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Introduct ion  

The aim of this paper is to study the structure of lattices in products 
AutTlxAutT2  of automorphism groups of regular trees. These lattices have a rich 
structure theory both parallel to the theory of lattices in semisimple Lie groups as 
well as exhibiting some new phenomena. A basic difference is that cocompact lattices 
F < AutT1 xAutT2 never have dense projections. The class of lattices considered here 
are those whose projections in each factor satisfy various transitivity conditions, in par- 
ticular that of being locally quasiprimitive. The structure theory of locally quasiprimitive 
subgroups of AutT  is developped in [B-M]3 and is used in an essential way in this 
paper. The main consequence of the theory outlined in this paper is the existence 
and construction of lattices which are finitely presented, torsion free, simple groups; 
the corresponding quotients of TIXT2 are fmite aspherical complexes with simple 
fundamental group, thus answering a question of G. Mess ([PLT] Probl. 5.11 (c)). Fur- 
thermore, using the action of these lattices on each of the tree factors, we show that 
they are free amalgams F*cF of finitely generated free groups; this answers a question 
of P. M. Neumann [Ne] (see also [K-N] Problem 4.45). M. Bhattacharjee constructed 
in [Ba] a free amalgam L*KH of finitely generated free groups with no finite index 
subgroup; on the geometric side, D. Wise [W] constructed a finite complex with no 
finite (non trivial) coverings, and covered by a product of two trees. 

Torsion free discrete subgroups of semisimple groups are fundamental groups of 
locally symmetric spaces. In Chapter 1 we show that the object corresponding to a 
torsion free, discrete subgroup of AutT1 xAutT2 is a square complex, with additional 
structure. In fact, torsion free, cocompact lattices correspond to finite square complexes 
whose link at every vertex is a complete, bipartite graph. Such a complex X inherits, 
from the product structure of its universal covering, a decomposition of its 1-skeleton 
X (1) into a "horizontal" X~ l), and "vertical" X~ 1) 1-skeleton. The link condition enables 

one to define, for every vertex x, an action of - cv(1) ,~lt~'~h , x) on the set Ev(x) of vertical 
edges with origin x, defining thus a "vertical" permutation group Pv(x) < SymEv(x); 
one obtains analogously a horizontal permutation group Ph(x) < Sym Eh(x). These are 
basic invariants associated to the square complex X; they give information of "local" 
nature on the action of gl(X) on the factors of X; for example, the projections of the 
lattice tel(X) are both locally (quasi) primitive ([B-M]3) precisely when the above finite 
permutation groups are (quasi) primitive. 
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A lattice F < A u t T l x A u t T 2  is reducible, if it is commensurable to a product 
F1 xF2 of lattices Fi < AutTi; for a square complex, this amounts to the existence of a 
finite covering which is a product of graphs. In Chapter  1 we give a computable 
sufficient condition for the irreducibility of a complex, based on the Thompson-  
Wielandt Theorem. 

In Chapter 2 we turn to irreducible cocompact lattices with locally quasi- 
primitive projections. We prove that if such a lattice meets one of the factors, then it is 
not a residually finite group. Using a geometric method and the results in [B-M]s, we 
construct examples of such non residually finite lattices. The existence of such lattices 
constitutes a fundamental difference with the case of Lie groups. 

In Chapter 3 we obtain, using a method of P. Pansu (see [Pa]), certain 
cohomological vanishing results for irreducible lattices wkh locally quasi-primitive 
projections. We deduce, for example (see Prop. 3.1), that if N <1 F is a normal 
subgroup in such a lattice F, and if N has non-discrete projections, then F / N  has 
property (T). This is an analogue of a theorem of G. A. Margulis in the Lie-group 
case (see [Ma]). It is used in the proof of the normal subgroup theorem, in Chapter 
4. 

In Chapter 4 we prove one of the main results of this paper, namely the normal 
subgroup theorem. This concerns lattices F whose projections satisfy stronger transitivity 
conditions, in particular they are locally oo-transitive, and asserts that any nontrivial 
normal subgroup of F is of fmite index. The strategy of the proof is borrowed from 
Margulis' normal subgroup theorem (see [Ma]); it rests on the characterization of finite 
groups as being those which at the same time are amenable and have property (T). 
While there are many (elementary) methods of showing that certain groups cannot be 
finite, there seem to be few methods of showing that certain groups cannot be infinite. 

Along the way we prove that closed, locally oc-transitive subgroups of A u t T  
enjoy the Howe-Moore property. 

A natural class of closed subgroups of the automorphism group Aut.~" d of the 
d-regular tree, introduced in [B-M]3, are the groups U(F) < A u t ~ d ,  associated to a 
permutation group F < Sd. Any vertex transitive subgroup of Auto ' s ,  whose local 
action at every vertex is permutation isomorphic to F < S~, is conjugate to a subgroup 
of U(F). If F < Sd is a 2-transitive permutation group, then U(F) is oo-transitive. In 
particular, given Fl,  F2, 2-transitive permutation groups, the normal subgroup theorem 
applies to all cocompact lattices F < U(F1)xU(F2), with dense projections. In Chapter 5, 
we give effective sufficient conditions (based on [B-M]3 Chapt. 3) on a finite square 
complex X, ensuring that its fundamental group F=~I(X)  is of the above type. 

In Chapter 6 we construct, for every n/> 15, m >/ 19, a square complex Xn, m on 
one vertex, whose fundamental group ~1 (Xn, m) < U(A2n)xU(A2m) has dense projections. 
We introduce certain geometric operations, joining and surgery, on one vertex square 
complexes. Using these operations, we show that any finite collection of one vertex 
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square complexes whose links are complete bipartite graphs, embeds into a square 
complex Y whose fundamental  group xl(Y) is a cocompact lattice in U(Ak)xU(At), 
with dense projections. Starting with a one-vertex square complex with non-residually 
finite fundamental  group, (see Chapt. 2) the fundamental  group of the resulting square 
complex Y is virtually simple, that is, it contains a simple group of finite index. A more 
elaborate construction leads to an infinite family of square complexes on 4 vertices, 
with simple fundamental  groups; an analogue of the Mostow rigidity theorem can be 
used to show that the above groups are pairwise non-isomorphic. 

We end by stating a few properties that any of the simple groups F constructed 
in Chapter 6 enjoys (see Theorem 5.5): 

(1) F is finitely presented, torsion-free. 
(2) F is a CAT(0)-group. 
(3) F is of cohomological dimension 2. 
(4) F is biautomatic. 
(5) F is isomorphic to an amalgam F*EF of free groups over a subgroup of finite 

index. 
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O. P r e l i m i n a r i e s  

0.1. A permutation group F < Sym(tl) of a set t l  is quasiprimitive if every 
nontrivial normal  subgroup e ~: N <~ F acts transitively on tl. Let F+=  (Fco : co E tl) 
denote the normal  subgroup of F generated by the stabilizers F~ of points co E gl. We 
have the following implications: 

F is 2-transitive ~ F is primitive ~ F is quasiprimitive 

F = F  

o r  

F is simple and regular (that is, simply transitive) on tl. 

Recall that a permutation group F < @m tl is called primitive i f  it is transitive and if 
every F-invariant partition of t l  is either the partition into points or the trivial partition 
{tl}. An equivalent condition which is often used in the sequel is that F is transitive 
and the stabilizer F~0 of a point m C fl is a maximal subgroup of F. See [Di-Mo] 
Chapt. 4 for the structure of primitive and [Pr] w for the structure of quasiprimitive 
groups. 
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0.2. For notations and notions pertaining to graph theory we adopt the viewpoint 
of Serre's book ([Se]). Let g = (X, Y) be a graph with vertex set X and edge set Y, 
let E(x)= {y E Y :  0(y)=x} denote the set of edges with origin x; for a subgroup 
H < Aut g let H(x) = StabH(X ) and H(x) < Sym(E(x)) be the permutation group obtained 
by restricting to E(x) the action of H(x) on Y. We say that H is locally "P" if for 
every x E X, the permutation group H(x) < Sym(E(x)) satisfies one of the following 
properties "P" : transitive, quasiprimitive, primitive, 2-transitive. We say that H is locally 
n-transitive (n /> 3) if for every x E X, the group H(x) acts transitively on the set of 
reduced paths (i.e. without back-tracking) of length n and origin x. Observe that H is 
locally 2-transitive iff, for every x E X, H(x) acts transitively on the set of reduced paths 
of length 2 and origin x. We say that H < Autt~ is n-transitive if H acts transitively 
on the set of oriented paths of length n without back-tracking; H < Auto  is locally 
oc-transitive if it is locally n-transitive for all n/> 1. 

For a connected graph 1~ and H < Autg, we have H < Sym(Y), and H + denotes 
the subgroup generated by edge stabilizers; +H denotes the subgroup generated by all 
vertex-stabilizers. If  0 = (X, Y) is connected and locally finite, the group Aut g < Sym(Y) 
is locally compact for the topology of pointwise convergence on Y. 

Let d denote the combinatorial distance on X, n/> 1 and xl, ..., xk E X; 

H,(xl, ..., x~) = {g c H :  

g is the identity on the subgraph ) 

spanned by all vertices y E X 

with d(y, {Xl,...,xk}) ~< n 

and for x E X, we set 

I-I,(x) = H, (x ) /Hn+l(X) .  

For x , y  E X adjacent vertices, set H(x,y):= H(x) 71 H(y). 

0.3. For a totally disconnected group H, we define H (~) := N L, where the 
L<H 

intersection is taken over all closed subgroups L < H of finite index and Q Z ( H ) =  
{h E H : ZH(h) is open}. Let T be a locally finite tree and H < A u t T  a closed 
subgroup; assume that H is locally quasiprimitive: it follows from [B-M]3, Proposition 
1.2.1, that H / H  (~) is compact, that QZ(H)  < H is discrete and that for any closed 
normal  subgroup N <~ H, one has either N D H (~) or N C QZ(H).  Let H Ira) < G < H 
be a closed subgroup; then G/ [G ,  G] is compact and for any open normal  subgroup 
N <1 G, one has N D H (~) (see [B-M]3 Corollary 1.2.2). 

0.4. (See 3.1 in [B-M]3.) Let T = (X, Y) be a locally fmite tree. For a closed 
subgroup H < AutT,  the following properties are equivalent: (1) H is locally 
oo-transitive, (2) H(x) is transitive on T(e~) for all x E X, (3) H is non-compact  and 
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transitive on T(e~), (4) H is 2-transitive on T(oe). Any of the preceeding properties 
imply, (5) H(x) < Sym E(x) is 2-transitive and H is non-discrete. 

Finally we ment ion  ([B-M]3 Proposition 3.1.2) that if H < A u t T  is closed and 
locally co-transitive then, 

(1) QZ(H)  = e, 

(2) H/~/ is locally co-transitive and topologically simple. 

1. Square complexes and lattices 

A convenient and powerful way of describing and studying a group acting on a 
tree is via the associated graph of groups. Similarly one can associate with a group 
acting on a product  of trees a complex of  groups (see [Ha]). In general one has to 
restrict to groups satisfying certain technical conditions such as the "no inversions" in 
the case of an action on a single tree. We shall restrict ourselves here to the case of 
free actions. Thus  we will be able to construct groups acting freely on a product  of 
trees as the fundamenta l  groups of certain two-dimensional cell complexes. To describe 
these we set the following notations: Circ a is the circuit of length 4, that is the graph 
with vertex set {1, 2, 3, 4} and edge set { [i,3 ] : i - j =  + 1 m o d a ,  1 ~< i , j  <<. 4}. We 
consider the dihedral group Da as subgroup of  the symmetric group Sa; the group Oa 
acts then by automorphisms on Circ 4 and, for any graph 1~, the group Oa acts on the 
set Mor(Circa, ~), of graph morphisms Circ a ~ 9. Recall that the set of edges E of  a 
graph g = (V, E) comes equipped with a free action of  the dihedral group D2, denoted 

y ---+y,y C E. 

A square complex X is given by a graph X Ill = 0g, E), a set S with a free action 
of D a and a map  0 : S ~ Mor(Circa, X/1/) which is equivariant w.r.t, the actions of 

D4 on source and target. We sometimes denote V by X(~ the sets E, S, D2 \E ,  Da \S  
are respectively the sets of: edges, squares, geometric edges and geometric squares. For 
later use we let ~ denote the fixed point  free involution on S given by the action of 
the transposition (2, 4) E Oa. 

