(x)) for all x e Wx, 

IV')  I[(Df~ -1) (x)l[ -z  >i c o for all x e M. 
Observe tha t  I I I ' )  and  r )  imply: 

V')  (Df~- ,,,,o,,) S~o(x) C S . , ( f -  ""o"(x)) for all x ~ W 1 and  n >/ t  such thatf~-~(x) ~ W 1 
for all O <~ j <~ nno m. 

We will use the following nota t ion for l inear maps: given T : E -+ F, I m  T = T(E)  
denotes the image of  T in F and  v [ T [ = min [[ Tw [[ denotes the m i n i m u m  n o r m  of  T. 

IIwll = z  
Given x E W 1 and  n > 0, denote  by 

D,f~-"(x)  : TI_l(~o~ M ~ TI;,I~ ~ M 

the derivative with respect to v of  the map  v ~ f , - " ( x ) .  Assume tha t  R > 0 is so small 
that  ][ D,  f~-l(x)[[ ~< 2 for all x e M, [[ v ][ < R and  also that  there exists a ne ighborhood 

Ux Cf(Uo)  such that  

(3) ~ I D,f~-l(x)  [~> 1/2, 

(4) I m  D,f,--Z(x) C S,o(f,-l(x)) and  f~-l(x)  ~ U o 

for all x ~ U x ,  ][ vii < R. Take  8 >  0 and  for x ES, define V(x) as the maximal  star 
shaped open set in TI_zc,o~ M such tha t  if v ~V(x)  then  d(f~-~(x),f-~(x))<<. 8 for all 
0 <<. j <<. m.~(x). Take  8 so small tha t  d(z, A) ~< 8 implies z ~ W x. Moreover ,  given any  
0 < c < 1, we can take 8, ~o and  R so small that  

VI ' )  [](Df~ -k) w ][ >>. c ][(Df*)/E(f-k(x))[[ - z  [[ w ][ whenever  0 <~ k <, mno, l[ v [I < R, 
x ~ A, w ~ S~o(y), d(y,  x) <<. 8. 

Take  0 < c < 1 such that  

(5) c-1 "t' < ~'~. 

Lemma I V . 3 .  ~ Suppose that x ~S  f') U1, v f iV(x) and let 0 <  n l <  n 2 <  . . .  
the sequence of  integers such that f~-"k(x) ~ Uo. Then the following properties hold: 

a) I m  D , f ~ " ( x )  C S~o(f~"(x)) for all 0 <<. n <~ my(x). 
b) For all n k <<. n < n~+ l 

ID o l : " (x )  II c 
i=1  

c) For all k >t 1, 

I m ( D f  -1) ( D ~ f ~ k + ~ ( x ) )  C S,~(f~"k(x)). 

d) For all k >1 1, 

I m  D , f ~ - ' k C  S,o( f - 'k (x) ) .  

be 

Proof. ~ We shall prove it by induction.  Since x ~ U1, then properties (3) and  (4) 
imply that  the l e m m a  holds for n z. Let  us suppose tha t  it holds for every integer n ~< n k 
and  let us prove tha t  it holds for every integer n < n~ + 1. First we shall show that  a) holds 
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for every n < nk+ 1- Tha t  it holds also for n -~ nk+ 1 will follow from d), which we shall 

have to prove  for n, + 1- Observe  that  if n, < n < n k + x then 

(6) D, f~-" (x)  = ( D f - ' " - " k ' )  (D, f / "k )  (x) 

because f~-J(x) r U0 for nk < j  ~< n. Then  (6), (V') and the induct ion hypothesis imply: 

I m  D, f z " ( x  ) C ( D r - ' " - . k , )  S .o(f-"k(x))  C S~o(f ,- "(x)), 

thus complet ing  the p roo f  of  a) for n k < n < nk+ 1. By the induct ion hypothesis it holds 
for n ~< n k. Hence  it holds for n < n,+ 1, as we wished to prove. N o w  let us prove b) 
for n k <  n < nk+ 1 (for n ~< n, it follows from the induct ion hypothesis).  Immedia t ly  

afterwards we shall prove c) and d) for k + 1 and  b) for n = nk+l. Given n k < n < nk+l, 

write it as n = [n/nom ] no m + r with 0~< r <  no m, and  write Px = [nk/nom], 
p, = [n,[n o m] + 1. Then,  by  the induct ion hypothesis applied to proper ty  c) we have 

(7) I m  ( D / - , - k -  ~1-0.,,) (D. f~- ~1 .o "(x)) 

= I m ( D / - 1 )  (D, f ,-- '"k-l ' (x)) C S. ,( /"k(x)).  

Applying b) and (5) we get 

v l ( D f  - ' " k - ~ " o " ' )  (D.f .--  ~l"o"(x))l 

>i % c~ "~ 1-I c [](I)f"o")/E(f ,"o"'(x))[[ - '  

[l 1~+1 [ l  \~+1 

Since Px no m > gk we can apply  (V) to obtain  

(8) v [ ( D / - ' " k - ~ l ' ~ ' )  (O, f~-~"O'(x) ) [  >/ A 

From IV) ,  (3), (4), (7) and (8) it follows that  

Then  

Hence  

(9) 

] D.f-- -k(x)]  = ~ l ( D f - ' - k ~ l - o " ~ ) ( D , f - , 1 - o " ( x ) )  

1 .o ,.)) + D~fz l ( f - "~+l(x) ) l />  ~ v ] (Df  - ' "k -~ ,  (D. f~-~ ,"o ' (x) l .  

