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by M. BEKKA, M. C O W L I N G  and P. o~ LA HARPE (*) 

1. Introduc~on 

Let P be a discrete group. Denote by tz(F) the Hilbert space of all square-summable 
complex-valued functions on F, and let La(t~(F)) be the C'-algebra of all bounded 
linear operators on t~(F). The group P acts on t2(P) by the left regular representation Xr, 
defined by the formula 

(Xr(y)f)  (x) = f ( y - 1  x) V y e F, V f e t 2 ( r ) ,  V x e r .  

The reduced C'-algebra C;(P) of F is the norm closure in S~ of the linear span 
ofkr (F) .  It  is a C'-algebra with unit. Recall that a normalized trace on a C*-algebra A 
with unit is a linear map a : A -+ C such that a(1) = 1 and 6(a" a) t> 0 and a(ab) = a(ba) 

for all a, b in A. Such a map is automatically continuous (see [Dix], 2 .1 .8  and 2.1 .9) .  
The algebra C; ( r )  has a canonical trace . r : C ; ( P ) ~ C ,  defined by v ( 1 ) =  1 and 
�9 (),r(Y)) = 0 for all y in F \ {  1 }. 

Suppose P is a nonabelian free group. A remarkable result of R. Powers [Pow] 
is that C;(F) is simple (i.e., it has no nontrivial two-sided ideals) and -r is the unique 
normalized trace. This has been generalized by many authors (see, e.g., lAke], [AkO], 

[Hal l ,  [PaS]). 
Let G be a connected semisimple Lie group without compact factors and with 

trivial centre, and let F be a lattice in G. A well-known conjecture asserts that C;(F) 
is simple. The main result of this paper is that this conjecture is true. In fact, we prove 
a more general result, from which the conjecture follows immediately, using the Borel 
density theorem (cf. [Zim], 3.1.5) ,  which shows that lattices are Zariski-dense. A little 
notation is necessary before we enounce our main result. 

In  this paper, we let Q denote the adjoint group of the Lie algebra fl of  a semi- 
simple Lie group G; by this, we mean the algebraic group of automorphisms of g whose 
Hausdorff connected component is isomorphic to the quotient of G by its centre. Also, 

for a topological group H, the symbol H a indicates the group H with the discrete topology. 

(*) This research was partially financed by the Australian Research Council, which supported the first two 
authors as Senior Research Associate at the University of New South Wales and Senior Research Fellow. 
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Theorem 1. - -  Let G be a connected real semisimple Lie group without compact factors. 
Let H be a subgroup of G with trivial centre, whose image in G under the canonical projection is 
Zariski-dense. Then C~(Ha) is simple and has a unique normalized trace. 

The  following property of a discrete group P implies that  C;(F) is simple. 

Definition 1. - -  A discrete group F is said to have property P ~  if, for any finite subset F 
of P \ {  1 }, there exist Yo in P and a constant C such that 

oD 

[I Z= a,z,-(y;;xA) ll < Cl lal l ,  Va e(Z+), Vx F. 

Here a t is the j th - te rm of the sequence a, and Z and Z + denote the sets of integers and 
positive integers respectively. 

I t  is immediate  that, if I' has property P,~ ,  then C;(F) has a unique normalized 
trace (for this, it suffices to consider singleton sets F only). Indeed,  for any x in P \ {  1 } 
and any trace a, there exist Yo in P and a constant C such that  

I( )1[ II  (xKx))II -- Xr(ygJXjo) ~< v J  EZ +, 
J j = l  

and hence o(Xr(x)) = O. 
We shall show (Lemma 2.1) that, if P has property P,.~, then C;(F) is simple. 

In  turn, property P ~  is a consequence (see Lemma  2.3) of the following combinatorial  
property. 

Definition 2. - -  A discrete group P is said to have property P~o= if, for any finite subset F 
of F \ {  1 }, there exist y o in F and subsets U and A, (indexed by a finite set S) of F such that 

(i) r \ u  __ As; 
(ii) xU t3 U ---= 0 for all x in F; 

(iii) y~- ~ A, r3 A, = 0 for all j in Z + and all s in S. 

This definition should be compared with the "table- tennis  cr i ter ion" in Lemma  4.1 
below, and with the definition of Powers' group in [HAS]. Note that  condition (iii) implies 
that  the sets yo  ~" A, and Yo 5' A, are disjoint i f j  and j '  are two different integers. 

In  a number  of cases, property Pcom follows readily from geometric data  about  r .  To 
formalise this, we introduce another condition for a group F acting on a compact  space B. 

Definition & - -  Let F be a discrete group F acting on a compact set B. Then (P, B) is said 
to have property Pg~o if, for any finite subset F o f f  \ {  1 }, there exist y o in F, a finite subset { b e : s ~ S } 
of B, and open neighbourhoods V, of b, in B for each s in S, such that 

(i) { b e : s e S } is the set of fixeg points of  the action of  y o on B, and, for each b in B, there exists s 
in S such that limj_,o~ y~ b = be; 

(ii) xV~ c~ V e = O, for all s, s' in S and all x in F; 
(iii) for all s in S and j in Z +, / f  b e V, and jo b r V,,  then Jo +1 b r V s. 
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An easy compactness argument (see Lemma 2.4) shows that if I" acts on a compact 
space B, and (P, B) has property P~o, then I" has property Pcom. 

So the real problem is to establish the following result. 