The  link Lk(x) of a vertex x E X/~ is a graph with vertex set E(x) 
and edge set Sx={s  E S : Os(1)=x};  origin and terminus maps are given by 
ox(s) = 0s([1, 2]), t~(s) = 0s([1,4]) s E Sx and the fixed point  free involution on Sx is given 
by the restriction (ylS~. A morph i sm F : XI ---+ X2 of square complexes Xi = (Vi, Ei, Si) 

is a pair (q~, ~)), where q~: X] 1 / ~  X~ 1/is a morph i sm of  graphs and ~" $1 ~ $2 is a map,  

such that  0-~  = q0 (a/. 0, where q)(a) : Mor(Circa, X]t/) ~ Mor(Circa, x~l)) denotes the map  
induced by q0. There  are obvious notions of composit ion of morphisms,  of  monomor -  
phisms, epimorphisms and isomorphisms. A morph i sm F : Xl ~ X2 of square com- 

plexes induces for every x E X] ~ a morph i sm of graphs Fx: Lk(x) --~ Lk(q~(x) ), F = (q0, ~). 
We say that  a subgroup G < Aut X acts freely on X if the corresponding actions of G 
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on V, D2\E,  D4\S are flee: in this case there is a quotient square complex Y =  G \ X  
and a canonical morphism P : X -+ Y, P = (~, 11), such that Px : Lk(x) --+ Lk(n(x)) is 
an isomorphism for every x E X (~ 

Example. - -  Product of two graphs: given graphs ~.}i=~i, Ei), we define the 
square complex X =  @l x~52, X =  (V, E, S) as follows: 

V =V1 xV2, E = (V 1 x E 2 )  [..J (E 1 x V 2 )  , S = (El xE2) U (E2 xE1); 

the graph structure on X (l/= (V, E) is given by o(vl, e2)= (vl, o(e2)), t(vl, e2)= (vl, t(e2)), 
0(el, v2)= (o(el), v2), t(el, v2)= (t(el), v2), (vl, e2)= (Vl, g2), (el, v2)= (gl, v2), for vi E Vi,  
ei E Ei. The action of De on S is uniquely defined by a(el, e2)=(e2, gl), where o 
corresponds to (2, 4) and c(el, e2)=(e2, el), where c corresponds to (1 ,2 ,  3, 4) E D4. 
Finally, 0(el, e2), 0(e2, el) are given by the sequence of consecutive edges 

(el, o(e2)), (t(el), e2), (~1, t(e2) ), (o(el), g2), 

resp. (t(el), e2), (el, t(e~)), (o(e,), e2), (el, 0(e2)). 

Observe that in this case, Lk(x) is a complete bipartite graph, V x E X (~ 

Finally, we say that a square complex X is connected when X 0) is connected; 
if X is connected and x E X (~ we have the notion of a combinatorial fundamental 
group tel(X, x) and X is the quotient of a simply connected square complex X, its 

universal covering, by a free action of hi(X, x) < AutX.  We record the following basic 
fact: 

Proposition 1.1. - -  The universal covering Y( of a connected square complex X is a product 
of trees i f  and only i f  Lk(x) is a complete bipartite graph for all x E X (~ 

Square complexes satisfying the link condition of Proposition 1.1 will be called 
T-complexes. We say that a T-complex X = F\(ThxTv), where X = ThxTv, is VH,  if 

no 7 E F interchanges the factors of  X. Equivalently, there is a partition E = Eh It Ev 
such that if Eh(x) = Eh M E(x), Ev(x) = E~ N E(x), x E X (~ then Eh(x), E~(x) gives at every 
vertex x E X (~ the bipartite structure on Lk(x). Notice that every T-complex has a 
two-fold covering which is VH.  

Let X=F\ (ThXT~)  be a VH-T-complex and E = E h  U E~; in X (l/ we have two 

subgraphs, the horizontal X~I)= (X (~ Eh) and the vertical X~l)= (X (~ , Ev). For x E X (~ 
let x=rC(Xh, xo) where g : ThxTv--+ X is the canonical  projection, and define 

I v= 

- -  : = 
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Then I~v\(Thx {xv} ) is the connected component of x in X~ '/, while 

rxh\({xh}• 

is the connected component of x in X~ 1/. Associating to every 7 E r '  the projection in 

X~ 1/ of the horizontal path connecting (Xh, xv) to (Th(Xh), Xv) defines an isomorphism 

r ~v ,~ l  (X~ '/ ) , X , 

one obtains in a similar way an isomorphism 

(x: (1/ x) Fx h ) /t  I \-Av , �9 

The group 1 ~v (resp. Fxh) induces for every n /> 1 a finite permutation group of the 
sphere S(x~, n) (resp. S(xh, n)) in Tv (resp. Th); we give now a direct geometric description 
of these permutation groups: 

Every e E Eh, respectively e E Ev, gives rise to a bijection 

~0e : E~(0(e)) , Eo(t(e)), resp. 

q~e: Eh(0(e)) , Eh(t(e)), 

defined by q0,(d)= e" where e"= 0s([2, 3]), and s 6 S in the unique square such that: 

0s([1,2]) = e, 0s([1,4]) = e'; 

and q0,(e')= e" where e"= Os([4, 3]), and s E S is the unique square such that: 

0s([1,4]) = e, 0s([1, 2]) = e'. 

More generallg let E~(")(x), respectively E~")(x), denote the set of vertical, resp. horizontal 
paths, without backtracking, of length n/> 1 and origin x E X(~ in a similar wa~ every 
e C Eh(x), resp. e G E~(x), gives rise to a bijection 

q0 n/ E~)(x) ~ E~)(t(e)), resp. e : 

q0 "). E~"/(x) , E~"/(t (e) ). g 

Composing these bijections, we get a system of homomorphisms 

m(n)h, x ; ~1 ( X ~  1) , x )  ' S y I n  E~')(x) 

(x: x) , v ~ x  

(n) ~ ( n -  1), , which is compatible with respect to the canonical projection maps Ev (x) ~ r~ ix), 

resp. 



158 MARC BURGER, SHAHAR MOZES 

Returning to the description of  X as a quotient F\(ThXTv), one obtains natural 
bijections, 

(n) S(xv, n) > Eo (x), resp. 

S(xh, n) , E~"/(x) 

which are equivariant w.r.t, the isomorphism 

F x~' >~l (X~ l/, x) ,  resp. 

n(n), , Let ro ix), resp. P~n)(x), denote the image of m (~/ resp....(~/ . for n =  1 we will write h, x ,  ll'Lv~ x '  

P~(x), Ph(x); let H (~/, resp. H (hI denote the closure of the projection of F into AutT~, 
(n/ Sym E~/(x) and resp. AutTh. The above description implies that the groups Pv (x) < 

H(Vl(x~)/H~l(xv) < Sym S(x~, n) are permutation isomorphic, and that the same holds for 

P~/(x) < SymE~/(x) and H(hl(xh)/H~l(xh) < SymS(xh, n). 

In particular, P~(x) < Sym E~(x) is permutation isomorphic to H(V/(x~) < Sym E(x~), and 
Ph(x) < SymEh(x) is permutation isomorphic to H(hl(x) < SymE(xn). This simple but 
fundamental observation enables us to control the "local action" of H (v/ and H (hI in 
terms of the complex X. 

We turn now to the notion of reducible lattice. Let T1, T2 be locally finite trees. 

D~qnition. - - A  lattice F < AutT1 xAutT2 is reducible, i f  it is commensurable to a product 
F1 x F2 of lattices Fi < Aut Ti. The lattice F is called irreducible, i f  it is not reducible. 

Proposition 1.2. - -  For a cocompact lattice F < AutT1 xAutT2,  the following properties 
are equivalent: 

(a) There exists i E { 1, 2} such that pri(F) < Aut Ti is discrete. 

(b) F1 = {~/E AutTl  : (y, e) E F}, resp. F2 = {n E AutT2 : (e, n) E F} are lattices in 
Aut T1, resp. Aut T2 and F1 • r2 is offinite index in F. 

Proof. - - A s s u m e  that prl(F) < AutTl  is discrete; then F .  AutT2 is closed and 
hence F N AutT2 is a lattice in AutT2. The group pr2(F) < AutF2 normalizes the 
cocompact lattice F n AutT2 and hence ([B-M]a, 1.3.6) is discrete. Thus pr2(F) is 
discrete, hence as above, F n AutT1 is a lattice in AutTl  which shows that (a) implies 
(b). The converse (b) ~ (a) is obvious; notice that both projections are discrete. [] 

We say that a VH-T-complex X=F\ (ThXTv)  is reducible, if F < AutThxAutTv  
is reducible, otherwise it is called irreducible. 
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In geometric terms, the complex X is reducible if and only if X admits a finite 
covering which is a product of two graphs. However, we do not have an algorithm 
deciding if a given finite VH-T-complex is reducible, nor do we know whether such 
an algorithm exists. Nevertheless, we can, using Proposition 1.2 and the Thompson- 
Wielandt theorem, give a sufficient condition ensuring irreducibility. More precisely, 
let X be a VH-T-complex; for e E Eh, resp. e E Ev, x = 0(e), let Lh(e)= Stabph(x/(e), resp. 

(2) L~(e) = Stabpv(x)(e); let ~h(e) C E~2/(x), resp. ~v(e) C E~ (x), denote the set of horizontal, 

resp. vertical, paths of length two starting at e, and: 

Kh(e)={'cEP~2)(x):"t =id} 
~h(e)UEh(x ) 

(2) x ~o(~)uE~(~) } K~(e)= " c E P v ( ) ' x  =id  . 

(n) , p]n)(x), Lo(x), When X~ 1) and X~ ') are connected, then the permutation groups V~ (x) Lh(X), 
x' ,  are independent of x, up to permutation isomorphism; in this case we omit the . . . .  

when P~ and Ph are transitive, Kv(e) and Kh(e) are independent of e, up to permutation 
isomorphism, and we omit the "e". 

Proposition 1.3. - -  Let X be a finite VH-T-complex, we assume that __~N(ll, X~II are connected 
and that Pv, Ph are primitive permutation groups. I f  either K~ or Kh is not a p-group, then X is 
an irreducible VH-T-complex. 

Proof. - -  Let X=F\ (ThxT~) ;  H (hI, H (~/ as above and xh,yh, resp. x~,yv, adjacent 
vertices in Th, resp. T~. The assumptions imply that H (h), H (~) are both vertex transitive 
and locally primitive. If F is reducible, then H (hI, H (~/ are discrete and hence by 
Thompson-Wielandt (see [Th],[Wi]2, [B-C-N] or [B-M]3 Chapt. 2), H(~l(Xh,yh) and 

H]~l(xv,yv) are p-groups; since Kh, Kv are homomorphic  images of the latter, they would 
also be p-groups, a contradiction. [] 

Observe that if X = F\(Th x T~) is reducible, then F contains a subgroup of finite 
index which is a product of two free groups of finite rank; in particular the group F is 
linear over Cl. In this context we mention the following consequence of an arithmeticity 
result proved in [B-M-Z], which shows that under the hypothesis of Proposition 1.3, 
the group F is not linear over any field, and hence an irreducible lattice. 

Theorem 1.4. (See [B-M-Z].) - -  Let X be a finite VH-T-complex; we assume that 
X~ l/, X~ 1) are connected and that Pv, Ph are primitive permutation groups. I f  either Kv or Kh is not 
a p-group then, over anyfield, anyfinite dimensional linear representation ofg~(X) hasfinite image. 
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2. A C r i t e r i u m  for  n o n - r e s i d u a l  f in i t enes s  

2.1. A basic question concerning the structure of a group is whether it is 
residually finite. We shall show that certain lattices in AutT~xAutT2, with locally 
quasiprimitive projections, are not residually fmite; the results from [B-M]3 on the 
structure of locally quasiprimitive groups needed here and in the sequel are recalled 
in 0.3. The basis for constructing these examples is given by the following 

Proposition 2.1. - -  Let Hi < Aut Ti be closed, non discrete and locally quasiprimitive; let 
F < H1 xH2 be a cocompact lattice with HI ~1 c pri(F) C Hi. Then, 

where Ai = F N Hi. In particular, i f  A~ �9 A2 �89 e, then F is not residually finite. 

Proof. - - L e t  F' ~ F be a normal subgroup of finite index in F, then A~I =H1NF ~ 

is of finite index in A1 and both A,, A' 1 are normal in prl(F) > H~/; since H~ ~/ has no 

proper open normal subgroups ([B-M]3 Prop. 1.2.1), the action by conjugation of H~ ~/ 

on A1/A' 1 is trivial and thus A' 1 D [H~ ~/, A,]. Since H~)\T1 is finite, ~AutT 1 (H~ ~/) =e 

and therefore [H~ ~/, Al] * e  provided A 1 + e. [] 

With the notations of the above proposition, we have the inclusion Ai C QZ(Hi); 
the next result gives information about the size of QZ(Hi)/A/. 

Proposition 2.2. - -  Let Hi < AutT/ be non-discrete, closed, locally quasiprimitive and 
F < H~ xH2 a cocompact lattice with pri(F) = Hi; let Ai = F  7 1 H  i. Then, the group QZ(Hi)/Ai 
is locally finite, meaning that every finitely generated subgroup is finite. 
In particular, QZ(Hi) �89 e / f f  Ai �89 e. 

Proof. - -  Let S C QZ(H1) be a finite subset and U < H~ be an open compact 
subgroup commuting with S. Then, the intersection FA(UxH2) is a cocompact lattice 
in UxH2, hence finitely generated. Let A C F A (UxH2) be a finite generating set; 
then the centralizer ~U,;r(A ) of A in F is a cocompact lattice in ~;HI(A)xH2; since 
pr2(A) generates a cocompact lattice in H2 and prl(A) generates a dense subgroup of U, 
we obtain ~_~i41• QZ(H~)x(e). Thus, ~;H~(U)x(e) is discrete, and 

~Ij~(U)x(e)/~,~r(A) is finite. Since S C ~I~I(U) and ~Z;r(A ) C Al x(e), it follows that S 

generates a finite subgroup of QZ(H~)/A1. [] 

Question. Is QZ(Hi ) /A i  a finite group? 

Corollary 2.3. - -  Let Hi < Aut Ti be closed, non-discrete, locally primitive groups; assume 
that QZ(Hi) �89 for some i= 1, 2. Then any cocompact lattice F < Hi xH2 with pri(F)=Hi 
is not residually finite. 
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2.2. We describe now how combining Proposition 2.1 with [B-M]3 Section 1.8 
leads to examples of non residually finite lattices. 