1 1 
v I D , f , -  "k(x) I/> ~ c~k- ~1-0 ,- v [ D , f , -  ~1 ,o m(x)]/> ~ c0,o ,, v [ D, f~-  ~1,0 "(x) [. 

v [ D, fZ~,"O'(x)l = ,~ ] (Df  - ' ~ , ' ~ - " k ' )  (D,f~-"k(x))[ 

>>.@mvlD, fj"k(x)l> - c o , ] D , / , - -  

Moreover ,  by  V' ) ,  for all nk < j <~ n 

I m  D,f~-J(x)  = Im(Df-~J-"kl(D,f~"k(x))  
c (Dr-"-",') c 

25 
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Hence, by VI ' )  we obtain that, for all n k < j < j + mno <~ n, 

I D,f,--(J+ ~"~ = ~ [(D/-~"~ (D,f ,- ' )  (x)[ 
>1 c l[(Df""O)lE(f-c""o+ "(x) )ll-~ ,, l D.f .- ' (x)l .  

Then 

(10) ,, i D~ f - -  c~/,~,~,,~,~(x) I 
[ ttlmtt.o] 

>1 I-I r [ [ ( I ) f m n ~ 1 7 6  [ I)ff~--~sn~ 
j r 1  

Using (9) we get 

[ l (D f " "o ) /E ( f -~ , ' "O(x ) ) [ I  -~  1 czno m v I D, f,-~m(x)[ 
I Do / J~ '~ ' (x ) l  1> [l(i)f . , ,~)/F.(f_,, , , , ,(x))ll_X .-~ o 

1 
,.0,. [l(Df.,,o)/E(f-=,...O(x) )ll-~ ,j [ D , f , -  ~-o~"(x)[. t> ~Co 

Combining this with (10) we get 

1 C./m.o] 
>i - ~ 4 " "  I I  ~ [ I (DI '" , ) /E(Z- ' ' " ,"+, ,"(x)[I .~  [ D , f , - ' ~ ' ~ (x )  I. 

J = o  

Using the induction hypothesis 

1 
(11) "~ I n , f ~- t "/m " "  " ( x ) [ >I -~ c~ " '~ I I  c [[(Df""o)/E(f-"~(~+,,"(x))[[-~ 

J = o  
Px 

II  e II(Df"o")/E(f-"o"a(x))[[ -~ 
j f f i l  

Then  

(12) 

o). /> ~ ~0 ~ Co "~ 
In/rare] 

I I  c I I (Df" '~) lF . ( f - ' " f f x ) ) l [  -~. 

>>. Co"O"~Co "ore 4 "0" II c I I ( D f ' " , ) / E ( f - " ~ ' ( x ) l 1 - 1 .  
i = l  

This completes the proof  of b) for n < n~+l. Now observe that  

(13) I m ( D f  -1) (D,f-"**~+~(x)) = I m ( D f  -c"*§ (D~f~"*(x)) 
c (I)f-,-,§ s~(fT"*(x)) c s~(f.-"*§ 

where the last inequality follows from VI) and V').  This proves c). Moreover 

D,.L-"k+l(x) = ( n f  -~) (n,f~-- ,+l+i(x))  + D,f,-"*+x+i(x). 

Hence, as before, we can show that  the min imum norm of the first term on the right is 
large, because D~f~"*+l+l(x) can be estimated using b), which we have proved to 
hold for n < nk+l, and D f  -1 contracts norms at most by a factor c 0. Then  the first 
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term on the right has a much larger minimum norm than the second term, and its image 
is contained in S,~(f~-~k§ by (13). Therefore, by IV) we have 

Im D,f,-"k+l(x) C S,o(f ,- "k§ 

thus proving d), and 
1 

'~ I D , f , - ' , . , ( x ) [  >i ~- ,~ ](Df -~) (O, fj ' tk§ + l(x)) I. 
h 

Write n,+ = nn o m + r with 0 < r ,< n o m. Suppose r < m n  o. Then 

1 
,J [ D,,f,-",+,(x)] >I ~ v I(Df -~) (D,f,--"k+~+~(x)) I 

1 ,) 1 
= ~ [(Df-  (D,fjn~~ >t ~c ;~  I Dofgn~o"(x)[. 

Applying (11): 

l D,f,-'k§ >/ ~ c; .~ -o �9 * I I (D f '~ '~  
t = l  

>1 4"  H c II(Df'~,)/E(f-"~O'(x))ll -~. 
i = l  

From r < ran o it follows that n = [n~+Jmno] and this completes the proof of b) for 
n----n~+ t. When r = ran o we write 

1 
,~ ] Dof,-"k+,(x)l I> ~'J I(Df -1) (Do f ( "*+ '+~(x ) ) l  

1 
= ~ v I(Df- '"*)  (D,fgw"~ 

But 

Hence, by Ir) 

Then, by vr) 

Using (12) 

I m  D, f~- "~ (x )  = Im(Df- ' "=~-"* ' )  (Dof,-"k(x)) 
C (Df- ' "~ '0-  "*') S~(fj"*(x)).  

Im D , f ~  '*=~(x) C S~o(~-'~'~(x)). 

1 
'~ ] D,f~'k§ >1 ~ c [ l ( I : ) f '~"~ I D, fg '~o ' (x ) l  �9 

1 
,~ [ D,f~-"k§ >t -~ c I[ ( D f ~ m )  /E(  f -'*k+x(x) ) l[ -1  

c [ I (I)f~'~)/F (f-~m~.(,,)) -1 �9 2 C~ J = l  

t1 mtk+l n+l = c~ ~ Ha e } [ ( D f " ' ~ ) / E ( f - " ~ O ( x ) ) ] l  - ' .  
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Since n + 1 = [n,+l/nom], this concludes the proof of Lemma IV.3.  
I f  x ~ S c~ U1 define, for all 0 ~< n ~< my(x), Y,,(n) as the set 

Y,,(n) -~ {f,-"(x)[ v e V(x)}. 

From now on we shall treat M as if it were a Euclidean space. All our arguments will 
be local and they can be exposed more clearly in that way instead of the formally neces- 
sary but cumbersome repeated use of local coordinates. 