Theorem 2. - -  Let G and H be as in Theorem 1, and let B denote the Furstenberg boundary 

of  G. Then (Ha, B) has property Pg~o. 

In  the real rank one case where the action of G on B is simpler, we can offer a 
different proof of independent interest of Theorem 1, at least for subgroups which are 
both Zariski-dense and discrete. Before formulating this result, we introduce one final 
property of a discrete group. 

Definition 4. - -  A discrete group I" is said to have property P~l if, for any finite subset F 

of  I ' \  { 1 }, there exists y o in I" of  infinite order such that, for  each x in F, the canonical epimorphism 

from the free product ( x ) * (Yo ) onto the subgroup ( x , y  o ) of  I' generated by x and y o is an 
isomorphism. 

I t  is easy to show (Lemma 2.2) that property P~l for a discrete group I" implies 
property P,~,  and hence the simplicity of C;(I'), and uniqueness of the trace thereon 
(Lemma 2.1). We also prove the following result. 

Theorem ,3. - -  Let G be a connected simple Lie group of  R-rank 1 and trivial centre, and 

let I" be a discrete subgroup of  G, Zariski-dense in G. Then r has property P~,. 

Essentially the same proof establishes the simplicity of the reduced C'-algebras of all 
nonelementary, torsion-free groups which are hyperbolic in the sense ofGromov; cf. [Ha3]. 

Remark 1. - -  The subscripts ana, com, geo, and nai are abbreviations for analytic, 
combinatorial, geometric, and naive respectively. We like to think of P as the first letter 
of " permissive ". For example, a group I" has property P,~,, or is permissive in the 
naive sense, if it is so free that, for any finite subset F of 1-'\{ 1 }, there exists a pa r tne ry  o 
of infinite order in r such that each pair { x , y  o } (where x ~ F) generates a subgroup 
which is as free as possible. 

Remark 2. - -  Subsets { x~ : j  e Z ~ } of a group F such that, for some constant C, 
~o 

I[ I; xr(x,)L] c II a 1t2 v a 
5 = 1  

have already appeared in the literature (see [Lei], [AkO]). 

Remark 3. - -  Let H be a group as in Theorems 1 and 2, so that H has property P~om. 
We do not know whether H has property P ~  in general. 

In  [HoR] and [Ros], it is proved that C;(PGL(n, k)) is simple with a unique 

normalized trace (concerning the uniqueness of the trace, see also [Kir]), where n >t 2 
and k is any discrete field which is not an algebraic extension of a finite field. As a conse- 
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quence of Theorem 1, we are able to generalize this to algebraic groups over arbitrary 
fields of characteristic 0. 

Corollary 1. - -  Let k be a field of  characteristic 0, and let G be a connected, semisimple 
algebraic group, defined over k, with trivial centre. Let Y be G(k), the group of  tke k-rational points 
o f  G, equipped with the discrete topology. Then C~(I ~) is simple, and has a unique trace. 

Theorem 1 has two natural generalizations, with similar proofs. The first of  these, 
Theorem 4, describes the structure of O~(Ha), in the case where H has finite centre, 
as a direct sum of finitely many simple subalgebras. In order to give the precise statement, 
we introduce some notation. Let Y be a discrete group with finite centre Z. For Z in Z, 
the dual group of Z, let k x be the representation of Y induced by Z- Denote by C*(F, Z) 
the C*-algebra generated by { ~ ( x ) : x  ~ I ~ }. I t  has a canonical trace "~x defined by 
-~x(k~(x)) = X(x) for x in Z and "zx(kx(x)) = 0 for x in V\Z.  The reduced C*-algebra C~(Y) 
decomposes as the direct sum of the algebras C'(I  ", Z). 

Theorem 4. - -  Let G be a connected real semisimple Lie group, without compact factors, 
with finite centre. Let H be a subgroup Of G with finite centre Z, whose image in Q under the natural 
projection is Zariski-dense. Then, for every Z in Z, C*(Ha, X) is simple and has a unique trace. 

The second generalization of Theorem 1 deals with reduced crossed-product algebras. 

Theorem 5. - -  Let [" be a discrete group with property Po*m" Let A be a O'-algebra with 
unit, and let ~ be an action of  F on A. Denote by B the corresponding reduced crossed-product algebra 
A >~. ,  P. I f  the only Y-invariant ideals in A are trivial, then B is simple. I f  A has a unique 
r-invariant trace, then B has a unique trace. 

This paper is organized as follows. In Section 2, we show that when I" has property 
P~n~, then C;(I') is simple. We also establish the relationships between the various 
properties introduced in Definitions 1 to 4. Sections 3 and 4 are devoted to the results 
about semisimple Lie groups, and Section 5 to the generalizations and corollaries of 

Theorem 1. 
Some of the results in this paper were announced in [BCH]. 
It  is a pleasure to thank Donald Cartwright, who read this paper very carefully, 

for a number of useful suggestions. 

2. P r o p e r t i e s  P ~ ,  Peom, Pgeo, a n d  P~, 

In this section, we show that property P~n~ implies the simplicity of the C*-algebra, 

that Pnat and Peom both imply P ~ ,  and that Pgeo implies Pcom" 

Lemma 2.1 .  - -  Let F be a discrete group. I f  Y has property Pans, then C~(V) /s simple. 