Let E denote the tree consisting of a single edge, fix morphisms (Pi: Ti --~ E and 
let lli: AutTi ~ AutE(-~ Z2) be the induced homomorphisms. Let -~i=Ti• be the 
graph of diagonals, that is, the fiber product of Ti with itself relative to (Di : T i  ---+ E 
(see [B-M]~ Section 1.6 and 1.8). Recall that AutT/xn~AutTi < Aut~ri. 

Let F < AutT1 • be a cocompact, torsion free lattice; let Hi :=pri(I'), defme 
r x r  --, (HIxHI)x(H2xH2) by V((T,, T2), (T'l, T;))= ((~h, T'I), (312, T;)) and set 

A := v(FxF) FI [(Hi xn,Ht)x(H2 xn2H2) ] . 

Then A is of index 1,2 or 4 in ~(FxF), it acts as a group of covering transformations 
on !~rl x ~ 2 ,  and gives rise to a finite VH-T-square complex: 

Y := A\(-~I x-~2). 

We have the exact sequence 

1 , ) ~ , ~  , r x r  

where the last arrow has image of index 1, 2 or 4 in F x F. 

Proposition 2.4. --Assume that Hi is non-discrete and that HI ~162 is local~ 2-transitive, 
i= 1, 2. Then we have: 

11;1(7) (~176 D 71;1(-~1)XII;1(-,~2) 

and the quotient is isomorphic to F (~) xF (~). 

set L i  where 'i aut" "(Ti• the Proof. automorphism 
\ / \ / 

exchanging the factors, let !~  i be the universal covering tree of ~ i  and 
co i 

1 ' ~1(~ i )  ' Gi ,El > 1 

be the associated exact sequence. Let c0= 0)~ x(% : G~ xG2 ~ L~ xL2 and 

We claim that pri(A) D v,P-!~)', considering h as a subgroup of Ll x L2, we have 
_ _ |  - -  . 

A contains Ker (l) l N the pri(A)=co i @rLi(A)) smce Kerr group prLi(A)=prnixni(A) 
is normal of finite index in prHixHi(~(F X F)) and the latter subgroup being dense in 

Hi x Hi, we conclude that prLi(A) is normal of fmite index in Hi • gi Hi. Observe now 

that ~i normalizes prk(A), hence prL~(A) is normal of finite index in Li, which implies the 
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same property for pri(A) in Gi and proves the claim. Using that Gi is locally primitive 
non-discrete (Prop. 1.8.1, [B-M]3 and Prop. 2.1), we conclude 

A(~176 D [G] ~), ~1(~1)] X [G~ ~176 ~1(2~,2) ] :7C1(~-1))< rc1(_~.2) = Ker0). 

Since A (~) contains the kernel of c0, we deduce that A(~)/Kerr equals A (~), which in 
turn equals ~(F x F) (~) "~ F (~ x F (~) since A is of finite index in ~(F x F). [] 

2.3. We briefly describe a way of constructing the complex Y of 2.2 in terms of a 
fiber product of square complexes. Thus, let X =  F\(TI xT2) be a finite VH-T-complex, 
q)i : Ti ---+ E, rli : AutT/--+ Au tE  the morphisms defined in 2.2, and let S : = E x E  be 
the square complex consisting of 1 geometric square and 4 vertices. Let 

q01 xq)9 : T1 • > S 

"ql xT19 �9 AutT1 xAut  T9 > Aut S 

be the corresponding product morphisms; let F0 := F gl Ker  (rll Xrl2). Then,  

:= F0\(T1 xT2) 

is a finite covering p : X ~ X with Galois group G := F/F0 and the above product 
morphisms induce morphisms 

 o:X ,S  

rl : G > AutS ,  

where q0 is equivariant w.r.t. 11. The fiber product Y : = X x n X  comes equipped with 
an action of G x n G  , and the complex Y in 2.2 is then isomorphic to the quotient 
(GxnG)\r The projection maps pl,p2 of ~" on both factors, composed with the 
covering map p : X ---+ X, give rise to homomorphisms 

hi " g l ( ~  ' rq(X), i= 1, 2. 

Using the isomorphism Y ~ (GXnG)\r whose explicit construction is left to the 
reader, one gets Kerhi=nl(YZi). We denote by X N X = Y  the complex constructed in 
this way and let 

h- 7c1(X [] X) ' ~l(X)x~l(X) 

denote the product homomorphism hi xh2. We now obtain the following 

Corollary 2.5. - -  Let X be a finite, irreducible VH-T-complex. Assume that X (11 (11 h ~ Xv  are 

connected and that Ph, Pv are 2-transitive permutation groups with 2-transitive socles. Let 

h : [] X) rc (X)X=l(X) 
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be the canonical homomorphism. Then, the image of h has index 2 or 4 and, 

x1(X N X) (~176 D Kerh. 

163 

Remark. - -  The socle of a finite group is the product of all its minimal normal 
subgroups. A celebrated theorem of Burnside (see [D-M], 4.1) states that a 2-transitive 
group has a unique minimal normal subgroup which is either elementary abelian 
regular, or primitive and simple. Furthermore, in the case of non-abelian socle, it 
follows from the classification of 2-transitive groups that the socle is 2-transitive, except 
in one case (see [Ca] p. 624). 

2.4. An explicit example of such lattices may be constructed as follows. Let p ~: q 

be odd primes, both congruent to 1 mod4, with (P)=(q)= 1, H(Q)the usual Hamilton 

quaternion algebra over Q with basis 1, i , j ,  k, and 

Q:=  {x E H(Z)" N(x)=paq b, a, b E N ,  x = l(mod2)}. 

2= _ 1, and let Fp, q be the image of the Fix Ep E Qp, Eq E Qq with g~ = - i ,  g~ 
map 

'4':e 

X ) 

, PGL(2, Qp) x PGL(2, Qq) 

(( xo + x2 + 

-x2  + x~p,  xo - x~ep / ' 
XO + Xlgq, X2 + X3g q ~ 

--x9 + xsgq, Xo -- xlgq 3) 
Then Fp,q < AutO+ 1 x A u t ~ +  1 is a torsion free cocompact lattice, acting simply tran- 
sitively on the set of vertices of ~ + l  X~qq+l and satisfying prl(Fp, q) = Up, p/'2(Fp, q) = He, 
where for a prime g we define (see also [B-M]3, 1.8) 

det g } 
He = gE  PSC(2, Qe) :  I de tg~  c (Z~) 2 . 

The density of projections follows easily from the fact that Fp, q is an irreducible lattice 

and that He contains the index 2 subgroup H~ = PSL(2, Qe) which is simple. Via the 
homomorphism 

~ :  Fp,qxFp, q , (H/ ,xHp)x(HqxHq)  

((~/1, '~2), (~t3, ~t4)) > (~tl, ~t3, ~t2, ~4) 

the group Fp, q XFp, q acts simply transitively on the set of vertices of 
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and the subgroup Ap, q < ~t(Fp, q x Fp, q) acts simply transitively on the set of vertices of 
!~p x 5~q. The quotient 

~@,q:-- Ap,q\(~fp >(~q) 

is a square complex with one vertex. As Fp, q is residually fmite it follows from 
Corollary 2.5 and Proposition 2.4 that: 

~1 (~p, q)(Oo) = ~l (~p)X ~1 (~q)" 

Let us denote the one vertex VH-T-square complex corresponding to the arith- 
metic lattice Fp,q < PGL(2, Qp)xPGL(2, Qq) < Auto~p+lxAut~qq+l by ~ , q = F p ,  q\ 
ffp+l X ffqq+l" Both complexes ,/~p,q and !~p,q will be used later for constructing vari- 
ous other square complexes and lattices. 

3. Cohomolog ica l  propert ies  o f  latt ices  

In this section we turn to certain cohomological properties of fundamental groups 
of finite T-square complexes. The main results are Proposition 3.1 and 3.2 below; 
Proposition 3.1 enters in an essential way in the proof of the normal subgroup theorem 
(see w while Proposition 3.2 will imply certain cohomological vanishing results for 
irreducible lattices with locally quasiprimitive projections. 

Proposition 3.1. - -  Let T1, T2 be locally finite trees, F < AutTlxAutT2 a discrete 
subgroup such that F\(TI xT2) is finite and N <1 F a normal subgroup such that the quotient 
graphs pri(N)\Ti, i= 1, 2, are finite trees. Then r/N has property (T). 

Proposition 3.2. - - L e t  T1, T2, F be as in Proposition 3.1 and Hi:-pri(F) < AutTi. 

(a) The homomorphism Homc(HlxH2, C) ---* Hom(r,  C) mapping Z to ZIr /s an 
isomorphism. 

OJ) Let (re, V) be an irreducible finite dimensional unitary representation of F with 
Hi(F, n) �89 Then n extends continuously to H1 xH2,factoring via one of the projections. 

The following result is an application of Proposition 3.2 to irreducible lattices 
with locally quasiprimitive projections: 

Corollary 3.3. - -  Let T1, T2 be locally finite trees, Hi < AutTi closed non-discrete locally 
quasiprimitive subgroups and 

F < AutT1 xAutT2 

a cocompact lattice with HI ~1 c pri(F) C Hi. 
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(1) H o m ( F ,  (I) = 0. 

(2) H 1 (F, ~) = (0), for every unitary, finite dimensional representation (re, V) of F. 

Proof. - -  Set Gi =pri(I). 

(1) Follows from Proposition 3.2 (a) and the fact (see 
that Gi/[Gi, Gi] is compact. 

(2) We 

(a) 

(b) 

[B-M]3 Corollary 1.2.2) 

distinguish two cases: 

extends continuously to G1 xG2, factoring via one of the projections. 
W.l.o.g., let m : G1 ~ U(V) be a continuous unitary representation with 
rc(71,72) = c0(71), 7 = (71,72) E F. Since G1 has small subgroups and U(V) is 
a real Lie group, Ker  m is open in G1 and since GI D HI ~/, it follows (see 

[B-M]3 Prop. 1.2.1.5)) that Kerm D H]~/; thus Gl/Kerr  being compact 
and discrete, is finite. This implies that g(F) is finite. For any subgroup 
F ~ < F of fmite index, there is F" <1 F of finite index with F" C F .  
Then,  pri(F") <1 pri(F) is normal open and hence (Cor. 1.2.2.2. [B-M]3), 

~-~ , (~) pri(F") contains l-l! ~/ in particular pri(F') D H i . Thus (1) applied to F' 
implies Hom(F' ,  C ) =  0, for any subgroup U of finite index in F, which 
together with the finiteness of re(F) implies Hi(F,  ~) = (0). 

does not satisfy the extension property (a); it follows then from 
Proposition 3.2 (b) that HI(F, n )=  (0). [] 

The proofs of Proposition 3.1 and 3.2 rely on the study of a certain complex of 
cochains associated to a group acting properly on a square complex. More precisely, 
let X = ( V ,  E, S) be a VH-complex, F < A u t X  a discrete subgroup preserving the 
VH-structure, acting in a clean way on X, and ~ : F ~ U(o~')  a unitary representation 
of F into a Hilbert space o ~ .  The assumption on the action of F means that, whenever 
an element 7 E F fixes a geometric edge, resp. a geometric square (see w 1 for definition), 
then it fixes all edges, resp. squares, in this equivalence class. Let Fx denote the stabilizer 
of x E V U E I1 S and n(x) = IFxl. Define for Y E {V, E, S}: 

~ v  = { f :  Y , oq~f : f i s  r-equivariant and Nfll2:= ~ l~ l l f ( y )H2  < +oe}. 
r\v n(y) 

We obtain a complex ~ v  
bounded operators d, D are given by: 

df(e)  - -  f (o (e )  ) ,  

D 
~ E  , S s of Hilbert spaces, where the 

f E  ~ v  

DF(6) := F(06[1,2])  + F(0612, 3]) + F(0613, 4]) + F(0c[4, 1]), F E ~ E -  



166 M A R C  B U R G E R ,  S H A H A R  M O Z E S  

The space of 1-cocycles, 

~ J ' ( ~ )  = {F ~ ~ : D F =  0, F(e) + F(e-) = 0, V e ~ E }  

is a closed subspace of ~ E ;  the orthogonal complement of Imd in ~ ; t ( 5 f )  is 
Ker(6[~) ,  where ~ : S E ~ ~ v  is the adjoint of d and our first task is to establish 
a formula for [[6FH 2, F E o~;~(~), which takes into account the VH-structure and the 
link condition. To this end, let Swh , resp. ~Ev, be the subspace of maps f E ~ w  
having their support in Eh, resp. E~. Let Ph, resp. P~, be the orthogonal projection on 
~ h '  resp. ~ v ;  let 8h = 8Ph, ~iv = 8Pv, Dh = DPh, D~ = DPo. 

Proposition 3.4. - -  For all F E ~ j  l(c~ ), the following equaliO~ holds: 

II~FII2 = II~hFII 2 + II&Vll 2 + IlOhFl[ 2 + IlOvFII 2 

Proof. - -  Let F E ~ ;  l ( ~ ) ;  since ~ = 8v + 8h, we have to compute the following 
quantity: 

 0F(x) ). (ShV, 8oF)= ~r~v 1 

Since F(e)+ F(~-)= 0, we have 

(ShF(x)'~vF(x))=41~x)F(e)'e ,' ~ c E~(x) F(e ' ) ) ,  for all x C V. 