By I V . a  b), v [ Dof,-"(x)l > 0 for all x e Ut  t~ S and 0 ~< n ~< my(x). By IV.3  a), 
Im D,f , - " (x)  C S,~f,-"(x)). Hence Z,(n) is the graph of a C a map 

(14) q~,,| : D(n, x) -+ F ( f - " ( x ) )  

where D(n, x) is an open, simply connected subset of  E(f~-" (x ) ) .  Clearly the subspace 

{ w + (DO&,,) (y) w I w e f ,(f ,-"(x))} 

turns out to be the tangent space of Y,,(n) at the point f , -  "(x) + y  + d?,,,(y). Hence, 
by IV.  3 a), there exists C 2> 0 such that 

(15) [](DOe,,,) (Y)I[ 4 C 

for all x e U,  n S, 0 <~ n 4  m~(x), y e D(n, x). 

Lemma IV.4 .  - -  a) There exists ~o > 1 such that 

,~ I D,f , -"(x)[  >t [3~ 

for all x e S n Ux,  tno m < n < my(x). 
b) Given ? > 1 there exists N(a') such that 

t 

II D./;"(x)l[ <. 1I &-i  [ l (of . ) lE(f- , .+, . , (x)) l l .  II o . f ; "" (x) [ I  
J -1  

for all x E U 1 n  S, N ( 3 ) < n < n + t m < < . m v ( x ) .  

Proof. - -  By IV.  3 b) and (5), if n :> 0 we have 

('4)' 
where k is chosen by n,~< n < n k+l.  Then 

k <. [n/tno m]. 

and, if n > tno  m, 

D/n0 m] n0 
/> in o. 

[n/tno m] 

Then, by V) 

I D,f , -"(x)[  i> [3t-;,0,,J,~ 
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for rt > tno m. F rom here it is easy t o  conclude the existence of ~o > 1 as required by part  a) 
of the lemma.  Now let us prove b) by induction on n starting at n = my(x). Suppose the 
property proved for n + m, n + 2 m , . . . ,  n + tm<~ my(x) and let us prove it for n. 
Suppose first that  f ;  I"+'~(x) r U o. Then  

D , f~ - ' "+" (x )  = ( D r - ' ) ( D , f g " ( x ) ) .  

Using IV .  3 a) and VI ')  with k = m and any w s Tt_4xo) M, 

[I D, f z ( " + " ( x )  .w ][ = [ ] (D/ - ' )  (D,f,-"(x).w)][ 

>I c [ l (D f ' ) /E ( f - ' "+" ' ( x ) ) l [  -1 II D, f , - " (x ) .w  [I- 

F rom this inequality and the induction hypothesis follows 

II D,f , -"(xl l [  ~< c -~ [[(Df") /E( f - ("+"' (x))[[  

�9 IX  ?C - 1  [[(Df") /E(f- ("+~"(x))[[  11 D ,  f~- 'v(=)(x)[[  
j - 2  

t 
<~ II  & - x  [[(Df,)/E(f-( ,+') , , , (x))[[ [I D,3,-'~(')(x)[[, 

J -1  

thus proving b). Suppose now thatf~-("+ ' )(x)  ~ U0. Then  

n , f , - ' -+ - ' (x )  = ( D r - ' )  (D,f,-"(x)) + D,L- I ( f , - ' "+"+~(~) ) .  

Since I V . 4  a) says that  ~ [ D| is very large if n is large enough, we can write 

tt O, /,-- '" + ") (x) - -  O,/~z( f~-~"+"'+Z(x)) l l  <~ y tl D,f , - ' "+ '~(x) l t  . 

From IV.  3 d) 

I m  D , f , - ' "  +"'(x) C S,1(f , - ' "+"(x)) .  

Using property IV) we conclude 

Im(D,/ , - - ' "+" ' (x)  -- Dof,-~(f ,- '"+" '+X(x)))  C S,o(f , -("+"(x)) .  

Hence, using VI ')  as above, 

[[ D, fg"(x)[] = [[(Df-) (D,f , - ' "+"(x)  -- D , f , - l ( f ~ - ' " + " ' + l ( x ) ) ) [ [  

<~ c -1 [ [ (Df - ) /E( f - ( ,+- ' ( x ) ) ] ]  

�9 II D,/ ,-<"+")(x) --  D,f , - l (f~-("+")+l(x))[[  

e - 1  ~ I I ( D f ' ) / E ( f - ' " + " ' ( x ) ) l [ .  1[ D, f z ' "  + "'(x)ll 

c - 1  ~ I I ( D f " ) / E ( f - ' " + " ( x ) ) l l  �9 II D,L-"v'"(x)ll  
$ 

�9 I I  ~c - 1  [ l ( D J ' ) / E ( f - ' " + ' ) " ( x ) ) l l  
")-2 

1I ~e -~ [](Df")/E(f-'"+~"'(x))ll. II(D~ 
')--1 

This concludes the proof  of IV .  4. Take ~" such that  ?c- t T = "(3 < 1. Then  b) implies 
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Corollary I V .  5. - -  For all x e Ux c~ S, N(~') < n < n + tm <~ my(x), 

II D, fu" '"-"(x) l l  < II D, f , - " " ( x ) l l -  

Define Z.(r, n) as the set of points in Z.(n) whose distance to x in the manifold Z.(n) 
is ~< r, and let Z;(n) be the union of  all the Z.(r, n) that  are complete when endowed 
with the metric of the submanifold Z.(n). Then  IV .  5 implies: 

Corollary I V . 6 .  - -  For all x E Ux n S, N(~') < n < n + tm <<. m,(x), 

d iam X.*(m,(x) -- t) ~< y[ d iam Z*_(m,(x)). 

Lemma I V . 7 .  ~ There exists ~o such that 

diam Z~(mv(x))/> ~o 

for  all x e S n U1 with my(x) I> N(~'). 