Proof. - -  Observe that, since C;(F) is a Banach algebra with unit, the closure 
of any proper ideal of C~(F) is still a proper ideal. Hence, it is sufficient to prove that 
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C:(F) has no nontrivial closed two-sided ideals. This amounts  to showing that  any 
unitary representation of F which is weakly contained in k~. is actually weakly equivalent 
to ?~r (for the notion of weak containment,  see [DIX], Chapter  18). 

Let n be a unitary representation of F which is weakly contained in kr .  The  Dirac 
function 81 at the group unit  is a positive definite function associated with kr- Since 
)'r is cyclic, we need only show that 8a is the limit, uniformly on finite subsets of F, of 
sums of positive definite functions associated with n (see [Dix], 18.1.4).  

Let F be a finite subset of F \{  I }. By assumption, there existy 0 in P and a constant C 
such that, for all x in F, 

oo 

II .5~ as~r(.),o'Xjo)[l<... Cliall, V a ~:(Z+). 

In  particular, 

lim 1 ~] )'r(Yo 5 xjo) = 0 V x ~ F. 
J ~ ' ~  j 5=1 

Since ~ is weakly contained in ~r, this implies that  

. m  1 

Take a unit  vector ~ in the Hilbert space of ~, and define the normalized positive definite 
function 95 to be ( ~ ( - )  ~(yg) ~, ~(y~) ~ ). Then  95 is a matrix coefficient of ~, and 

J 
l im 1 y~ q~5(x) _--31(x) V x ~ F u { 1 ) .  [] 
J -+~ j j = l  

Lemma 2. Z. - -  Let F be a discrete group. I f  r has property P,,I, then P has property P ,~ .  

Proof. - -  Let F be a finite subset of F \ {  1 }, and lety0 in P of infinite order be such 
that  ( x , y  o ) is the free product  of ( x ) and (Y0)  for all x in F. 

Fix x in F and write F' for the group ( x , y  o ). Denote by W o the subset of U' 
consisting of the words which do not begin with a nontrivial power of y0, and by W 5 
the sety~ Wo, for a l l j  in Z. Observe that  the sets W~ are pairwise disjoint. Then,  denoting 
by ~ the regular representation of F' and by Z~ the characteristic function of a subset A 
of F', we have, f o r f  and g in g2(F') a n d j  in Z, 

] ( X(Yo J xjo) f ,  g ) [ = ( )~(xJo)f, )'(Jo) g ) I 

~< (X(x) (Zwo Z ( J o ) f ) ,  Z(y~) g ) [ 
+ I < X(x) (Xr'\w0 X(yg)f), X(yo ~) g ) I 

= (X(x) X(yg) (~w; f ) ,  X(yg) g ) [ 
+ I (X(x) (Zr,\w. X(y~) f ) ,  Zwo X(yg) g ) I 

~< II Zw_:/]l 11 g I] -~- ]Ill[  1[ Zw0 x(yg) g [1 

-- II Xw_;fll  II g II I lf l[  II Zw_ig II, 

where we used the fact that  x(F ' \W0) g W 0. 

1 fi 
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Now take a in g2(Z +) and define the operator T. 

T . =  ~ a tx(yo ~xj0 ). 
j = l  

on t~(r') by the formula 

Then 
gO 

I < Y . f , g > l ~  Y" la, I [ll Zw_i/ll Ilgll + II/ll II Zw_;g II] 
j = l  

~< 2 l l a l h l l f l l  [Ig[I Yf, get~(P'). 
Thus II To II ~< 2 II a Ih. Since 

gO gO 

11 N a,X(yg' xYg)ll = II x a, xr(y;'  xyg)ll, 
5 = 1  J = l  

the required inequality is proved. 
Note that T. is not a priori a bounded operator on g2(F'). One may get around 

this by considering a with finite support, and then applying a limiting argument. [] 

Remark 4. - -  It should be mentioned that Lemma 2.1 is implicit in [Pow] and 
[AkO], and that Lemma 2.2 can easily be deduced from [Lei] or [AkO]. For a better 
understanding of later arguments, we preferred to give independent, quick proofs. Since 
free groups are readily seen to have property P~,  it should also be observed that a 
combination of both lemmas provides a short proof of Powers' theorem. 

Our next lemma is a generalization of Lemma 2.2. In particular, it implies that, 
if I" has property Peom, then F has property P,~. 

Lemma 2 .3 .  - -  Let I" be a discrete group with property P~0~, and let ,,~ be a Hilbert space. 
Let 9 denote the space of  all bounded operators T on the Hilbert space t2(p; oct ~ of  square-inlegrable 
,~g'-valued funaions on [' for  which there exists a bounded .o~'(~)-valued function B on r such 
that Tf(x) = B(x) f (x )  for all x in I" and all f in g2(F;.,~ff). Suppose that (T~)j~ 1 is a sequence 
of  operators in 9 .  Let F be a finite subset of  P\{ I }, and let Yo, U, and { A ,  : s ~ S } be as in 
Definition 2. Then 

go go 

[1 ~ T~ X(yo ~ xy~)[[ ~ 2 [ S [ ( Y', [I T, [12) 1/2 
~ = 1  5 = 1  

for all x in F, where X denotes the regular representation of  I" in t2(P; aCa). 