Taking into account the link condition, we obtain: 

(a v, aoF)-- Z "("), 
x E F \ V  ~ J ~ c S  x 

where Sx = {c E S : ~(0) = x} and u((y) = (F(0~[1, 2] ), F(O~[1,4] )). 
n(x) 

Using ~ e s x  u(~)= ~erx\sx n~U(~), we obtain, 

(ghV, 8~.V)=4 ~ l~u(~) .  
~ r \ s  n(~) 

Let R be a set of representatives of the set of geometric squares in F\S, then 

4 y ~  n--~)u(cI) = 4 ~ {u((y) + u('Ch(I) + u('C~(I) + u(~#C~(I)}. 
~ c F \ S  ~ J 
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Using DF = 0 and F(e) + F(~-) = 0, Ve E F, a computation leads to: 

u(~) + U(~h~) + U(Xv~) + U(Xh'Cv~)= IIDhF(~)II 2 --IIDvF(~)ll 2, 

and hence (ShF, 8oF)= IlU~FII2= liD,VII 2, which proves the lemma. [] 

Remark. - -  P. Pansu obtained in [Pa] an equivalent formula by a different method. 

Let now Tt ,  T2, F, N be as in Proposition 3.1 and rc : F --+ U(o~g ' )  be a unitary 
representation of  F with Ker rc D N; let ~ be the complex associated to the F action 
on X = T I X T 2  and to re. 

In this situation we have: 

Lemma 3.5. - -  There is a constant c > O, such that 

IIFll-< cllavll, VV e ~ ' ( ~ f ) .  

Proof. - -  We recall the following elementary fact: let S = (X, Y) be a finite tree, 
i : Y --~ N* an edge indexing and ~ a Hilbert space. For w E ~ Y define 

~Sw(x)= ~ i(e)w(e), x E X; 
0(e) = x 

then there exists a constant c > 0, such that Ilwll -< cll~Swlt, for ~ l  w E o ~  Y, satisfying 
w(e) + w(?)= O, V e E Y. 

Let now T / =  (Xi, Y/) and let S1 = (Vl, El) be a finite subtree of T1 which is a 
strict fundamental  domain for the action ofprl(N) on T1. The  set Es~(v), (v E V1) of  
edges in El with origine v is a fundamental  domain for the prl(N)(v)-action on E(v) and 
we defme an edge indexing i~: E1 ---+ N* by il(e)= Ipr,(N)(v)e[; k s' denotes then the 
corresponding operator on o~6 E1 Let W2 C Y2 be a finite set of  vertices such that 

E1 x W2 surjects modulo F onto the set of  horizontal edges of  F\(T1 x T2). According 
to the above general fact, there exists cl > 0 such that 

[iF(e, w)ll 2 .< c, ~S'F(., w) 2, Vw E Y2, VF E ~ 1 ( ~ ) .  
eEE 1 

For every e E Esl(Vl), Vl E V~, choose a finite set Fe C N,  IFel=il(e), such that 
prl(Fe)e=prl(N)(v~)(e). Then,  we have for every vl E V~, w E W2: 

ghF(vl, w)= ~ F(e', w) 
e' eE(vl) 

y ~  ~ F(nle, w) 
eEEs 1 (Vl) (nl, n2)EFe 
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thus 

k s' V(vl, w) -- ahF(Vl, W) = Z Z (F(e, w) - F(n,e, w)) 
~EES 1%) %, n2)~F, 

which, by N-invariance of F, equals 

= ~ ~ (F(e, w ) -  V(e, n;lw)). 
eeEs 1(~1) (nl,~2)cF~ 

(2) 

Then we observe that 

]iF(e, w) - F(e, n~ -~w)ll 2 ~< C2IIDhFII 2, 

where C2 only depends on the distance d(w, n2w). 
From (1) and (2) we deduce 

IIV(e,/)11 <- C3(llahVll 2 + IIDhVll 2) 
eEEI, wCW 2 

where C3 depends on N, F and the choice of W2. The same argument applied to the 
pr2(N)-action on T2, together with Lemma 3.4 implies Lemma 3.5. [] 

Proof of Proposition 3.1. - - W e  have to show that Hi(F, n)= 0 for any unitary 
representation n of F such that Kern D N. In the notation preceeding Lemma 3.5, we 
have HI(F, n) ~-- ~ l ( ~ ) / I m d .  

We may assume that n has no invariant vectors, thus Ker d--0. Then Lemma 
3.5 implies that 8 : ~;1 __+ ~ v  is a continuous isomorphism and thus d : ~ v  --+ ~,~;l 
is an isomorphism which implies Hi(F, n)= 0. [] 

Proof of Proposition 3.2. - -  Let (n, oq~) be a finite dimensional unitary represen- 
tation of F and 2~ the complex associated to the F-action on T1 xT2 and n. Since 
dimn < +oc, HI(F, n) is isomorphic to Ker8l~t(S),  which by Lemma 3.4 coincides 
with {F E ~c~1(~): ghF=~vF=DhF=DvF=0}.  

a) Suppose n = I d ,  o ~  =C;  let Z E HI(F, n) and F E Ker6[~l(o~/ correspond 
to )C under the above isomorphism; let f E C xl• with df--F; then 
Z(y)=fo~ , - f .  Since DhF=DvF=0,  there are functions F/ :  Yi ---+ C, with 
F(e~, v2)= F~(el), F(vl, e2)= F2(e2), V vi C Xi, ei E Yi- Since F is F-invariant, Fi is 
pri(F)-invariant, and hence Hi =pri(F)-invariant. Fix a base point b = (bl, b2) E 
XlxX2,  and choose f E C xi with df=Fi and f(bl, b~)=f(bl)+J~(b2). Let 
)Ci: Hi ~ C be the continuous homomorphism defined by: 

)~i(hi) = f  o hi - f .  
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b) 

It follows then that f (v l ,v2)=f(v l )+f2(v2) ,  V(Vl, v2) E XlXX2, and hence 
Z((~I, T2))=)0(T1)+ Z2(~/2), V(~ ,  ~/2) E F. This shows that the restriction map 
Homc(H1 xH2,  C) -+ Hom(F,  C) is surjective; on the other hand, since F is 
cocompact, this map is clearly injective. 

Let 7t be an irreducible representation, with Hl(F,  rc):~0 and take F E 
K e r ( S l s ~ ) , F ~ : 0 .  As above, there are maps Fi  : Y i --+ o c t ,  such that 
F(el, v2)=Fl(el), F(vl, e2)=F2(e2); without loss of generali~, we may assume 
that F1 :~ 0. Using the F-equivariance of F and the fact that rc is irreducible, 
finite dimensional, we may find el, ...,en in Y, such that Fl(el), ...,Fl(en) is a 
basis o f ~ .  Observe now that Fl(Tle)=~(~/1,72)(Fl(e)), V(T1, T2) E F, Ve E Y. 
This implies that there is a representation co : pr~(F) ~ U(oq~), such that 
n(~h, 72)=w(3'1), V(3'l,T2) E F. Let N be the normal  open subgroup of HI 
generated by Hi(el)UI ... f-) Hl(en); then prl(F). N = H 1 ,  and o3lpr~(r)NN =Id~ov~ ; 
therefore o3 extends continuously to Hi .  [] 

4. The  n o r m a l  s u b g r o u p  t h e o r e m  

4.1. The main result of this section is the following analogue of Margulis' normal  
subgroup theorem. 

Theorem 4.1. - -  Let F < AutT1 xAutT2 be a cocompact lattice such that Hi:=pri(F) is 

locally co-transitive and HI ~ is of finite index in Hi. Then, any non-trivial normal subgroup of F 
has finite index. 

Remark. - -  The results from IN-M-j3 on the structure of locally oo-transitive 
groups needed in this chapter are recalled in 0.4. 

4.1. Various decompositions 

Let T = (X, Y) be a locally finite tree and H < A u t T  a closed, locally ec- 
transitive subgroup. For { E T(e~), let PC := Stabn(~); since H(x) acts transitively on 
T(oo), we have 

(4.1) H = H(x). PC 

For r r f(oo),  let [~ : X x X  --* 
[3r := lim(d(x, p) - d(y, p)). The map 

Z denote the Busemann cocycle, that is 

Z~ : P~ > Z 

g, > ~r gx) 
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is independent of x E X, and defines a continuous homomorphism. For g C Aut T, let 
g(g) := min d(x, gx); an element a E P~ is hyperbolic iff )~(a) :~ 0, in which case g~(a)= g(a) 

xEX 

if ~ is the attracting fixed point of a and x~(a)= -g (a )  if { is the repelling fixed point 
0 of a. Let )~(P~)=e~Z, with g~ ) 1, P~ = K e r ) ~  and A =  (a), where Iz (a)l then we 

have the semidirect product decomposition: 

0 (4.2) Pg = A -  Pg. 

0 Since H is 2-transitive on T(oc) ([B-M]3 Lemma 3.1.1), the group Pg acts transitively 
on T(cx~)\{~} and thus 

0 (4.3) H = P~ U P~oP~, for any o ~ P~. 

Let a C P~ be a hyperbolic element with g := )~(a) > 0 and r : Z ~ X a parametrization 
of its axis, with r(+c~)= ~. Then: 

P~(r(k)) C P~(r(k + 1)), V k c Z  ] 

(4.4) aP~(r(k) )a- '  = P~(r(k + e)), V k E Z / " 

0 U P~(r(k))= P~, Vj e Z 
k>~j 

Since H is locally oc-transitive, g~ does not depend on ~ E T(oc); for the common 
value ~H w e  have gH ~--- 1 iff H is vertex transitive and gn = 2, otherwise. For a E H a 
hyperbolic element with g(a )=i s  and x , y  E X adjacent vertices on the axis of a we 
have 

H = H(x)A+H(x) if gH = 1 
(4.5) 

H = H(x)A + [H(x) U H(y)] if gH = 2 

where A + = {a" : n/> 0}. 

4.2. The Howe-Moore property 

Proposition 4.2. - - L e t  H < A u t T  be a closed, local~ co-transitive subgroup and (~, o ~  ) 
a continuous unitary representation of H with no nonzero H(~ vectors. Then all coefficients 
of rc vanish at infinity. 

The proof of Proposition 4.2 depends on Proposition 4.3 below which treats 
the following general situation: Let B - - A . N  be a locally compact group which is the 
semidirect product of the closed subgroups A =  (a) ~- Z and a totally discontinuous 
group N <1 B; assume that there is an open compact subgroup Co C N such that 
Co C aC0a -1 and N =  U a~C0 a-k, in this setting we have: 

k)0 
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Proposition 4.3. - -  Let (n, o ~  ) be a continuous unitary representation o f  B and v E o ~  
such that 

N ~C 

n,  , (n(a")v, v) 

does not vanish at infinity. Then there exists w E o ~ ,  w ~= O, such that StabN(w ) is o f  finite index 
i n N .  

Proof. - -  T h e  subspace . ~  (o~/= {w E ~"~f, StabN(W ) is open} is dense in ~g~ : fax 
a decreasing sequence (K,,)neN of compact  open subgroups of N, such that ('1 K,  = (e). 

n~>l 

The  sequence (f~)~>l, w h e r e f n -  1 "3(1r is an Ll-approximation of the identi~, and 
m(Kn) 

hence l i rn  ~(f,)v= v for every v E ~ .  Observing that  rc(j~,)v E o ~  (~/, we conclude 

that ~ / ~ )  is dense in ~o~. Thus  there exists u E ~g~/~/, such that  the function 
n ~ (rc(a")u, u) does not  vanish at infinity; there exists therefore a subsequence (ni)iEN, 
with lira ni = + oc and w E o ~ ,  w ~: 0 such that (rc(a"~)u)i>~l converges weakly to w. Let 

I 

K <a Co be an open subgroup (of finite index) such that n(k)u = u, V k E K. T h e n  
rc(a"~)u is fixed by a"iKa -ng and, passing to a subsequence, one may  assume that the 
sequence of subgroups (d'iKa-"~)ieN converges in Chabeauty  topology (that is uniformly 
on compacts) to a closed subgroup L < N. 

Claim 1. - -  w is L-invariant. 
For g E L and mi E aniKa -hi with il~ma mi = g, we have, 

(~(e)w, w) -- Iw,  w) = ((~(e)w, w) - (,~(e)w, ~(a"0u))+ 

ni + ((~(g)w, ~(a"i)u) -- (~(mi)w, rc(a )u))+ 

+ ((w,  -- (W, W)). 

The  first and last s u m m a n d  tend to zero since (a"~)u converges weakly to w, and the 
second s u m m a n d  tends to zero since it is bounded  by I[~(e)w- rc(mi)w[I. IIw[I and 
l im  mi = g. This shows Claim 1. 

~----+ O O  

Claim 2. - -  The  subgroup L is of finite index in N. Let d be the index of K in 
Co and pick Xl,..., xr E N with r > d; since the increasing union U an'Coa -hi equals N 

i~> 1 

there exists z~ such that {xl, ...,xr} C a~iC0a -hi, for all i/>/0; since r > d, there exists for 
--1 

every i >. io , j i  ~- ki such that xji x~ i E a"~Ka -ni and since r < +0% there exists j ~: k such 
- 1  

that xj-lxk E aniKa -"i for infinitely many  i >. io; this implies ~ xk E L and shows that 
the index of  L in N is at most  d. [] 
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Now fix x0 E X and consider the H-action on T(oo)x Z given by: 

h(rl, m) = (ttrl, 13n(h-'xo, x0) + m), 11 E T(o~), m E Z, h E H. 

0 For this action we have StabH({, 0)= P~. 

Lemma 4.4. - -  The H-orbits in T(oc)xZ are closed. 