Proof. - -  I f  the l emma is false there exist points x in Ux n S such that  d i am Y:_(mv(x)) 
is arbitrarily small. Set ~ = d iam Z**(m,J(x)). By the definition of Y,~(m~(x)) there exists 

p CZ,(mv(x)) --  Z,(m,~(x)) that  is a limit of a sequence {p ,  In/> 0 }C Z~(mv(x)). Write 

p.  = f , ; - ' " ( x )  

for some v. e V(x). Then  

f ~ ' (x)  = f ~. " " "  - "  f ~. """(x) ~f,~ ' " ' "  +~' Z,(m,(x)  ) C Z',(j) .  

This means that  

d ( f ~ ( x ) , f f ( x ) )  <~ diam Zf( j ) .  

Then,  by IV .6 ,  it follows that  for all 0~<j~< my(x) and n, d ( f ~ J ( x ) , f - ~ ( x ) )  remains 
arbitrarily small, say ~< ~. Hence d(~-J (x ) , f - J (x ) )< .  "~ for all O<~j<~ my(x). Then,  

(((  8 (where 8 is the constant used in the definition of V(x)), there exists a disk D o 
in T1_lc,0~M, centered at v such that  d ( f g ~ ( x ) , f - J ( x ) ) <  ~ for all w ED0. Then  
V(x) u Do is obviously open and, decreasing D o if necessary, star shaped because the 
center o l d  o is in the boundary  of V(x). Then  V(x) u D o is open, star shaped and satisfies 
the condition required by the definition of V(x). Moreover it contains v that  is not 
in V(x). This contradicts the maximali ty of V(x) and completes the proof. 

Using (14) we can now take an open subset D*(n, x)C D(n, x) such that  

z;(n) = { w + +...(w) I w D'(n, x)}. 

From the definition of Z.*(n), property (15) and L e m m a  IV.  7 there exists p > 0 such 

that  the disk B , ( f - " ( x ) ) = { w  ~ F . ( f - " ( x ) )  I ]] w ][ < p} is contained in D*(n,x) for 
all x e S c~ Ua, 0 < n <<. mv(x). To conclude the proof  of Theorem I V . 2  we shall use the 
following easy lemma. 
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Lemma I V . 8 .  - -  Let El ,  Ea be Banach spaces and let B~,(p) be the ball of  radius r in E, 
centered at p.  Let C > O, ~o > 0 and ~ > 0 be constants such that r is so small that 

�9 C < 1, 1 - -  r < min{(P~ - -  , ) /C ,  Oo }. 

Suppose that 

satisfy: 

a) ,~(o)= 
b) 11 +Co)II 
c) lip II <- 

Then 

: BL(o)  -+ E', + : B g ( p )  -+ E = 

0, II ~ (w, )  - ~(w,) l l  ~< ~ II w,  - ~1 II for all wl, w2 e BL(0);  
~< r and [I +(w,) - -  +(%)11 ~< C [[ w~. - -  wx II for  all wa, w~. sB~o(O); 
~o 

graph(~)  m graph(+)  # 0. 

Proof. ~ We have to find x ~ B~o(O ) and  y e B~o(p ) such tha t  

(x, 9(x)) = (+(y ) , y ) .  

This  is equiva len t  to f inding y ~ B~(p) such tha t  

+(y)  E BL(O ) 

9+(Y) = Y .  

Observe tha t  

II +(y)tl ~< II r + o I ly - P l l  ~< �9 + c Ily - P l I .  

Then,  for  every 0 < p, < m i n { p o ,  (Po - -  r  

+(~,~,(p)) c B~,(O). 

N o w  we can  consider  

tha t  satisfies 

and  

(16) 

Hence  

(17) 

Since by hypothesis  

there exists 

(18) 

~+ : BL(p ) -~ E, 

II ~+(P)II ~< ~ II +(P)II ~< ~' 

II (~+(Wl) - -  ~+(w,)ll ~< m II w, - ~ II. 

I I~+ (w) -p l l<~  Ilpll + e + m l l w - p l l ~ <  ~ + ~ ' + m l l w - p l l .  

e q-r 

1 - -  ~C 

1 - -  r  

- -  < m i n {  Po, (Po - -  ~)IC }, 

- - <  p2< m~{po,  (Po - ~)/c}.  
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Thus ~2 < min{ ~0, (00 --  r implies 

+(B~,(p)) C B~o(0 ) 

and then from (17) follows 

(Bl0,(p)) c BL(p), 

because r + ** + ,Gpz < p~ by (18). 

Moreover, since cG < 1, (16) implies that ~+ is a contraction B~2(p ) into itself. 
The fixed point of this contraction satisfies the required properties. 

To complete the proof of Theorem IV.2,  we shall apply Lemma I V . 8  to the 
maps 

+, , ,  : Bp(f-"(x))  -+ F(f-"(x)), 
: B,I(y) 

where B,l(y) is the disk of radius r 1 centered at 0 of the fiber F(y) and q~ is a C 1 map 
such that 

graph(~) = D,(y) .  

Then  ~(0) = 0 and (D~) (0) = 0. Diminishing r 1 we can satisfy the condition: 

(*)ll -< 

for all x e B,l(y), for any given r  0. Choose r so small that r @ 1. Then IV .8  says 
that if f - " ( x )  and y are c-near, then 

graph(~) c3 graph(+,. ,)  4= o. 

This means that 

D,(y)  n Z;(n) 4= o 

and then there exists v ~ V(x) such that 

f~-"(x) ~ D,(y) .  

V .  - -  P r o o f  o f  T h e o r e m  1 . 7  

We shall begin by recalling the statements of three theorems, proved in [13], 
about the creation of homoclinic points. 

I f  x ~ M and f ~  Diffl(M), let ~t,(f, n) be the probability 

n $ - 1  

Denote by ~ ( f ,  x) the set of  accumulation points of  the sequence { ~ ( f ,  n) ] n > 0 }. 