Proof. - -  We need to observe that operators in 9 commute with multiplications 
by characteristic functions of subsets of F. Now, for all f and g in t2(P; ~Vt~ and T in 9 ,  

]<T~(x)f ,g)]~< (TX(x) x v f . g > l  + } ( T ~ ( x )  Xr.xvf.g>l 

= ( T x ~ v X ( x ) f , g ) l  + ](X(X) Zr \ r f ,  W ' g ) [  

= ( ~ TX(x)f 7.r,,c g )I  + ] (X(x) 2.r,,t;f, T*g ) l  

~< l[ TX(x)fll II xr'xo g 1] § l[ xr'xofl[ l[ T ' g  11 

~< Y~ [ll Tx(x)f l l  II zA, g II § II zA,fl[ II T" g II] 
s E 8  
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for all x in F. For each positive integer j ,  write R~ for X(y0 j) Tj X(y o J). It is clear that 
R~ e N. Hence when j i> 1, 

I ( R~ X(x) X(y~)f, X(y~) g ) I ~ 2~ [1t R~ X(xyJo)fl[ I[ ZA, X(y~) g {I 
s ~ S  

+ II z~  X(yg)f[I I1 R; X(yg) g II] 

= E [11R,Z(xfo)fll II Xv~ia, g II 
sE~s 

+ II z ,~ , , f l l  II R;. X(y'o)g II]. 

o0 

l y, (X(yo ' )R~X(xYo) f ,g ) [  
j = l  

oO 

~< Y~ [ ( R, X(x) X(N ) f ,  X(yo j) g > ] 
i = l  

oO oO 

y. ([ x IIR, X(xyJo)fll']'~[ y. IIz,~i~,gl['-]~/~ 
I I ~ 8  J = l  j = l  

ao oD 

+ [ Z II " ' ' / '  z,g,x, f l l ]  [ y~ llR;X(yg)gll2] a/~) 
t = l  j = l  

cO 

~< Y" ([ Y' (R~X(x jo ) f  R,X(xY•)f)] 1/2 [igl[ 
s E 8  ~=1 

+ l l f l l [  5: . , �9 , ( Rj X(y.) g, R~ X(yo) g )]~/2) 
~ 1  

-< ISl(ll  ~: X(Xjo)*R*jR~X(xJo)l[ 1/~ 
j = l  

oO 

R,x(y0) l l f l l  Ilgll + 11  XCy'o)'R, �9 , II 

oO 

I X  (TjX(y;SxyJo) f ,g) l  = 
~=1 

Now 

<~ 

~<2181( ~ IIRjll~)~/~llfll [Igll 
00 

= 2 1 8 1 (  Z I[T~11~)1/2 [If[ I Ilg[I, 
j = l  

since the sets Yo J A, and y;- ~' Ao are disjoint for different integers j and j ' .  [] 

Lemma 9..4. - -  Let P be a discrete group, which acts on a compact space B. I f  (F, B) has 
property Pno, then P has property P~o... 

Proof. - -  Let F be a finite subset of P \{  1 }, and letyo, b,, and {V, : s e S}, be as 
in Definition 3. Let So be the set of all s in S such that for some b in B\ [ J ,  e ~ V,,  y~ b -+ b, 
a s j  -+ oo. For i in Z + and s in So, we define B,,~ as follows: 

B , , ~ = y ~ * V , \  [.J yoJV~  
O~<j<i  
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Using condition (iii) in Definition 3, it is easy to show that yo  ~ B,.~ = B,.~+~. Conse- 
quently, the sets yo~ B,.~ and B,.~ are disjoint for all positive integers j .  

Define V thus: 

V =  U v,. 
s G S  

Then  xV c B \ V  for all x in F. Since limy~ b ~{ b, : s e S O } for all b in B \V ,  
i --~ ao 

U Uy;-'v,, 

and since B \ V  is compact,  there exists I in Z + such that  

I 

B \ V  _~ U U B., i. 
i = l  s ~ 8  0 

Now write Yx for Y0 I, and define B0 (for any s in So) by the rule 

I 

B.=  U B,,,. 
i = l  

It  is clear that  the sets y~-~ B, and B, are disjoint for any positive integer j .  
We fix an arbitrary base point b 0 in B, and for any subset A of B, we define the 

subset A of F by the rule 

A = { y e r : y b  0 c A ) .  

T h e n y / j  ~, and 1], are disjoint for any positive integer j .  Further,  xV _ r \ ~ "  for all x 
in F, and 

U fL. 

Taking A0 to be B,, for s in S 0, and U to be V, we are done. [] 

3. P r o o f  o f  T h e o r e m s  1 a n d  9. 

In  view of the results of the previous section, it suffices to prove Theorem 2. 
Before we give the general proof, it may be helpful to consider a particular situation, 

namely, where r is PSL(n, Z). 

Example 1. - -  Let n be an integer greater than I, and G be the group PSL(n, R). 
Let H be a subgroup of G containing PSL(n, Z), hereafter written r .  The  group G 
acts in the usual way on the real projective space R P " - ' ,  henceforth denoted by B. 
We shall check that  (Ha, B) has property P,oo. For this, fix a finite subset F of Ha\  { 1 }. 

Choosey '  in F with eigendirections bl, . .  ,, b, in B and corresponding eigenvalues 
)`1, . . . ,  )`, satisfying )'1 > Zz > . . .  > )`, ~ 0; examples of such matrices y '  are direct 
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sums ~  tw~176 bl~ ~  the f~ ( j + l  1 j )  for pairwise distinct positive integers j ,  

and of a trivial block (1) in case n is odd. Using the fact that P is Zarisld-dense in G, 
it is easy to see that P contains a conjugatey 0 ofy '  with eigendirections bt, . . . ,  b, in B 
such that 

x { b t , . . . , b , } n { b l , . . . , b , } = f O  V x e F .  