Proof. - -  Since H acts transitively on T(oo) it suffices to show that if 
lim h,(~, m)=({,  s) then (h,,)neN is bounded in H/P~. Write h , = k ,  a4")u, with k, E 

0 H(x0), a E P~ hyperbolic and un E P~. For n large we have: 13~(h2~xo,xo)+ m=s,  
which amounts to 13~(a-~(")Xo, Xo)+ m=s,  hence ge(n)+ m=s ,  which shows that (a4"))~>.1 

is stationary and thus (h,)nEN is bounded in H/P~. [] 

Proof of Proposition 4.2. - -  Let { E T(oo), a E Pg with g=)~(a )=g~  > 0, 
r : Z ---+ X a parametrization of the axis of a with r(oc)=~, and xk := r(k), k E Z. 

0 Then  P g = A - P ~ ,  A =  (a), and (see (4.4)), Proposition 4.3 applies to P~. Let (n, o ~ )  
be a continuous unitary representation of H and assume that some coefficient of n 
does not vanish at infinity. Since H=H(x0)A+(H(x0)tO H(x~)), (see (4.5)), there exists 
v E o ~ ,  v ~: 0, such that n ---+ (n(a")v, v), n E N, does not vanish at infinity: indeed let 
u :~ 0 and (g,),>l be a sequence tending to infinity such that 

I<~(g~)u,u>l>~>o,  for all n > 1. 

Write gn=knat"k',, with k, E H(xo), In /> 1, k'~ E H(xo)tO H(x,); we may assume that 
(kn)n>l, (k',)n>l converge, say to resp. k, 1(. Setting w'=n(l()u,  w=n(k ) - lu  and applying 
the triangle inequality, we get: 

l i r a  u> -- w> = 0  

and hence n ---+ (n(a~)w ', w) does not vanish an infinity; since any matrix coefficients 
of a unitary representation is linear combination of diagonal coefficients, we conclude 
that there exists v~: 0 such that n --+ (n(an)v, v) does not vanish at infmi~. Hence 
(Proposition 4.3) there exists w E o ~ ,  w ~: 0, such that L := Stabp~(W) is of finite index 

in P~. 

Now we claim that there exist sequences (gi)icN, (gl)icN in L, (hi)iEN in H(x0) and 
w i th  hm g ihig ; a' = an element a' E P~ " " ' = and x~(a') 2g. For every k/> 1, choose rik E T(oc) 

t----+ OO 

with (~lk" {)x0 = k, where (cx. 13)y denotes Gromov's scalar product, that is, (a �9 13)y is 
the distance from y to the geodesic joining a ,  13; in particular klhnrlk= g. Choose 

nk E P~(xk+e) such that (nkrlk. ~)x0 = k+ g; with these choices we have nk(rlk, 0)= (ntrlk, 2g) 
and hencekfim nk(rlk, 0)=({ ,  2g). Choose a sequence (hk)keN in H(x0) such thatkfim hk=e 
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and hk({, 0)= (Tlk, 0); with this we have klan nkh~({, 0)= ({, 2g)=a2({, 0). Since the H- 
i 0 t orbits in T(oo)xZ are closed (Lemma 4.4), there exists n~ E P~ such thatkl~rn ~ n~hknk= a 2. 

0 Since L is of finite index in P~, we may assume, passing to a subsequence, that 
t 0 t nk=CYgk, nk=g'~g' where ~, 6' E P~ and g~, gk E L, for all k/> 1. Setting a' =g- la2g ' - i  

we have lim gkhkg'k = a' and Z~(d)= 2g. 
k---,oc 

This claim implies that 

w) = Rm ( (eAe'k)w, w) - rm 2 w) = (w, w) 

and hence w is N := (a')-invariant. The closed subgroup P' generated by A' and L is 
of finite index in P~ and w is P'-invariant; by (4.3) we have IP~\H/P~[ = 2  and hence 
]P ' \H/P ' [  < +oc. The continuous function h ---+ (n(h)w, w) is left and right P'-invariant 
and takes therefore only finitely many values. In particular 

StabH(w) = {h C H :  (rc(h)w, w) = (w, w) } 

is an open subgroup of H; this subgroup is also cocompact in H, since StabH(w ) D P' 

and hence StabH(W ) D H (~/. [] 

4.3. In this section we prove the normal  subgroup theorem (Theorem 4.1); for 
this we follow the strategy of Margulis. First we notice the following corollary to 
Proposition 3.1 : 

Corollary 4.5. - -  Let F < Aut T1 xAut  T2 be a cocompact lattice such that Hi :=pri(F) is 
locally cx>transitive and Hi-~-,-l-I!~176 /et N <1 F, N �89 {e} be a nontrivial normal subgroup of F. 
Then r/N has property (T). 

Remark 4.3.1. - -  Assume Hi :=pri(F) is locally cx>transitive; for N <1 F, N :~ e, we 

have pri(N) D t-I!~ 

Proof. - -  As pri(N) <1 Hi, it follows from [B-M]3 Prop. 3.1.2, that either 

pri(N) D HI ~ or pri(N) is trivial. The  latter is impossible or else we would have a 
nontrivial discrete normal  subgroup of H3-i which is incompatible with H3_i being 
locally co-transitive. [] 

Proof of Corollary 4.5. - -  By Remark 4.3.1, we conclude that each pri(N) does 
not act freely on Ti and hence by [B-M]3 Lemma 1.4.2, pri(N)\Ti is a finite tree and 
Proposition 3.1 shows that F / N  has a property (T). [] 

Given Hi < Aut Ti, closed, locally o~-transitive subgroups, we will always endow 
Ti(oc) with the Hi-invariant measure class and denote by , /~(TI(o~)) ,  ~/~(T2(oc)), 
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~/~(TI((C)xT2((C)) the corresponding measure algebras, that is the algebra of classes 
of Lebesgue measurable sets, where two sets are identified if they differ by a null set 
(see e.g. [Ma] IV.2). 

The next fundamental ingredient in the proof of the normal subgroup theorem is 

Theorem 4.6. - -  Let F < AutTlXAutT2 be a cocompact lattice such that Hi:=pri(F) 
is locally oc-transitive and HI ~) is of finite index in Hi. Any F-invariant subalgebra of 
J//~(Tl(OC)xT2((c)) is one of thefoUowing algebras: 

{0, TI ((c)x T2((c)}, ~N (T1 ((c)) x {T2((c)}, 

{TI ((c)} x J ' g  (T2 ((c)), J ' g  (TL ((c) x T2 ((c)). 

First we show how to deduce the normal subgroup theorem from Corollary 4.5 
and Theorem 4.6. 

Proof of Theorem 4.1. - -  Let {e} :~N <1 F, and r 0 = r  n = 

N M (H~~ set _,~- .-H!~/- ~ , then G~ is locally (c-transitive, _,G! ~) =G~, F0 is of 
finite index in F and (Remark 4.3.1) pri(Fo)=Gi. Moreover, No is of finite index in 
N, and N being infinite (Remark 4.3.1), we have No :~ {e}. We claim that F0/N0 is 
amenable. Assume the contrary; then ([Ma] IV,, Theorem 4.5, Remark 2 and Lemma 
4.7) there exists an infinite, F0-invariant subalgebra ~ C d.g (T~((c)xT2(oc)) such that 
NoB--B, for all B E ~ .  According to Theorem 4.6, we have the following possibilities 
for ~ :  

d/~ (T~ (oc)x T2 ((c)), ~/E~ (T~ ((c)) x {T2 ((c)}, {Yl ((c)} x ~//~ (Y2 ((c)). 

Since NoB=B, for all B E ~ ,  we obtain, respectively, N0={e},N0 C {e}xG2, 
No C G1 x{e}, neither of which is possible by Remark 4.3.1. Thus F0/N0 is amenable 
and (by Coronary 4.5) has property (T). Thus F0/N0 is finite and so is F/N. [] 

The remainder of this section is devoted to the proof of Theorem 4.6. 
Let T be a locally finite tree, G < AutT a closed, locally co-transitive 

transitive subgroup, g E MI(T((C)) the Patterson density for G; in particular 
d(g.g)(w)/dg(w)=e -~'(gb'b), where b E X is a fixed vertex and 5 the critical expo- 
nent of G; for the properties of the Patterson density used in this section we refer 
to [B-M]1 w w and w Let s E G be a hyperbolic element with attracting, resp. 
repelling fixed point ~, respectively {. For C E J g  (T((c)), set ~(C)= T((c) if { C C 
and ~(C) = 0 if ~ ~ C. 

Lemma 4.7. - -  For every C E ~/~ (T((c)) and almost every g E G, the sequence s"(gC) 
converges to ~(gC) in g-measure. 
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Proof. - -  Let r : Z ~ X be the parametrization of the axis of s, such 
that r(ec)=o~, r(0)=b; for wl, w2 C T(cx~)\{~}, define d(wl, w2):=e -(wl'w2) where  

(wl, w2):~lkn [(Wl" w2)4k)-k]. Then  d is a complete metric on T(oc)\{~}, and the latter 

has finite Hausdorff  dimension with respect to d. Moreover, d(SWl, sw2) = e t d(Wl, w2) for 
an wi E where g is the translation length of s. For A E J~ (T(oc ) ) ,  set 
v(A) = f e2~(w~)bdg(w); then v is a Radon-measure on T(o~)\{ot}, equivalent to g, and 

A 

v(sA) = e~tv(A). Let C E JC~(T(o~)) and assume that { is a density point of C, that 

is l i~  v(C f-/B({, e ) ) =  1 where g(~, ~) is the ball centered at ~, of radius e, for the 
v(B(L ' 

distance d. For any fixed R > 0, taking into account that s-"B({, R)=B({ ,  e-~tR), we 
have 

v(C n s-nB( , R)) 
lim = 1 

n---+ o o  

v(s-"B({, R) ) 

and hence lim v(snC M B({, R ) ) =  1. Thus s~C converges to T(oc) in v-measure and 
v(B({, R) ) 

hence in g-measure. We conclude by observing that for almost every g E G, g~ is 
either a density point of C or a density point of T(cxz)\C. [] 

For i =  1 ,2 ,  let Hi < A u t T i  be a closed, locally c~-transitive subgroup, gi E 
Ml(Ti(oo)) the Patterson density as above, si E Hi a hyperbolic element, {i, cxi E Ti(oc) 
the repelling, respectively attracting, fLxed point of si, s = (sl, e), t=  (e, s2) and g = gl • 
For B E JPg(Tl(oc)xT2(oc)) set 

Bw = {11 E Tl(ec) : (11, w) E B}, w E T2(oo) 

B n = {w E T2(oe) : (rl, w) E B}, n E Tl(OO) 

and lgl(g) = Tl(OC)• ~l , ~2(B) = B~2 x T2(c~). 

Lemma 4.8. - -  For almost every g E Hi  xH2, 

s"gB , ~l(gB), t"gB ' ~2(gB), 

and convergence holds in g-measure. 

(*) 

Proof. - -  lim s~gB = ~gL(gB) in g-measure is equivalent to 
n--+OO 
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Proof. - -  The set 

{ U F g ' - l s - n = H l X H 2  and}  
U =  g' C HlXH2 : n~>l 

s~(gtB) > Vl(g'B) 

is of full measure in HlXH2 (Lemma 4.10, Lemma 4.8). Given g E HlXH2 and 
g' E U, take ~'i E F and (TIi)icN , such that i~magi=g , where gi:=Tg'-ls  -ni. We have 

Ti=gis"ig ', TiB E ,P~, and TiB =g~(s'g'B) --+galt~(g'B). [] 

Proof of Theorem 4.6. - -  Replacing F by FN (H]~/x H~ ~/) and using Remark 4.3.1, 
(~) 

we may assume that Hi = H i . 

(a) Let ~ '  C ~r (Ti(c~)) be an Hi-invariant subalgebra. Then ~ ' =  {~), T~(ec)} 
or ~'=~//~(Ti(cx~)). Let Pi = P~i; identifying Ti(c<z) with Hi/Pi, we deduce 
([Ma] IV Proposition 2.4) that there exists a closed subgroup Li < Hi with 
Li D Pi, such that ,P3~' = ~/~ (Hi/Pi, Li). Since Hi acts 2-transitively on Hi/Pi, 
Pi is a maximal subgroup of Hi and thus Li = Pi or Hi, which establishes (a). 

Let ~ C M(TI(ec)xT~(cx~)) be a F-invariant subalgebra. 

(b) Let B E ~ ,  and assume that the set of w E T2(oc) s.t. Bw ~/ {*, Tl(CX~)}, 
respectively, the set of ~ E Tl(e~) s.t. B~r {0, T2(~)} is of positive measure. 
Then Lemma 4.11 implies that ~2 D ~'1 x{Tg(oc)}, respectively, ~ D 
{Tl(e~)}x,~' 2 where ~ i  C JCg(Ti(oo)) is an Hi-invariant, non-trivial, 
subalgebra and thus, by (a), ~3' i - -~ (T i (e~) ) .  