Clearly al l (f ,  x) C . / / ( f ) .  
Given a basic set A of a diffeomorphism f (see Section I for the definition of a 

basic set) we say that p is a homoclinic point associated to A if p s W'(A) t~ W'(A) -- A. 



A P R O O F  O F  T H E  C l S T A B I L I T Y  C O N J E C T U R E  201 

Recall that  every hyperbolic set s o f f  that  is isolated (i.e. U f " ( U )  = Z for some 

compact  neighborhood of A) and satisfies ~(f/2g) = Z, can be decomposed in a unique 
way in a union of disjoint basic sets 

Theorem V. 1 ([13]). - -  I f  Z is an isolated hyperbolic set o f f  ~ Diffl(M), with ~(  f [Z )  = X, 
and there exist x ~ W~(~) -- Z and ~ ~ ~r f ,  x) such that W(~) > O, then there exists g ~ DiffX(M) 
arbitrarily C 1 near to f ,  coinciding with f in a neighborhood of  ~-, t3 {f"(x) [ n 1> 0 } and such 
that either g has homoclinic points associated to a basic set of  Y, or else, 

x w ; ( z )  n 

Theorem V. 9. ([I 3]). - -  I f s  is an isolated hyperbolic set o f f  ~ Diff a (M), with ~ ( f [ X )  = Z, 
and there exists x r W"(Y~) such that ~(Y~) > O for all ~ ~ .~ t ( f ,  x), then there exists g ~ Difla(M), 
arbitrarily near to f and coinciding with f in a neighborhood of Z, having a homoclinic point associated 
to a basic set of Y~. 

Theorem g . 3  ([13]). - -  Let Y. be an isolated hyperbolic set of f E Diffa(M) such that 
~ ( f / s  = ~.  Suppose that { x~ } C M is a sequence converging to a point x r ~ and nl < n~ < . . .  
is a sequence of  integers such that the probabilities ~ . ( f ,  n~) converge to a probability ~ with 
~(2~) > O. Then, given a Cl-neighborhood all o f f ,  one of  the following properties holds: 

a) There exists g ~ all coinciding with f in a neighborhood of  2~ and having a homoclinic 
point associated to a basic set of  ~. 

b) For every neighborhood U of  Y., there exists another neighborhood V C U of Z and 
g ~ ~ coinciding with f in V t3 U ~, such that for  some j > 0 and 0 < n <, n~, g satisfies 

g-'(x~) = f - ' ( x j )  

for 0<<. i <<. n - -  2 and 

g-*(x~) ~ V 

for  all t >>. n. 

Observe that  the last condition, together with the fact that  g and f coincide in V, 
implies that  

V ~ g-~(g-"(xj))  = f - i ( g - , ( x ~ ) )  

for all i i> 0. I f  U (and then V) is small enough, this implies 

g-"(x~) e W"(E). 

The  proof  of the following easy lemma is left to the reader. 

Lemma V.4 .  - -  a) I f  A C M is a compact set and a sequence of  probabilities ~, / f"*,  n~), 
j = 1, 2, . . . ,  converges to Vt ~ . / / l ( f  '~) such that ~(A) > 0, then every accumulation point ,, of  

the sequence { ~,i( f ,  mn~) ]j > 0 } satisfies ~(A) > 0. 
b) I f  A C IV[ is a compact set and x ~ M satisfies ~(A) > O for all ~ ~ . ~ r  x), then 

v(A) > O for all v E. . t t ( f ,  x). 

26 
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Now let us prove Theorem I .  7. We shall find a diffeomorphism g arbitrarily (I 1 
$ 

near to f ,  coinciding with f i n  a neighborhood of  U A,, and such that if A --A~. is not 
closed then x 

W~(A,) r~ W~(A 1 u . . .  u A,) --  (A, u . . .  u A,) . ~. 

This proves I .  7, because it implies the existence of  1 ~< r <~ s such that 

W~(A,) n W~(A,) - -  (A, u A , ) .  

and then, from hypothesis II) of I .  7, it follows that i 4 r. Finally, it will be obvious from 
the construction of  g that, as required by Theorem I .  7, A -  A, is not closed. 

From now on, let f ,  A, Ax, . . . ,  A,, m > 0, c :> 0 and 0 < X < 1 be given by the 
hypotheses of  Theorem I.  7. (1hoose y, Y1, Y8 such that 

X <  y~ 

and exp(--  c) < Y8 < Y < Yx < 1. 

Lemma V .  5. ~ I f  x ~ A satisfies 

~I I [ (Df~) /E( f -~J(x) ) I I  >t yg 

for  all n sufficiently large, then x e W"(A1 u . . .  u A,). 

Proof. - -  Suppose that the inequality holds for all n >t N. Then, if  ~ ~ ~ r  x) 
is the limit of  a sequence ~ ( f '~ ,  n~), j >/ 0, we obtain 

f l og  I](Df=)/E ][ d~ = lim f l og  ]I(Df=)/E II dy . , ( f " ,  n i) 
i - + + ~  

= lim I ~ log I I ( D f " ) / E ( f - " ( x ) ) ] [  
t - + + Q o  n j  ~ = J  

ni 
= lira log( II  [] (Df" ) /E( f - " (x ) ) l [ )V"J  >1 l ogy ,  > -- c. 

5 " + + ~  ~ 1  

Hence, by hypothesis I I I ) ,  for all ~ e ~ C ( f  ~, x) we have 

~(A~ u . . .  wA,)  > 0. 