The details of this are in the proof of Theorem 2 below. 

Denote by Ix 1 : . . .  : x,] homogeneous coordinates on B with respect to the eigen- 
directions bl, . . . ,  b, o fy  0. So b0 = [0 : . . .  : 0 : 1 : 0 : . . .  : 0], with 1 in the s-th place. 
For small positive 5, define V, by the rule 

V , = { [ x x :  . . .  :x,]  e B : x , + 0  and x'l<~x,-- when t + s } .  

One may choose r so small that condition (ii) in Definition 3 is satisfied. I f  b = [x 1 : . . .  : x,] 
in B, let s+ (respectively s_) denote the smallest (respectively the largest) integer for 
which x, # 0. It  is clear that 

lim yg b = b,. and l i m  yo  ~ b = b, 
j ---J- oo 

so that condition (i) in Definition 3 holds. Finally, condition (iii) is fulfilled by definition 
of the sets V,. 

Throughout  the remainder of this section, G, Z, and G denote respectively a 
connected real semisimple Lie group without compact factors, its centre, and the 
associated adjoint group. 

Let KAN be an Iwasawa decomposition of G. We denote by M, M', and W the 
centralizer and normalizer of A in K, and the Weyl group M'/M. The Lie algebra of 
a group is denoted by the corresponding lower case gothic: letter. Fix a choice of positive 
roots of (g, a) such that 

n =  ~ g~. 

Let A + = exp a +, where a + is the positive Weyl chamber in a. We denote the minimal 
parabolic subgroup MAN of G by P, and the Furstenberg boundary G/P by B. 

The following crucial lemma is proved in [BeL], appendice, as a consequence of 
results from [GoM] and [GuR]. A proof also appears in [Mos], p. 63, in the case where 
H is a lattice. 

Lemma 3.1. - -  Let G be a noncompact semisimple real algebraic group, and let H be a 
Zariski-dense subgroup of G. Then there exists an element yo in H which is" maximally hyperbolic ", 
i.e., which is conjugate in G to an element of MA +. 
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Note that if H is a subgroup of the real semisimple not necessarily algebraic Lie 
group G, then a n y y  0 in H whose image in Q is maximally hyperbolic is itself maximally 
periodic. Lemma 3.1 therefore implies the following result. 

Lemma 3.9.. - -  Let G be a noncompact connected real semisimple group, and let H be a 
subgroup of G whose image in Q under the canonical projection is Zariski-dense. Then there exists 

an element Yo in H which is maximally hyperbolic. 

Next, we need some information about the action of an element Y0 in MA + on 
the Furstenberg boundary B. For each w in W, choose a representative st, of w in M' 
and write b. ---- s w P. (Note that s~ P is independent of the coset representative chosen 
for w.) Then, by the Bruhat decomposition (cf. [War], 1.2), B is a disjoint union: 

B =  U Nb, .  
t 0 6 W  

Let ~ be the longest element in W, and N be the subgroup opposite to N. Then 
iq = s~ Ns~ 1. Since B = s~ B, we have also 

B =  U Nb,.. 
toEW 

Let ~3 and 0 denote the Killing form and the Cartan involution on g. Then  

(X, Y) v-~ -- ~(X, OY) V X ,  Y e g  

is an inner product on g with respect to which M acts by isometries (by Ad, the adjoint 
representation of G), and A + acts by centralizing m |  a, by " shrinking " n, and by 
" expanding"  It. More precisely, if I]" [] denotes the norm corresponding to this 

inner product, and Y0 eA+,  then [I Ad(y0) X ]] < ]] X ]] if X 6 n \ { 0 ) ,  while 

II Ad(y0)X II > I l x l l  if x 
Observe that, for any w in W and X in g, 

(1) Yo exp(X) b~ = exp(Ad(y0) X) b~. 

Together with the fact that s~ ly  o 1 s~ e MA +, this shows that 

lim y ~ b = b t ,  V b e N b ~  and lim yo j b = b t ,  V b ~ N b  w. 
1..~ + oo ' j ~ - - o o  

I t  is clear that the fixed point set of the map b v-*y 0 b is { b~ : w e W }. We shall need 
to understand this map;  in particular, we need to study the action near all the fixed 

points. 
For any w in W, and any Ad(M)-invariant  subalgebra I) of g, Ad(s~) I) is inde- 

pendent of the coset representative sw for w in M'/M, so we may denote it by ~D. Clearly 

s,, Nb e = s w Ns~ 1 bw -- e x p ( ~ )  bt,. 
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Since Nb, is a neighbourhood of b,, Zariski-dense in B, the set s ,  i~b, is a neighbourhood 
of b~,, Zariski-dense in B, and X ~ exp(X) b~ is a bijecfion of '~fi onto this set, which 
is biregular (in the algebraic-geometric sense) and diffeomorphic (in the differential- 
geometric sense). In view of formula (1), this shows that the action o f y  0 on B near b,~ 
is equivalent to that of Ad(y0) on "~ near 0. 