(c) Assume that ~ :~ {, ,  Tl(oc)xT2(oc)}; then (b) implies that either ~ '  D 
~g/~(T~(oc))x{T2(oc)} or ~ '  D {Tl(o~)}xJtN(T2(oc)). In the first (respec- 
tively, the second) case, if moreover o~' :~/N(TI(e~))x{T2(r (resp., 

:~ {Tl(o~)}xJ~(T~(oc)) we obtain using (b) that 

,~' D {T,(cx~)}• 

(respectively, ~ D ~ (Ta (e~)) x {T2(ec)}) 

and hence in both cases ~ =J~(Tl(ec)xT~(oe)) .  [] 

5. Applications of  the Normal  Subgroup Theorem 

The normal subgroup theorem applies to lattices in AutT~xAutT2 whose 
projections are locally co-transitive. Beside rational points of algebraic groups of rank 1, 
the main source of locally (x>transitive groups are the universal groups U(F) whose 
definition we briefly recall (see [B-M]3 3.2). Let d/> 3, ~ = ( X ,  Y) be the d-regular 
tree, F < Se a permutation group and i : Y ~ { 1,2, ..., d} a legal colouring. 
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Then: 

�9 - - - 1  

U(F) = {g E AutT~ : ZE(gx)'g'z[E(x ) E F, Vx C X} 

is a closed subgroup of Aut.~d, acting transitively on X and such that, at every vertex 
x E X, U(F)(x) < SymE(x) is permutation isomorphic to F < Sd. When  F < Sd is 
2-transitive we have (see [B-M]3 3.1, 3.2) 

(1) U(F) + =U(F) (~/ is of index 2 in U(F) and simple. 

(2) U(F) + is locally oe-transitive. 

Theorem 4.1 implies then 

Corollary 5.1. - -  Let di >. 3, Fi < S~ i be 2-transitive permutation groups and 

F < U(F1)xU(F2) be a cocompact lattice with pri(F) D U(Fi) +. Then, any nontrivial normal 
subgroup e �89 N <~ F is of finite index in F. 

In general, it is difficult to determine whether a lattice has locally cx>transitive 
projections; in [B-M]3 Chapter 3, we have shown that under certain additional 
assumptions of local nature, 2-transitive groups of tree automorphisms are o~-transitive 
and, in some cases, their closure is a group U(F) of the above type. We now apply 
these results to fmite VH-T-complexes. 

Let X be a fmite VH-T-complex; we assume that the horizontal 1-skeleton X~ t) 

and the vertical 1-skeleton X~ l/ are connected. Let dh= ]Eh(x)[, do= ]E0(x)l, Vx E X; 
then X is a quotient F \ ( . ~ d , x ~ )  of a product of regular trees of degrees dh and do. 
Let Ph < Sdh and P0 < Sdv be the "horizontal", resp. "vertical", permutation groups; 
it follows from [B-M]3 Proposition 3.2.2 that, up to conjugation, F is contained in 
U(Ph)xU(Pv). We assume both Ph, P0 to be transitive and let Lh, L0, Kh, K0 be the 
fmite permutation groups defined in w 1. These groups are effectively computable in 
terms of the fmite complex X. 

Proposition 5.2. - -  Assume that the permutation groups Ph, Po are 2-transitive and that Lh, 

Lo are simple non-abelian. Then, Kh ~-- L~ h, Ko ~-- L~ v with (ah, ao) E {(0, 0), (dh -- 1, do - 1)}. 

(1) / f  (ah, ao)= (0, 0), the lattice F is reducible. 

(2) If(ah, av) = (dh-- 1, do-  1), the lattice F is irreducible and F < U(Ph)xU(Po) has dense 
projections. 

Proo f  - -  L e t  H(  = (IO , H = pr2(IO 

Since X~ 1), X~ 1) are connected, the groups H (h) < A u t O ,  H (~ < A u t ~  are both 

vertex transitive. Fix adjacent vertices x , y  in ~ and x' ,y '  in ~ .  By hypothesis, the 
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following isomorphisms of permutation groups hold: 

I-I ('~/(x) ~ P,~, H_/~ ) - x '  -~ Pv, 

Kh, ') I o. 

Now we apply Prop. 3.3.1 (and the remark following it) to deduce that Kh --~ L~ h, 

K0 --- L~ ~ with a h e  {0, dh -- 1}, a0 E {0, do - 1}; if ah = 0, then H (hI is discrete, thus 
(Prop. 1.2) F is reducible and H (v/ is discrete; the latter implies (Prop. 3.3.1 [B-M]3) 
that a~ = 0. 

If ah = dh-  1, then (Prop. 2.2.2) H (hI = U(Ph), and (Prop. 1.2) F is irreducible which 
implies that H (~ is non-discrete and hence a0 = d v -  1 by Prop. 3.3.1. [] 

Combining Corollary 5.1 and Proposition 5.2, we obtain 

Corollary 5.3. - -  Let X be a finite VH-T-complex as in Proposition 5.2 and assume 
moreover that (ah, a,)= (dh - 1, do - 1). 

Then, any nontrivial normal subgroup N ~ r q ~ )  is of finite index in tel(X). 

Let now F < Hl xH2 be a cocompact lattice, where H i < AutT/ are locally 

oc-transitive, HI ~/ is assumed of finite index in Hi and pri(F) D HI ~ i =  1,2;  let, as 
usual, F (~ be the intersection of all finite index subgroups of F: the subgroup ~ /  is 
normal in F. Assume that F is not residually finite; then, (normal subgroup theorem) 
I ~ /  is of finite index in F and we claim that ~o~) is simple: indeed, since ~o~/ is of 
finite index in F, we have pri(F (~ D HI ~/ and the normal subgroup theorem applies 
to F(~ given e :~ N <1 ~o~/, the group N is of finite index in ~o~/, hence in F and 
thus N D ~ / .  This line of reasoning leads to 

(3) 

Let 

of CX). 

(1) 

Corollary 5.4. - -  Let X be a finite VH-T-complex satisfying the following assumptions: 

(1) The horizontal and vertical 1-skeleton, X~ ~) and XI, ~), are connected. 

(2) The horizontal and vertical permutation groups Ph and Po are alternating groups of degrees 
dh and dr, at least 6. 

hi(X) is not residual~ finite. 

Y be the Galois covering of X associated to the intersection of all finite index subgroups 
Then 

Y is a finite, VH- T-complex. 

(2) ~l(Y) is a simple group. 
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Proof. - -  I f  nl(X) < A u t ~ h x A u t ~  ' is not residually finite, it has to be an 

irreducible lattice, and hence, by Proposition 5.2, Corollary 5.3 applies. [] 

Theorem 5.5. - -  Let F=~I(Y)  be as in Corollary 5.4; the simple group F enjoys the 
following properties: 

(1) F is.finitely presented, torsion free. 

(2) F is the fundamental group of a `finite, locally CAT(O)-complex. 

(3) F is of cohomological dimension 2. 

(4) F is biautomatic. 

(5) F ~ isomorphic to an amalgam F*EF of free groups over a subgroup of finite index. 

Proof. - -  (1), (2), and (3) are clear; (4) follows from [Ge-Sh]. To show (5), observe 
that F < U(An)+xU(Am) + projects densely onto each component ,  in particular both 
actions of F on o ~  and O~mm have an edge as fundamenta l  domain.  [] 

In Section 6 we will show how to construct square complexes X satisfying the 
assumptions of Corollary 5.4. 

6. Embeddings,  constructions of complexes and virtually simple groups 

6.1. An interesting class of lattices F C AutT1 x A u t T 2  are those which act freely 
(see chapter 1.) and  vertex transitively on TI xT2.  Recall that the action of a lattice F 
on the square complex T1 xT2 is free if and only if F torsion free. In the sequel we 
construct and modify various examples of vertex transitive torsion free lattices. Thus  it 
is convenient to have several ways of presenting such lattices. 

Any torsion free cocompact  lattice F < A u t T l x A u t T 2  corresponds to a finite 
VH-T-square complex (see Chapte r  1). Vertex transitive torsion free lattices are 
precisely those corresponding to VH-T-square  complexes which have a single vertex. 
Thus  vertex transitive torsion free lattices may  be defined geometrically by constructing 
1-vertex VH-T-square complexes. 

A useful tool in constructing a 1-vertex VH-T-square complex as well as describ- 
ing its fundamenta l  group, i.e. the corresponding lattice, is provided by a VH-da tum.  

D~finition. - - A  V H - d a t u m  (A, B, COA, COB, R) consists of two finite sets A,  B, fixed 
point  free involutions COA : A ~ A, COB : B --~ B and a subset R C A x B x A x B  satisfying 
conditions 1 and 2 below. Let us denote a -1 = COA(a), a E A, b - 1 - -  COB(b), b C B. The  
group generated by the maps o ,  9 : A x B x A x B  ~ A x B x A x B  

a(a, b, a', b')= (a t -1 , b -1  , a -1  , b t - l )  

p(a, b, a', b')= (a', b', a, b) 

is isomorphic to Z / 2 Z x Z / 2 Z .  
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1. Each of the 4 projections of R onto the subproducts of the form A x B  or 
B x A  are bijective. 

2. The  subset R is invariant under  the action of the group (~, p) and this 
action on R is free. 

To a given V H - d a t u m  (A, B, ~0A, (%, R) one associates a one vertex VH-T-square 
complex X=({x0} ,  E, S) by defining: 

Eh = A ,  Ev = B,  S = {s(~, b, ~,, b'l, S(b, ~,, b', ~1 (a, b, a', b') E R}. 

T h e  origin and terminus maps E ~ V =  {x0} are both  the constant map  u ~-+ x0. 
The  map  E ~ E given by u ~ u -1 is the orientation reversing map  of graphs. 
For s=S(~o,,1,,2,,3 ) E S, let Os([i, i + 1])=Zig. The  maps (~, p' : S ~ S given by 

~(s(.0,.1,.2,.~)) = s. -1 -1 -J, . ; l)  and p'(S(.o,.1,.2,.~)) = s(.1, "2,  u3, u0) generate a 9 4 = (p'  IJ) 
~u 2 , u 1 , u 0 

action on S. Observe that X is a one vertex VH-T-square  complex. 

The  fundamenta l  group of a finite VH-T-square complex is finitely presented. 
Starting with a V H - d a t u m  (A, B, q0a, q0B, R), a presentation for the fundamenta l  group 
F of the corresponding square complex is given by: 

F = ( A U B I x x - I = e ,  V x E A U B ,  aba'b'=e, V ( a , b , a ' , b ' ) E R ) .  

Recall the definition in chapter 1 of  the local permuta t ion  groups Ph--Ph(x0), Pv = Pv(x0). 
The  edges of  the horizontal 1-skeleton of X are loops corresponding to the elements 
of A, and similarly those of  the vertical 1-skeleton correspond to B. Thus  each 
element  a E A, resp. b E B, defines a generator ~a E P~ C Sym(B), resp. ~b E Ph 
C Sym(A). These  permutat ions may  be de termined  from the V H - d a t u m  by letting 
~a(b'-~)=b Cb(a-1)=a ' whenever (a, b, d ,  b') E R. T h e  fact that  this indeed gives a 
well defined collection of permutat ions,  i.e. maps  A ~ Sym(B), a H ~a, B ~ Sym(A), 
b H r follows directly from conditions 1 ,2  above. 

Note that these maps A --+ Sym(B), B --+ Sym(A) contain all the combinatorial  
information needed  to construct the 1-vertex square complex X or equivalently the 
VH-da tum;  we will refer to these two maps as the structure maps. One  may  formulate 
certain compatibility conditions on a pair of maps A --+ Sym(B), B ~ Sym(A) which 
ensure that they yield a V H - d a t u m  and hence a one-vertex VH-T-square complex. 

In Section 2.2, 2.3 we described a construction of a fiber product  X [] X of  
VH-T-square complex with itself. W h e n  X is given by a V H - d a t u m  (A, B, ~0A, q)~, R) 
then X [] X is the one-vertex square complex corresponding to (AxA,  B x B ,  ~0aXq~a, 

q)B x tpB, R-) where 

P,,= { ( ( a l , a2 ) , ( b l , b2 ) , ( a '  1 a;),(b' 1 b;)) (al 'b l 'a ' l 'b ' l )  E R }  
' ' (a2, b2, 4 ,  b;) E R " 
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6.2. Mating of complexes 

We define two operations on VH-T-square complexes. The first "joins" several 
one vertex VH-T-square complexes to produce a new one vertex VH-T-square 
complex. The  second modifies a given VH-T-square complex by performing "surgery 
like" operations on it. We shall refer to the combination of these operations as "mating 
of complexes". 

6.2.1. Joining. Let (')X, 1 ~< i ~< r, be one-vertex VH-T-square complexes. 
M 

Each of the (')X is given by a VH-datum ((')A, ('~B, CO(')A, CO('~, (')R). Let X =  V (')X be 
i = l  

the one-vertex VH-T-square complex determined by the VH-datum (A, B, COA, COB, R) 
where 

n n 

A =  U ( ')a COA = U CO(t)A 
i = 1  i = 1  

n n 

B : U (")B ~B = U ~(,)B 
i : 1  i = 1  

n 

R :  U(')RU{((')a,~)b,(~)a-',O)b -1) i:~j, 
i = l  

('?a E (~?A, ~?b E 0?B } .  

Geometrically, X is obtained by gluing the square complexes (')X at the single vertex 
of each and then gluing in a torus for each horizontal loop of O?X and vertical loop 
of ('?X i :~j. 

Let (')WA : (')A ~ Sym(('?B), (~)LFB : B ~ Sym((')A) be the structure maps of (')X, 
see 6.1. Then  the structure maps corresponding to 

n 

X= V(~Ix 
i = 1  

are 

tI/A "A ) Sym(B), ~B : B > Sym(A) 

where 

n n 

A= U (")A, B= U(,]3 
i = l  i = l  

and: 

for a E (')A, 
~A(a) ~\(,~ = id, 

'I'A(a) = (aI'n(a),  
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for b E (i)B, 
tI/B(b ) A\(Z)A = / d ,  

~B(b) ('~a = (i/~B(b)" 

Remark. - -  The complex X comes equipped with monomorphisms of VH- 
T-square complexes, Xi ~ X inducing injections ~l(Xi) ~ ~I(X) at the level of 
fundamental  groups. 