Using V . 4  b), this inequality holds for all ~ e .J t ' ( f ,  x). Applying V . 2  we conclude that 
either x e W~(A~ u . . .  u A,) or that there exists g e DifO(M) arbitrarily (11 near to f 
and coinciding with f i n  a neighborhood ofA~ u . . .  u A, such that there exists a homo- 
clinic point p r A 1 u . . .  u A, associated to one of the basic sets A~. By hypothesis II) 

of  1.7 this is impossible. Hence x e W'(A~ u . . .  u A,), proving the lemma. 
To construct g, let now A~ be such that A --  A~ is not closed. Suppose, to simplity 

the notation, that  i = 1. Take an isolating block W of A 1 (i.e. ['1 f " ( W )  = Ax) and set 
n 

A~ = fl  f - " ( W ) ,  

A~ = [~ f " ( W ) .  
n ~ 0  
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Let  us show tha t  (A~ -- Aa) n A 4= 0. Suppose tha t  (A~ -- A1) n A = o. Then  

= (A~ - A1) n A = ( I1 f - " ( w )  - A~) n A = f l  f - " ( W  n A )  - -  A1 .  
r ~>~0 

Hence  A x = [1 f - " ( W  n A). 
n~>o 

This implies ([26]) tha t  there exists a compact  neighborhood W o of  A 1 in A such tha t  

f - x ( w o )  C In t  W o and  

fl  f - - (Wo)  = A~. 
n>~o 

W h e n  I n t W  o - - f - l ( W o )  = ~, or, wha t  is the same, if  W o = f - a ( W o )  , this equality 

implies W o = A x because f - " ( W o )  = W o for all n. But this is impossible because a 

neighborhood of  Ax in A must  conta in  points not  in A1, since A -  A 1 is n o t  closed. 

Suppose now tha t  In t  W o - - f - t ( W o )  4 = o. Clearly 

f - " ( I n t  Wo - - f - l ( W o ) )  C f - " ( I n t  Wo) = I n t f - " ( W o )  

C f - " ( W o )  C f - l ( W o ) .  

Hence f - " ( I n t  W0 - - f - l ( W o ) )  n ( Int  Wo - - f - l ( W o ) )  = ~. 

Therefore In t  Wo - - f - ~ ( W 0 )  contains no nonwander ing  points o f f / A .  This contradicts 

f2(f]A) = A and  completes the p roof  of  (A~ -- Aa) n A 4= ~. 
Now, unfortunately,  the proof  divides in two cases. The  first case is when there 

exists p ~ (A[ --  Ax) n A such tha t  p E x(p). Then  we can  take a sequence of  integers 

n 1 < nz < . . .  such tha t  the sequence { f - " i " ( p )  ] j /> 1 } converges to a point  in A x. 

Lemma V . 6 .  m I f  ({p},{nx,  n2, . . .  }) is not an (m, y)-contracting sequence, then 

Theorem I .  7 is true. 

Proof. J By hypothesis, there exist j l < j ~ < . . ,  such that ,  setting ~ = n m 

we have 

II  [ l (Df '~ ) /E( f - ' J (p ) ) l [  >1 V r~. 

Hence Slog II(I)f~)/E [I M~,(F,  ~,) ~> log V > -- c. 

Then,  if  ~ ~.,r  ~) is an  accumula t ion  point  of  the sequence { ~ ( f " ,  ~) I i t> 1 }, 

f log  I](DF)/E I[ d~ t> log z -- a. 

Hence,  by  hypothesis, 

t~(Ax u . . .  u A,) > 0. 

Then ,  V . 4  implies tha t  there exists ~z 0 EuCt'(f,p) satisfying 

~0(A1 u . . .  u A,) > 0. 
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Applying V. 1 to Z = A 1 u . . .  u A, we obtain a diffeomorphism g, arbitrarily C 1 
near to f ,  coinciding with f in a neighborhood of Z u {f"(p)  [ n/> 0 } and having p as 
a homoclinic point associated to Z, the other option being ruled out by hypothesis II) 
of 1.7. Since g"(p) = f " ( p )  for all n >t 0, it follows that 

p c W~(A1) c~ W~(Aa u . . .  u A,). 

This proves I .  7 and then also Lemma V.  6. 
By Lemma V.  6 we can continue the proof  of  I .  7 assuming that ({ p }, { nx, n~, . . .  }) 

is an (m, y)-contracting sequence. Let us apply IV.  1 to ({p }, { nl, . . .  }) and our choice 
of • < "r~ < 1. I f  property a) of  IV.  1 holds, there exists a subsequence { nx, nz, . . .  } 

of { nl, n2, . . .  } such that ({ p }, { nl, n~, . . .  }) is strongly (m, y)-contracting and f-"/"*(p) 
converges to a point y ~ A satisfying 

II I[(Df")/E(f-~'(y))][ >1 "r~ (1) i=1 

for all n larger than a certain N. By Lemma V.  5, 

(2) y c W"(A 1 u . . .  o A,). 

Now hypothesis IV) of Theorem I .  7 says that 

[l(Df")/E(x)ll. I I (Df- ' ) /F( f" (x) ) l l  < X 

for all x cA.  Hence, this inequality and (1) imply 

l l - - 1  

I I  
i = 0  

= I I  

t i - - 1  

�9 I I  
i = O  

Since we chose Y2 satisfying Xy~- ~ = X 0 < 1, we have 
t i - - 1  

(3) I I  <. xg 
i = 0  

for all n/> N. Let D,(x), x c A ,  be the family of disks tangent at x to F(x), associated to 
the splitting TM/A = E (9 F, as we explained in Section IV. From (3) it is easy to deduce 

(4) lim d i a m f - " ( D , ( y ) )  ---- 0 
n ~ + o o  

when r is small enough; this, together with (2), implies 

(5) D,(y)  C W"(A~ w . . .  u A,). 

Now let us apply the Attainability Theorem IV.  2 to the strongly (m, yx)-contracting 
sequence ({p }, { nl, n2, . . .  }) and y. It  yields a diffeomorphism g, arbitrarily C 1 near 
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t o f  and such that g-1 and f - 1  differ only in an arbitrarily small neighborhood U of p, 
and moreover satisfying 

(6) g - " (p )  ~ D,(y)  

for some n > 0. Suppose that U was chosen so small that 

(7) U n ({f"(p) [ n i> 1 } u ( U f - " ( D , ( y ) ) )  wA1) = 0. 