For w in the Weyl group W, the coset representative s~ acts on the Lie algebra 
(by Ad), stabilizing the subalgebras tn and a, and permuting the root spaces g, amongst 
themselves, so ~fi is a sum of root spaces, and we may write 

= ( n  n | n 

I f  we take neighbourhoods U, of 0 in *'~ of the form 

n  :ll Xll< 5} x{x  n' :llXll< 
where r �9 R +, we see immediately that, if X �9 U, and Ad(yg) X r U, for some positive 
integer j ,  then this is because the projection of Ad(y~) X into its n n ~'R-component 
has length at least r and we deduce that Ad(yg +1) X r U, .  

This is essentially all the information we need about the map b ~*Yo b, but it may 
be worth pointing out that this line of reasoning can be pushed a little further to show 
that exp(~'fi)b~ is a MA-invariant neighbourhood of the singular Bruhat cell Nb~,. 
Indeed, for a fixed w in W, R = ( f i n  ~n) | (n n ~'R). A standard argument (see, e.g., 
[Wal], 8.10.2) implies that 

~i" ~- exp(fi n ~'fi) exp(~ n wrt). 
Now 

Nb~ = exp(~ n ~g) w exp(Ad(w -~) ( f i n  ~n)) b, 

_c exp(n n ~ )  w exp(n) b, 

= exp(n tn ~ )  b~ 

_c e x p ( ~ )  b, .  

These neighbourhoods therefore provide a finite open cover of the Furstenberg boundary B, 
and understanding the action of MA on each of them is tantamount  to understanding 
the action of MA on B. 

By replacing y 0 by YYoY-~ if necessary, we deduce that any maximal hyperbolic 
element has a similar action on B. 

We summarize the relevant parts of  this discussion as a lemma. 

Lemma 3.3. - -  Let y o in G be conjugate to an element of  MA +. Then there exists a subset 
{ b,~ : w e W } of B such that the following holds. For any b in B, there exist w+ and w_ in W, 
such that 

fim~o YJo b = b,§ and lim y~ b = b,~ . 
j i ~ - o o  - 

Further, the fixed points b,~ all have arbitrarily small neighbourhoods U~ with the property that 

/ f b  ~ U ~ , j  ~ Z  + and j o b  r U~, thenJo +1 b C U~. 
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Proof o f  Theorem 2. - -  Let H be a subgroup of G, with trivial centre, whose image 
in G under the canonical projection = is Zariski-dense. Fix a finite subset F of H \ {  1 }. 
Take a maximally hyperbolic e lementy 0 in H, whose existence is assured by Lemma 3.2, 
and a subset { b w : w ~ W } of B, as in Lemma 3.3. 

First, we claim that there exists an e lementy  in H such that 

y x y - ~ { b , o : w ~ W } n { b , o : w ~ W } = O  V x ~ F .  

Indeed, for w', w" in W and x in F, the set { y e G : y x y - l b w  , ,  b~,,} is clearly the 
inverse image under = of a Zariski-open subset of G. We prove below that it is nonvoid 
by contradiction. Our claim then follows because the intersection of all these sets is 
still the inverse image under r~ of a nonvoid and Zarisld-open subset of G, and the image 
of H in G is Zariski-dense. 

Suppose that there exist w', w" in W and x in F, such that y x y - 1  b,~, = bw,, for 
all y in G. Then b~,, = xb,o, , so xy-  ~ b,o, = y -  ~ xb,o, for all y in G. Then the stabilizers 
of b., and xb,o, coincide. As P is its own normalizer in G, this implies that b~, = xb,o, , 

i.e. w' = w". Now we have xy -~ bw. = y - 1  b,o, for a l ly  in G, and since G acts transitively 
on B, x fixes every point of B. Hence x is central, since G has no compact factors. This 
contradiction proves our claim. 

By replacingy 0 w i t h y -  IYoY, if  necessary, we may therefore assume that xb,o, 4= b,o,, 
whenever x ~ F and w,  ~ W. 

Take open neighbourhoods U~, of the points b~, such that xU~, n Uw,, = O 
W t t  whenever x s F  and w', e W ,  and such that if b ~ U ~ , , j > /  1 a n d y ~ b C U ~ , ,  then 

y~+ab  r U~, (this is possible by Lemma 3.3). This establishes that (Ha, B) has pro- 

perty Pgco. [] 

Remark 5. - -  It  may be of interest to observe that, when one combines the arguments 
of this section with those of Lemma 2.3, the final conclusion is that 

[[ Y. a~X(ygiX/o)][<<. 2 ( I w l -  1)Ilall~. 

The point is that one of the fixed points, namely b~, is dropped out in the passage 
from P=o to Pcom, because no point b of B\{ b~ } has the property that limj_~, y0 ~ b -= b~. 
In  particular, in the rank one case, where I W[ = 2, we obtain the same constant as 
for the free group (see the proof of Lemma 2.2). 

Moreover, by looking at other boundaries, one may reduce this constant further. 
The example given earlier of subgroups of PSL(n, R) containing PSL(n, Z) shows that, 
for these groups, the constant 2(I W I - -  1), equal to 2 ( n ! -  1), can be replaced by 
2(n-  1). 

Remark 6. - -  In  the recent theory of operator Hilbert spaces developed by 
U. Haagerup and G. Pisier [HAP], there are estimates similar to some which appear 
in the proof of our Theorem 2. More precisely, by considering in Lemma 2.3 operators T~ 
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which commute with the translation operators ~(x) for all x in P, and unravelling the 
last group of inequalities in the proof, without the last two lines, we obtain the inequality 

cO gO go  

Y, T~. T, I1 + II Y, T, T;. l [,=, ~'~ T, X(Yo i xY~)[I ~< ( I W [ -  1)rll , = ,  . .  