6 . 2 . 2 .  Surgery. - -  Let X be a one vertex VH-T-square complex corresponding 
to a VH-datum (A, B, q)A, q~B, R). Given al,  a2 E A ,  (al, bi, a2, b~) E R ,  1 <~ i <~ d, 
representing d distinct geometric squares and a permutation "c E S~, we define a 

new VH-datum (A, B, q0a, q0B, R) where R is obtained from R by replacing for each 
l <<.i<.d, 

--1 b,-1, ,-1 -1 1) (al,  hi, a2, b'i), (a2, b'r al ,  bi), (a-~ 1 , b-[ 1 , a 1 , ~ ) ,  ( a [  1 , b~ , a 2 , b~- 

by 

-1 -1 b~-l, t-1 -1 -1 (al,b~(~),a2, bl) , ( a2 ,b l , a l ,b~(z ) ) , ( a2  - l ,b~(~),al  , i ) , ( a l  1 , b  i , a  2 ,b~(~)). 

Observe that this operation indeed produces a VH-datum. Let us denote this operation 
by F~al,a2;bl...bd and in the special case where al =a2, by ~;bl...bd" One has analogous 
operations ~l,b2;al...ad exchanging the roles of A and B. Geometrically, such an 
operation corresponds to taking d squares in the geometric realization of X all 
having the same horizontal boundaries al, a2 cutting each of them along a vertical 
interval connecting the midpoints of al and a2 and pasting the cuts according to the 
permutation "c E Sd. 

In terms of the structure maps WA : A ~ Sym(B), tgB �9 B ~ Sym(A) the operation 
~1 ,a2;bl...bd amounts in modifying only the permutations ttJA(al) , ttflA(a9 ) E S y m B ;  the 

new structure maps are given by 

CtJA(al)(b ) = { b,(z) 
tIJA(al)(b) 

CPA(a2)(b) = U~A(a2)(b ) 

i f b = b  1-t and 1 ~<i~<d 
otherwise. 

--1 ifb=b~(,) and 1 ~<i<~d 
otherwise. 

~ A ( a [  1 ) = ~-tJA(al) -1 , 17gA(a21) = 17IrA(a2) -1 , 

l~A(a)~-~kI/A(a), for  all a ~ { a l ,  a2}. 

~-tJB _~ tIJB. 
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6.2.3. Useful "building blocks" in the following construction are the 1-vertex 
VH-T-square complexes ~ ,~ ,  k, g /> 4 even. They are given by the following VH- 
datum 

(Ak, g,Bk, e,q0Ak, e,q0Bk, e,Rk, e) where A= {a/i' l~<i<~k},  

B= b?' a n d R =  { (a~, @~, ai+ ~-~ , b] -~) 

6.3. The "mating of complexes" 
following embedding result: 

k l~<i~<~g } 

e, 5 E {-t-1} 

construction described in 6.2 leads to the 

Proposition 6.1. - -  Let (~ ..., (NIX be 1-vertex VH-T-complexes; assume that the vertical 
permutation group (O/p < S/% and horizontal permutation group (~ h < S(% are 2-transitive. Then 
for any even k, g >1 4, there exists a 1-vertex VH-T-complex X with the foUowing properties: 

(1) There exist embeddings (')X ~ X,  0 <<. i <<. n, and embeddings Ck, e,  C4, 4 "-+ X~ whose 
images intersect pairwise at the single vertex of X. 

(2) The horizontal and vertical permutation groups Ph < Sd h, P~ < Su v of X,  are both 
2-transitive. We have 

n 

dh= ~-'~ (')dh + k + 4, 
i = 0  

i = 0  

(3) a) Assume dh > 2 (~ I f  aU groups (*?Ph consist of even permutations, then Ph coincides 
with the alternating group Adh, and otherwise with the symmetric group Sdh. 

b) Assume dv > 2(~ Then the analogous assertion holds for ('P , P~. 

Proof. - -  Let the VH-datum corresponding to ('~X, 0 ~< i ~< n, be 

and the VH-datum of Cm,. be 

(Am,., Bm,., q0Am, n'  ~0Bm, n' Rm, n) 
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(see 6.1 and 6.23). Let Y be the 1-vertex VH-T-square complex obtained by 
joining /~ (~/X,..., ("IX, Ck, e and Ca, 4. Denote by (YA, YB, q~YA, g ~ ,  YR) the VH- 
datum of Y. The complexes 0?X, Ck, e, C4,4 are indeed embedded injectively in Y, 
however, the horizontal and vertical permutation groups of Y are not even transitive. 
Performing appropriate surgery operations on Y will produce a 1-vertex VH-T-square 
complex X with the asserted properties. Let us denote the elements of each of the sets 
('~A, (')B, 1 ~< i ~< n by: 

('~A = {('?% (')aj-' 1 <<. j <<. ('?dh/2 } ,  

Choose some elements (oh E (~176 E (~ and elements a'l,a"2 ~ Ak, e, SO that 
a'l # Q ,  ^ - ~  ^ ^ a 2 , elements hi, b2 E Bt, e so that bl +b2,b2  1 and a l ,  a2 E A4,4 so that 

a 2 , elements bl, b2 G B4, 4 so that bl :~b2, ~-1. Denote the elements of the set 

by 

aj. 1 <~j <<. th = 2 + (')dh/2 
i ~ l  

and the elements of 

U {(~ ~2} 

by bj 1 ~<j ~< tv = 2 + =~ ~?d~/2 . Let "oh E Sth be the cycle "oh = (1, 2, ..., th) and % E St~ 
i 

be the cycle %=(1 ,  2, ..., t~). Since for each 1 ~< i ~< to, (~'1, bi, ~'~-~, b~ -1) E YR and 

correspond to distinct geometric square, we may perform the surgery F~I; bl ..... bt v on Y. 

Observe that we may perform the surgery ~F~h al, on the resulting square complex. 
...~ a t  h 

Denote the resulting square complex by Y. On  this square complex we perform the 
~.(L, 2) ' Let X be the 1-vertex VH-T-square complex surgery _.2.(0)b,~2 followed by F~; 2) 

, (~  

obtained via these surgery operations and (A, B, q0A, ~ ,  R) be its VH-datum. Observe 
that as the surgeries did not involve any of the squares of the VH-T-square complex 
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(')X, 0 ~< i ~< n, Ck, e and C4,4 we have embeddings (z)X --~ X, 0 ~< i ~< n, Ck,~, C4,4 ---+ X 
as asserted in (1). 

To verify that the permutation group Ph is 2-transitive, observe first that the 
element (s~-=~FA(ff0 E Sym(B) contains the cycle (bt~., btv-1, ..., t2, tl). Thus any element 

of 6 ('B may be moved (using an appropriate power of (s-2]) into (~ Also using the 
i = 1  

transitivity properties of C4, 4 together with ~s3~, every element of (IB4, 4 may be brought 

into (~ We also have CS~l =~a(ffl) E SymB which contains the cycle (b0,b2). This 

together with the transitivity properties of Ck, e allows us also to bring any element 
of B~, e into (~ Moreover, given any pair of elements in B, we may first bring one 
of them into (~ If now the second element has not already been brought into (~ 
we may move the image of the first one within (~ to allow bringing the other into 
(~ without moving out the first element. Thus given any b, b' E B, there exists some 
~z C Pv such that re(b), g(b') E (~ Since, by assumption, (0/p is acting 2-transitively on 
(~ we conclude that P~ is 2-transitive on B. The argument for Ph is analogous. Thus 
(2) holds. 

Assertion (3) follows from a theorem of Marggraf (1892) (see [Wi]l Theorem 
13.5) using the observation that (0)p (resp. (~ is embedded in P~ (resp. Ph) so that its 
action on (~ (resp. (~ is transitive and it fixes pointwise the complement BX@B (resp. 
AX(~ [] 

Proposition ft.2. - -  Let Z be a 1-vertex VH-T-complex; then there is a 1-vertex VH-T- 
complex Y such that, 

(1) Z embeds into Y ,  

Y Y (2) the groups Ph and Pv consist of  even permutations. 

Proof. - -  Let (A, B, ~A, q)B, R) be the VH-datum corresponding to Z. Define 
Y to be the VH-T-square complex corresponding to the VH-datum (A, B, q~A, q~gB, R) 
where 

and 

A = A x { 1 ,  2}, B = B x { 1 , 2 } ,  q~A =q0AXid, q~iB=~pBXid 

{ ( (a , z ) , (b , j ) , (a ' , z ) ,  b' a' " {1, = ( , j ) ) l ( a , b ,  , b ' ) E R  z , jE  2}} [] 
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6.4. In this section we state and prove the main results of this paper. 

Theorem 6.3. - -  For every n >>. 15 and m >>. 19, there exists a torsion free, cocompact lattice 
F < U(A2,)• U(A2m) with dense projections. Any non trivial, normal subgroup N <~ F is of  finite 
index in F. 

Proof. - -  We apply Proposition 6.1 to the case where n =  0 and (~ is the 
arithmetic quotient ~ 1 3 ,  17 (see 2.4); in this case (~ = 14, (~ h < S(% is permutation 

isomorphic to the PSL(2, F13) action on Pl(F13), (~ 18, (~ < S(% is permutation 

isomorphic to the PSL(2, El7) action on p1(F17), in particular both groups are 2- 
transitive and consist of even permutations. Let k, g be even integers with k/> 12, 

/> 16 and let X be the complex given by Proposition 6.1. Then  Ph =A2, ,  2n= 18 + k 
and P~=A2m, 2 m = 2 2  + g; moreover, the monomorphism 113,17~-+X implies that 
X = F \ ( ~ n •  is irreducible, and hence (Proposition 5.2) F < U(A2~)xU(A2m ) has 
dense projections; the last assertion follows then from Corollary 5.1. [] 

D~nition. - -  A group r is virtual~ simple, i f  the intersection ~ )  of  all finite index 
subgroups of  F is of  finite index in F and simple. 

Observe that this amounts to say that F admits a subgroup of  finite index which is simple. 

Theorem 6.4. - -  For every n >1 109 and m >1 150, there exists a torsion free, cocompact 
lattice F < U(A2,)x U(A2m) which is virtual(y simple. 

Proof. - -  We apply Proposition 6.1 to the case where n =  1, (~ 17 and 
(1X=A13 ,  17 [] 113, 17 (see 2.3), and k, g (even) /> 4. As in Theorem 6.3, the resulting 
complex X=I'\(,~2n• is irreducible with Ph=A2, ,  Pv=A2m, 2 n = 2 1 4  + k, 2m= 
346 +g;  moreover (Proposition 2.4 and Corollary 2.5), 01=A13 ,  17 NAl3, 17 has a non- 
residually finite fundamental  group, injecting into ~l (X) which shows that all conditions 
of Corollary 5.4 are satisfied and thus F=gl(X ) is virtually simple. [] 

Theorem 6.5. - -  Let Z be a 1-vertex, VH-T-complex. Then there exists a 1-vertex VH-T- 
complex X such tha# 

(1) Z embeds into X ,  

(2) gl(X) is virtually simple. 

In particular, ~1(Z) is isomorphic to a subgroup of  rq (X). 

Proof. - -  Applying Proposition 6.2, we may assume that P~h and P~ consist of even 
permutations. We apply then Proposition 6.1 to the case n =  2, (~ 17,/1X=A13, 17 
[] A13, 17, ( 2 X =  Z ,  k =  g = 4 and argue as in Theorem 6.4. [] 
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6.5. In Section 6.4 we proved the existence of a finite VH-T-square complex 
whose fundamental group is simple. Note, however, that the construction in 6.4 gives 
an explicit 1-vertex VH-T-square complex X whose fundamental group is virtually 
simple; to obtain the square complex having a simple fundamental group one has to 
consider the maximal finite covering X (~) of X. We do not know whether a general 
procedure for finding the maximal finite covering of a given VH-T-square complex 
with virtually simple group exists. We note, however, that for the square complexes 
constructed in the proof of Theorem 6.3, there exists a Turing machine which, given 
X produces X(~); we do not know how to bound the size of X (~) in function of X. In 
this section we give an explicit construction of a finite VH-T-square complex whose 
fundamental group is simple. 

Let Y be a one vertex VH-T-square complex corresponding to a VH-datum 
(A, B, qOA, (PB, R) and satisfying: 

Q1. hi(Y) < AutTlxAutT~ is an irreducible lattice. (Where T l •  2 is the 
universal covering space of Y.) 

Q2. The fmite permutation groups Pv < Sym B and Ph < Sym A, as well as their 
respective socles are 2-transitive on the corresponding set. 

Q3. Let I A l = 2 k a n d  IB[=2g w i t h e ) k + 5 + [ k ( k - 1 ) + k -  114+4. 