This can be done because 

p r U / - " ( D , ( y ) ) ;  

otherwise (5) would imply 

p e W ' ( A 1  u . . .  u A , )  

and since p e W'(A1) , Theorem I .  7 would follow just taking f = g. Then p does not 
belong to the set 

{f"(P) ] n/> 1 } w ( U f - " ( D , ( y ) )  uAa, 
n>~0 

that (using (5)) is easily seen to be closed. Then U can be chosen satisfying (7). From (7) 
it follows easily that 

(8) D,(y)  C W~(A x u . . .  u A,). 

Also from (7) follows that 

g (p) 

for all k/> 0. Hence 

p e W~(A1), 

and this together with (6) and (8), implies 

p eW~(hl)  n W~(A 1 w . . .  w h,)  

which once more, proves Theorem I .  7. Now consider the case when applying IV.  1 
to ({p }, { nx, n~, . . .  }) it is property b) that holds. Then there exists a sequence of positive 
integers 0 < h-~ ~< nj such that ({p }, { nl, n~, . . .  }) is a strongly (m, Tx)-contracting 
sequence and 

s~p(n, --  K,) < oo. 

This last relation implies that without loss of generality we can assume (recalling 
that f-ni"*(p) converges to a point in A1) that 

= p0  A1. 

Let TM/A 1 = E'  $ E ~ be the hyperbolic splitting of A 1. By hypothesis, 
dim E" (x )>  dim F(x) for all x cA1 n A. Then we have two dominated splittings 

of TM/AI n A, namely TM/A 1 = E ~ �9 E" and TM/A = E �9 F. Using that f / A  1 is 
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transitive and well known (and easy) properties of  dominated  splittings (see [9], for 
instance) we obtain that  F(x) C E"(x) for all x e A 1. Then,  by definition of hyperbolic 
splitting, F(x) satisfies property (3), for all x e A 1 ( w i t h y  obviously replaced by x and 
suitable values of 0 < ),0 < 1 and m > 0). Take x = P0. Then,  as before, we have that  

l im d i amf - " (D , (po ) )  = 0 
n--~ + r 

when r is small enough and then 

D,(po ) C W"(po) C W"(Ax). 

Now, arguing as before, take a neighborhood U of p such that  

o n I > 0 } u ( U f -" (D,(Po)) ) )  = 
n ~ > 0  

Applying again the Attainability Theorem,  now to the strongly (m, T1)-contracting 
sequence, we can find g e DiffX(M) arbitrarily C a near  to f ,  such that  g-X a n d f  -x differ 
only in U, and satisfying for some N > 0 

g-~'(p) e D,(po). 

Since g-I and f-1 coincide in the set 

{f"(p)  In > 0 ) u ( [J f -~(D,(Po))) ,  
n ~ > 0  

we have 

f " (p )  = g"(p) 

for all n/> 0 and 

Hence 

and 

Therefore 

l im d iamg-"(D, (P0) )  = 0. 
n - ~  -k- QO 

p W (A1) 

g-~ (p )  E D,(Po) C W~(A1). 

p ~ W;(Ax) n W;(AI) --  A1, 

a contradiction with hypothesis II)  of I .  7. 
This completes the proof  of Theorem I .  7 when there exists p e ( A ~ -  A1) n A 

such that  p e ~(p). Now let us suppose that  

(9) p r :r for all p e (h~. --  As) n A. 

Take q e ( A ~ -  As) n A. Since q r a(q) there exists a ball B0(q) such that  

(10) f - " ( q )  r Bp(q) 

for all n i> 1. Since q e A  = ~/(f]A), there exist a sequence of points { q~ [j /> 1 }C A 

converging to q and integers h-j ~ + oo such that  ~fi+m f-~S(q~) = q. Given any r > 0, 

we can take p > 0 so small that, using property (10), there exists a sequence of integers 
0 < n~ < K~[m satisfying fimoon ~ = + oo and for, all j ,  

(i) f - ' ( q t )  r Bp(q) for all 0 < n <~ mnj, 

(ii) d(f-="i(q~), Ax) < r 
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The next lemma parallels Lemma V. 6, in such a way that the whole proof, under 
assumption (9), parallels the proof of the case when we had p ~ (A~ --  A1) c~ A satisfying 
p ~ ~(p). 

Lemma V .  7. ~ I f  ({ qj }, { n~ }) is not an (m, Y)-c~ sequence, then Theorem I .  7 

is true. 

Proof. ~ By hypothesis, there exist Jl <J~ < . . .  such that, denoting ~ = nj~ 
and ~ = qJi, we have 

g 
1I II(Df")/E(f-"J( '~,))[[ >1 v "~,. 

Hence f log  II(Df')/E II a~,~,(f", a,) ~> log v > - c. 

Then, if ~t e J / ( f  ~) is an accumulation point of  the sequence { ~z~(f"*, ~) ] i i> 1 }, 

flog II(Df')/E I1 d~ >1 l o g ~ >  c. 

Hence, by hypothesis 

lz(A1 u . . .  u A , )  > 0. 

Then V. 4 implies that if/z o is an accumulation point of  the sequence { ~t~ ( f ,  m~) ] i t> 1 }, 
one has 

~z0(A 1 u . . .  U A,) > 0. 

Now we can apply V. 3 to obtain a diffeomorphism g arbitrarily C x near t o f  and coinci- 
ding with f in a neighborhood of A1 u . . .  u A,, such that  (since option a) of  V. 3 is 
ruled out by hypothesis II) of  I.  7) there exists ~,, with i arbitrarily large, such that 

(11) g-"(~,)  = f - " ( ~ , )  

for all n/> 0 less than a certain N ~< m~j, and 

(12) g-'(~,)  ~ v  

for all t/> N, where V is an arbitrarily small neighborhood of A~ u . . .  u A, where g 
andfco inc ide .  Then,  i fV  is taken being an isolating block ofA 1 u . . .  u A,, we conclude 

that 
g-~r(~,) ~ w u ( a  I u . . .  u As). 