4. P r o o f  o f  T h e o r e m  3 

First, recall the following well-known lemma (see [Ha2], p. 130, or [Tit], Pro- 
position 1.1). 

Lemma 4.1 (" Table-tennis criterion "). - -  Let G be a group acting on a set X, and 
let H and K be subgroups of G. Assume that K has at least 8 elements. Suppose that there exist 
disjoint subsets A and B of X such that h(B) __q A for all h in H \ {  1 )and  k(A) ___ B for all k 
in K\{  1 }. Then the subgroup of G generated by H and K is the free product H �9 K.  

Proof of  Theorem 3. - -  We assume now that G has R-rank 1. The Riemannian 
symmetric space G/K, denoted by X, has strictly negative curvature, and B is the 
boundary of the compactification X of X, as in [BGS], 3.2. The elements of G may 
be classified by means of their fixed points in X (see [BGS], 6.8, or [EbO], Section 6): 
any x in G is elliptic, when x has a fixed point in X, or parabolic, when x has no fixed point 
in X and exactly one fixed point in B, or hyperbolic, when x has no fixed point in X and 
exactly two fixed points in B. 

Further, if x in G is parabolic or hyperbolic and if at and a2 are the fixed points 
of  x in B (of course, at = as if x is parabolic), then (permuting at and a~ if necessary) 

lim x ~ b = a  t and lim x j b = a s  
t ' - *  + go J - ~ - -  go 

for all b in B\{ at, a2 }. 
Let F be a discrete subgroup of G, Zariski-dense in G. Observe that any elliptic 

element x in r has finite order, since it is contained in a compact subgroup of G. 
We shall now prove that r has property P ~ .  Let F be a finite subset of  I ' \{  1 } 

and set 
F: = { ( x , j )  ~ F  • Z :x~  4= 1). 

Let 
B o = { b E B : x J b ~ : b  V (x,j) e F' ). 

Recall that, for any x in G, x j is of the same type (elliptic, hyperbolic or parabolic) 
as x for aUj  in Z \ (  0 ) (see [BGS], Lemma 6.5). This shows that B0 is a finite intersection 
of Zariski-open nonvoid subsets of B. Hence B 0 is a Zariski-open nonvoid subset of B. 

Le ty  o be a hyperbolic element of F, with attracting fixed point bt ~ B and repulsing 
fixed point b z ~ B. Since F is Zariski-dense, the F-orbit of b t intersects B o. Hence, by 

17 
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conjugating Y0 if necessary, we may assume that b 1 ~ B 0. I t  is clear that we can find a 
neighbourhood V (with respect to the Hausdorff-topology on B) of bl such that 
x j V r 3 V = O  for all (x,j)  in F I. 

Since F is Zariski-dense, we may choose Yx in F so that 

{Yl 61,Yx bz } t3 { 61, b, } = ~.  

Then YlYoY~-1 and Y0 have no common fixed points in B. Hence, for a sufficiently 
large positive integer j ,  the element Y2, defined by the rule Y2 = fo(YtYoY~ ~) Yo 5, has 
its fixed points in V. 

Replacing y~ with y~ for a sufficiently large i, we may assume that 

A ( B W )  ~ V  V j ~ Z \ { 0 } .  

Now define U by the formula 

U = [.I x j V. 
(z, ~) E F ! 

Then V r3 U = f0,y~ U _ V for all nonzero integers j and xJV _ U for all (x,j) in F'. 
Hence, by Lemma 4.1, < x, y2 ) is isomorphic to < x ) �9 <Y2 ) for all x in F. [] 

5. Extens ions  and  corol lar ies  o f  T h e o r e m  1 

In  this section, we prove Corollary 1 and Theorems 4 and 5. The following simple 
observation will be useful for the proof of Corollary 1. 

Lemma 5 .1 .  - -  Let F be a discrete group, and let { F, : i ~ I } be a family of  subgroups 
of  F with the property that every finite subset of  F is contained in some F,. Assume that C;(F,) /s 
simple and has a unique trace for any i in I. Then C;(F) is simple and has a unique trace. 

Proof. - -  Let :~ be a unitary representation of F which is weakly contained in ~r- 
Let F be a finite subset of F, and let i in I be such that F is contained in r , .  By assumption, 
)'ri is weakly contained in the restriction of r~ to I'~. Hence 81, the Dirac function at 
the group unit, is the limit on F of sums of positive definite functions associated to z~. 
This shows that ~r is weakly contained in z~. 

The assertion concerning the trace is trivial. [] 

Proof of  Corollary 1. - -  Every finite subset of G(k) is contained in G(k') for some 
finitely generated subfield k' of k. By the lemma above, we may therefore assume that 
k is a finitely generated field of characteristic 0. I t  is well-known (and easy to prove) 
that such a field may be embedded in G. So we may further assume that k is a subfield 
of C. There are two cases to distinguish: i fk  is totally real, then k is dense in R, so G(k) 

is dense in G(R), and if not, then k is dense in G, so G(k) is dense in G(G). A fortiori, 
in the first case, G(k) is Zariski-dense in G(R), and in the second, G(k) is Zarisld-dense 
in G(C), considered as a real group, by restriction of scalars. Hence, the claim follows 
from Theorem 1. [] 
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Proof  o f  Theorem 4. - -  Write F for H a. For X in Z, let ~ denote the trivial extension 
of X to F (i.e. ~(y) = 0 for all 7 in F \ Z ) .  Let rr be a unitary representation of P which 
is weakly contained in Zx, the representation of F induced by X. Then ~x is weakly contained 

in ?'r and the restriction of ~ to Z is a multiple of Z- 

Let F be a finite subset of r .  The proof of Theorem 2 combined with that of 
Lemma 2.3 shows that there exists Y0 in F such that 

cO 

(2) I[ ~ a, Xr(Yys~Yt)il <~ 2( IWi-  1)t1~11~ Va~e=(z+) V ~ F  n(rkZ). 
f--1 

Because k~ is a subrepresentation of Xr, and r is weakly contained in Xx, the same 

inequality holds with X x or 7t in place of XI,. 