Let D be the one vertex VH-T-square complex obtained from Y via D = Y [] Y, 
denote its VH-datum by (AD, BD, (PAD, g)BD, RD). Let ~/ be a copy of Y associated 

with VH-datum (A, B, g~A, q0gB, R) where for each a E A we let ~ E A denote the 

corresponding element, analogously "b E B corresponds to b E B, and R = {(fi', b, d ,  b'); 

(a, b, a', b')E R}. We describe next how to mate these three VH-T-square complexes, 
Y, D and Y, to obtain a new one vertex VH-T-square complex Z so that Z has a 
covering VH-T-square complex Z (~) having 4 vertices and described explicitly, such 
that its fundamental group gl(Z) (~) is a simple group. The idea of the mating is 
similar to the one used in the previous construction together with the observation that 
we have certain explicit closed loops in the one skeleton of D representing elements of 
tel(D) which actually belong to ~I(D) (~ Using appropriate mating (joining and surgery 
operations) allows us to use these to construct a square complex Z for which every 
(necessarily closed) path of length 2 in the horizontal or vertical 1-skeleton represents 
an element of hi(Z) (~). 

Let us denote the elements of the sets A, B by: 

A =  {ai, a-/-l : 1 <~ i <<. k} 

B={b j ,  bfl : 1 <~j<~ g} 
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where x and x -t  denote the two orientations of the same geometric edge. Correspond- 
ingly we have: 

~k~- {~i,  "a?l : 1 <~ i <~ k} 

~ = { ~ . , ~ f l  : 1 ~<j~< g)  

AD = { ( ~ ,  ~!~): 1 <~i,j<~k 

BD= { (b:, b2) : l <<. i , j  ~ g 

e,q 6 {+1}} 

e,'q E {-q-l}}. 

Let (0~ = y  V D V Y be the join of the 3 one vertex VH-T-square complexes Y, D,  Y. 
To obtain Z we shall perform a sequence of surgery operations on (~ All the surgery 
operations we shall use will be of the following special type: ~f;q ,c 2 where ~ is the 

transposition (1, 2); for each i =  1 ,2 ,  the boundary of ci is the path Oci such that 
0ci([0, 1])=0c/([3, 2 ] )=f ,  0ci([1,2])=Oci([O, 3]))=gi. I.e., the geometric realization of 
the subcomplex consisting of cl, c2 and their boundary is a pair of closed tori having 
the loop corresponding to f i n  common.  Recall that a one vertex VH-T-square complex 
provides us with a natural presentation of its fundamental  group. Observe that prior 

f g i f = g t , f  g2f=g2 to the surgery operation Ff, q, c2 , we had the following relations: - 1  - L  

between the generators corresponding to the boundary edges of the squares ct, % In 
terms of the presentation of the fundamental  group of the square complex, the result 
of applying the surgery operation ~ ;  q ,~2 is refered to by the phrase: "introduce the 

relations -i  -1 ,, f g , f = g 2 , f  g2f=g~ �9 
As we frequently will be introducing relations: 

f - l g l f  hi, -I  = f hl f=gl  
f - l g2f  h2 , - L = f h2f=g2 

--I -1  h f gTf = hr, f r f  = gr. 

It will be useful to denote introducing all these relations by the notation 

f glg2...gT~ ~ h lh2. . .h ,  

Before listing the surgery operations which transform (~ to Z recall that by Corollary 
2.5 for any u, u', a, a' E A the closed path of length 4 in the 1-skeleton of  D consisting 
of the edges el, e2, e3, e4 where et =(a ,  u), e2 =(a  -1 , u'), e3 =(a  ' - I  , u '-1) and e4 =(a ' ,  u -1) 
represent an element of teL(D) which belongs to gl(D)/~) = N N where the intersection 
is over all finite index normal subgroups of ~l(D). 
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6.5.1.  List of surgery operations 

1. For 1 <<.i<~k-3: 

"~i 1 --I --I 1) 
akak- lak_2ai~  >(ak, ak)(ak , ai)(a i , a i )(ai, a ;  

2. For k -  2 <<. i <. k: 

a4a3a2ai  ( )(al a l ) ( a l  I ai)(ai - I  - i  , , , a~ )(a~, a~-') 

~ 

4. 

5. 

6. 

7. at(a2, a2)~ 

8. ~ ( a 2 ,  a2)< 

9. for 1 ~< i , j  <~ k, let 

(o~., aj), 

(ai, ~ 1 ) (  

10. for 1 ~<i~<k, let 

--1 "~k+l --1 
a k a k - l a k - 2 a l  ~ ,(ak, ak)((l k , a l l ) ( a l ,  a l ) ( a l  1 , a k  1) 

--1 ~k+2 
a4(13(12a 1 ( )((lk, a k ) ( ~  1 , a l l ) ( a l  , a l ) ( a l  1 , a k  1) 

(bl,  bl) ~ 

(b2, b2) 
ala2 < ~ ala2 

~k+3 
at a2 

"~k+4 N 
> a l a  2 

bk+5+ [k(i- l)+j- 114 

"~k+5 + [k(i- l)+j- 114+1 
a 2 

~k+5+[k(i- l)+j- 114+2 
a I 

"~k+5+ [k(i- l)+j- 114+3 
) a 2 

(b2i+l ~ b2i+l) 
a'i ~ ) al  

(b2i+2 ~ b2i+2) 
a' i  ( ) a2 

11. 

12. 

13. 

14. 

(a 2 , a2) 
bk+5+[k(k- 1)+k- 114+4 
N (a3, a3) 
bk+5+ [k(k- 1)+k- l]4+4 

~2 
(b2t+3, b2k+3) ( , b6 

h 
(b2k§ b2k+3) ~ , b7 

b4 

b5 
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These surgery operations per formed on Z (~ produce a new one vertex square complex 
Z with V H - d a t u m  (Az, Bz, CPAz, q0Bz, Rz). 

Let the universal cover of Z be ~ x ~m (as usual o ~  denotes the r-regular tree). 

Let F = ~l(Z) < A u t ~  x Aut~mm , Hi =pri(l"), i= 1, 2. 

Claim 6.6. - -  Each Hi is local~ 2-transitive, i= 1, 2. 

Proof. - -  This is proved using property Q2 (2-transitivity for Y) together with 
surgery operations 9, 10 for the first tree and operations 11-14 for the second tree. [] 

Recall the following result of  A. Bochert: 

Theorem 6.7. ([Bo], cf. [Will). - -  Let G be a 2-transitive group of permutations of a set 

of d elements. I f  the size of the fixed point set of some non trivial g E G exceeds 23 d + ~ x/~ then 

G is either Ad or S~. 

Observe that  the element  prl(bl) E HI fixes a vertex as well as more  than 
2 2 
- n  + ~,d% edges out of  the n edges at that vertex. Thus  we conclude using the 
3 3 - -  
theorem of  Bochert that  for any vertex x the finite group Hl(x ) is the alternating group 

An (note that  all the elements of  H_l(X ) are even permutation).  (A similar argument  
using pr2(a~) E H2 may  be used to study H2 instead of  H~.) Applying now [B-M]~ 
Proposition 3.3.1 together with the fact that  each Hi is non discrete we conclude: 

Claim 6.8. - -  The subgroups Hi s a @  

H 1 = g ( A n )  U 2 = g ( A m ) .  [] 

Thus  we already know that for the fundamenta l  group F=rq (Z)  we have that 
~ / =  ["l N is a finite index simple normal  subgroup of  F. Let Z (~/ denote the 

N<lF 
f.i 

corresponding (maximal) finite cover of Z. 

Proposition 6.9. The subgroup F (~ is the subgroup of index 4 in F generated by the 
elements of F corresponding to horizontal or vertical paths of length 2. 

This proposition follows using the following claims: 

Claim 6.10. - -  Every horizontal path of length 2 in Z represents an element belonging 
to F (o~). 
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Proof. - -  Recall that  paths of  length 2 corresponds to words of  length 2 
in Az. Observe that  for a, a', u, u' E A the path  of  length 4 de te rmined  by 
(a, u)(a -1 , u')(a '-1 , u'-l)(a ', u -1) represents a word belonging to nL(YD) (~) and hence 
also to I "(~176 T h e  surgery operations 1, 2, 3, 4 imply that each of  the words 

-1 -1 
akak-iak-2ai, 1 <, i <<. k -  3, aaa3a2aj, k -  2 <. j <<. k, akak_lak_za 1 and aaa3a2a 1 
is conjugate to an element  of  I "(~) and thus is itself in ~ ) .  This however implies that 
any word of  the form aa' for a, a' E A is in F (~). Indeed,  we have 

-1 
a i aj= (akak_lak_2ai)-l(akak_lak_2aj) E ~oo) 

- 1  - 1  
a~ai = (a~ak-la~-2a~ ) (akak-la~-2ai) E 1 -'(~) 

l < . i , j < . k - 3  

l < ~ i < ~ k - 3 .  

Thus  we see that  in F / F  (~ the images of  all the elements ai, a~ 1 where 
1 ~< i .< k -  3 are the same element, say t, and moreover  t is its own inverse, t = t -~. 
Now since for each j with k -  2 .< j .< k we have aaa3azaj E 1 -'(~176 we conclude using 
the fact that  a4a3 E F (~176 that  a2~ E 1 -'(~176 and now it is clear that  for any two elements 

a, a' E A = {ai, ai -1 : 1 <~ i <. k} we have aa' E F (~ Applying next the conjugacy given 

by surgery operation 5 we conclude that also paths of  the form aa-' are in ~o~) for 

any a ,  a' E N. We turn  to paths of  length 2 coming from A2B (where AD is defined in 

6.5 and A2D means words of  length 2 of elements in AD). Here we consider again the 
conjugacy provided by operations 1-4. Observe that  from these now follow that the 
following elements are in I'(~): 

(*) (al, al) ( a l l ,  ai) 

(a~, ~)(~2-~, ,~-') 

l < . i < < . k - 3  

k - 2 < . i < . k  

(a k l ,  ai ) (a-~l, a.~l) 

(a; -~ , a,)(a~ -~ , ~-1) 

-1 (ak , a l  1 ) (a l ,  al) 

Recall that for FD =nl(YD) we have FD/FD(~)~-~ A 2 where A=gl(Y).  Where  the map  
is the one naturally induced by viewing each edge (x ,y)  in YD as an element  of  A 2. 
Note also that the image is the index 4 subgroup of  A 2 consisting of the elements of  
the form (~'1, T2) such that  both "horizontal" and "vertical" length of Tl~h are even. 
Thus  as I ~ )  71 FD contains FD (~) as well as the elements listed in (*) we deduce that 
F (~) 7/I'D contains the elements: 

(e, akai) 1 <. i <. k - 3 ( a [ l a ~  ~ , e) 

(**) (e, alai) k - 2 <. i <~ k (a-~la~ 1 , e) 

(e, akal  1) (ak-lal, r 
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Thus we may conclude that also horizontal paths of  length 2 coming from A~ are 
in F (~). The  conjugacies provided by surgery operations 6, 7, 8 allow us to conclude 

that any horizontal path of  length 2 corresponding to an element of  A2z represent an 
element belonging to F (~/ (and hence corresponds to a closed path in Z(~/). 

Establishing the analogous assertion for vertical paths is provided by the following 
general observation applied to our VH-T-square complex Z. 

Lemma 6.11. - -  Let W be a one vertex VH-T-square complex. Let A=gl (W ) < 
AutT1 x AutT2, Hi =pri(F). Assume that each H i is local~ 2-transitive. Let N <1 A be a 

normal subgroup such that A2w C N,  i.e. any horizontal path o f  length 2 ham@ a path represented 

by elements of  A2w = {aa' : a, a' E aw} correspond to an element Of N.  Then also vertical paths of  

length 2 correspond to elements of  N,  i.e. B2w C N.  

Proof. - -  There exist some b E Bw and a E A2w such that bo~b-~ ~ A 2 in A. To 

see this, observe that for any a E A and b E B there exist unique d E A and b ~ E B 
such that ba = a'b' thus it follows that for any b E B, any n/> 1 and any a E A n there 
is a unique b ~ E B and an a '  E A n (unique when a is "reduced") so that bc~--a'b'. The  
assertion is that there is some b E B and ~ E A 2 so that the corresponding b' E B and 
a' E A 2 such that b~ = a'b' satisfy b' ~- b. If no such b and a exist then it would follow 

that given any b E B the collection of  b' E B for which there exist a ,  ~ E A n (for some 
n ) 1) so that b~ = a'b' consists of  at most two elements. This is however impossible 
since the transitivity of  the action of  H2 on the edges at a vertex implies in particular 
that given any b ~ E B there exist some n/> 1 and c~, c~' E A n such that b~ = a'b'. We 
have then bomb -1 =a'[3'  for some ~' E 1 2  e ~:[3' E B 2.  This implies that ~' E N. Using 

the local 2-transitivity assumption for H2 we conclude that for any e t= ~ E B2w there 

exist some a l ,  ~2 E A w for some r E W so that we have: ~113 = [~'~2 ~ 0~]-113'c~2 = [3- 
Observe that as both ~ ,  ~2 are of  the same length we have ~l = ~2 in A/N;  hence [3 
is conjugate to [3'= e in A/N.  Hence  also [3 E N. [] 

Combining the above we obtain 

Corollary 6.12. - -  The subgroup F (~ is of index 4 in F. The corresponding VH-T-square 
complex Z (~) /s the complex having 4 vertices vo, vl, v2, v3. For each a E Az we have an edge 
a (b) with to(b) ) = vl, o(a (b)) = Vo and an edge a (t) with t(a (~) = v3, o(a (t)) = v2. For each b E Bz we 

have an edge b (~ with t(b (~) = vo, o(b (~) = v3 and an edge b (r) with t(b (r)) = v2, 0(b (r)) = Vl. For each 
(a, b, a', b') E Rz we have a square with vertices vo, v~, v2, v3 and edges a (b), b (r), a '(t), b '(~. 
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