Moreover (11) and (12) imply that 

g-"(7,)  r Bp(q) 

for all n >/ 1. Now observe that the forward orbit of  q converges to A1 and therefore, 
without loss of generality, we can assume that is does not intersect Bp(q). By the local 
stability of the hyperbolic set A~, there exists ~ nearby q whose forward orbit converges 
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to A x without intersecting Bp/2(q). Moreover the distance d(q, ~) is arbitrarily small 
i fg  is sufficiently C 1 near  t o f .  Therefore the quotient  d(~i, ~)/(p/2) can be obtained arbi- 
trarily small. Then  there exists a diffeomorphism h ~ Diffl(M) such that  

and h(x) : x ff  x C Bpl2(q) 

and whose C11 distance to the identity goes to zero together with d(~,, ~)/(p/2). Consider 
~ DiffX(M) defined by ~ = hg. I t  is easy to check that  

{g"(~) [n>t 0 } v { g - " ( q i )  In1> 1} 

has the property of being an orbit of ~, and clearly an orbit in 

W~(AI) (~ W-~(A1 u . . .  u h , ) -  (A1 u . . .  u A,), 

thus proving I .  7 and also L e m m a  V.  7. 
As before, L e m m a  V.  7 means that  we have only to complete the proof  of 

Theorem I .  7 assuming that  ({ qj }, { n~ }) is an (m, y)-contracting sequence. Observe 
that  we reached this conclusion independent ly of the s used in the construction of the 
sequence ({ qj }, { nj }). On  the other hand  we have already shown that  if r > 0 is small 
enough then 

D,(x) C W~(A1) 

for all x ~ A1. Let  0 < T2 < Y < Y1 < 1 be as chosen and let r > 0 be smaller than the 
,(r, m, Y1) given by Attainability Theorem IV .2 .  Now let us apply Theorem IV.  1 
to the (m, T)-contracting sequence ({ qj }, { na }). I f  property a) of IV .  1 holds, there 
exists ({ q'a }, { n; }) ~< ({ qj }, { n~ }) that  is strongly (m, y1)-contracting and such that  

l im ")" ~(q;) ~ A = Y  

where for the same reasons as in the proof  of (5), y satisfies 

D,(y)  CW"(A~ w . . .  u A , ) .  

Take, as before, 0 < Pz < P such that  

B01(q ) n ({f"(q) [ n >1 1 } u ( U f - " ( D , ( y ) ) ) )  = o. 
n>~0 

Now, applying the Attainability Theorem to ({q'~},{n'j}), we can take a diffeomor- 
phism g, arbitrarily C 1 near  to f ,  such that  g-X = f - 1  in the complement  of Bpt(q) and 
such that  for an arbitrarily large j there exists N > 0 satisfying 

(13) g-S(q'j) ~ D,(y) .  

The  arguments used in the previous case now show that  

D,(y)  C W~(A 1 u . . .  u A . )  

a n d  

(14) f " (q)  = g"(q) for all n t> 0. 
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Moreover, the Attainability Theorem also grants that  g can be taken satisfying: 
- - n  t _ ~  t 

d(g (q j ) , f  (q~)) <~ p - -  Pz 

for all 0 ~< n ,< N. Hence 

{ g-"(q',) I 1 . < . . <  N } ta Bol(q ) = o. 

Moreover by (13) 

{ g-"(q;)  I n >/ N } n Bo~(q) C ( U g - " ( D , ( y ) ) )  n Bol(q) 
n~>o 

= ( U f - " ( D , ( y ) ) )  n B,,(q) = o. 
n~>o 

{g-"(q;)  In>/ 1}c~Box(q ) = o .  Hence 

and from (14) 

{ g"(q) I ,, > o } n B.~(q) = o. 

Now take h e DiffX(M) such that  

h(q;)  = q. 

and h(x) = x i f  x r Bol(q ). 

Then  the set 

{ g"(q) I n >l O } u { g-"(q;)  I n >t 1}  

has the property of being an orbit  o f g  = hg, and moreover, by (13) and (14), it is an orbit 
in 

W~(Az) n W~(A 1 u . . .  u A,). 

Hence 

(15 )  q ~ w ~ ( a o  n w ~ ( a ,  u . . .  u A.)  - -  (a ,  u . . .  u A.) .  

thus proving Theorem I.  7. Finally, let us consider the case when in the application of 
Theorem IV.  1 to ({ q~ }, { nj }) it is property b) that  holds. This property means that  
without  loss of generality we can suppose that  ({ q~ }, { n~ }) is a strongly (m, yz)-contracting 
sequence. Since d ( f - ' ~ ( q j ) ,  Az) < ~, there exists y e A z t-near to an accumulat ion point  
of the sequence of endpoints of ({ q~ }, { n~ }). Then,  given an arbitrarily small neigh- 
borhood U of q, we can apply the Attainabili ty Theorem (observing that  for this purpose 
we take r smaller than  the r m, Y1) of this theorem) and obtain g, arbitrarily (P near to f ,  
such that  g-Z = f - 1  in U% and satisfying 

g - ~ ( q ~ )  ~ D , ( y )  

for some N > 0 a n d j  >/ 1 that  can be taken arbitrarily large. Now, repeating the method 
of the proof  in the previous case (i.e. when it was option a) of IV .  1 that  held) we take 
a diffeomorphism h, C 1 close to the identity, satisfying h(q~) = q and h(x) = x if x ~ U, 
and we define ~ = hg and show that  q satisfies (15). 

27 
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