Now, proceeding as in the proof of Lemma 2.1, let ~ be a unit vector in the Hilbert 
space of 7r and let ~?~ be (7t( . )  rc(y~) ~, re(y0 j) ~ }. Then 

ff 
lim 1 y, 9~(x) = ~ ( x )  V x e F .  

ff--.oo 3 1=1 

This shows that ~ is weakly contained in re. Hence C*(F, X) is simple. 

Let �9 be a trace on C'(F, X). The version of inequality (2) for ~ shows that 

r  = 0 v x e r \ z .  

Since x(X~(x)) = X(x) for all x in Z, �9 is unique. [] 

Proof  o f  Theorem 5. - -  The proof of the simplicity is similar to that of  Proposition I0 
in [HAS]. 

We may assume that A acts faithfully on some Hilbert space .r Then the reduced 
crossed-product A >~,., F, also known as B, may be defined to be the C'-algebra on 
t2(r ;  ~ ' )  generated by the operators given by the formulae 

(a~) (x) = ~._x(a) ~(x) V ~ e/9(I';3f~) V x ~ r 

(x(v) r (x) = r -1  x) v r ~ t , ( r ; ~ )  v x ~ r ,  

as a runs over A, and y runs over F. Any element of B may be considered to be an infinite 
sum ]~ver avX(Y), where ar e A. There is a conditional expectation e : B  --*A, defined 
by the rule 

e( 5-', a v X ( y ) ) =  a 1. 
y E F  

Let I be a nonzero ideal in B, and let b = ~v~ravX(y)  be a nonzero element 
of I. Replacing b by bb ~ if necessary, we may assume that a xl> 0, and at # 0. 
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According to [HAS], Lemma 9, we may even assume that a 1 >/ 1, by replacing b 
by the element 

J 

Z a, X(y,) bX(7 T t) a~, 
j=l 

for appropriately chosen a t in A and y~ in F. Hence, upon replacing b by a; Ib ,  we 
may assume that at = 1. 

Now there exist a finite subset F of F \ {  1 } and an element b' in B of the form 
1 + ~v~v  av X(y) such that 

1 
[ t b - -  b'[l~< g. 

(3) 

H ence 

Le tyo  in F and S be as in Definition 2. Then, according to Lemma 2.3, 

I ~X(yg ' ) (  Y. avX(y))X(Y~)II 
J,=1 "tEF t 1 It = j v~er ,~le,~i(a~,)X(yg 'u 

2 1 S l  
- -  ~ Ila;ll .  ~< ~ veF 

i11 1 Z X(yg -i) (b' -- 1) X(y~) ~< g 
J j = t  

for J large enough. It  follows that 

1 2 X(yo')  bX(y~) -- 1 ~< 
3 j~l  

2 
~<g, 

I; x(y; ,) (b - b') x(y. ~) 
,=:1 

+ ~ ,=1 ~ X(y~- ' ) (b ' - -  1)X(y~) 

so that (l/J) Z~= 1 X(y;-') bX(yg) is invertible in B. As this is obviously an element of I, 

the equality I == B is proved. 
The uniqueness of the trace is also a consequence of  inequality (3) above. Indeed, 

let -r be a trace on B. Then (3) shows that v(aX('()) = 0 for all a in A and "r in I ' \ {  1 }. 
Hence v = ~ o e, where n is the unique I'-invariant trace on A. [] 

Remark 7. --- In fact, the above proof shows the following somewhat more general 

result: any trace on B is of the form ~r o e for some I'-invariant trace ~ on A. 

Example 2. - -  Let G be a semisimple Lie group without compact factors and with 

trivial centre. Let P be a lattice in G. Then P acts minimally on the compact space G]P 
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for any parabolic subgroup P of G (see [Mos], Lemma 8.5). So the C'-algebra C(G/P) 
of all continuous functions on G/P has no nontrivial F-invariant ideals. Hence, the 
reduced crossed-product C'-algebra C(G/P)x~ . ,  F is simple. Moreover, there is no 
F-invariant probability measure on G/P (see [Zim], 3.2.23). Therefore C(G/P) x~ , ,  I" 
has no trace. 

E x a m p l e  8.  - -  Let F be a group acting simply transitively on the set of vertices 
of a building of type A2, as in [CMSZI] and [CMSZ2] (some of these are lattices in 
semisimple algebraic groups, and some are not). Mantero, Steger and Zappa (private 
communication) have shown that F has property P ~ ,  and so the reduced C'-algebras 
of the group and of the group acting on the boundary of the building are simple. Guyan 
Robertson (private communication) has obtained related results on this crossed product 
algebra, including the nuclearity thereof. 
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